
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

AC-Key: Adaptive Caching for LSM-based
Key-Value Stores

Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and David H.C. Du,
University of Minnesota

https://www.usenix.org/conference/atc20/presentation/wu-fenggang

AC-Key: Adaptive Caching for LSM-based Key-Value Stores

Fenggang Wu Ming-Hong Yang Baoquan Zhang David H.C. Du
University of Minnesota, Twin Cities

Abstract
Read performance of LSM-tree-based Key-Value Stores suf-
fers from serious read amplification caused by the leveled
structure used to improve write performance. Caching is one
of the main techniques to improve the performance of read
operations. Designing an efficient caching algorithm is chal-
lenging because the leveled structure obscures the cost and
benefit of caching a particular key, and the trade-off between
point lookup and range query operations further complicates
the cache replacement decisions.

We propose AC-Key, an Adaptive Caching enabled Key-
Value Store to address these challenges. AC-Key manages
three different caching components, namely key-value cache,
key-pointer cache, and block cache, and adjust their sizes
according to the workload. AC-Key leverages a novel caching
efficiency factor to capture the heterogeneity of the caching
costs and benefits of cached entries. We implement AC-Key
by modifying RocksDB. The evaluation results show that
the performance of AC-Key is higher than that of RocksDB
in various workloads and is even better than the best offline
fix-sized caching scheme in phase-change workloads.

1 Introduction
The persistent Key-Value Store (KVS) has become an in-

dispensable storage engine in many applications [1–4] for its
flexibility and scalability. Existing KVSs, e.g., LevelDB [5],
RocksDB [6], Cassandra [7], etc., use a Log-Structured Merge
(LSM) tree [8] to improve the performance of write opera-
tions. However, their read performance is sacrificed because
of the log-structured nature of LSM trees, where finding a key
by searching several levels could incur multiple storage I/Os
[9–11].

Caching is one of the main techniques to improve read
performance since workloads usually demonstrate certain
amounts of access locality. Studies show that read opera-
tions exhibit “hot spots” in enterprise workloads on LSM-
tree-based KVSs (LSM-KVS) for both point lookups [12–14]
and range queries [15, 16]. In Facebook, some large-scale
production use cases of RocksDB exhibit good locality [17]:

fewer than 3% of the keys were accessed during a 24-hour
UDB workload; in the ZippyDB workload about 1% of the
KV-pairs are accountable for 50% of the total Gets.

There are two major unique challenges in designing an
efficient caching scheme for LSM-KVS. First, LSM has a
multi-level design where the storage I/O saved by each cached
key-value pair (caching benefit) could be different. The deeper
the level where the KV pair resides, the more storage I/Os can
be saved if it is cached. Additionally, the DRAM caching size
taken by one key-value pair (caching cost) is also different
with different key and value sizes. It is challenging for the
caching scheme to estimate the cost and benefit and make
replacement decisions accordingly. Second, the two types
of read operations, namely point lookup and range query,
exhibit quite different caching requirements. Point lookup
prefers caching an individual key-value pair (KV) for space
efficiency [6, 7]. If the value is large, another alternative is to
cache a key-pointer pair (KP, where the pointer refers to the
location of the value in storage) [7]. In contrast, a range query
cannot be served by caching sporadic individual keys, so peo-
ple resort to caching blocks to support range queries [5, 6]. It
is difficult to disentangle the trade-offs among caching KV,
KP, and blocks, as each of them has certain types of favor-
able workloads. Additionally, designing an adaptive caching
scheme that can deal with dynamic workloads is more chal-
lenging.

Existing caching schemes [5–7, 18, 19] only consider one
or two types of entries to cache among KV, KP, and block,
and they have a fixed allocated cache budget for one type of
entry. Therefore, they cannot leverage all of their merits to
cope with various workload scenarios, and cannot adjust the
caching space when the workload changes. Besides, to the
best of our knowledge, there is no existing work addressing
the heterogeneous caching costs and benefits in the unique
LSM-KVS scenario.

We comprehensively study the trade-offs among caching
KV, KP, and blocks, and propose AC-Key, Adaptive Caching
for LSM-based Key-Value Stores, to combine their advan-
tages in handling different workloads. AC-Key uses one des-

USENIX Association 2020 USENIX Annual Technical Conference 603

ignated caching component for each type of the entries (KV,
KP, and block). The size of each caching component is dynam-
ically adjusted by the proposed hierarchical adaptive caching
algorithm that uses ghost caches to guide the size adjust-
ment. AC-Key leverages a novel caching efficiency factor that
quantifies the different caching costs and benefits to aid the
boundary adjustment among the caching components as well
as the replacement decision within each caching component.

We implement AC-Key based on RocksDB [6]. Our bench-
mark evaluations show that the read performance of AC-Key
is higher than that of the default RocksDB by up to 57.1%. In
the phase-change workloads, AC-Key can achieve even better
performance than the best offline fix-sized caching scheme.
We also evaluate AC-Key using YCSB [15] where AC-Key
outperforms the default RocksDB by up to 59.9%.

The rest of the paper is organized as follows. We first pro-
vide the background and motivation in §2 and §3, respectively.
Then we present the design of AC-Key in §4 and analyze the
performance of AC-Key in §5. §6 concludes the paper.

2 Background and Related Work

2.1 LSM-Tree-Based Key-Value Store
Popular implementations of LSM-tree-based Key-value

stores (LSM-KVSs), such as LevelDB [5] and RocksDB [6],
consist of two parts, a memory component and a storage com-
ponent. The memory component, or MemTable, is typically
implemented using in-place sorted data structures such as
skip-list or B+ tree. The storage component is implemented as
levels of files storing sorted runs of key-value pairs compactly.
As shown in Fig. 1, one level is partitioned into multiple
sorted string table files, or SSTs. Each SST has a configurable
size limit, typically 2MB~64MB.

When the MemTable is full, it will be formatted into an
SST and written to the storage component. This procedure is
called the flush operation. Each level in the storage component
has an exponentially increasing size limit (by default 10 times
larger than the previous level). Therefore, larger levels will
have more SSTs. L0 SSTs will be merged with the L1 SSTs
when the specified size limit is reached. After that, L1 SSTs
will then be merged with L2 SSTs, so on and so forth. This is
called the compaction operation.

Every level is a single sorted run (except L0) where the
SSTs have disjoint key ranges. The sorted run of key-value
pairs of an SST are divided into multiple data blocks, and the
boundary keys between every two adjacent data blocks are
stored in an index block with the corresponding data block
offset within the SST. Besides, SST also contains a bloom
filter block (BF block) to determine the existence of a key in
this SST hence to save unnecessary storage I/Os. Block is the
basic storage I/O unit in LSM-KVS.

There are two types of read operations in LSM-based key-
value stores, namely point-lookup (or Get) and range query
(or Scan). Get is to retrieve the value of a specific key in the

… …

…

SST Files

L0
L1
L2

LN

Storage

DRAM

MemTable

Caching Spaceflush

compaction Data Block 1

Data Block 2
…

Data Block n

BF Block

Index Block

Footer

K/V
K/V

…

K/V

Figure 1: LSM-based Key-value Store (LSM-KVS).

following sequence: MemTable, every SST in L0 from the
youngest to the oldest, then L1 to LN . If the key is found in the
MemTable, it will return with the value without any storage
access. Otherwise, the key-value store will search the SSTs in
the storage component. It will first check the bloom filter of
one SST and skip the SST if the bloom filter indicates that the
key does not exist. Otherwise, the index block will be read to
locate the corresponding data block. Finally, the data block
is retrieved and searched for the key. Therefore, a key-value
store needs at most three storage I/Os when searching an SST
for a specific key.

