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Abstract 
Direct assignment of I/O devices (Direct I/O) is the best per-
formant I/O virtualization method. However, it requires the 
hypervisor to statically pin the entire guest memory, thereby 
hindering the efficiency of memory management. This prob-
lem can be fixed by presenting a virtual IOMMU 
(vIOMMU). Emulation of its DMA remapping capability 
carries sufficient information about guest DMA buffers, al-
lowing the hypervisor to do fine-grained pinning of guest 
memory. However, established vIOMMUs are not widely 
used by commodity guests due to the emulation cost, thus 
cannot reliably eliminate static pinning in direct I/O. 

We propose and implement coIOMMU, a new vIOMMU ar-
chitecture for efficient memory management with a coopera-
tive DMA buffer tracking mechanism. The new mechanism 
provides a dedicated interface for hypervisor and guest to ex-
change DMA buffer information over a shared DMA tracking 
table (DTT), orthogonal to the costly DMA remapping inter-
face. We also explore two techniques: smart pinning and lazy 
unpinning, to minimize the impact on the performance of di-
rect I/O. Our evaluation results show that coIOMMU dramat-
ically improves the efficiency of memory management in 
wide direct I/O usages with negligible cost. Moreover, the 
desired semantics of DMA remapping can be sustained when 
cooperative tracking is enabled alongside. Overall, we be-
lieve that coIOMMU can serve as a reliable solution for effi-
cient memory management in direct I/O. 

1. Introduction 
Direct I/O [1, 21, 29, 31, 37, 39, 48, 49, 50] is the best per-
formant I/O virtualization method and a cornerstone capabil-
ity in data centers and clouds. It allows the guest to directly 
interact with I/O devices without the intervention from soft-
ware intermediary. An I/O memory management unit 
(IOMMU) [3, 14, 16] helps prevent Direct Memory Access 
(DMA) attacks in direct I/O by providing the capability of 
DMA remapping. Each assigned device is associated with an 
IOMMU page table (IOPT), configured by the hypervisor in 
a way that only the memory of the guest that owns the device 
is mapped. The IOMMU walks the IOPTs to validate and 
translate DMA requests, achieving inter-guest protection 
among directly assigned devices.  

Most devices do not tolerate DMA faults, implying that guest 
buffers must be pinned in host memory and mapped in the 

IOPT before they are accessed by DMAs. However, the hy-
pervisor does not know which pages are mapped by the guest 
when it is eliminated from the direct I/O path. Consequently, 
it has to pin the entire guest memory upfront, a.k.a static pin-
ning [7, 44]. This heavily hinders the efficiency of memory 
management and worsens memory utilization, as pinned 
pages cannot be reclaimed for other purposes. 

Presenting a virtual IOMMU (vIOMMU) [8, 23, 29, 52, 60] 
to the guest allows fine-grained pinning of guest memory for 
efficient memory management, although its primary purpose 
is to help the guest protect itself against buggy drivers. The 
hypervisor emulates the DMA remapping interface by: 1) 
walking the virtual IOPT (vIOPT) to identify the affected 
buffers; 2) pinning and unpinning the buffers in the host 
memory; and 3) mapping and unmapping them in the physi-
cal IOMMU to enforce protection as desired by the guest. 
Naturally, the emulation leads to a fine-grained pinning 
scheme, if the guest always uses the vIOMMU to remap its 
DMA buffers. 

Unfortunately, established vIOMMUs are not applicable as a 
reliable solution for fine-grained pinning. Their virtual DMA 
remapping capabilities are disabled by most guests [8, 24, 30, 
38, 51] in typical usages such as public cloud, because signif-
icant emulation cost may be incurred due to frequent mapping 
operations in the guest. Such cost could be alleviated through 
side-core emulation [8] or para-virtualized extension [23, 
52]. However, the side-core emulation requires an additional 
CPU core to perform the emulation; and can only achieve op-
timal performance with deferred IOTLB invalidation, leading 
to compromised security. Para-virtualized extension reduces 
the virtualization overhead with optimized interfaces, but it 
still involves large number of VM-exits at the time of guest 
DMA mappings/unmappings, hence limiting the perfor-
mance. Therefore, they did not change the fact that estab-
lished vIOMMUs are used only in limited circumstances, e.g. 
when intra-guest protection is valued over the overhead of 
DMA remapping. 

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is 
needlessly constraining. Protection is a guest requirement, 
while pinning is for host memory management. The two do 
not always match, thus favoring one may easily break the 
other. Instead, we aim to provide a reliable solution for fine-
grained pinning by decoupling it from protection. 
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We propose and implement a new vIOMMU architecture 
called coIOMMU, which helps the hypervisor achieve effi-
cient memory management in direct I/O. It introduces a ded-
icated mechanism for cooperative DMA buffer tracking, or-
thogonal to the costly DMA remapping interface. coIOMMU 
allows the hypervisor and guest to communicate over a DMA 
tracking table (DTT) located in a shared memory region. The 
guest records the mapping status of its DMA buffers in the 
DTT and the hypervisor walks the DTT to identify the corre-
sponding pinning requirement. coIOMMU further minimizes 
the number of notifications from the guest, with two optimi-
zations: (1) smart pinning, which heuristically pins fre-
quently used pages and timely shares its pinning status with 
the guest, to enable precise notification in guest-mapping op-
erations; and (2) lazy unpinning, which asynchronously un-
pins guest pages to eliminate notifications in guest-unmap-
ping operations. On the other hand, the new mechanism does 
not affect the desired semantics of DMA remapping. It can 
be enabled with or without DMA remapping, as a reliable and 
standard interface to achieve fine-grained pinning in direct 
I/O. 

We implement coIOMMU by extending KVM/QEMU 
vIOMMU and Linux guest. The concept and implementation 
can be easily ported to other hypervisors, vIOMMUs and 
guest OSes. Overall, the main contributions of this paper are: 

• Observing that established vIOMMUs cannot reliably 
fix the problem of static pinning in direct I/O, due to the 
costly DMA remapping interface. 

• Proposing and implementing coIOMMU, the first 
vIOMMU that introduces a dedicated DMA buffer track-
ing mechanism for fine-grained pinning. 

• Introducing smart pinning and lazy unpinning to dramat-
ically reduce the tracking overhead in fine-grained pin-
ning. 

• Conducting comprehensive evaluations under different 
Linux protection policies, with benchmarks in direct net-
working, storage, and GPU. 

• Demonstrating that coIOMMU not only dramatically 
improves the efficiency of memory management in wide 
direct I/O usages with negligible cost, but also sustains 
the desired security as required in specific protection pol-
icies. 

The rest of the paper is organized as follows. The background 
and motivation are first provided in section 2. We present the 
design of coIOMMU in section 3 and its implementation in 
section 4. Finally, the evaluation results are shown and dis-
cussed in section 5, with future work and conclusion drawn 
in section 6. 

