
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

coIOMMU: A Virtual IOMMU with Cooperative
DMA Buffer Tracking for Efficient Memory

Management in Direct I/O
Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong, Intel Corporation

https://www.usenix.org/conference/atc20/presentation/tian

coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Tracking for Effi-
cient Memory Management in Direct I/O

Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, Yaozu Dong

Intel Corporation

Abstract
Direct assignment of I/O devices (Direct I/O) is the best per-
formant I/O virtualization method. However, it requires the
hypervisor to statically pin the entire guest memory, thereby
hindering the efficiency of memory management. This prob-
lem can be fixed by presenting a virtual IOMMU
(vIOMMU). Emulation of its DMA remapping capability
carries sufficient information about guest DMA buffers, al-
lowing the hypervisor to do fine-grained pinning of guest
memory. However, established vIOMMUs are not widely
used by commodity guests due to the emulation cost, thus
cannot reliably eliminate static pinning in direct I/O.

We propose and implement coIOMMU, a new vIOMMU ar-
chitecture for efficient memory management with a coopera-
tive DMA buffer tracking mechanism. The new mechanism
provides a dedicated interface for hypervisor and guest to ex-
change DMA buffer information over a shared DMA tracking
table (DTT), orthogonal to the costly DMA remapping inter-
face. We also explore two techniques: smart pinning and lazy
unpinning, to minimize the impact on the performance of di-
rect I/O. Our evaluation results show that coIOMMU dramat-
ically improves the efficiency of memory management in
wide direct I/O usages with negligible cost. Moreover, the
desired semantics of DMA remapping can be sustained when
cooperative tracking is enabled alongside. Overall, we be-
lieve that coIOMMU can serve as a reliable solution for effi-
cient memory management in direct I/O.

1. Introduction
Direct I/O [1, 21, 29, 31, 37, 39, 48, 49, 50] is the best per-
formant I/O virtualization method and a cornerstone capabil-
ity in data centers and clouds. It allows the guest to directly
interact with I/O devices without the intervention from soft-
ware intermediary. An I/O memory management unit
(IOMMU) [3, 14, 16] helps prevent Direct Memory Access
(DMA) attacks in direct I/O by providing the capability of
DMA remapping. Each assigned device is associated with an
IOMMU page table (IOPT), configured by the hypervisor in
a way that only the memory of the guest that owns the device
is mapped. The IOMMU walks the IOPTs to validate and
translate DMA requests, achieving inter-guest protection
among directly assigned devices.

Most devices do not tolerate DMA faults, implying that guest
buffers must be pinned in host memory and mapped in the

IOPT before they are accessed by DMAs. However, the hy-
pervisor does not know which pages are mapped by the guest
when it is eliminated from the direct I/O path. Consequently,
it has to pin the entire guest memory upfront, a.k.a static pin-
ning [7, 44]. This heavily hinders the efficiency of memory
management and worsens memory utilization, as pinned
pages cannot be reclaimed for other purposes.

Presenting a virtual IOMMU (vIOMMU) [8, 23, 29, 52, 60]
to the guest allows fine-grained pinning of guest memory for
efficient memory management, although its primary purpose
is to help the guest protect itself against buggy drivers. The
hypervisor emulates the DMA remapping interface by: 1)
walking the virtual IOPT (vIOPT) to identify the affected
buffers; 2) pinning and unpinning the buffers in the host
memory; and 3) mapping and unmapping them in the physi-
cal IOMMU to enforce protection as desired by the guest.
Naturally, the emulation leads to a fine-grained pinning
scheme, if the guest always uses the vIOMMU to remap its
DMA buffers.

Unfortunately, established vIOMMUs are not applicable as a
reliable solution for fine-grained pinning. Their virtual DMA
remapping capabilities are disabled by most guests [8, 24, 30,
38, 51] in typical usages such as public cloud, because signif-
icant emulation cost may be incurred due to frequent mapping
operations in the guest. Such cost could be alleviated through
side-core emulation [8] or para-virtualized extension [23,
52]. However, the side-core emulation requires an additional
CPU core to perform the emulation; and can only achieve op-
timal performance with deferred IOTLB invalidation, leading
to compromised security. Para-virtualized extension reduces
the virtualization overhead with optimized interfaces, but it
still involves large number of VM-exits at the time of guest
DMA mappings/unmappings, hence limiting the perfor-
mance. Therefore, they did not change the fact that estab-
lished vIOMMUs are used only in limited circumstances, e.g.
when intra-guest protection is valued over the overhead of
DMA remapping.

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is
needlessly constraining. Protection is a guest requirement,
while pinning is for host memory management. The two do
not always match, thus favoring one may easily break the
other. Instead, we aim to provide a reliable solution for fine-
grained pinning by decoupling it from protection.

USENIX Association 2020 USENIX Annual Technical Conference 479

We propose and implement a new vIOMMU architecture
called coIOMMU, which helps the hypervisor achieve effi-
cient memory management in direct I/O. It introduces a ded-
icated mechanism for cooperative DMA buffer tracking, or-
thogonal to the costly DMA remapping interface. coIOMMU
allows the hypervisor and guest to communicate over a DMA
tracking table (DTT) located in a shared memory region. The
guest records the mapping status of its DMA buffers in the
DTT and the hypervisor walks the DTT to identify the corre-
sponding pinning requirement. coIOMMU further minimizes
the number of notifications from the guest, with two optimi-
zations: (1) smart pinning, which heuristically pins fre-
quently used pages and timely shares its pinning status with
the guest, to enable precise notification in guest-mapping op-
erations; and (2) lazy unpinning, which asynchronously un-
pins guest pages to eliminate notifications in guest-unmap-
ping operations. On the other hand, the new mechanism does
not affect the desired semantics of DMA remapping. It can
be enabled with or without DMA remapping, as a reliable and
standard interface to achieve fine-grained pinning in direct
I/O.