LSM-KVS performs a range query using a starting key
and an ending key or a number specifying how many key-
value pairs to return. To execute a range query, the KVS uses
a Seek() function to construct a merging iterator that can
iterate through the MemTable, all SSTs in L0, and one SST in
each of the larger levels at the same time. Then, the KVS will
call a Next() function to return the next larger key. When the
key returned by the Next() function is larger than the ending
key, or the number of the returned key-value pairs has reached
the specified number, the range query will be terminated.

2.2 Related Work

2.2.1 Caching Schemes in LSM-KVS
There are three type of entries that can be cached in LSM-

KVS: block, KV, and KP (Fig. 2).
LevelDB [5] only adopts the Block Cache (Fig. 2a), where

the blocks could be data block, index block, or Bloom Filter
(BF) block. The blocks in the Block Cache are indexed using
the SST file ID and the block offset (<SstID|BlockOffset>).
Block Cache can be beneficial for both point lookup and range
query operations. Storage I/Os can be saved as long as the
target block is cached. However, Block Cache is not space-
efficient to serve point lookup, as the whole block has to be
cached even though only a small portion of the keys in the
block are accessed frequently.

RocksDB [6] has both Block Cache (Fig. 2a) and KV Cache
(Fig. 2b). The KV Cache stores KV pairs that can serve point
lookup. However, the sizes of the Block and KV Caches in
RocksDB are predefined and fixed. When the KV cache is
enabled, point lookup will first consult the KV cache if the
write buffer does not contain the key. If the key was not
cached in the KV Cache, RocksDB will follow the normal
read process using Block Cache as LevelDB does, and insert

604 2020 USENIX Annual Technical Conference USENIX Association

… …

L0 Storage
DRAM

K/V
K/V
…
K/V

…
…

……
…

…

K/V
K/V
…
K/V

K/V
K/V
…
K/V

K/V
K/V
…
K/V

Get and Scan

Block Cache

Caching Space

Data
Block

SST Files

LN

(a) Block Cache

… …

L0 Storage
DRAM

K/V

…
…

……
…

…

Get

KV Cache

Caching Space

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

K/V

SST Files

LN

(b) KV Cache

… …

SST FilesL0 Storage
DRAM

K/P

…
LN

…
……

…
…

Get (w/ one extra I/O)

KP Cache

Caching Space

K/P

K/P

K/P

K/P

K/P
K/P

K/P

K/P

K/P

K/P

K/P

… BLK …

(c) KP Cache

Figure 2: Three Types of Entries to Cache in LSM-KVS.

Frequency Recency

Target Boundary

Ghost Cache Real Cache Ghost Cache

Recency Ghost
Cache Hit

LRU LRU LRU LRU

Frequency Recency

Target Boundary

Ghost Cache Real Cache Ghost Cache
LRU LRU

Freq. Ghost
Cache Hit

LRU LRU

Figure 3: ARC Algorithm.

the KV pair into the KV cache afterwards. Range queries are
supported by the Block Cache.

Cassandra [7] does not have a Block Cache but has both KV
Cache (Fig. 2b) and KP Cache (Fig. 2c. In the KP Cache, the
locations of the values in the storage are cached in memory as
pointers). On a hit in the KP Cache, one point lookup can be
served with only one storage I/O, skipping all the shallower
levels in the storage component. Compared with KV Cache,
KP Cache is more space-efficient for large value sizes at a
price of one extra storage I/O. Similar to KV Cache, KP Cache
cannot handle range queries. When promoting a key from KP
Cache to KV Cache, Cassandra does not remove the KP entry.

zExpander [18] is a KVS caching scheme which caches
key-value pairs only. It partitions caching space into a com-
pressed zone (Z-zone) and an uncompressed zone (N-zone)
and can adapt the boundary between them. LSbM [19] has a
small on-disk compaction buffer that keeps old, but hot data
from being deleted during compaction to reduce the block
cache invalidation due to compaction. It needs extra storage
space for compaction buffer, and does not take advantage of
the more efficient KV or KP Cache to support point lookup.

2.2.2 General Caching Algorithms
The page cache replacement problem has been studied for

decades [20]. Adaptive Replacement Cache (ARC) [21] is a
dynamic page replacement algorithm designed for managing
the page cache in DRAM. As shown in Fig. 3, ARC divides
the caching space into two parts, the recency cache and the
frequency cache, each of which is an LRU cache. A page
is brought into the recency cache when first encountered.
If the page gets a second access before being evicted, it is
considered a frequently accessed page and will be migrated
to the frequency cache.

The space distribution between the recency cache and the
frequency cache is dynamic. ARC uses two ghost caches
to store metadata of evicted pages (page number) from the
recency and frequency cache respectively. The pages stored
in the ghost cache will be a future reference for adjusting the
allocated space for each part. Compared with the real cache,
i.e., the cache stores the actual page contents, the size of the
ghost cache is negligible since they only store page numbers.

A hit on the recency ghost cache indicates the recency

cache should have been larger, so the target boundary will be
moved leftwards (top figure in Fig. 3) and vice versa (bottom
figure in Fig. 3). As a result, the size of the corresponding
real cache will be increased or decreased according to the
workload.

CAR [22] also maintains a dynamic partition between the
recency and frequency cache using ghost caches, but it uses
CLOCK instead of LRU to manage each caching component
to reduce overhead. H-ARC [23] uses Non-Volatile Memory
(NVM) to cache both clean and dirty pages and propose a
hierarchical algorithm to adaptively handle the page replace-
ment.

Such page-based caching algorithms (e.g. ARC [21],
CAR [22], H-ARC [23]) do not fit LSM-KVS well because
they are based on identical page sizes and caching benefits (i.e.
storage I/Os saved by caching an entry), whereas the entry
sizes and caching benefits in LSM-KVS are no longer uniform.
Similarly, pure frequency-based cache eviction algorithms
(e.g. WLFU [24]) and admission policies (e.g. TinyLFU [25])
assume homogeneous entry size and caching benefit too and
make replacement decisions solely based on the access fre-
quency. However, in LSM-KVS, the difference in entry size
and caching benefit should also be considered along with
frequency. Web caching algorithms often take into account
the entry size information [26]. In LSM-KVS, however, be-
sides entry size, the caching benefit for different entries is
also diverse. For example, caching a KV from a deeper level
will save more storage I/Os than caching one from a shal-
lower level. Such special knowledge of the leveled structure
of LSM-tree should be exploited to aid caching decisions in
LSM-KVS.

3 Motivation
3.1 Unique Challenges in Caching for LSM

Comparing with the page cache replacement problem [20–
23], where the pages have identical sizes, keys and values
in the LSM tree do not necessarily have the same size. The
caching algorithm in LSM should also take the size difference
into consideration when designing the replacement algorithm.

Hash-based KVS [27, 28] does not support range queries.
In contrast, LSM-KVS has two distinct read operations, point

USENIX Association 2020 USENIX Annual Technical Conference 605

Table 1: LSM-KVS Caching Scheme Comparison

Cached Entry Space Efficiency Extra I/O Get Existing Get Missing Scan Compaction Flush Favorite Workload

Block Low No Helpful Helpful (BF block) Helpful Affected Not Affected Scan / Get (missing)
KV High No Helpful Not Helpful Not Helpful Not Affected Affected Get (hot/small value)
KP High Yes Helpful Not Helpful Not Helpful Affected Affected Get (warm/large value)

lookup and range query, that exhibit quite different caching
requirements, and brings additional challenges in the design
of LSM caching algorithms.

B+ tree-based KVS [29] supports both point lookup and
range query. LSM-KVS is different as it has a leveled structure
that diversifies the caching benefit of KV pairs on different
levels. The deeper level the KV resides, the more storage
I/O can be saved by caching this KV pair. Besides, native
operations in LSM-KVS such as compaction and flush do not
exist in B+ tree-based KVS, but they will invalidate cached
entries and need special treatment in the design.