2. Motivation 

2.1. The Problem 

Direct I/O is the best performant I/O virtualization method by 
enabling direct communication between the guest and the I/O 
devices. Removal of the software intermediary not only pro-
vides much better performance than other I/O virtualization 
approaches, but also allows faster time-to-market for virtual-
izing new I/O acceleration capabilities. Direct I/O prolifer-
ates via device-side virtualization. Single-Root I/O Virtual-
ization (SR-IOV) [1, 13] allows the device to multiplex its 
resource into virtual functions, each independently assigna-
ble to a guest. Cloud service providers even offload para-vir-
tualized backend drivers into directly assigned devices [11, 
12]. With these hardware trends, direct I/O has gained main-
stream support in commodity hypervisors and is becoming a 
cornerstone capability in data centers and clouds. 

IOMMUs [3, 14, 16] are introduced by hardware vendors to 
prevent assigned devices from touching arbitrary memory lo-
cations. Use of the IOMMU leads to the static pinning prob-
lem due to two factors: (1) most I/O devices do not tolerate 
DMA faults, and (2) the hypervisor does not know how guest 
memory is used for DMA. The hypervisor has to pin the en-
tire guest memory upfront, assuming that every guest page 
might be a DMA page. This heavily hinders the efficiency of 
memory management and worsens memory utilization, as 
pinned pages cannot be reclaimed for other purposes. 

2.2. Existing Solutions 

Previous studies generally tackle this problem in two direc-
tions: making the device support DMA page faults or expos-
ing the DMA buffer information to the hypervisor through 
software approaches. 

DMA page faults allow all kinds of memory optimizations 
that CPU page faults provide. The PCI-SIG standardizes the 
support of DMA page faults with Address Translation Ser-
vice (ATS) and Page Request Service (PRS) [2]. It was orig-
inally introduced to simplify the programming model on 
GPUs [27, 41, 42] and now also starts to find its way into 
NICs [6] and FPGA [9]. However, the latency of handling 
DMA page faults is 3x-80x higher than that of handling CPU 
faults [6, 40]. Such long latency, up to hundreds of microsec-
onds, demands a larger on-device buffer to hold in-flight re-
quests and incurs higher device cost. Handling such long la-
tency in all critical paths further complicates the device. 
Therefore, most commodity devices do not support DMA 
page faults, or partially support it only for selective work-
loads. With time, it may become a preferable way for fine-
grained pinning, but not anytime soon. 

Alternatively, researchers also look at software approaches to 
expose enlightened guest DMA information to the hypervi-
sor. Knowing when a guest page is mapped or unmapped al-
lows the hypervisor to pin or unpin it dynamically. Willmann 
et al. [44] evaluates several mapping strategies, revealing that 
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a big performance penalty is incurred when blindly doing hy-
percalls to notify the hypervisor of every guest mapping/un-
mapping operation. Yassour et al. [7] dramatically reduces 
such notifications with a guest-side pin-down cache. How-
ever, it puts a complex eviction policy in the guest and pro-
vides no intra-guest protection.  

Presenting a vIOMMU [23, 29, 60] also provides sufficient 
information for fine-grained pinning, as a result of emulating 
its DMA remapping capability for intra-guest protection. 
However, such emulation may incur significant cost, espe-
cially when frequent mapping operations are requested by the 
guest. To trade off performance and protection, modern OSes 
typically implement different policies about DMA re-
mapping. For example, Linux [8, 24, 30, 38, 51] implements 
strict, lazy and passthrough policies. Although DMA re-
mapping is used in strict and lazy policies, the passthrough 
policy simply disables it to gain best performance. Obvi-
ously, the guest cannot provide any DMA buffer information 
to the hypervisor when the passthrough policy is selected. 
Unfortunately, major guest Linux distributions choose 
passthrough as default and even allow different policies 
across devices. 

Recent studies focus on reducing the cost of emulating DMA 
remapping in vIOMMU. Tang et al. [52] reduces the re-
mapping overhead by reusing old mappings and delaying 
their removal, however, at the cost of compromised security. 
Side-core emulation [8] achieves 100% of 10Gbps line rate 
with a fully emulated vIOMMU, but with relaxed protection 
and increased total cost. The overhead of DMA remapping is 
also tackled on bare metal [24, 30, 38]. While these works 
generally apply to the guest OS as well, most of them have 
not been adopted by commodity OSes due to its intrusive-
ness. In a nutshell, the cost of DMA remapping is still notable 
in the guest today, leaving the capability disabled or even not 
exposed in most cloud and data center usages. 

2.3. DMA Tracking vs. DMA Remapping 

We prefer the vIOMMU approach for two reasons: 1) it sup-
ports both intra-guest protection and fine-grained pinning; 
and 2) DMA page faults are not widely supported by com-
modity devices. However, we want to go a different direction 
from previous studies – to enable fine-grained pinning with-
out being encumbered by the intrinsic cost of DMA re-
mapping.  

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is 
needlessly constraining. Protection is a guest requirement and 
relies on the DMA remapping capability, while pinning is for 
host memory management and needs the capability of track-
ing guest DMA buffers. The two do not always match, thus 
favoring one may just break the other, if both are enabled 
through the same interface. For example, the hypervisor 

either must fall back to static pinning by assuming that most 
guests disable protection, or, adopt fine-grained pinning by 
forcing all guests to enable protection and bear with added 
cost.  

What about inventing a separate DMA buffer tracking mech-
anism to the vIOMMU, without relying on any semantics of 
DMA remapping? Separating DMA tracking from DMA re-
mapping allows us to tackle the pinning and protection prob-
lems in parallel. If the new tracking mechanism incurs negli-
gible cost, we can expect most guests to always enable it and 
reliably provide necessary information for fine-grained pin-
ning. If feasible, such an approach would make the vIOMMU 
as the portal of efficient memory management in future data 
centers and clouds. 

3. Design 
We propose coIOMMU, a new vIOMMU architecture that 
helps the hypervisor achieve efficient memory management 
in direct I/O. coIOMMU provides a dedicated DMA buffer 
tracking mechanism that adopts a shared memory interface 
for efficient communication between host and guest. The 
guest records the mapping status of its DMA buffers through 
a shared DMA tracking table (DTT), for the hypervisor to de-
cide its pinning strategy. coIOMMU also introduces two op-
timizations: smart pinning and lazy unpinning, to dramati-
cally reduce the performance impact when achieving fine-
grained pinning.  

3.1. Goals 

We want the new DMA buffer tracking mechanism to meet 
these goals: 

Orthogonal to DMA Remapping - Our solution should allow 
DMA buffer tracking and DMA remapping independently 
configured by the guest. The new tracking mechanism, once 
enabled, should consistently supply sufficient information for 
fine-grained pinning, regardless of how DMA remapping is 
configured to protect guest. Enabling of DMA buffer tracking 
should not affect the desired protection semantics of DMA 
remapping. 