We implement coIOMMU by extending KVM/QEMU
vIOMMU and Linux guest. The concept and implementation
can be easily ported to other hypervisors, vIOMMUs and
guest OSes. Overall, the main contributions of this paper are:

• Observing that established vIOMMUs cannot reliably
fix the problem of static pinning in direct I/O, due to the
costly DMA remapping interface.

• Proposing and implementing coIOMMU, the first
vIOMMU that introduces a dedicated DMA buffer track-
ing mechanism for fine-grained pinning.

• Introducing smart pinning and lazy unpinning to dramat-
ically reduce the tracking overhead in fine-grained pin-
ning.

• Conducting comprehensive evaluations under different
Linux protection policies, with benchmarks in direct net-
working, storage, and GPU.

• Demonstrating that coIOMMU not only dramatically
improves the efficiency of memory management in wide
direct I/O usages with negligible cost, but also sustains
the desired security as required in specific protection pol-
icies.

The rest of the paper is organized as follows. The background
and motivation are first provided in section 2. We present the
design of coIOMMU in section 3 and its implementation in
section 4. Finally, the evaluation results are shown and dis-
cussed in section 5, with future work and conclusion drawn
in section 6.

2. Motivation

2.1. The Problem

Direct I/O is the best performant I/O virtualization method by
enabling direct communication between the guest and the I/O
devices. Removal of the software intermediary not only pro-
vides much better performance than other I/O virtualization
approaches, but also allows faster time-to-market for virtual-
izing new I/O acceleration capabilities. Direct I/O prolifer-
ates via device-side virtualization. Single-Root I/O Virtual-
ization (SR-IOV) [1, 13] allows the device to multiplex its
resource into virtual functions, each independently assigna-
ble to a guest. Cloud service providers even offload para-vir-
tualized backend drivers into directly assigned devices [11,
12]. With these hardware trends, direct I/O has gained main-
stream support in commodity hypervisors and is becoming a
cornerstone capability in data centers and clouds.

IOMMUs [3, 14, 16] are introduced by hardware vendors to
prevent assigned devices from touching arbitrary memory lo-
cations. Use of the IOMMU leads to the static pinning prob-
lem due to two factors: (1) most I/O devices do not tolerate
DMA faults, and (2) the hypervisor does not know how guest
memory is used for DMA. The hypervisor has to pin the en-
tire guest memory upfront, assuming that every guest page
might be a DMA page. This heavily hinders the efficiency of
memory management and worsens memory utilization, as
pinned pages cannot be reclaimed for other purposes.

2.2. Existing Solutions

Previous studies generally tackle this problem in two direc-
tions: making the device support DMA page faults or expos-
ing the DMA buffer information to the hypervisor through
software approaches.

DMA page faults allow all kinds of memory optimizations
that CPU page faults provide. The PCI-SIG standardizes the
support of DMA page faults with Address Translation Ser-
vice (ATS) and Page Request Service (PRS) [2]. It was orig-
inally introduced to simplify the programming model on
GPUs [27, 41, 42] and now also starts to find its way into
NICs [6] and FPGA [9]. However, the latency of handling
DMA page faults is 3x-80x higher than that of handling CPU
faults [6, 40]. Such long latency, up to hundreds of microsec-
onds, demands a larger on-device buffer to hold in-flight re-
quests and incurs higher device cost. Handling such long la-
tency in all critical paths further complicates the device.
Therefore, most commodity devices do not support DMA
page faults, or partially support it only for selective work-
loads. With time, it may become a preferable way for fine-
grained pinning, but not anytime soon.

Alternatively, researchers also look at software approaches to
expose enlightened guest DMA information to the hypervi-
sor. Knowing when a guest page is mapped or unmapped al-
lows the hypervisor to pin or unpin it dynamically. Willmann
et al. [44] evaluates several mapping strategies, revealing that

480 2020 USENIX Annual Technical Conference USENIX Association

a big performance penalty is incurred when blindly doing hy-
percalls to notify the hypervisor of every guest mapping/un-
mapping operation. Yassour et al. [7] dramatically reduces
such notifications with a guest-side pin-down cache. How-
ever, it puts a complex eviction policy in the guest and pro-
vides no intra-guest protection.

Presenting a vIOMMU [23, 29, 60] also provides sufficient
information for fine-grained pinning, as a result of emulating
its DMA remapping capability for intra-guest protection.
However, such emulation may incur significant cost, espe-
cially when frequent mapping operations are requested by the
guest. To trade off performance and protection, modern OSes
typically implement different policies about DMA re-
mapping. For example, Linux [8, 24, 30, 38, 51] implements
strict, lazy and passthrough policies. Although DMA re-
mapping is used in strict and lazy policies, the passthrough
policy simply disables it to gain best performance. Obvi-
ously, the guest cannot provide any DMA buffer information
to the hypervisor when the passthrough policy is selected.
Unfortunately, major guest Linux distributions choose
passthrough as default and even allow different policies
across devices.

Recent studies focus on reducing the cost of emulating DMA
remapping in vIOMMU. Tang et al. [52] reduces the re-
mapping overhead by reusing old mappings and delaying
their removal, however, at the cost of compromised security.
Side-core emulation [8] achieves 100% of 10Gbps line rate
with a fully emulated vIOMMU, but with relaxed protection
and increased total cost. The overhead of DMA remapping is
also tackled on bare metal [24, 30, 38]. While these works
generally apply to the guest OS as well, most of them have
not been adopted by commodity OSes due to its intrusive-
ness. In a nutshell, the cost of DMA remapping is still notable
in the guest today, leaving the capability disabled or even not
exposed in most cloud and data center usages.