To motivate our design, we discuss two key question about
the LSM-KVS caching: what to cache, and how to perform
replacement, while summarizing the lesson learned.

3.2 What to Cache in LSM-KVS
For point lookup which retrieves the value for a given key,

it’s natural to directly cache the hot KV pairs in the DRAM
cache. However, when the value size is large, and/or the ac-
cess is less frequent, another alternative is to cache a pointer
referring to the location of the value on the storage component.
When looking for this key, the value can be fetched using one
storage I/O instead of performing multiple I/Os along every
SST from L0 down to the level where the KV resides. By
storing a smaller pointer instead of the original larger value,
KP Cache can hold more entries. The hit ratio of KP Cache
will be higher than that of a KV Cache and can potentially
save more I/Os. Comparing KV with KP entry, a hit on a KV
entry can save more storage I/Os since a KP hit still needs one
storage I/O to get the value. On the other hand, caching KP
entries is more space-efficient in the case of relatively large
value sizes.

Lesson 1: The merits of caching KV and KP entries should
be combined to efficiently serve point lookups.

Unfortunately, cached KV and KP entries cannot help with
range queries. Given the staring key of a range query, the
next larger key cannot be determined by only examining the
sporadic cached KV or KP entries. Therefore, some LSM-
KVS implementations such as LevelDB [5] and RocksDB [6]
cache data blocks for range queries.

Cached data blocks can serve point lookup too. However,
retaining a whole block for point lookup is not space-efficient
as it keeps a whole block in the DRAM even only a few
keys are frequently looked up. Beside data blocks, frequently
accessed index blocks and bloom filter blocks (BF blocks) are
also cached in Block Cache.

Lesson 2: Cached blocks and KV/KP entries each have
their advantage to support range query and point lookup.

3.3 How to Perform Replacement
From the discussion above, we reach to the conclusion

that caching KV, KP, and block each has its own favorable
workload scenario. We have a comprehensive comparison
summarized in Table 1. However, designing the replacement
algorithm for a cache that consists of all these three different
entries is challenging.

A straightforward approach is to treat all the cached entries
(KP entries, KP entries, or blocks) equally and borrow exist-
ing replacing schemes, such as LRU (Least Recently Used) or
LFU (Least Frequently Used), to manage the cache. Each en-
try is inserted or evicted according to the corresponding evic-
tion policy. Therefore, the number of cached entries among
the cached KV entries, KP entries, and blocks are solely deter-
mined by the access pattern. However, this “unified” caching
approach is too simplified and cannot distinguish the differ-
ences between these cached entries. First, different cached
entries have different sizes. For example, one cached block
may take up the DRAM space which can hold tens or hun-
dreds of KV/KP entries. Second, different cached entries have
different numbers of saved storage I/Os. For example, one
cached block saves one I/O if hit, but one cached KV en-
try could save multiple storage I/Os for all the SSTs to be
accessed for a point lookup. Besides, KV/KP entries on dif-
ferent levels will have different numbers of storage I/O saved
too. General cost-aware caching schemes [30, 31] does not
have special analysis on the caching cost and benefit in this
LSM-KVS scenario either. Third, if there is a single-pass
large range query, the fetched blocks will evict useful entries
out of cache without bringing any benefit.

Lesson 3: The caching algorithm should consider the dif-
ference of DRAM size taken and number of storage I/O saved
among different cached entries, respecting the unique leveled
structure of LSM-KVS.

Another approach is to have designated fix-sized KV Cache,
KP Cache, and Block Cache for the corresponding entries,
and perform independent eviction decisions based on pop-
ular caching algorithms, such as LRU or LFU. In this case,
the cache is resilient to the large single-pass range query (as
mentioned before) because the each caching component has
a bounded capacity and will not influence the other caching
components. However, this fix-sized approach has some prob-
lems. First, it is difficult to get the size distribution right in the
first place. Second, even if we could have a favorable fix-size
configuration at the beginning, it might not be suitable later
on as the access pattern of workloads could change over time.
For example, a workload has a phase change from range query

606 2020 USENIX Annual Technical Conference USENIX Association

… …

L0 Storage
DRAM

K/V

…
…

……
…

…

Get
(w/ extra I/O)

KV Cache

Caching Space

K/V

K/V

SST Files

LN

K/P

K/P

K/P

K/V
K/V
…
K/V

K/V
K/V
…
K/V

KP Cache Block Cache

Get and ScanGet

Dynamic
Boundary

Figure 4: AC-Key Caching Components

dominant into point lookup dominant. If the fixed configura-
tion is good for the range query at first, i.e., majority of the
cache space is used as Block Cache, in the point lookup phase,
it is clearly not efficient.

Lesson 4: The caching algorithm should be adaptive to the
workload changes.

4 AC-Key Design
AC-Key (Fig. 4) caches all three types of entries – KV, KP,

and block – with designated caching components for each of
the three. Different from the fix-sized scheme described in the
previous section, AC-Key has dynamic sizes for each of the
caching components. The sizes are adjusted by the proposed
hierarchical adaptive caching algorithm. Considering the
heterogeneous costs and benefits of different cached entries
and the unique leveled structure of LSM-KVS, AC-Key uses
the proposed caching efficiency factor to quantitatively guide
the size adjustment among the caching components as well
as the replacement policy within each caching component.

4.1 AC-Key Caching Components
The AC-Key system architecture is depicted in Fig. 4. The

storage component is identical to popular LSM implementa-
tions (§2). The DRAM caching space has three components:
the KV Cache, the KP Cache, and the Block Cache. The Block,
KP, and KV Caches are managed by E-LRU, an improved
LRU with cache efficiency factor based eviction (see §4.2).

KV cache stores the key-value pairs directly. KP Cache
holds keys with pointers, where the pointers are in a format
of <SstID|BlockOffset>. When a KP Cache entry is hit, it
takes only one storage I/O for the KVS to fetch the data block
which contains the target key-value pair. Block Cache stores
frequently accessed blocks, which can be either a data block,
an index block, or a Bloom Filter (BF) block.

Remarks on the KV and KP Cache. In a point lookup
operation, if a lookup-key is accessed for the first time, it will
be brought to the KP Cache. A key cached in KP cache is
called a warm key. If a warm key in KP cache is hit again, we
consider the key as a hot key. We anticipate that it has a higher
probability to be accessed again in the future. Therefore, we
“promote” the key to KV Cache to potentially save more I/Os
from the future accesses. Different from the existing solution
in [7] that still keeps key in the KP Cache, AC-Key removes

the key from KP Cache to avoid the duplicity and achieve
better space-efficiency.

In our current design, we will not “demote” a hot key from
KV Cache to KP Cache since we no longer have the pointer
information. Another design alternative is to have both the
pointer and value stored in KV Cache. However, the accom-
panying pointer will occupy extra cache space of the KV
Cache hence we do not take this approach. As an optimiza-
tion, if the value size of a KV pair is smaller than the pointer
size (implementation-dependent, 24 B in our case), we will
cache the value with the key into the KP Cache instead of
the pointer to save the extra I/O without paying more DRAM
caching space. This entry still needs another hit to be pro-
moted to the KV Cache. AC-Key does not directly insert this
KV entry to the KV cache. The reason is that if this key is not
“hot” enough, i.e., having less chance to be hit again, it will
evict other “hot” entries from the KV Cache. For example,
the workload at a certain time starts to access through a sub-
stantial number of keys with small values without a second
hit, those keys will occupy the whole KV cache, kicking out
useful KV pairs without bringing any benefit.