Low Cost - DMA buffer tracking should incur negligible cost. 
Otherwise, it faces the same challenge as in DMA remapping: 
if significant cost is observed, why would one enable it by 
default? We focus on the efficiency of DMA buffer tracking 
itself and have no intention to further optimize DMA re-
mapping in this work. The original performance expectation 
under each guest protection policy is set as the baseline for 
comparing the cost of DMA buffer tracking in our evalua-
tions. 

Non-intrusiveness - We want our solution to minimize the 
changes in the guest software stack, as a primary factor to 
gain mainstream support in commodity OSes. Commodity 
OSes provide a generic DMA API layer [25, 43] to route 
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DMA mapping requests from device drivers to underlying 
DMA driver. DMA buffers can be tracked either in the DMA 
API layer or specific DMA driver. We did not choose DMA 
API because any change in such common framework usually 
takes a long time to be adopted by commodity OSes. 

Wide Applicability - We prefer a solution that works with all 
kinds of I/O devices rather than requiring additional changes 
in hardware or device drivers. We also expect such a solution  
to make no assumption on any vendor specific characteristics, 
so it can be easily ported to different vIOMMUs, either emu-
lated or para-virtualized.  

Extensibility - The solution should be extensible to help ad-
dress other limitations in memory management. For example, 
another challenge in direct I/O is about lively migrating the 
guest with assigned devices, which requires the ability of 
tracking the pages that are dirtied by DMAs [20, 26, 28, 35]. 
We expect our solution can play as a portal of tracking all 
kinds of DMA buffer status for efficient memory manage-
ment. 

3.2. Architecture 

The coIOMMU architecture is illustrated in Figure 1, com-
posed of coIOMMU backend in hypervisor and coIOMMU 
driver inside the guest. The coIOMMU backend includes 
three main components: (1) DMA remapping engine 
(remapEngine), the same functionality for intra-guest protec-
tion as in established vIOMMUs, over a set of per-device 
vIOMMU page tables (vIOPTs); (2) DMA tracking engine 
(trackEngine), a new function dedicated for tracking guest 
DMA buffers over a global DMA tracking table (DTT); and 
(3) Page-pinning manager (pManager), which uses the infor-
mation gathered by trackEngine to intelligently manage the 
pinning requirements of guest memory. The remapEngine 
and trackEngine are independently enumerated and managed 
by the coIOMMU driver, while pManager is hidden and ac-
tivated automatically when trackEngine is enabled.  

In our prototype, we build coIOMMU by extending an exist-
ing vIOMMU, which emulates the Intel VT-d hardware [3]. 
This allows us to focus on the new trackEngine and pMan-
ager, while inheriting the established DMA remapping logic 
as remapEngine. However, we make no assumption on the 
specific hardware or vIOMMU type. The design of trackEn-
gine and pManager can be easily ported to any emulated or 
para-virtualized vIOMMU. 

The trackEngine holds the base address of the DTT, which is 
allocated and registered by the coIOMMU driver. The format 
of the DTT is a hierarchical page table, containing the map-
ping information required by fine-grained pinning. trackEn-
gine also includes a doorbell register to notify the hypervisor 
if necessary. Within the coIOMMU backend, trackEngine 
provides interfaces for pManager to access the DTT and also 
notifies pManager when the doorbell is rung. With this 

design, trackEngine acts as a standard interface solely for 
conveying the DMA information, while pManager actually 
uses the information to achieve fine-grained pinning. The 
separation between these two components allows coIOMMU 
to be easily extended for other purposes, e.g. by introducing 
another agent to track dirty pages, alongside pManager, while 
reusing the same trackEngine interface. 

The coIOMMU driver intercepts the DMA API operations in 
the guest and updates the DTT accordingly. Modern OSes all 
implement a generic DMA API layer [25, 43], connecting de-
vice drivers to the underlying DMA driver to prepare their 
DMA buffers. The coIOMMU driver registers itself as a 
DMA driver to capture the latest mapping status of guest 
DMA buffers. This driver also enforces the desired protection 
semantics, as other vIOMMU drivers normally do today. In 
this way, DMA tracking is enabled without any change to the 
DMA API layer or specific device drivers of the guest.

The pManager contains hypervisor-specific policies for fine-
grained pinning. A specific implementation may even include 
multiple policies and let the hypervisor dynamically choose a 
policy at runtime. We demonstrate two optimizations in §3.4: 
smart pinning and lazy unpinning, to minimize the notifica-
tion overhead. When required, pManager talks to the memory 
manager for pinning or unpinning a set of guest pages and 
request the IOMMU driver for mapping or unmapping them 
in the physical IOPT. When both remapEngine and pManager 
are enabled, their pinning decisions are ORed together to fa-
vor the stricter requirement. Once a guest page is unpinned 
and unmapped, it can be reclaimed under whatever policy ap-
plied by the memory manager.  

3.3. DMA Tracking Table (DTT) 

The DTT records the mapping status of guest DMA buffers. 
It is shared by all assigned devices because the hypervisor 
only wants to know the DMA buffers of the entire guest. It is 
not necessary to track DMA buffers for virtual devices, as-
suming their DMAs are emulated by and already known to 
the hypervisor. The DTT is allocated by the guest, starting as 
empty and then filled dynamically according to intercepted 
DMA operations. We choose to track two categories of guest 
pages in the DTT: 1) the pages that are currently mapped by 
the guest and 2) the pages that have been unmapped but still 

Figure 1: The architecture of coIOMMU  
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pinned by the hypervisor. The latter category is necessary for 
lazy unpinning introduced in the next section. 

One may argue why inventing a new table instead of reusing 
the vIOPTs, when the latter also carry the information of 
guest DMA buffers. We considered this approach but gave 
up for several reasons. First, the vIOPT is designed for intra-
guest protection which disallows pinning a page after it is un-
mapped thus also negates lazy unpinning. Second, the table 
is indexed by guest I/O Virtual Address (IOVA) for the re-
mapping purpose. The hypervisor has to walk every vIOPT 
to find out whether a guest page is mapped, which is too 
costly. Last but not the least, the format of vIOPT is typically 
vendor-specific, so extending it may not lead to good porta-
bility. 

The DTT is a 4-level page table in 4KB pages, as shown in 
Figure 2. The 4KB leaf page consists of 512 DTT PTEs 
(DTEs) and each 8-bytes DTE is further split into 8 tracking 
units (TU). Each TU corresponds to one 4KB guest page. In 
total, the DTT can support up to 51-bits (9+9+9+9+3+12=51) 
guest physical address width, big enough for prevalent virtu-
alization usages. Such design leaves 8-bits available in each 
TU. coIOMMU currently uses 3 bits for fine-grained pinning, 
with the other 5-bits reserved for future extension: 

• ‘M (mapped)’, indicating a page currently mapped by 
guest for DMA. It is set and cleared by the guest before 
and after the corresponding DMA and is read-only to the 
hypervisor. This bit conveys the primary information 
used by fine-grained pinning. 