2.3. DMA Tracking vs. DMA Remapping

We prefer the vIOMMU approach for two reasons: 1) it sup-
ports both intra-guest protection and fine-grained pinning;
and 2) DMA page faults are not widely supported by com-
modity devices. However, we want to go a different direction
from previous studies – to enable fine-grained pinning with-
out being encumbered by the intrinsic cost of DMA re-
mapping.

We argue that mixing the requirements of protection and pin-
ning, through the same costly DMA remapping interface, is
needlessly constraining. Protection is a guest requirement and
relies on the DMA remapping capability, while pinning is for
host memory management and needs the capability of track-
ing guest DMA buffers. The two do not always match, thus
favoring one may just break the other, if both are enabled
through the same interface. For example, the hypervisor

either must fall back to static pinning by assuming that most
guests disable protection, or, adopt fine-grained pinning by
forcing all guests to enable protection and bear with added
cost.

What about inventing a separate DMA buffer tracking mech-
anism to the vIOMMU, without relying on any semantics of
DMA remapping? Separating DMA tracking from DMA re-
mapping allows us to tackle the pinning and protection prob-
lems in parallel. If the new tracking mechanism incurs negli-
gible cost, we can expect most guests to always enable it and
reliably provide necessary information for fine-grained pin-
ning. If feasible, such an approach would make the vIOMMU
as the portal of efficient memory management in future data
centers and clouds.

3. Design
We propose coIOMMU, a new vIOMMU architecture that
helps the hypervisor achieve efficient memory management
in direct I/O. coIOMMU provides a dedicated DMA buffer
tracking mechanism that adopts a shared memory interface
for efficient communication between host and guest. The
guest records the mapping status of its DMA buffers through
a shared DMA tracking table (DTT), for the hypervisor to de-
cide its pinning strategy. coIOMMU also introduces two op-
timizations: smart pinning and lazy unpinning, to dramati-
cally reduce the performance impact when achieving fine-
grained pinning.

3.1. Goals

We want the new DMA buffer tracking mechanism to meet
these goals:

Orthogonal to DMA Remapping - Our solution should allow
DMA buffer tracking and DMA remapping independently
configured by the guest. The new tracking mechanism, once
enabled, should consistently supply sufficient information for
fine-grained pinning, regardless of how DMA remapping is
configured to protect guest. Enabling of DMA buffer tracking
should not affect the desired protection semantics of DMA
remapping.

Low Cost - DMA buffer tracking should incur negligible cost.
Otherwise, it faces the same challenge as in DMA remapping:
if significant cost is observed, why would one enable it by
default? We focus on the efficiency of DMA buffer tracking
itself and have no intention to further optimize DMA re-
mapping in this work. The original performance expectation
under each guest protection policy is set as the baseline for
comparing the cost of DMA buffer tracking in our evalua-
tions.

Non-intrusiveness - We want our solution to minimize the
changes in the guest software stack, as a primary factor to
gain mainstream support in commodity OSes. Commodity
OSes provide a generic DMA API layer [25, 43] to route

USENIX Association 2020 USENIX Annual Technical Conference 481

DMA mapping requests from device drivers to underlying
DMA driver. DMA buffers can be tracked either in the DMA
API layer or specific DMA driver. We did not choose DMA
API because any change in such common framework usually
takes a long time to be adopted by commodity OSes.

Wide Applicability - We prefer a solution that works with all
kinds of I/O devices rather than requiring additional changes
in hardware or device drivers. We also expect such a solution
to make no assumption on any vendor specific characteristics,
so it can be easily ported to different vIOMMUs, either emu-
lated or para-virtualized.

Extensibility - The solution should be extensible to help ad-
dress other limitations in memory management. For example,
another challenge in direct I/O is about lively migrating the
guest with assigned devices, which requires the ability of
tracking the pages that are dirtied by DMAs [20, 26, 28, 35].
We expect our solution can play as a portal of tracking all
kinds of DMA buffer status for efficient memory manage-
ment.

3.2. Architecture

The coIOMMU architecture is illustrated in Figure 1, com-
posed of coIOMMU backend in hypervisor and coIOMMU
driver inside the guest. The coIOMMU backend includes
three main components: (1) DMA remapping engine
(remapEngine), the same functionality for intra-guest protec-
tion as in established vIOMMUs, over a set of per-device
vIOMMU page tables (vIOPTs); (2) DMA tracking engine
(trackEngine), a new function dedicated for tracking guest
DMA buffers over a global DMA tracking table (DTT); and
(3) Page-pinning manager (pManager), which uses the infor-
mation gathered by trackEngine to intelligently manage the
pinning requirements of guest memory. The remapEngine
and trackEngine are independently enumerated and managed
by the coIOMMU driver, while pManager is hidden and ac-
tivated automatically when trackEngine is enabled.

In our prototype, we build coIOMMU by extending an exist-
ing vIOMMU, which emulates the Intel VT-d hardware [3].
This allows us to focus on the new trackEngine and pMan-
ager, while inheriting the established DMA remapping logic
as remapEngine. However, we make no assumption on the
specific hardware or vIOMMU type. The design of trackEn-
gine and pManager can be easily ported to any emulated or
para-virtualized vIOMMU.

The trackEngine holds the base address of the DTT, which is
allocated and registered by the coIOMMU driver. The format
of the DTT is a hierarchical page table, containing the map-
ping information required by fine-grained pinning. trackEn-
gine also includes a doorbell register to notify the hypervisor
if necessary. Within the coIOMMU backend, trackEngine
provides interfaces for pManager to access the DTT and also
notifies pManager when the doorbell is rung. With this

design, trackEngine acts as a standard interface solely for
conveying the DMA information, while pManager actually
uses the information to achieve fine-grained pinning. The
separation between these two components allows coIOMMU
to be easily extended for other purposes, e.g. by introducing
another agent to track dirty pages, alongside pManager, while
reusing the same trackEngine interface.