4.1.1 Get Handling
Get Existing Key. Denote K as the key to search. First,

the MemTable is searched for K as it potentially has the lat-
est version of the value. If not found, then the KV and KP
Cache is searched for the key. One of the following cases will
happen.

• Case I: Hit in KV Cache. The value is returned without
any I/O incurred.

• Case II: Miss in KV Cache but hit in KP Cache.
Using the cached pointer (<SstID|BlockOffset>) as
block handle, AC-Key will check whether the data block
is already cached in the Block Cache. If not, AC-Key
will load the data block into the Block Cache. Using
binary search, AC-Key locates the KV pair in the data
block and then serves the Get request. Besides, the key
will be migrated to the KV Cache, promoting the cached
entry from key-pointer format to key-value format.

• Case III: Miss both in KV Cache and KP Cache. AC-
Key will examine every sorted run level by level, iden-
tifying each SST that has a key range overlaps K, from
the youngest to the oldest. Once the key is found in a
certain SST, AC-Key will stop searching and return the
result directly. Besides, the location of the KV pair, i.e.,
the pointer, will be recorded and cached in the KP Cache
indexed by the key.

In case III, when searching one SST, AC-Key first consults
the BF block of this SST. If the BF block is not in the Block
Cache, it will be fetched from the storage and inserted into
the Block Cache. If the BF block indicates the key is not
in the SST, AC-Key will skip this SST and proceed to the

USENIX Association 2020 USENIX Annual Technical Conference 607

next SST. Otherwise, AC-Key will access the index block
to narrow down the scope and pinpoint which data block to
search. The index block and data block will be fetched from
storage and inserted to the Block Cache if not already cached.
The BF block, index block, and data block share the Block
Cache similar to RocksDB [6].
Get Missing Key. When looking up a missing key K in

AC-Key, Case I and II of §4.1.1 will not happen as there will
be cache miss in both KV and KP Caches.

Similarly, in Case III, the Block Cache will be searched
for the corresponding BF block and one storage I/O will be
saved if hit. Getting missing keys is the “worst” case where
all the overlapping SSTs will be checked. However, by using
the cached BF blocks in the Block Cache, multiple storage
I/Os can be saved.

4.1.2 Flush Handling
Flush will dump the MemTable that contains the latest

version of the values into the storage component as an L0
SST. It is possible that a key inserted to the MemTable is
already cached in either KV or KP cache. Insertions (also
called Put operations) to the MemTable will obsolete the
corresponding cached entries. As long as the new version of
value is still in MemTable, obsolete entries in the caches do
not matter because point lookup operation will always consult
the MemTable first. However, the cached KV and KP entries
must be synced before the keys is flushed to the storage to
avoid returning stale results.

We have two alternatives of the timing of the sync: during
Put or during Flush. If during Put, the KV and KP Caches
will be checked for potential obsolete entries in each Put and
update the KV entry or delete the KP entry accordingly. Note
that during Put, AC-Key cannot update the KP entry since
the latest value of such key has not been written into an SST
yet, hence there is no way to know where the pointer should
point to. This approach introduces significant performance
overhead because of the extra checking during every Put op-
eration. Besides, if a key gets multiple updates before flushed
from MemTable, we have to repeatedly check both KV and
KP Cache for it, which further increases the sync overhead.

Therefore, AC-Key takes another alternative to sync the
caches only during Flush time. It can accumulate multiple
updates to the same key and only sync the KV or KP cache
once for each key. Besides, during Flush time, AC-Key can
figure out the new pointers of keys in the KP Cache and
update them accordingly.

4.1.3 Compaction Handling
Compaction will affect KP and Block Caches since it cre-

ates new SSTs and delete old ones. The old SSTs deleted dur-
ing compaction may contain blocks that are already cached
in the Block Cache. Such deleted SSTs may also contain data
blocks being referenced by the pointers cached in the KP
Cache. However, it will not affect the entries in KV Cache
because compaction reorders and consolidates old KV pairs

instead of inserting new ones. AC-Key updates KP and block
Caches when compaction affects any of cached KP entries or
blocks.

For the KP Cache, during the compaction, AC-Key iden-
tifies affected KP entries in the KP-Cache and update the
pointers to point to the new data blocks that contain the keys.
For the Block Cache, if one cached data block is to be invali-
dated during compaction, AC-Key will replace the invalidated
data block with one new data block generated by compaction
to avoid the invalidated block wasting the Block Cache’s ca-
pacity. The key range of the newly generated data block may
not be exactly the same as the old one. AC-Key chooses the
block that has the largest overlap with the old cached block
and repopulates it back to the Block Cache. Similarly, invali-
dated cached BF blocks and index blocks are also replaced
by the new ones with the most overlapping key ranges. Such
block replacement does not incur extra I/O, as the new blocks
are generated in memory during compaction.

4.2 Caching Efficiency Factor
To quantitatively analyze the trade-off between the costs

and benefits of the cache entries, we propose the novel caching
efficiency factor that takes into account the unique level struc-
ture of LSM-KVS. Using this caching efficiency factor, AC-
Key improves LRU into E-LRU to manage cache evictions
within each caching component, and modifies ARC into E-
ARC to adjust the size of each caching component. We intro-
duce the caching efficiency factor and E-LRU in this section,
and discuss E-ARC in the next section.

We define the caching efficiency factor E (E standing for
Efficiency) for one cached entry as the following equation.
The meaning of this caching efficiency factor is “the number
of saved I/O per byte of DRAM caching space”.

E =
b
s
, (1)

where: E = caching efficiency factor of one cached entry,
b = number of saved storage I/O if cached,
s = caching space taken by this entry.

For example, one typical cached KV entry will take one or
several hundreds of bytes, one KP entry will normally take
less than one hundred bytes, and one cached block will take
4~16KB. b denotes the number of I/O being saved if this entry
is cached. It is given by:

b =

1 if block,
f (m) if KV entry,
f (m)−1 if KP entry.

(2)

where: m = number of SSTs to search for the key,
f (m) = number I/Os to get a key. It is a function

of m.

608 2020 USENIX Annual Technical Conference USENIX Association

The function f (m) depends on the LSM-KVS implemen-
tation. Typically, f (m) = m+ 2, where we have to read m
bloom filters each from one SST along the searching path, as
well as one index block and one data block in the SST that
contains the lookup-key. The number of SSTs to search, m, is
estimated by the level l where the key resides:

m =

{
n0/2 if l = 0,
l +n0 if l >= 1.

(3)

where: n0 = max number of SSTs L0 can hold,
l = the level where the key resides.

If l = 0, the key is in L0. AC-Key assumes m = n0/2 as
an estimate of the average number of SST to search for a
key in L0. If the lookup key resides in levels greater than L0,
potentially every SST in level L0 will be checked. So, AC-Key
uses n0, the max number of files in L0, to estimate m.

E-LRU. Traditional LRU only considers the access pattern
without taking care of the different benefits and costs of the
cached entry. We develop E-LRU, the efficiency-based LRU,
to address this issue. E-LRU checks the least used a cached
entries and evict one with the least caching efficiency E. The
value of a depends on the variance of the caching efficiency
factor E of the cached entries. It is given by a = ev, where v
is the standard deviation of the caching efficiency factor E
of sampled entries in the caching component. When v = 0,
meaning cached entries has identical efficiency, then a = 1,
and E-LRU degenerates to the original LRU algorithm that
evicts the last one entry from the list. The larger v, the more
variance of the efficiency E, the greater a should be used to
select a better candidate to evict. In the current implementa-
tion, we have a cap on a to avoid AC-Key checking too many
entries when making eviction decision. We use E-LRU for
simplicity, yet other cost-aware caching schemes [30, 31] can
be adapted here using our proposed caching efficiency factor.