• ‘P (pinned)’, marking a page currently pinned by the hy-
pervisor. It is updated by the hypervisor to reflect the 
pinning status and is read-only to the guest, necessary for 
smart pinning. 

• ‘A (accessed)’, telling whether a page has ever been used 
for DMA. The guest sets this bit alongside the setting of 
M-bit (‘mapped’ bit). Then it stays sticky until the hy-
pervisor clears it in lazy unpinning. 

An entry with both M and P bits cleared marks the page as 
invalid. If every entry of a DTT page is invalid, the guest may 
choose to free this page to save space.  

3.4. Fine-grained Pinning 

Two techniques are introduced in coIOMMU: smart pinning 
and lazy unpinning, to minimize the notification overhead of 
fine-grained pinning. We focus on the scenario where the 
DMA remapping capability of coIOMMU is disabled by the 
guest. In this case, there is no intra-guest protection require-
ment thus the hypervisor can pin more pages than what guest 
actually maps. 

3.4.1. Smart Pinning 

coIOMMU manages the pinning of guest pages in three ways: 
(1) instantly pinning: the guest instantly notifies the hypervi-
sor to pin pages when they are being mapped, for correctness; 
(2) precise notification: the guest notifies the hypervisor if 
and only if the to-be-mapped pages are not pinned, to mini-
mize the notification overhead; and (3) speculatively pinning:  
pManager heuristically pins the frequently used pages for 
performance. 

First, pinning must be instantly done before any mapped page 
is used for DMA, because most devices do not tolerate DMA 
faults, as aforementioned. In such circumstance, the hypervi-
sor must be notified by the guest to complete the pinning ac-
tion in a timely manner, if the page has not yet been pinned. 

Second, coIOMMU exposes the pinning status to the guest 
through the P-bit (‘pinned’ bit) in the DTT, for precise noti-
fication. If the P-bit is cleared by the hypervisor, the guest 
must notify the hypervisor instantly when mapping a page. 
Otherwise, no notification is needed at all. This optimization 
allows the guest to skip most notifications in its mapping op-
erations. 

Last, pManager speculatively selects and pins frequently used 
pages by leveraging the guest DMA locality, which has been 
identified in both previous studies [7, 44, 51] and our evalu-
ation. The DTT includes an A-bit (‘accessed’ bit) to mark a 
page ever used for DMA. The guest sets the A-bit when map-
ping a page and leaves it set until the hypervisor clears it. 
pManager determines the ages of unmapped pages by period-
ically scanning the A-bits (and clears it after a scan). Young 
pages (with A-bit set) are candidates of frequently used pages 
and might be accessed soon again. So pManager heuristically 
pins them to avoid the overhead of another pinning notifica-
tion in the near future. 

Our evaluation shows that precise notification and specula-
tive pinning can dramatically reduce the notification over-
head in instant pinning by up to 99.9992% (from 1.5M to 11 
notifications, per second), when running memcached with a 
40Gbps NIC connection. One notification takes ~2000-4000 
cycles in our evaluation, so 1.5M notifications per second 
may eat up 1-2 CPU cores without such optimization. 

Figure 2: the format of the DTT 
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3.4.2. Lazy Unpinning 

The pManager lazily unpins guest pages to completely elim-
inate the notification overhead in guest unmapping opera-
tions. It asynchronously scans the DTT to find out the pages 
that are unmapped but still pinned, and then unpins them in a 
batch. In our prototype, we process lazy unpinning and spec-
ulative pinning together in the same thread. Unpinned pages 
are reclaimable by the memory manager to increase overall 
memory utilization. In the same example of memcached, lazy 
unpinning eliminates another 1.5M notifications per second 
for guest unmapping operations, which means saving another 
1-2 CPU cores, with the cost of pinning additional ~1% 
memory (0.32MB) than the total size of mapped pages 
(34.68MB), in average. 

3.5. Intra-Guest Protection 

The DMA remapping engine (remapEngine) can achieve 
fine-grained pinning as well, as it is required to precisely map 
and pin DMA buffers per guest protection requirements. 
However, one cannot solely rely on DMA remapping because 
the guest may selectively turn it off for certain devices ac-
cording to its protection strategy. We describe two examples 
as below. 

First, the guest may dynamically enable/disable DMA re-
mapping for an assigned device, leaving the hypervisor to 
switch back and forth between static pinning and fine-grained 
pinning. For example, guest Linux typically enables DMA 
remapping when assigning a device to its user space and then 
disables remapping when returning the device back to its ker-
nel space [45]. The switch between static and fine-grained 
pinning may lead to intermittent out-of-memory errors in a 
budget system. Moreover, the hypervisor needs to unpin all 
the guest pages when switching away from and then re-pin 
them when switching back to static pinning, leading to in-
creased overhead.  

Second, if the guest enables DMA remapping only for se-
lected devices, DMA remapping cannot provide full DMA 
buffer information for fine-grained pinning. For example, 
most Linux distributions enable DMA remapping only for 
untrusted devices, based on physical characteristics of the de-
vice [61, 62]. Such flexible configuration is possible because 
DMA remapping is typically enabled per device. However, 
fine-grained pinning needs to know DMA buffers used by all 
assigned devices in the guest, even for the ones that are not 
protected with DMA remapping. In such case, the hypervisor 
must fall back to static pinning with reduced memory utiliza-
tion. 

In both of these examples, DMA buffer tracking of 
coIOMMU allows reliably providing full DMA buffer infor-
mation to enable fine-grained pinning. When tracking and re-
mapping are both enabled, it is possible for the two to make 
different pinning decision for the same page. In such case, the 

decision from the DMA remapping interface takes prece-
dence, because we must not break any protection semantics 
desired by the guest.  

4. Implementation 
We implement coIOMMU by extending the virtual Intel VT-
d, which is an emulated vIOMMU in QEMU [58] (the device 
model of KVM hypervisor [10]), and the intel-iommu driver 
in the guest Linux. In QEMU, the original DMA remapping 
logic of the virtual VT-d is reused as remapEngine, while 
trackEngine and pManager are developed from scratch. 
Guest-side changes are all contained in the intel-iommu 
driver and hidden behind the Linux DMA API layer. There is 
no change required in guest device drivers. Currently, 
coIOMMU adds ~700 LOC in QEMU and ~1000 LOC in 
guest.  

coIOMMU driver - coIOMMU driver extends guest intel-
iommu driver to manage the trackEngine when the capability 
is detected. The intel-iommu driver registers callbacks to the 
Linux DMA API layer for mapping and unmapping DMA 
pages in different forms, e.g. for single page or scatter-gath-
ered page list, for pre-allocated pages or newly allocated 
pages, etc. We extend the driver by extracting the DMA 
buffer information from those callbacks and updating the cor-
responding tracking units (TUs) in DTT. The DTT is allo-
cated in the guest memory, which is always accessible by the 
commodity KVM hypervisor. If such direct access is prohib-
ited in some specific security related usage cases [55, 56], the 
DTT should be allocated in a shared memory region. Last, 
the coIOMMU driver conditionally notifies the hypervisor 
based on the DTT status. 