The coIOMMU driver intercepts the DMA API operations in
the guest and updates the DTT accordingly. Modern OSes all
implement a generic DMA API layer [25, 43], connecting de-
vice drivers to the underlying DMA driver to prepare their
DMA buffers. The coIOMMU driver registers itself as a
DMA driver to capture the latest mapping status of guest
DMA buffers. This driver also enforces the desired protection
semantics, as other vIOMMU drivers normally do today. In
this way, DMA tracking is enabled without any change to the
DMA API layer or specific device drivers of the guest.

The pManager contains hypervisor-specific policies for fine-
grained pinning. A specific implementation may even include
multiple policies and let the hypervisor dynamically choose a
policy at runtime. We demonstrate two optimizations in §3.4:
smart pinning and lazy unpinning, to minimize the notifica-
tion overhead. When required, pManager talks to the memory
manager for pinning or unpinning a set of guest pages and
request the IOMMU driver for mapping or unmapping them
in the physical IOPT. When both remapEngine and pManager
are enabled, their pinning decisions are ORed together to fa-
vor the stricter requirement. Once a guest page is unpinned
and unmapped, it can be reclaimed under whatever policy ap-
plied by the memory manager.

3.3. DMA Tracking Table (DTT)

The DTT records the mapping status of guest DMA buffers.
It is shared by all assigned devices because the hypervisor
only wants to know the DMA buffers of the entire guest. It is
not necessary to track DMA buffers for virtual devices, as-
suming their DMAs are emulated by and already known to
the hypervisor. The DTT is allocated by the guest, starting as
empty and then filled dynamically according to intercepted
DMA operations. We choose to track two categories of guest
pages in the DTT: 1) the pages that are currently mapped by
the guest and 2) the pages that have been unmapped but still

Figure 1: The architecture of coIOMMU

coIOMMU Backend

remapEngine

trackEngine

coIOMMU
Driver

Device
Driver

DTT

vIOPTs

Memory
Manager

IOMMU
Driver

Hypervisor Guest

Pin/
unpin

Map/
unmap

Page-Pinning
Manager

482 2020 USENIX Annual Technical Conference USENIX Association

pinned by the hypervisor. The latter category is necessary for
lazy unpinning introduced in the next section.

One may argue why inventing a new table instead of reusing
the vIOPTs, when the latter also carry the information of
guest DMA buffers. We considered this approach but gave
up for several reasons. First, the vIOPT is designed for intra-
guest protection which disallows pinning a page after it is un-
mapped thus also negates lazy unpinning. Second, the table
is indexed by guest I/O Virtual Address (IOVA) for the re-
mapping purpose. The hypervisor has to walk every vIOPT
to find out whether a guest page is mapped, which is too
costly. Last but not the least, the format of vIOPT is typically
vendor-specific, so extending it may not lead to good porta-
bility.

The DTT is a 4-level page table in 4KB pages, as shown in
Figure 2. The 4KB leaf page consists of 512 DTT PTEs
(DTEs) and each 8-bytes DTE is further split into 8 tracking
units (TU). Each TU corresponds to one 4KB guest page. In
total, the DTT can support up to 51-bits (9+9+9+9+3+12=51)
guest physical address width, big enough for prevalent virtu-
alization usages. Such design leaves 8-bits available in each
TU. coIOMMU currently uses 3 bits for fine-grained pinning,
with the other 5-bits reserved for future extension:

• ‘M (mapped)’, indicating a page currently mapped by
guest for DMA. It is set and cleared by the guest before
and after the corresponding DMA and is read-only to the
hypervisor. This bit conveys the primary information
used by fine-grained pinning.

• ‘P (pinned)’, marking a page currently pinned by the hy-
pervisor. It is updated by the hypervisor to reflect the
pinning status and is read-only to the guest, necessary for
smart pinning.

• ‘A (accessed)’, telling whether a page has ever been used
for DMA. The guest sets this bit alongside the setting of
M-bit (‘mapped’ bit). Then it stays sticky until the hy-
pervisor clears it in lazy unpinning.

An entry with both M and P bits cleared marks the page as
invalid. If every entry of a DTT page is invalid, the guest may
choose to free this page to save space.

3.4. Fine-grained Pinning

Two techniques are introduced in coIOMMU: smart pinning
and lazy unpinning, to minimize the notification overhead of
fine-grained pinning. We focus on the scenario where the
DMA remapping capability of coIOMMU is disabled by the
guest. In this case, there is no intra-guest protection require-
ment thus the hypervisor can pin more pages than what guest
actually maps.

3.4.1. Smart Pinning

coIOMMU manages the pinning of guest pages in three ways:
(1) instantly pinning: the guest instantly notifies the hypervi-
sor to pin pages when they are being mapped, for correctness;
(2) precise notification: the guest notifies the hypervisor if
and only if the to-be-mapped pages are not pinned, to mini-
mize the notification overhead; and (3) speculatively pinning:
pManager heuristically pins the frequently used pages for
performance.

First, pinning must be instantly done before any mapped page
is used for DMA, because most devices do not tolerate DMA
faults, as aforementioned. In such circumstance, the hypervi-
sor must be notified by the guest to complete the pinning ac-
tion in a timely manner, if the page has not yet been pinned.

Second, coIOMMU exposes the pinning status to the guest
through the P-bit (‘pinned’ bit) in the DTT, for precise noti-
fication. If the P-bit is cleared by the hypervisor, the guest
must notify the hypervisor instantly when mapping a page.
Otherwise, no notification is needed at all. This optimization
allows the guest to skip most notifications in its mapping op-
erations.