4.3 HAC: Hierarchical Adaptive Caching
Hierarchical Adaptive Caching (HAC) has a two-level hier-

archy to manage different caching components (Fig. 5). On
the upper level, the cache is divided into two components: the
Point Cache and the Block Cache. The boundary between the
Point Cache and the Block Cache is dynamically adjusted.
On the lower level, the Point Cache is further divided into KV
Cache and KP Cache with an adjustable boundary too. HAC
maintains ghost caches to keep a record of the evicted entries
from the KV, KP, and Block Cache. On the upper level, there
are two ghost caches for the Point Cache and the Block Cache
respectively, while in the lower level, there are two ghost
caches each for the KV and KP Cache. Opposed to ghost
caches, the original KV, KP, and Block Caches are called real
caches. Here the KV and KP Real Caches collectively make
up the Point Real Cache. The ghost caches do not hold the
real entry, but only metadata of the evicted entries. A hit in

Point Cache Block Cache

Block

KV Cache KP Cache

KPKV

Upper Level

Lower Level

Real Cache Ghost Cache

dynamic boundary

Figure 5: Hierarchical Adaptive Caching (HAC) Algorithm.

the ghost cache means it could have been a real cache hit
if the corresponding real cache was larger. By using ghost
cache with the caching efficiency factor, we design E-ARC
(caching Efficiency enabled ARC) to adjust the size of the
corresponding real cache.

4.3.1 Lower-Level HAC
AC-Key uses E-ARC, or efficiency based ARC, to man-

age the lower-level HAC. On the lower-level HAC, the Point
Cache is divided into the KV Real Cache (Rkv) and KP Real
Cache (Rkp). That is: |Rkv|+ |Rkp|= Spoint , where | · | means
size, and Spoint denotes the Point Cache size. AC-Key main-
tains the KV Ghost Cache as if the KV Real Cache Rkv plus
the KV Ghost Cache Gkv equals to the total size of the Point
Cache. Note that the KV Ghost Cache only holds the meta-
data of the keys evicted from the KV Cache. Denote |Gkv|
as the size if they were storing the whole KV pair, then
|Rkv|+ |Gkv| = Spoint . Similarly, with Gkp denoting the KP
Ghost Cache, we have |Rkp|+ |Gkp|= Spoint .

Therefore, the following equation is always maintained:

Spoint = |Rkv|+ |Rkp|= |Rkv|+ |Gkv|= |Rkp|+ |Gkp|. (4)

We show how E-ARC handles cache hits and misses in the
following cases:

• Case I: Real Cache Hit. Cache hits on Rkv or Rkp. Move
the hit entry to the MRU end of Rkv. Especially, if the
hit happens on Rkp, AC-Key needs one storage I/O to
get the value. Then the key and value is inserted into Rkv
(promotion).

• Case II: KV Ghost Cache Hit. Cache hits on Gkv means
the size of Rkv should have been larger. Shift the target
boundary towards the KP Cache end by δ = kE, where
E is the caching efficiency factor of the hit entry on Gkv.
Here k is a configurable learning rate. After fetching
from storage, insert the fetched KV to the MRU end of
Rkv. To make room for this KV entry, evict from Rkv
(resp. Rkp) if the target boundary is within Rkv (resp.
Rkp), meaning that the target size of Rkv (resp. Rkp) is
smaller than its actual size.

• Case III: KP Ghost Cache Hit. Cache hits on Gkp
means the size of Rkp should have been larger. Shift the
target boundary towards the KV Cache end by δ = kE.

USENIX Association 2020 USENIX Annual Technical Conference 609

E is the caching efficiency factor of the hit entry on Gkp.
After fetching from storage, insert the fetched KV to the
MRU end of Rkv. To make room for this KV entry, evict
from Rkv (resp. Rkp) if the target boundary is within Rkv
(resp. Rkp), similar to Case II.

• Case IV: Cache Miss. Retrieve the entry from storage
and cache to Rkp in KP format. To make room for this
KP entry, if the target boundary is within KV cache, evict
from Rkv. Otherwise evict from Rkp.

The target boundary between the KV Real Cache Rkv and
KP Real Cache Rkp indicates the direction the actual boundary
should move. The actual boundary will normally lag behind
the target boundary. The high level sequence of operations is
as follows: 1) ghost hit adjusts the target boundary; 2) entry
insertion or promotion shifts the actual boundary towards the
target boundary, and as a result, real cache sizes |Rkv| and
|Rkp| are updated; 3) ghost cache sizes are adjusted based on
the new real cache sizes using the Eqn. 4; and 4) real and
ghost caches perform eviction if necessary to fit the updated
sizes using E-LRU (§4.2).

Remarks on E-ARC. Although we follow a similar logic
of the canonical ARC algorithm, the original ARC does not
have the size and cost differences. In the original ARC, the
saved block access b and space cost s for each entry are always
the same. E-ARC’s definition of δ = kE = k b

s is a generaliza-
tion of that of the canonical ARC, and the ARC’s definition
of the adjustment is a special case of E-ARC’s formula where
b
s = 1.

4.3.2 Upper-Level HAC
On the upper level of HAC, we re-apply the E-ARC scheme

to adjust the boundary between Point Cache and Block Cache.
Block Cache and Point Cache each has a real cache (Rblock
and Rpoint) and a ghost cache (Gblock and Gpoint). Rkv and Rkp
collectively forms Rpoint . Blocks evicted from Rblock enter
Gblock. On the other hand, entries evicted from Rpoint (Rkv or
Rkp) will be inserted to Gpoint . Note that the evicted entry will
also be inserted to the corresponding KV or KP Ghost Caches
(Gkv or Gkp) in the lower level (§4.3.1). Similarly to the low
level of HAC, the sum of the virtual “size” of the real cache
and ghost cache of the Block Cache (resp. Point Cache) will
be the total available cache size:

Stotal = |Rblock|+ |Rpoint |
= |Rblock|+ |Gblock|= |Rpoint |+ |Gpoint |.

(5)

Target Boundary Adjustment. A ghost hit on Gblock will
move the target boundary between Rpoint and Rblock toward
Rpoint by ∆ = kE, where E is the caching efficiency factor
of the entry on Gblock being hit, and k is the learning rate as
defined earlier. As a result, the target size of Rpoint will be
reduced by ∆. Then, in the lower level, the amount of the
adjustment will be distributed between the target size of Rkv
and Rkp proportionally to their current target size ratio. In

this example, target size of Rpoint is shrinking by ∆. Denoting
the current target size of Rkv as |R∗kv| and the target size Rkp
as |R∗kp|, they will be updated as follows: |R∗kv| ← |R∗kv| −

∆
|R∗kv|

|R∗kv|+|R
∗
kp|

, and |R∗kp| ← |R∗kp|−∆
|R∗kp|

|R∗kv|+|R
∗
kp|

.

On the other hand, a ghost hit on Gpoint will move the
target boundary toward Rblock, i.e., making the target size
of Rblock smaller and that of Rpoint larger. The adjustment
amount is also ∆ = kE. The caching efficiency factor E of
an entry in Gpoint will normally be larger that that in Gblock,
as a Point Cache entry (either KV or KP entry) takes less
DRAM caching space and save a greater number of storage
I/Os than one Block entry. While there is a ghost hit on Gpoint
on the upper level, normally there will be a ghost hit in the
lower level too, either in Gkv or Gkp. In this case, the lower
level target boundary will be adjusted first, then that of the
upper level. For example, if the ghost hit happens both in the
KV Ghost Cache Gkv and the Point Ghost Cache Gpoint , the
target size of Rkv and Rkp will first be updated as described in
§4.3.1), then increment of ∆ is distributed proportionally to
the new target size of Rkv and Rkp accordingly.