trackEngine - We extend the virtual VT-d with several 
changes: (1) a capability bit for enumerating the presence of 
trackEngine, (2) an enabling bit for activating trackEngine, 
(3) a register holding the base address of the DTT, (4) a reg-
ister as the doorbell interface for triggering notification to 
pManager, and (5) a register pointing to the base address of 
the notification structure. The notification structure is de-
signed to allow batching requests of multiple pages into one 
notification, in case of those pages are mapped together. 
trackEngine also provides function calls for pManager to 
scan and update the DTT.  

pManager – The implementation of pManager can be split into 
two parts. First, it provides direct function calls for trackEn-
gine to complete instant pinning. The functions are invoked 
synchronously in the vCPU threads when QEMU emulates 
the guest write to the doorbell register. Second, pManager 
also launches a thread for lazy unpinning and speculative pin-
ning, woken up every one second. This thread scans the DTT 
to find out all the pages that are unmapped but still pinned 
and speculatively unpin them based on their A-bits. When a 
pinning decision is made, pManager invokes the VFIO API 
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[45] to pin/unpin selected pages and map/unmap them in the 
IOMMU.  

Sub-Page Mappings - Multiple DMA buffers may co-locate in 
the same 4KB guest page, e.g. as widely observed when han-
dling network packets. Sub-page mappings imply that one 
page might be mapped and unmapped multiple times. In such 
case, coIOMMU driver tracks the mapping count of each 
mapped page and clears the “M-bit” of the corresponding en-
try only when its count reaches zero. We choose to leverage 
the 5 reserved bits in each TU as the mapping count, holding 
up to 31 sub-page mappings. Doing so simplifies the imple-
mentation and works well in our evaluations. Other imple-
mentations may choose different structures for such tracking 
purpose. 

Concurrency - coIOMMU must properly handle concurrent 
pinning/unpinning requests between multiple vCPU threads 
and the unpinning thread, as shown in Figure 3.  

First, multiple vCPUs may try to map and pin the same DMA 
page simultaneously, e.g. in sub-page mapping scenario. We 
employ different locking mechanisms in guest and host for 
race avoidance. Within the guest kernel, spinlock is required 
for atomically setting the ‘mapped’ flag and checking the 
‘pinned’ status of a target page. It is necessary as DMA map-
pings may happen in the guest interrupt context. On the other 
hand, a mutex is introduced in QEMU for atomically com-
pleting the actual pinning actions: 1) rechecking the ‘pinned’ 
status; 2) pinning the page; and 3) updating the ‘pinned’ flag. 

Second, race condition may happen between concurrent pin-
ning requests (from the vCPU threads) and unpinning re-
quests (from the unpinning thread). For example, it is possi-
ble seeing an unpinning operation starts before, yet completes 
after, an in-flight pinning request. Such race may lead to the 
pinning request completing successfully but with the target 
page actually unpinned. We introduce two mechanisms to 
solve this problem. For one, the unpinning thread needs to 
check the ‘mapped’ flag before and after clearing the ‘pinned’ 
status. We call this special sequence as double-detection, nec-
essary to catch in-flight change of the mapping status in the 
guest side. For two, the unpinning thread also needs to ac-
quire the aforementioned QEMU mutex for completing its 
unpinning actions. In particular, the second check of the 
‘mapped’ flag must be done with the mutex acquired and be-
fore conducting the unpinning action. If the ‘mapped’ status 
becomes true, indicating that a pinning action is in progress 
for the target page, the unpinning thread should cancel the 
unpinning operation immediately. 

4.1. Discussion 

Applicability - coIOMMU applies to all kinds of directly as-
signed devices, without the need of ad-hoc changes in hard-
ware or software. Porting our Linux implementation to a new 
guest OS is straightforward, as long as the OS implements a 

generic DMA API layer which, obviously, is already a com-
mon feature in commodity OSes today. On the other hand, 
the implementation of trackEngine and pManager is vendor-
neutral and self-contained. The separation between DMA 
tracking and DMA remapping allow coIOMMU implemen-
tation to be easily portable to other vIOMMUs, regardless of 
whether remapEngine is emulated or para-virtualized.  

Extensibility - The page table format of the DTT can be ex-
tended to address other limitations in memory management. 
For example, introducing a “D (dirty)” bit in the TU provides 
a generic solution for tracking dirty pages when lively mi-
grating VMs in direct I/O. Similarly, using a “W (writable)” 
bit to indicate read-only page enables the hypervisor to im-
plement copy-on-write features. Ideally, a specific imple-
mentation may extend the DTT to include the same set of per-
mission or status bits as available in a CPU page table. 

Currently the DTT tracks DMA buffers in 4KB granularity. 
It is sufficient for most direct I/O usages, as DMA buffers are 
typically allocated in scattered 4KB pages. When large DMA 
buffer is used, we rely on pManager to merge batched pinning 
requests on continuous DMA pages into 2MB-based re-
quests. We observed such optimization leads to ~4.5% FPS 
improvement in direct GPU benchmark, as illustrated in 5.1. 
Alternatively, one may also directly extend the DTT format 
to support 2MB-granular tracking entries.  

Kernel Bypassing - coIOMMU also applies to various kernel 
bypassing techniques [32, 33, 45], which allow applications 
to directly manage DMA buffers in user space. Applications 
are untrusted, so they must first register a trunk of memory to 
the kernel and then manage within that trunk. The registration 
goes through proper kernel interfaces, e.g. AF_XDP [33] or 
VFIO [45] in Linux, which finally call into the coIOMMU 

Figure 3: Race avoidance between concurrent pinning and unpin-
ning operations. Gray boxes are guest actions, and white are host. 
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driver for actual mappings and unmappings thereby are still 
tracked in the DTT. Kernel bypassing may increase the 
memory footprint because applications usually register a one-
off big buffer pool to avoid calling into the kernel frequently. 
We leave optimizing such workloads as future work. 

DMA Page Faults – For devices which do support DMA page 
faults, on-demand memory allocation/reclaim can happen at 
any time thus one could implement fine-grained pinning 
without using coIOMMU. However, coIOMMU may still 
provide two benefits in such circumstance. First, the over-
head of handling DMA page faults might be non-negligible 
in hot data paths. coIOMMU allows the guest to reduce the 
number of faults by proactively requesting pre-pinning of hot 
pages, based on the knowledge that is easily extracted from 
DTT, yet invisible or difficult to acquire in legacy host. Sec-
ond, some devices may allow DMA page faults only in selec-
tive data paths. Hypervisor could enable coIOMMU along-
side the fault-based pinning scheme, to track DMA pages 
which are touched in non-faultable data paths in such devices. 