Last, pManager speculatively selects and pins frequently used
pages by leveraging the guest DMA locality, which has been
identified in both previous studies [7, 44, 51] and our evalu-
ation. The DTT includes an A-bit (‘accessed’ bit) to mark a
page ever used for DMA. The guest sets the A-bit when map-
ping a page and leaves it set until the hypervisor clears it.
pManager determines the ages of unmapped pages by period-
ically scanning the A-bits (and clears it after a scan). Young
pages (with A-bit set) are candidates of frequently used pages
and might be accessed soon again. So pManager heuristically
pins them to avoid the overhead of another pinning notifica-
tion in the near future.

Our evaluation shows that precise notification and specula-
tive pinning can dramatically reduce the notification over-
head in instant pinning by up to 99.9992% (from 1.5M to 11
notifications, per second), when running memcached with a
40Gbps NIC connection. One notification takes ~2000-4000
cycles in our evaluation, so 1.5M notifications per second
may eat up 1-2 CPU cores without such optimization.

Figure 2: the format of the DTT

6
3

5
1

5
0

4
2

4
1

3
3

3
2

2
4

2
3

1
5

1
4

1
2

1
1 0

Reserved

<<3

+

DTT Base
Pointer L4 Table

<<3

+

<<3

+

L3 Table

L2 Table

<<3

+

L1 Table

DTE TU0 TU1 TU2 TU3 TU4 TU5 TU6 TU7

R R R R R A P M

Tracking Unit (TU)

M: mapped
P: pinned
A: accessed
R: Reserved

Guest Physical Address (GPA)

USENIX Association 2020 USENIX Annual Technical Conference 483

3.4.2. Lazy Unpinning

The pManager lazily unpins guest pages to completely elim-
inate the notification overhead in guest unmapping opera-
tions. It asynchronously scans the DTT to find out the pages
that are unmapped but still pinned, and then unpins them in a
batch. In our prototype, we process lazy unpinning and spec-
ulative pinning together in the same thread. Unpinned pages
are reclaimable by the memory manager to increase overall
memory utilization. In the same example of memcached, lazy
unpinning eliminates another 1.5M notifications per second
for guest unmapping operations, which means saving another
1-2 CPU cores, with the cost of pinning additional ~1%
memory (0.32MB) than the total size of mapped pages
(34.68MB), in average.

3.5. Intra-Guest Protection

The DMA remapping engine (remapEngine) can achieve
fine-grained pinning as well, as it is required to precisely map
and pin DMA buffers per guest protection requirements.
However, one cannot solely rely on DMA remapping because
the guest may selectively turn it off for certain devices ac-
cording to its protection strategy. We describe two examples
as below.

First, the guest may dynamically enable/disable DMA re-
mapping for an assigned device, leaving the hypervisor to
switch back and forth between static pinning and fine-grained
pinning. For example, guest Linux typically enables DMA
remapping when assigning a device to its user space and then
disables remapping when returning the device back to its ker-
nel space [45]. The switch between static and fine-grained
pinning may lead to intermittent out-of-memory errors in a
budget system. Moreover, the hypervisor needs to unpin all
the guest pages when switching away from and then re-pin
them when switching back to static pinning, leading to in-
creased overhead.

Second, if the guest enables DMA remapping only for se-
lected devices, DMA remapping cannot provide full DMA
buffer information for fine-grained pinning. For example,
most Linux distributions enable DMA remapping only for
untrusted devices, based on physical characteristics of the de-
vice [61, 62]. Such flexible configuration is possible because
DMA remapping is typically enabled per device. However,
fine-grained pinning needs to know DMA buffers used by all
assigned devices in the guest, even for the ones that are not
protected with DMA remapping. In such case, the hypervisor
must fall back to static pinning with reduced memory utiliza-
tion.

In both of these examples, DMA buffer tracking of
coIOMMU allows reliably providing full DMA buffer infor-
mation to enable fine-grained pinning. When tracking and re-
mapping are both enabled, it is possible for the two to make
different pinning decision for the same page. In such case, the

decision from the DMA remapping interface takes prece-
dence, because we must not break any protection semantics
desired by the guest.

4. Implementation
We implement coIOMMU by extending the virtual Intel VT-
d, which is an emulated vIOMMU in QEMU [58] (the device
model of KVM hypervisor [10]), and the intel-iommu driver
in the guest Linux. In QEMU, the original DMA remapping
logic of the virtual VT-d is reused as remapEngine, while
trackEngine and pManager are developed from scratch.
Guest-side changes are all contained in the intel-iommu
driver and hidden behind the Linux DMA API layer. There is
no change required in guest device drivers. Currently,
coIOMMU adds ~700 LOC in QEMU and ~1000 LOC in
guest.

coIOMMU driver - coIOMMU driver extends guest intel-
iommu driver to manage the trackEngine when the capability
is detected. The intel-iommu driver registers callbacks to the
Linux DMA API layer for mapping and unmapping DMA
pages in different forms, e.g. for single page or scatter-gath-
ered page list, for pre-allocated pages or newly allocated
pages, etc. We extend the driver by extracting the DMA
buffer information from those callbacks and updating the cor-
responding tracking units (TUs) in DTT. The DTT is allo-
cated in the guest memory, which is always accessible by the
commodity KVM hypervisor. If such direct access is prohib-
ited in some specific security related usage cases [55, 56], the
DTT should be allocated in a shared memory region. Last,
the coIOMMU driver conditionally notifies the hypervisor
based on the DTT status.

trackEngine - We extend the virtual VT-d with several
changes: (1) a capability bit for enumerating the presence of
trackEngine, (2) an enabling bit for activating trackEngine,
(3) a register holding the base address of the DTT, (4) a reg-
ister as the doorbell interface for triggering notification to
pManager, and (5) a register pointing to the base address of
the notification structure. The notification structure is de-
signed to allow batching requests of multiple pages into one
notification, in case of those pages are mapped together.
trackEngine also provides function calls for pManager to
scan and update the DTT.

pManager – The implementation of pManager can be split into
two parts. First, it provides direct function calls for trackEn-
gine to complete instant pinning. The functions are invoked
synchronously in the vCPU threads when QEMU emulates
the guest write to the doorbell register. Second, pManager
also launches a thread for lazy unpinning and speculative pin-
ning, woken up every one second. This thread scans the DTT
to find out all the pages that are unmapped but still pinned
and speculatively unpin them based on their A-bits. When a
pinning decision is made, pManager invokes the VFIO API

484 2020 USENIX Annual Technical Conference USENIX Association

[45] to pin/unpin selected pages and map/unmap them in the
IOMMU.