Actual Boundary Adjustment. On a block miss when
this block needs to be inserted to the Block Cache, if the
current Block Cache size plus the new block is greater than
the target block size, the Block Cache will not grow. It will
evict one block from itself to make space for the new-coming
block. Otherwise, if the current Block Cache size plus the new
block is within the target Block Cache size, the Block Cache
will expand by inserting the new block, and the Point Cache
will shrink to make room for the growth of the Block Cache.
Typically, more than one KV and KP entries will be evicted
because a block is normally larger than cached KV and KP
entries. The number of KV or KP entries to be evicted will be
based on current target size of the KV and KP Real Caches.

On the other hand, when the Point Cache demands more
capacity, (i.e., when new KP entry is inserted to the KP Cache,
or when a KP entry is promoted to KV Cache and takes more
space), HAC estimates the new Point Cache size after the
growth and compares it with the target Point Cache. If the
estimated new Point Cache size is within the target Point
Cache, one block from the Block Cache will be evicted to
make the room for the Point Cache to grow. On the other hand,
if the estimated new Point Cache size is above the target Point
Cache size, Point Cache will not expand, and the eviction will
happen within the Point Cache, following the current target
KV and KP Real Cache sizes. One problem is that increasing
the size of Point Cache by small amount may result in a whole
block evicted from the Block Cache. To address this, not until
the target boundary is within the Block Cache for at least one
block’s size (typically 4KB or 16KB) does HAC evict blocks
from the Block Cache. In other words, the size of the Point
Cache will grow at the expense of evicting from the Block
Cache only when the target Point Cache size is greater by the
current actual Point Cache by a whole block size.

610 2020 USENIX Annual Technical Conference USENIX Association

4.3.3 Reduce Ghost Cache Size
In the ARC design [21], when a page is evicted from the

real cache, the page content is dropped, and only the page num-
ber is retained in the ghost cache. The size of the page number
is negligible compared to the page content. Similarly, in AC-
Key, the ghost cache for the Block Cache Gblock only stores
the block handle in the format of <SstID|BlockOffset> (24
B in our implementation) which is also negligible compared
to the cache block contents (typically 4~16 KB). However, the
ghost caches of Gpoint , Gkv, and Gkp have significant overhead
that can no longer be ignored. For example, assuming a key
size of 16 B and the value size of 100 B, one real KV entry
takes 116 B. When this entry is evicted from the real cache,
the value is dropped, and the key is inserted into the KV ghost
cache which still takes 16 B. As the key size is no longer
negligible when comparing to the value size and pointer size,
a ghost cache potentially occupies a substantial portion of the
limited caching space, impair the caching efficiency.

We propose two ways to reduce the space overhead of the
ghost caches. First, instead of using the original key of the
evicted KV or KP entries, AC-Key only stores a hash value of
the evicted key as a “fingerprint”. In this way, AC-Key reduces
the ghost cache size overhead while sacrificing the ghost
cache hit accuracy. Hash collision will cause false-positive
ghost hits, resulting in imprecise adjustment decisions. In our
implementation, we found a hash value of 4 B shows a good
trade-off between the ghost cache overhead and accuracy.

Although using a hash-based fingerprint to replace the key
in ghost cache reduces the overhead, a hash value (for exam-
ple, 4 B) is still taking significant space compared with the real
KV and KP Caches. We further propose another optimization
to eliminate such ghost cache overhead by disabling ghost
cache when the adaptive scheme settles to a favorable capac-
ity distribution among the KV, KP, and Block Cache. If the
changes of hit ratios of all the caching components remains
within a threshold θ (called ghost cache turnoff threshold, 5%
by default), the ghost cache mechanism will be turned off,
and the space taken by the ghost caches will be reclaimed for
real caches. The size of the real caches will be proportionally
scaled up to use all the available cache capacity when the
ghost cache’s space is released. Later, when the access pattern
switches and the current size distribution is not favorable, the
change in the hit ratio will flag the phase transition. When the
hit ratio fluctuates beyond the threshold of θ, the AC-Key will
turn the ghost cache mechanism back on until the hit ratio
converges again (fluctuating within the threshold θ).

5 Evaluation

5.1 Implementation and Setup
We implement AC-Key based on RocksDB version 6.2

with roughly 5.6K lines of change in C++ code. We carry out
our experiment on a Dell PowerEdge R430 1U Server. It has
two six-core Intel Xeon E5-2620 v3 @ 2.40 GHz processors

0 0.2 0.4 0.6 0.8 1

0
500
1000
1500

0
0.4

0.8
Block Cache

Ratio

Q
PS

KP Cache
Ratio

1000-1500
500-1000
0-500

best configuration

Figure 6: The offline scheme tries out on different configurations
(at a smallest granularity of 1/10 of the cache size) and select the
fix-sized configuration with the best result.

and 64 GB of DDR3 memory. The operating system is Ubuntu
LTS 18.04 with Linux kernel version 4.15.0. The storage
device is a 372 GB Intel DC P3700 PCIe SSD formatted as
xfs.

We load a 100GB database with randomly generated
keys [9, 11]. The default key size is 16 B and value size
is 100 B, which is the default value of RocksDB [32]. The
length of range scans is set as 100, which is close to the
length used in literature [15,33–35]. The default point lookup
to range query ratio is set to 1:1. We use the existing expo-
nential function based workload generator in RocksDB [32]
to generate workloads with different skewness of hot keys
(point lookup key and scan starting key). In our experiments,
we take the default skewness as the hottest 1% keys taking
up the 99% of the accesses (including both the key for point
lookup and the starting key for range query). The default
learning rate k is 100K (see §4.3) and default ghost cache
turnoff threshold θ is 5%. Data compression is disabled to
rule out unrelated performance interference and simplify the
analysis as in literature [9, 36]. We specify identical cache
sizes in the configuration files of RocksDB and YCSB to en-
sure the same amount of caching budget is used in competing
schemes. Page-based direct I/O [37] is enabled to rule out the
interference of the OS buffer cache, similar to [38, 39].

The following schemes are compared.

• pure-kv: The whole caching space is used as KV Cache.

• pure-kp: The whole caching space is used as KP Cache.

• rocksdb: Off-the-shelf RocksDB with default setting.
Note that RocksDB disables KV cache by default and
the whole caching space is used as Block Cache.

• offline: We try combinations of different component
size with the granularity of 1/10 of the cache size and
select the best fix-sized configuration. Note that such best
configuration is determined offline, and is not applicable
in a real-time caching system (Fig. 6).

• ac-key: Our AC-Key scheme.

USENIX Association 2020 USENIX Annual Technical Conference 611

0
500

1000
1500
2000
2500

1MB 10MB 100MB 1GB 10GB

Q
PS

Cache Size

ac-key rocksdb pure-kv pure-kp offline

Figure 7: Varying Cache Size.

100

1000

10000

100000

1% 50% 90% 99% 99.9%

Q
PS

Hot Key Access Ratio

ac-key rocksdb pure-kv pure-kp offline

Figure 8: Varying Skewness.

0

1000
2000

3000
4000

0% 20% 40% 60% 80% 100%

Q
PS

Range Query Ratio

ac-key rocksdb pure-kv pure-kp offline

Figure 9: Varying Range Query Ratio.

0

1000

2000

3000

4000

50B 100B 200B

Q
PS

Value Size

ac-key rocksdb pure-kv pure-kp offline

Figure 10: Varying Value Size.

1320 1247 934 914
1358

34%
30%

35% 35% 36%

0%

10%

20%

30%

40%

0

500

1000

1500

2000

ac-
key

roc
ksd

b

pu
re-

kv

pu
re-

kp
off

lin
e

CP
U

 U
til

iz
at

io
n

Q
PS

qps cpu

Figure 11: CPU Utilization Comparison.