Guest Cooperation - coIOMMU is a para-virtualized approach 
thus requires guest cooperation. We plan to submit our work 
to Linux and QEMU community, so coIOMMU could be en-
abled by default in most Linux distributions in the future. 
However, it is possible that a selfish guest may deliberately 
report fake DMA pages or simply disable coIOMMU driver 
to get more pages pinned than a cooperative guest. When re-
quired, one may choose to build a quota mechanism along-
side the new tracking interface of coIOMMU. For example, 
the memory ballooning mechanism [57] can be extended to 
convey the quota information of both total memory and DMA 
memory, based on the service level agreement of the guest. 
Afterward, pManager could reject new pinning requests from 
any guest after its quota is exceeded. 

5. Evaluation 
Our evaluation aims to answer several questions. How does 
the overhead imposed by coIOMMU compare to that of es-
tablished vIOMMUs? How many pages are pinned in various 
direct I/O usages when using coIOMMU to enable fine-
grained pinning? Does coIOMMU sustain the desired perfor-
mance and security under different intra-guest protection pol-
icies? We answer these questions by planning our evaluation 
to focus on four aspects: footprint, overhead, security and ap-
plicability. 

Evaluated Modes - We evaluate six modes as shown in Table 
1. The guest intel-iommu driver supports three protection pol-
icies: 1) passthrough, the default policy that disables DMA 
remapping for performance; 2) strict, using DMA remapping 
to gain full protection; and 3) lazy, trading off some security 
for performance when using DMA remapping (e.g. by defer-
ring and batching IOTLB invalidations). We study the three 
policies for coIOMMU and a state-of-the-art vIOMMU, 

respectively, thus leading to six modes in total. In our proto-
type, coIOMMU inherits the DMA remapping logic of the 
virtual VT-d, so we choose this emulated vIOMMU solution 
to represent state-of-the-art vIOMMUs for fair comparison. 
We use {PT-O, ST-O, LA-O} to indicate the three protection 
policies with virtual VT-d and {PT-N, ST-N, LA-N} for the 
policies with coIOMMU. ‘O’ stands for the ‘old’ emulated 
VT-d while ‘N’ represents the ‘new’ coIOMMU. 

Experimental Setup - Our setup consists of three machines, all 
running Ubuntu 16.04 with kernel 5.0.0. The primary ma-
chine, used for networking and storage tests, is equipped with 
a 16-core Intel Xeon Cascade Lake CPU at 2.7GHz, one 
64GB DDR4 DIMM, an Intel XL710 40Gbps NIC, and two 
Intel 760P series 1TB NVMe SSDs. The 2nd machine acts as 
the network traffic generator, with another XL710 NIC con-
nected to the primary machine back-to-back. It includes dual 
Intel Xeon Gold 6140 CPUs, each with 18 cores at 2.30GHz 
and 64GB DDR4 memory. The last machine is used for GPU 
evaluation, equipped with Intel Core i7-7567U CPU with 
four cores at 3.50GHz, 32GB DDR4 memory, a 256GB Intel 
520 series SSD, and an Intel® Iris® Plus graphics 650 GPU.  

The VM of the first machine is based on RHEL7.2 with ker-
nel 5.1.0-rc3+, configured with 16 vCPUs, 32GB memory, 
and a directly assigned device – either a XL710 NIC or a 
760P SSD, according to whether direct-networking or direct-
storage is under evaluation. The two assigned devices are en-
abled independently, to avoid mutual interference from sec-
tion 5.1 to section 5.5. In section 5.6, we evaluated their per-
formance running combined workloads with both devices as-
signed. The VM for direct GPU includes Ubuntu 18.04 with 
kernel 5.1.0-rc3+, 4 vCPUs, 4GB memory, and a directly as-
signed Intel® Iris® Plus graphics 650 GPU. The vCPUs of 
both VMs are 1:1 pinned to the physical cores for stable re-
sults. 

Benchmarks - We choose both micro-benchmarks and macro-
benchmarks for evaluating the six modes in direct network-
ing, direct storage and direct GPU: 

• Netperf [63] is a standard micro-benchmark to measure 
networking throughput. We perform Netperf stream re-
ceive (RX) and transmit (TX) tests, using 64KB message 
size with 16 Netperf client/server instances (one per 
core) in the guest. Aggregated throughput is reported.  

Table 1: Evaluated modes in coIOMMU and virtual VT-d 

mode abbr.
DMA 

remapping
DMA buffer 

tracking 
pinning
model

protection

passthrough (virtual VT-d) PT-O unused n/a static no

passthrough (coIOMMU) PT-N unused used fine-grained no

strict (virtual VT-d) ST-O used n/a fine-grained full

strict (coIOMMU) ST-N used used fine-grained full

lazy (virtual VT-d) LA-O used n/a fine-grained relaxed

lazy (coIOMMU) LA-N used used fine-grained relaxed
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• Nginx [64] is a high-performance HTTP web server. We 
use ApacheBench [69] to measure the number of concur-
rent requests that Nginx server can serve. We run 
ApacheBench to issue 16 concurrent requests of a static 
1MB file, through the Nginx server installed in the guest. 

• Memcached [65] is a popular in-memory key-value 
store, usually benchmarked using memaslap [70]. We 
use the default memaslap configuration with 64-byte 
keys, 1KB values, and 90%/10% GET/SET operations. 
In the VM, we launch 16 memcached instances driven 
by 16 memaslap threads each issuing 8 concurrent re-
quests. 

• fio [66] is a standard micro-benchmark to measure disk 
performance for wide range of storage types. We config-
ure 16 fio threads, each performing asynchronous direct 
random reads from the assigned SSD, in 512-byte blocks 
and 128 in-flight requests. 

• OpenArena [67] is a 3D first-person shooter game, used 
to benchmark direct GPU. The throughput is reported in 
frame-per-second (fps). 

In addition, we also selectively run sysbench [68] as a 
memory benchmark and DPDK [32] for user-space network-
ing stack, for specific evaluation purposes. 

5.1. Overhead 

We record the performance of aforementioned benchmarks 
in each evaluation mode, as shown in Figure 4. CPU utiliza-
tion is aggregated over all cores, i.e. one core at 100% CPU 
would be reported as 100%/4=25% CPU utilization with 4 
cores (for OpenArena) or 100%/16=6.25% CPU utilization 
with 16 cores (for all other benchmarks). In addition, we also 

capture the per-second number of completed DMA opera-
tions and associated VM-exits when running those bench-
marks, in Table 2. All benchmarks run 30 seconds, except 
OpenArena, which must run to end in around 42 seconds. 
Next, we compare coIOMMU to virtual VT-d under the three 
Linux protection policies, respectively. 