Sub-Page Mappings - Multiple DMA buffers may co-locate in
the same 4KB guest page, e.g. as widely observed when han-
dling network packets. Sub-page mappings imply that one
page might be mapped and unmapped multiple times. In such
case, coIOMMU driver tracks the mapping count of each
mapped page and clears the “M-bit” of the corresponding en-
try only when its count reaches zero. We choose to leverage
the 5 reserved bits in each TU as the mapping count, holding
up to 31 sub-page mappings. Doing so simplifies the imple-
mentation and works well in our evaluations. Other imple-
mentations may choose different structures for such tracking
purpose.

Concurrency - coIOMMU must properly handle concurrent
pinning/unpinning requests between multiple vCPU threads
and the unpinning thread, as shown in Figure 3.

First, multiple vCPUs may try to map and pin the same DMA
page simultaneously, e.g. in sub-page mapping scenario. We
employ different locking mechanisms in guest and host for
race avoidance. Within the guest kernel, spinlock is required
for atomically setting the ‘mapped’ flag and checking the
‘pinned’ status of a target page. It is necessary as DMA map-
pings may happen in the guest interrupt context. On the other
hand, a mutex is introduced in QEMU for atomically com-
pleting the actual pinning actions: 1) rechecking the ‘pinned’
status; 2) pinning the page; and 3) updating the ‘pinned’ flag.

Second, race condition may happen between concurrent pin-
ning requests (from the vCPU threads) and unpinning re-
quests (from the unpinning thread). For example, it is possi-
ble seeing an unpinning operation starts before, yet completes
after, an in-flight pinning request. Such race may lead to the
pinning request completing successfully but with the target
page actually unpinned. We introduce two mechanisms to
solve this problem. For one, the unpinning thread needs to
check the ‘mapped’ flag before and after clearing the ‘pinned’
status. We call this special sequence as double-detection, nec-
essary to catch in-flight change of the mapping status in the
guest side. For two, the unpinning thread also needs to ac-
quire the aforementioned QEMU mutex for completing its
unpinning actions. In particular, the second check of the
‘mapped’ flag must be done with the mutex acquired and be-
fore conducting the unpinning action. If the ‘mapped’ status
becomes true, indicating that a pinning action is in progress
for the target page, the unpinning thread should cancel the
unpinning operation immediately.

4.1. Discussion

Applicability - coIOMMU applies to all kinds of directly as-
signed devices, without the need of ad-hoc changes in hard-
ware or software. Porting our Linux implementation to a new
guest OS is straightforward, as long as the OS implements a

generic DMA API layer which, obviously, is already a com-
mon feature in commodity OSes today. On the other hand,
the implementation of trackEngine and pManager is vendor-
neutral and self-contained. The separation between DMA
tracking and DMA remapping allow coIOMMU implemen-
tation to be easily portable to other vIOMMUs, regardless of
whether remapEngine is emulated or para-virtualized.

Extensibility - The page table format of the DTT can be ex-
tended to address other limitations in memory management.
For example, introducing a “D (dirty)” bit in the TU provides
a generic solution for tracking dirty pages when lively mi-
grating VMs in direct I/O. Similarly, using a “W (writable)”
bit to indicate read-only page enables the hypervisor to im-
plement copy-on-write features. Ideally, a specific imple-
mentation may extend the DTT to include the same set of per-
mission or status bits as available in a CPU page table.

Currently the DTT tracks DMA buffers in 4KB granularity.
It is sufficient for most direct I/O usages, as DMA buffers are
typically allocated in scattered 4KB pages. When large DMA
buffer is used, we rely on pManager to merge batched pinning
requests on continuous DMA pages into 2MB-based re-
quests. We observed such optimization leads to ~4.5% FPS
improvement in direct GPU benchmark, as illustrated in 5.1.
Alternatively, one may also directly extend the DTT format
to support 2MB-granular tracking entries.

Kernel Bypassing - coIOMMU also applies to various kernel
bypassing techniques [32, 33, 45], which allow applications
to directly manage DMA buffers in user space. Applications
are untrusted, so they must first register a trunk of memory to
the kernel and then manage within that trunk. The registration
goes through proper kernel interfaces, e.g. AF_XDP [33] or
VFIO [45] in Linux, which finally call into the coIOMMU

Figure 3: Race avoidance between concurrent pinning and unpin-
ning operations. Gray boxes are guest actions, and white are host.

Given a pinned page

‘mapped’==1?

Clear ‘pinned’ flag

‘mapped’==1?

Set ‘pinned’ flag

Unpin the page

Find next pinned page

Y

N

Y

N

‘pinned’==1?

When mapping a page

Set ‘mapped’ flag

Tracking Done

Ring doorbell
N

Pin the page

Set ‘pinned’ flag

Y

‘pinned’==1?Y

N

Mutex
Protected

Double
Detection

vCPU Threads Unpin Thread

Spinlock
protected

USENIX Association 2020 USENIX Annual Technical Conference 485

driver for actual mappings and unmappings thereby are still
tracked in the DTT. Kernel bypassing may increase the
memory footprint because applications usually register a one-
off big buffer pool to avoid calling into the kernel frequently.
We leave optimizing such workloads as future work.