0
2000
4000
6000

0 0.5 1 1.5 2 2.5 3

Q
PS

Operations (million)

ac-key offline

0
400
800

1200

0 0.5 1 1.5 2 2.5 3

Si
ze

 (K
B

)

block kp kv

Figure 12: Adaptive Adjustment in AC-Key.

5.2 Micro-benchmark
Varying cache size. We vary the cache size from 1 MB to

10 GB, collect the Query Per Second (QPS) and plot them in
Fig. 7. As the cache size increases, the QPS also increases for
ac-key, rocksdb, and offline, as larger cache can poten-
tially cache more entries, hence results in less cache misses.
In contrast, pure-kv and pure-kp do not improve much be-
cause they do not support range queries, and therefore the
range queries will cause many storage I/Os. ac-key outper-
forms other caching schemes that have only a single type
of caching component (better than rocksdb by 5.0%~9.1%,
pure-kv by 47.1%~97.7%, and pure-kp by 52.8%~104.5%)
since they cannot serve both point lookups and range queries
efficiently. Comparing with offline, ac-key performs close
to or even better than offline because of the ability to adap-
tively configure the size of each caching component. The
reason for the better performance of ac-key in some cases
is because offline cannot exhaust all the possibilities of
configurations as offline only tries out the cache size at a
granularity of one-tenth of the total cache size (Fig. 6).

Varying skewness. We vary the access skewness of the
point lookup and the range query using RocksDB’s native
benchmark tool [32]. In Fig. 8, x-axis shows the access ratio of
the hottest 1% ranges from 1% (no skew, uniform distribution)
to 99.9% (very skewed). Note that the y-axis is set to log-scale
to enhance readability. We can see that when the access is uni-
formly distributed (left-most cluster of bars) over all the keys,
the QPS is similarly low for all the caching schemes. This
is because in a uniform-distributed workload, every caching
scheme has hardly any hit. In contrast, as the access becomes
increasingly skewed, the performance of all the schemes rises,
and ac-key outperforms rocksdb by 3.6%~57.1%, pure-kv
by 5%~17.6×, and pure-kp by 7%~16.5×.

Varying range query ratio. We change the ratio of
the point lookup and range query in the workload, rang-
ing the range query ratio from 0% (pure point lookup) to
100% (pure range query) to create Fig. 9. In this figure,
we see that as the range query ratio increases, the QPS de-
creases. This is because a range query has more potential
storage I/Os and occupies more caching space. ac-key has
similar result as offline and is better than rocksdb (by
1.1%~42.6%), pure-kv (by 30.4%~54.7%), and pure-kp (by
43.0%~52.8%).

When increasing the range query ratio from 0% to 20%,
the performance of rocksdb becomes better and exceeds
pure-kv. This is because KV Cache cannot serve range
queries. In contrast, Block Cache supports both point lookups
and range queries. However, the space efficiency of Block
Cache is low which misses the opportunity to cache more
useful entries. ac-key adaptively combines Block Cache, KV
Cache, and KP Cache and delivers the best performance.

Varying value size. We try different value sizes ranging
from 50B to 200B (Fig. 10). As the value size increases,
the performance of all caching schemes decreases. This is
because larger value size incurs more storage I/O overhead per
each key being read. pure-kv performs better than pure-kp
at small value but is exceeded by pure-kp as the value size
increases. This is because the total number of keys can be
cached for pure-kv decreases as the value size increases,
hence the performance of pure-kv becomes not as good as
that of pure-kp. rocksdb still performs better than pure-kv
and pure-kp, as half of the requests are range queries that
cannot be served by the KV or KP Caches. ac-key performs
close to offline, and constantly better than rocksdb (by
5.9%~22.4%), pure-kv (by 41.4%~83.6%), and pure-kp (by
44.5%~96.0%) because of the use of the hierarchical adaptive

612 2020 USENIX Annual Technical Conference USENIX Association

caching in adjusting the size of each component.

CPU Utilization Comparison. With the default settings
(§5.1), we record the CPU utilization by the Linux native time
command and plot them in Fig. 11. The QPS is also plotted
to better illustrate the trade-off. We can see that rocksdb
consumes less CPU resource than the other schemes (ac-key,
pure-kv, pure-kp, and offline) because they all use Point
Cache and thus need to calculate the hash value of every key
inserted to check if they were cached. We can also observe
that although ac-key has extra operations to adapt the size of
caching components, the CPU utilization is not increased sig-
nificantly comparing with pure-kv, pure-kp, and offline.
Besides, ac-key performs close to offline and is better than
rocksdb, pure-kv, and pure-kp.

5.3 Adaptive Adjustment in AC-Key

To verify the adaptive adjustment process of AC-Key, we
construct a workload with two phases: 1 million range queries
with random starting key, then 2 million random point lookups.
We plot the size of the caching components – Block, KV, and
KP Caches – to show the direct evidence of the adaptation
process (Fig. 12 top figure). Besides, we also compare the real-
time QPS of ac-key and offline (Fig. 12 bottom figure).

We can see from the top figure of Fig. 12 that during the
first 1 million queries, the sizes of the KV and KP Cache
are reduced to zero to maximize the Block Cache since they
cannot serve range queries. When the workload changes from
pure range query to pure point lookup after the first 1 million
queries, the Block Cache shrinks sharply, and the KV and KP
Cache start to grow. This is because Point Cache (KV and
KP Cache) are more space-efficient in caching point lookups,
so the HAC algorithm adjusts in favor of the Point Cache
(including both the KV and KP Caches). The KP Cache grows
faster than the KV Cache at the beginning because every entry
is first cached in the KP Cache, and only a small amount of
“hot” KVs with a second access will be migrated to the KV
Cache. At the beginning of the second phase, both KV and
KP Cache grow as they are “stealing” space from the Block
Cache. After the size of the Block Cache declines to almost
zero, the KV and KP Cache start to compete with each other
for space, and it is when KP Cache starts to shrink. The size
of the KP and KV Cache finally converges to 19% and 80% of
the total cache size. In different workload settings, the Block,
KP, and KV Cache will stabilize into different ratio.

ac-key is adaptive and can adjust the size of the caching
components based on the workload. We also run the offline
scheme, which tries to find the best fix-sized configuration.
However, such one-size-fit-all configuration is not tailored for
the special workload of each phase, thus has inferior perfor-
mance than ac-key in each phase: ac-key is 32%~66% bet-
ter in the range query phase, and 2%~20% better in the point
lookup phase after convergence (bottom figure in Fig. 12).

0

2000

4000

6000

8000

A B C D E F

Q
PS

YCSB Workloads

ac-key rocksdb pure-kv pure-kp offline

Figure 13: Macro-benchmark YCSB Evaluation.

Table 2: Average Write Latency (µs) and Regression.

Workload A B C D E F

RocksDB 242.8 238.0 N/A 21.7 32.8 28.6
AC-Key 241.1 241.4 N/A 22.7 33.5 26.7

Regression -0.7% 1.4% N/A 4.9% 2.0% -6.8%

5.4 Macro-benchmark YCSB Evaluation
We also use six workloads in YCSB [15] to further verify

the performance of our design in near-production workloads.
As can be seen in Fig. 13, the overall QPS of ac-key is higher
than rocksdb (by 3.6%~59.9%), pure-kv (by 0.1%~20.7%),
and pure-kp (by 1.2%~25.2%).

We also measure the regression of write performance of
AC-Key from RocksDB (Table 2) and find the regression is
below 5%. This shows that ac-key does not incur significant
overhead on the write operations while improving the overall
performance.