Passthrough - All networking benchmarks (left four in Figure 
4) exhibit consistent results under the passthrough policy: 
coIOMMU (PT-N) retains the performance comparable to 
that of the virtual VT-d (PT-O), with less than 3% throughput 
degradation and negligible variation in CPU utilization. Such 
low cost is further explained in Table 2 – although hundreds 
of thousands of DMA operations are tracked per second, the 
majority of them do not trigger any VM-exit to notify the hy-
pervisor, due to the optimization of smart pinning and lazy 
unpinning. For example, the lowest VM-exit number is ob-
served in memcached, with only 11 VM-exits incurred by 
~3M DMA operations. 

The overhead of coIOMMU is unrecognizable in FIO but in-
curs 4.5% FPS drop in OpenArena. We found that OpenA-
rena maps a big buffer (~240MB) in a batch at its launch time, 
with many pages adjacent to each other. In such case, pinning 
the buffer in 2MB size is more efficient than pinning in 4KB 
size, due to increased IOTLB efficiency. Unfortunately, 2MB 
pinning is not supported in our initial coIOMMU implemen-
tation, while it is the preferred option when KVM statically 
pins the entire guest memory in PT-O. After coIOMMU was 
extended to also conduct 2MB pinning for OpenArena, it then 
reaches the same performance as the virtual VT-d (not shown 
in the figure). We do not enable huge page pinning in other 
benchmarks, because they are observed with frequent map-
ping operations on many scattered 4KB pages. Blindly doing 

Table 2: The average number of completed DMA operations vs. incurred VM exits, per second.  
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Figure 4: Performance of the six modes (100% CPU is 4 cores in openarena, and 16 cores in all other benchmarks) 
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huge page pinning simply adds more cost and footprint in 
those circumstances. 

Strict and Lazy - We did not observe recognizable difference 
between coIOMMU (ST-N and LA-N) and virtual VT-d (ST-
O and LA-O) in all benchmarks, regarding to both throughput 
and CPU utilization. There are much fewer DMA operations 
completed in the strict and lazy policy than that in the 
passthrough policy, due to the emulation cost of DMA re-
mapping. As shown in Table 2, the reduction is between 
2.46x (in Netperf RX) to 29.8x (in memcached) in all evalu-
ated benchmarks. The tracking overhead in coIOMMU is 
negligible when comparing to the overhead of DMA re-
mapping.  

We also explore an interesting finding between lazy and strict 
in Figure 4, although not directly related to coIOMMU. It is 
a common learning that batching IOTLB invalidations gen-
erally brings better performance than strictly invalidating the 
IOTLB one-by-one. However, it is not always the case in vir-
tualization – we observed 11% and 23% lower throughput 
when comparing lazy to strict in Netperf TX and Nginx. We 
find the batching interface of the virtual VT-d is the root 
cause. Its emulation requires walking the entire vIOPT to 
identify every valid mapping. If the walking cost exceeds the 
cycles of saved invalidations, the performance of lazy is in-
stead worse than that of strict. We leave studying more effi-
cient batching interface and policy for another research. 

5.2. Memory Footprint 

We sample the number of pinned pages every 3 seconds, from 
the beginning of the benchmarks to 6 seconds after its com-
pletion, in Figure 5. The extra 6 seconds are used to evaluate 
the elasticity of the six modes, against transitional system 
business. One note – the ‘max’ mark in the Y-axis indicates 
the total number of guest pages, representing the case of static 
pinning. It is 8M (for 32GB memory) in most benchmarks 
and 1M (for 4GB memory) in OpenArena. 

All six modes exhibit the same pattern in all benchmarks, ex-
cept PT-N. First, PT-O is tied to static pinning, thereby al-
ways sitting in the top ‘max’ location. Second, all four modes 
with DMA remapping enabled (ST-O, ST-N, LA-O, and LA-
N) pin the least number of pages, because they need strictly 

follow the desired protection semantics. As such, their lines 
completely overlap in each diagram in Figure 5. The line of 
PT-N (coIOMMU in the passthrough policy) fluctuates in the 
middle due to smart pinning, which heuristically pins guest 
pages for balancing performance and footprint. So, it is the 
focus of our following analysis.  

Networking - All four networking benchmarks (left four in 
Figure 5) start and end with the same number of pinned pages 
(~8800 pages) in PT-N. Those always-pinned pages come 
from Intel i40e NIC driver, which pre-maps 512 pages per 
vCPU as the receive buffer pool when the NIC is enabled. 
The number sums up to 8192 pages with 16 vCPUs in our 
configuration. 

The largest footprint is observed in Netperf stream TX, with 
up to 44530 pinned pages (174MB). It is ~4.4x of the pages 
that are actually mapped for DMA at that time. The addition-
ally pinned 34158 pages reflect the DMA temporal locality, 
occupying only 0.4% of the total 32GB guest memory. 
coIOMMU recognizes such locality thus sustains the perfor-
mance of static pinning when keeping a small memory foot-
print. Netperf stream RX pins fewer pages (up to ~18000) 
than TX, due to better DMA temporal locality – Intel i40e 
NIC driver prefers to use the pre-mapped 8192 pages for in-
coming packets. On the other hand, Nginx and Memcached 
are less throughput sensitive than Netperf TX/RX, yielding a 
transfer rate of 2.3Gbps and 1.34 Gbps respectively. Accord-
ingly, there are fewer pages used for DMA in the two bench-
marks, leading to smaller footprint in coIOMMU. 

Storage - We configure fio to perform asynchronous direct 
random reads from the assigned SSD, to avoid page cache 
and readahead optimization in guest Linux. 16 fio threads are 
launched to read the disk with a 512-byte block size and 128 
in-flight requests per I/O queue, summing up to 256 pages for 
potential DMAs. The guest storage driver pre-maps 302 
pages at boot time. Therefore, up to 558 pages may be 
mapped for DMA simultaneously, at any time. Obviously, 
coIOMMU precisely captures such temporal locality and 
constantly pins 558 pages in our test. 

GPU - There is no recognizable difference between the line of 
PT-N and the bottom four lines, in OpenArena. The reason is 

Figure 5: The number of pinned pages sampled in 3 second interval, taken from the beginning of the benchmarks to 6 seconds after their 
completion. ‘max’ indicates the total pages of guest memory. 
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simple, as explained in §5.1, that OpenArena maps most of 
its DMA pages (~240MB) one-off at launch time and then
unmaps them only at exit. In such circumstance, smart pin-
ning and lazy unpinning have no effect at all. Therefore, all 
five fine-grained pinning modes pin the similar number of 
guest pages, with only static pinning staying in the top.

5.3. Memory Overcommitment 

Overcommitment allows the aggregated size of all VMs to 
exceed the physical memory, thus improving memory utili-
zation. We explore this configuration in both coIOMMU (PT-
N) and the virtual VT-d (PT-O), to demonstrate the value of 
fine-grained pinning. 