DMA Page Faults – For devices which do support DMA page
faults, on-demand memory allocation/reclaim can happen at
any time thus one could implement fine-grained pinning
without using coIOMMU. However, coIOMMU may still
provide two benefits in such circumstance. First, the over-
head of handling DMA page faults might be non-negligible
in hot data paths. coIOMMU allows the guest to reduce the
number of faults by proactively requesting pre-pinning of hot
pages, based on the knowledge that is easily extracted from
DTT, yet invisible or difficult to acquire in legacy host. Sec-
ond, some devices may allow DMA page faults only in selec-
tive data paths. Hypervisor could enable coIOMMU along-
side the fault-based pinning scheme, to track DMA pages
which are touched in non-faultable data paths in such devices.

Guest Cooperation - coIOMMU is a para-virtualized approach
thus requires guest cooperation. We plan to submit our work
to Linux and QEMU community, so coIOMMU could be en-
abled by default in most Linux distributions in the future.
However, it is possible that a selfish guest may deliberately
report fake DMA pages or simply disable coIOMMU driver
to get more pages pinned than a cooperative guest. When re-
quired, one may choose to build a quota mechanism along-
side the new tracking interface of coIOMMU. For example,
the memory ballooning mechanism [57] can be extended to
convey the quota information of both total memory and DMA
memory, based on the service level agreement of the guest.
Afterward, pManager could reject new pinning requests from
any guest after its quota is exceeded.

5. Evaluation
Our evaluation aims to answer several questions. How does
the overhead imposed by coIOMMU compare to that of es-
tablished vIOMMUs? How many pages are pinned in various
direct I/O usages when using coIOMMU to enable fine-
grained pinning? Does coIOMMU sustain the desired perfor-
mance and security under different intra-guest protection pol-
icies? We answer these questions by planning our evaluation
to focus on four aspects: footprint, overhead, security and ap-
plicability.

Evaluated Modes - We evaluate six modes as shown in Table
1. The guest intel-iommu driver supports three protection pol-
icies: 1) passthrough, the default policy that disables DMA
remapping for performance; 2) strict, using DMA remapping
to gain full protection; and 3) lazy, trading off some security
for performance when using DMA remapping (e.g. by defer-
ring and batching IOTLB invalidations). We study the three
policies for coIOMMU and a state-of-the-art vIOMMU,

respectively, thus leading to six modes in total. In our proto-
type, coIOMMU inherits the DMA remapping logic of the
virtual VT-d, so we choose this emulated vIOMMU solution
to represent state-of-the-art vIOMMUs for fair comparison.
We use {PT-O, ST-O, LA-O} to indicate the three protection
policies with virtual VT-d and {PT-N, ST-N, LA-N} for the
policies with coIOMMU. ‘O’ stands for the ‘old’ emulated
VT-d while ‘N’ represents the ‘new’ coIOMMU.

Experimental Setup - Our setup consists of three machines, all
running Ubuntu 16.04 with kernel 5.0.0. The primary ma-
chine, used for networking and storage tests, is equipped with
a 16-core Intel Xeon Cascade Lake CPU at 2.7GHz, one
64GB DDR4 DIMM, an Intel XL710 40Gbps NIC, and two
Intel 760P series 1TB NVMe SSDs. The 2nd machine acts as
the network traffic generator, with another XL710 NIC con-
nected to the primary machine back-to-back. It includes dual
Intel Xeon Gold 6140 CPUs, each with 18 cores at 2.30GHz
and 64GB DDR4 memory. The last machine is used for GPU
evaluation, equipped with Intel Core i7-7567U CPU with
four cores at 3.50GHz, 32GB DDR4 memory, a 256GB Intel
520 series SSD, and an Intel® Iris® Plus graphics 650 GPU.

The VM of the first machine is based on RHEL7.2 with ker-
nel 5.1.0-rc3+, configured with 16 vCPUs, 32GB memory,
and a directly assigned device – either a XL710 NIC or a
760P SSD, according to whether direct-networking or direct-
storage is under evaluation. The two assigned devices are en-
abled independently, to avoid mutual interference from sec-
tion 5.1 to section 5.5. In section 5.6, we evaluated their per-
formance running combined workloads with both devices as-
signed. The VM for direct GPU includes Ubuntu 18.04 with
kernel 5.1.0-rc3+, 4 vCPUs, 4GB memory, and a directly as-
signed Intel® Iris® Plus graphics 650 GPU. The vCPUs of
both VMs are 1:1 pinned to the physical cores for stable re-
sults.

Benchmarks - We choose both micro-benchmarks and macro-
benchmarks for evaluating the six modes in direct network-
ing, direct storage and direct GPU:

• Netperf [63] is a standard micro-benchmark to measure
networking throughput. We perform Netperf stream re-
ceive (RX) and transmit (TX) tests, using 64KB message
size with 16 Netperf client/server instances (one per
core) in the guest. Aggregated throughput is reported.

Table 1: Evaluated modes in coIOMMU and virtual VT-d

mode abbr.
DMA

remapping
DMA buffer

tracking
pinning
model

protection

passthrough (virtual VT-d) PT-O unused n/a static no

passthrough (coIOMMU) PT-N unused used fine-grained no

strict (virtual VT-d) ST-O used n/a fine-grained full

strict (coIOMMU) ST-N used used fine-grained full

lazy (virtual VT-d) LA-O used n/a fine-grained relaxed

lazy (coIOMMU) LA-N used used fine-grained relaxed

486 2020 USENIX Annual Technical Conference USENIX Association

• Nginx [64] is a high-performance HTTP web server. We
use ApacheBench [69] to measure the number of concur-
rent requests that Nginx server can serve. We run
ApacheBench to issue 16 concurrent requests of a static
1MB file, through the Nginx server installed in the guest.