5.5 Sensitivity on Parameters
Using the default setting in §5.1, we range the learning rate

k in the adaptive algorithm (see §4.3) from 1K to 10M, i.e.
(1K, 10K, 100K, 1M, 10M). The fluctuation of the QPS is
within 3.9%, ranging from 1461 to 1520 operation/s. We also
test the ghost cache turnoff threshold θ (§4.3.3) from 0%, 5%
, · · · , 30%, and the QPS stays nearly constant (1418~1459,
varying within 2.8%). As the two parameters do not have a
significant impact on the result, we set their default values as
k = 100K and θ = 5%.

6 Conclusion
Caching is one of the essential techniques to improve the

read performance of LSM-tree-based key-value stores. We in-
vestigate three different types of entries being cached, namely
block, KV, and KP, and incorporate them into one integrated
cache. We propose a Hierarchical Adaptive Caching (HAC)
scheme to dynamically adjust the size of the block, KV, and
KP caching components. To deal with the heterogeneous costs
and benefits of the cached entries, we leverage a novel caching
efficiency factor to aid the size adjustment among caching
components and the eviction decisions within each caching
component. We implement the proposed AC-Key by modify-
ing RocksDB. Evaluations show that AC-Key improves the
read performance of default RocksDB by up to 57.1% without
significant impact on write performance.

USENIX Association 2020 USENIX Annual Technical Conference 613

Acknowledgments
We thank the anonymous ATC reviewers and our anony-

mous shepherds for their feedback. This work was partially
supported by NSF I/UCRC Center Research in Intelligent
Storage and the following NSF awards 1439622, 1525617,
and 1812537.

References
[1] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In ACM SIGOPS operating systems
review, volume 41, pages 205–220. ACM, 2007.

[2] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[3] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel,
Peter Vajgel, et al. Finding a needle in haystack: Face-
book’s photo storage. In OSDI, volume 10, pages 1–8,
2010.

[4] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin,
Guangyu Sun, Zhenyu Hou, Can Cui, and Jason Cong.
Atlas: Baidu’s key-value storage system for cloud data.
In 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–14. IEEE, 2015.

[5] Google. Leveldb. https://leveldb.org/.

[6] Facebook. Rocksdb. https://rocksdb.org/.

[7] Apache. Cassandra. http://cassandra.apache.
org/.

[8] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[9] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 133–148, Santa
Clara, CA, 2016. USENIX Association.

[10] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537–550, 2016.

[11] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and
Yinlong Xu. Elasticbf: elastic bloom filter with hot-
ness awareness for boosting read performance in large
key-value stores. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 739–752, 2019.

[12] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, et al. Tao: Face-
book’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Techni-
cal Conference (USENIX ATC 13), pages 49–60, 2013.

[13] John Liang, James Luo, Mark Drayton, Rajesh Nishtala,
Richard Liu, Nick Hammer, Jason Taylor, and Bill Jia.
Storage and performance optimization of long tail key
access in a social network. In Proceedings of the 3rd
International Workshop on Cloud Data and Platforms,
pages 1–6. ACM, 2013.

[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.
ACM, 2012.

[15] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[16] Eran Gilad, Edward Bortnikov, Anastasia Braginsky,
Yonatan Gottesman, Eshcar Hillel, Idit Keidar, Nurit
Moscovici, and Rana Shahout. Evendb: optimizing key-
value storage for spatial locality. In Proceedings of the
Fifteenth European Conference on Computer Systems,
pages 1–16, 2020.

[17] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[18] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren,
Michel Hack, and Song Jiang. zexpander: a key-value
cache with both high performance and fewer misses. In
Proceedings of the Eleventh European Conference on
Computer Systems, page 14. ACM, 2016.

[19] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Yanfeng
Zhang, Siyuan Ma, and Xiaodong Zhang. A low-cost
disk solution enabling lsm-tree to achieve high perfor-
mance for mixed read/write workloads. ACM Transac-
tions on Storage (TOS), 14(2):15, 2018.

614 2020 USENIX Annual Technical Conference USENIX Association

https://leveldb.org/
https://rocksdb.org/
http://cassandra.apache.org/
http://cassandra.apache.org/

[20] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems journal,
5(2):78–101, 1966.

[21] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. In FAST,
volume 3, pages 115–130, 2003.

[22] Sorav Bansal and Dharmendra S Modha. Car: Clock
with adaptive replacement. In FAST, volume 4, pages
187–200, 2004.

[23] Ziqi Fan, David HC Du, and Doug Voigt. H-arc: A non-
volatile memory based cache policy for solid state drives.
In 2014 30th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–11. IEEE, 2014.

[24] George Karakostas and Dimitrios N Serpanos. Exploita-
tion of different types of locality for web caches. In Pro-
ceedings ISCC 2002 Seventh International Symposium
on Computers and Communications, pages 207–212.
IEEE, 2002.

[25] Gil Einziger, Roy Friedman, and Ben Manes. Tinylfu:
A highly efficient cache admission policy. ACM Trans-
actions on Storage (ToS), 13(4):1–31, 2017.

[26] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla,
Edward A. Fox, and Stephen Williams. Removal poli-
cies in network caches for world-wide web documents.
page 293–305, 1996.

[27] Ashok Anand, Chitra Muthukrishnan, Steven Kappes,
Aditya Akella, and Suman Nath. Cheap and large cams
for high performance data-intensive networked systems.
In NSDI, volume 10, pages 29–29, 2010.

[28] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, pages 1–13. ACM, 2011.

[29] MySQL 8.0 Reference Manual. The innodb storage
engine. https://dev.mysql.com/doc/refman/8.0/
en/innodb-storage-engine.html.

[30] Pei Cao and Sandy Irani. Cost-aware www proxy
caching algorithms. In Usenix symposium on internet
technologies and systems, volume 12, pages 193–206,
1997.

[31] Jaeheon Jeong and Michel Dubois. Cost-sensitive cache
replacement algorithms. In The Ninth International
Symposium on High-Performance Computer Architec-
ture, 2003. HPCA-9 2003. Proceedings., pages 327–337.
IEEE, 2003.

[32] Facebook. Rocksdb – benchmarking tools.
https://github.com/facebook/rocksdb/wiki/
Benchmarking-tools.

[33] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 1185–1196.
ACM, 2013.

[34] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. Surf: Practical range query filtering with
fast succinct stries. In Proceedings of the 2018 Inter-
national Conference on Management of Data, pages
323–336. ACM, 2018.

[35] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. Silk: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 753–766,
2019.

[36] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 497–514. ACM, 2017.

[37] Jonathan Corbet. Page-based direct i/o. https://lwn.
net/Articles/348719/, 2009.

[38] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, pages 79–94. ACM, 2017.

[39] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, pages 505–520. ACM, 2018.

USENIX Association 2020 USENIX Annual Technical Conference 615

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://lwn.net/Articles/348719/
https://lwn.net/Articles/348719/

	Introduction
	Background and Related Work
	LSM-Tree-Based Key-Value Store
	Related Work
	Caching Schemes in LSM-KVS
	General Caching Algorithms

	Motivation
	Unique Challenges in Caching for LSM
	What to Cache in LSM-KVS
	How to Perform Replacement

	AC-Key Design
	AC-Key Caching Components
	Get Handling
	Flush Handling
	Compaction Handling

	Caching Efficiency Factor
	HAC: Hierarchical Adaptive Caching
	Lower-Level HAC
	Upper-Level HAC
	Reduce Ghost Cache Size

	Evaluation
	Implementation and Setup
	Micro-benchmark
	Adaptive Adjustment in AC-Key
	Macro-benchmark YCSB Evaluation
	Sensitivity on Parameters

	Conclusion