We create two VMs in the test machine with 64GB physical 
memory. VM1 has no assigned device and is configured with 
32GB memory. It runs sysbench to randomly access a 16GB 
memory region. On the other hand, VM2 is assigned with an 
Intel i40e NIC and is configured with 48GB memory. It runs 
Netperf to send packets through the assigned NIC. The total 
memory size of the two VMs (80GB) exceeds the physical 
memory limitation.  

We compare the performance of running them together to that 
of running each alone, in Figure 6. With the virtual VT-d, 
Netperf sustains the single-VM performance while sysbench 
suffers 25% performance drop. The drop is caused by fre-
quent page swaps due to insufficient host memory. There is 
only 8.8GB left after statically pinning 48GB memory for 
VM2. The situation gets worse with random errors reported 
in VM1, when increasing the memory intensity of sysbench. 
Conversely, both VMs achieve their desired performance 
with coIOMMU, with 49GB free memory available even 
when two benchmarks are both running. 

5.4. Guest User Space Driver 

The guest kernel may directly assign a device to its user space 
for improved performance. However, kernel bypassing im-
poses the risk of DMA attacks from the user space. In such 
case, the guest kernel typically turns on DMA remapping of 
vIOMMU when the device is being assigned to the user space 
and then turns off remapping after the device is assigned 

backed to the kernel. In such circumstance, coIOMMU can 
help the hypervisor maintain fine-grained pinning reliably, 
while state-of-the-art vIOMMUs suffer from increased over-
head by switching back and forth between static pinning and 
fine-grained pinning. We demonstrate such an example using 
DPDK pktgen, which offloads TCP packet processing from 
the guest user space to the assigned NIC. We run DPDK with 
coIOMMU and with the virtual VT-d respectively and show 
the comparison in Figure 7. 

coIOMMU dramatically reduces the latency in several stages, 
compared with the virtual VT-d: (1) 18x reduction when the 
VM is created (407ms vs. 7554ms); (2) 91x reduction when 
the guest kernel assigns the NIC to user space DPDK (2ms 
vs. 183ms); and (3) 407x reduction when the NIC is assigned 
back to the guest kernel (2ms vs. 815ms). The cost of the em-
ulated VT-d is mostly caused by pinning or unpinning the en-
tire guest memory when switching to or away from static pin-
ning. The VM creation phase suffers most because every 
guest page needs to be allocated and cleared in static pinning. 
In the meantime, coIOMMU pins no more than 186K pages, 
while the virtual VT-d pins many more pages varying be-
tween 186K and 8M.  

5.5. DMA Temporal Locality 

Good temporal locality on DMA buffers is crucial for high 
performance I/O processing, both in virtualization and on 
bare metal. Commercial OSes are optimized toward this goal, 
as observed in our evaluation and also reported by previous 
studies [7, 44, 51]. On the other hand, Markuze et al. [30] 
observes that many pages may be used to hold DMA buffers, 
over time, in stock Linux. Hence, we studied the DMA tem-
poral locality of the networking stack in a similar configura-
tion, by running 16 Netperf TX instances for 15 minutes, 
shown in Figure 8. We also run a Linux ‘dd’ command along-
side Netperf, reading the raw virtual disk into /dev/zero. The 
‘dd’ command constantly causes ~20K page cache misses per 
second, leading to ~20K new page allocated and heavily con-
tending with the networking stack. The experiment is con-
ducted in PT-N mode, i.e. under the passthrough policy. 

Figure 6: The impact of memory overcommitment:  
static pinning (PT-O) vs. fine-grained pinning (PT-N) Figure 7: Running DPDK with virtual VT-d and coIOMMU 
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Our data echoes the previous finding [30] – almost the entire 
guest memory (~7.9M pages, 98.7% of total memory) has 
ever been used for sending packets, over time. However, the 
number of pinned pages almost stays flat when coIOMMU is 
enabled. The peak number is ~106K (424MB), 2.4x of that 
when running Netperf TX alone and just 1.3% of the total 
guest memory. The result implies that the DMA locality in a 
short period is still good in such stress case, allowing the hy-
pervisor to intelligently pin the guest pages with coIOMMU. 

5.6. Mixed Workloads 

We run Netperf TX and fio together to check how coIOMMU 
performs in mixed I/O workloads. The tested VM is config-
ured with 16 vCPUs and 32GB memory as previous tests. It 
is directly assigned two devices: a XL710 NIC and a 760P 
SSD. We launch 16 netperf instances and 16 fio threads sim-
ultaneously in the VM, with each vCPU holding one netperf 
instance and one fio thread. Here we just compare PT-O vs. 
PT-N under the passthrough policy, as the two modes can best 
demonstrate the coIOMMU benefits according to the base-
line data.  

The result is promising. First, there is no observable perfor-
mance difference when comparing Netperf and fio to their 
baseline performance of running alone. The deviations are 
less than 1% and within the error bar. Second, the peak num-
ber of pinned pages in mixed workloads is 45200 (176.5MB), 
close to the sum of pinned pages of running Netperf (174MB) 
and fio (2.2MB) alone. This result proves that coIOMMU can 
effectively reduce the memory footprint with negligible over-
head, even when running mixed direct I/O usages together. 

6. Conclusions and Future Work 
Established vIOMMUs cannot reliably eliminate static pin-
ning in direct I/O, due to the emulation cost of their DMA 
remapping interfaces. We instead propose coIOMMU, a new 
vIOMMU architecture for efficient memory management. 
coIOMMU introduces a cooperative DMA buffer tracking 
mechanism for fine-grained pinning, orthogonal to the costly 
DMA remapping interface. The new mechanism uses a 
shared DMA tracking table (DTT) for hypervisor and guest 
to exchange the DMA buffer information, without incurring 

excessive notifications from the guest, due to smart pinning 
and lazy unpinning. We demonstrate that coIOMMU not only 
dramatically improves the efficiency of memory manage-
ment in wide direct I/O usages with negligible cost, but also 
sustains the desired security as required in specific protection 
policies. Last but not the least, although we implement 
coIOMMU by extending an emulated vIOMMU - the virtual 
Intel VT-d, this design can be easily ported to other vIOM-
MUs. 

As for future work, we will focus on several areas. First, new 
IOMMU trends [53, 54] begin to support two-level address 
translations, allowing the guest to skip certain virtual IOTLB 
invalidations for improved performance. coIOMMU should 
provide efficient DMA buffer tracking in two-level transla-
tion and maintain its performance benefit. Second, some de-
vices (e.g. GPUs) partially support DMA page faults, e.g. 
only for selective pages such as those used by applications. 
We want to study a hybrid approach for fine-grained pinning, 
by leveraging DMA page faults for faultable pages and using 
coIOMMU for other non-faultable pages. Last, kernel by-
passing usually needs to pre-map a big trunk of memory for 
the application to manage. We want to extend the coIOMMU 
concept from the boundary between hypervisor and guest to 
the boundary between kernel space and user space, to enable 
finer-grained memory management in such usage. 
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