• Memcached [65] is a popular in-memory key-value
store, usually benchmarked using memaslap [70]. We
use the default memaslap configuration with 64-byte
keys, 1KB values, and 90%/10% GET/SET operations.
In the VM, we launch 16 memcached instances driven
by 16 memaslap threads each issuing 8 concurrent re-
quests.

• fio [66] is a standard micro-benchmark to measure disk
performance for wide range of storage types. We config-
ure 16 fio threads, each performing asynchronous direct
random reads from the assigned SSD, in 512-byte blocks
and 128 in-flight requests.

• OpenArena [67] is a 3D first-person shooter game, used
to benchmark direct GPU. The throughput is reported in
frame-per-second (fps).

In addition, we also selectively run sysbench [68] as a
memory benchmark and DPDK [32] for user-space network-
ing stack, for specific evaluation purposes.

5.1. Overhead

We record the performance of aforementioned benchmarks
in each evaluation mode, as shown in Figure 4. CPU utiliza-
tion is aggregated over all cores, i.e. one core at 100% CPU
would be reported as 100%/4=25% CPU utilization with 4
cores (for OpenArena) or 100%/16=6.25% CPU utilization
with 16 cores (for all other benchmarks). In addition, we also

capture the per-second number of completed DMA opera-
tions and associated VM-exits when running those bench-
marks, in Table 2. All benchmarks run 30 seconds, except
OpenArena, which must run to end in around 42 seconds.
Next, we compare coIOMMU to virtual VT-d under the three
Linux protection policies, respectively.

Passthrough - All networking benchmarks (left four in Figure
4) exhibit consistent results under the passthrough policy:
coIOMMU (PT-N) retains the performance comparable to
that of the virtual VT-d (PT-O), with less than 3% throughput
degradation and negligible variation in CPU utilization. Such
low cost is further explained in Table 2 – although hundreds
of thousands of DMA operations are tracked per second, the
majority of them do not trigger any VM-exit to notify the hy-
pervisor, due to the optimization of smart pinning and lazy
unpinning. For example, the lowest VM-exit number is ob-
served in memcached, with only 11 VM-exits incurred by
~3M DMA operations.

The overhead of coIOMMU is unrecognizable in FIO but in-
curs 4.5% FPS drop in OpenArena. We found that OpenA-
rena maps a big buffer (~240MB) in a batch at its launch time,
with many pages adjacent to each other. In such case, pinning
the buffer in 2MB size is more efficient than pinning in 4KB
size, due to increased IOTLB efficiency. Unfortunately, 2MB
pinning is not supported in our initial coIOMMU implemen-
tation, while it is the preferred option when KVM statically
pins the entire guest memory in PT-O. After coIOMMU was
extended to also conduct 2MB pinning for OpenArena, it then
reaches the same performance as the virtual VT-d (not shown
in the figure). We do not enable huge page pinning in other
benchmarks, because they are observed with frequent map-
ping operations on many scattered 4KB pages. Blindly doing

Table 2: The average number of completed DMA operations vs. incurred VM exits, per second.

netperf stream rx
(Gbps)

40

30

20

10

0

netperf stream tx
(Gbps)

40

30

20

10

0

nginx
(req/sec)

2.4K

1.8K

1.2K

0.6K

0

memcached
(req/sec)

2.0M

1.5M

1.0M

0.5M

0

fio
(iops)

500K

375K

250K

125K

0

throughput cpu [%]

openarena
(fps)

100

75

50

25

0

100%

75%

50%

25%

0%

dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits dma_ops VM-exits

PT-O 352,224 0 577,037 0 525,974 0 3,110,716 0 781,055 0 44 0

PT-N 348,335 2,379 572,136 415 525,849 115 3,039,414 11 780,186 9 44 22

ST-O 109,403 109,403 64,448 64,448 72,239 72,239 104,354 104,354 109,864 109,198 44 44

ST-N 108,607 108,607 64,352 64,352 71,682 71,682 103,984 103,984 107,948 107,948 44 44

LA-O 141,844 71,013 59,645 29,896 63,230 31,702 145,309 72,744 163,085 81,655 44 23

LA-N 141,572 70,883 58,398 29,273 62,569 31,370 144,690 72,434 162,417 81,322 44 23

openarena
mode

netperf stream rx netperf stream tx nginx memcached fio

Figure 4: Performance of the six modes (100% CPU is 4 cores in openarena, and 16 cores in all other benchmarks)

USENIX Association 2020 USENIX Annual Technical Conference 487

huge page pinning simply adds more cost and footprint in
those circumstances.

Strict and Lazy - We did not observe recognizable difference
between coIOMMU (ST-N and LA-N) and virtual VT-d (ST-
O and LA-O) in all benchmarks, regarding to both throughput
and CPU utilization. There are much fewer DMA operations
completed in the strict and lazy policy than that in the
passthrough policy, due to the emulation cost of DMA re-
mapping. As shown in Table 2, the reduction is between
2.46x (in Netperf RX) to 29.8x (in memcached) in all evalu-
ated benchmarks. The tracking overhead in coIOMMU is
negligible when comparing to the overhead of DMA re-
mapping.

We also explore an interesting finding between lazy and strict
in Figure 4, although not directly related to coIOMMU. It is
a common learning that batching IOTLB invalidations gen-
erally brings better performance than strictly invalidating the
IOTLB one-by-one. However, it is not always the case in vir-
tualization – we observed 11% and 23% lower throughput
when comparing lazy to strict in Netperf TX and Nginx. We
find the batching interface of the virtual VT-d is the root
cause. Its emulation requires walking the entire vIOPT to
identify every valid mapping. If the walking cost exceeds the
cycles of saved invalidations, the performance of lazy is in-
stead worse than that of strict. We leave studying more effi-
cient batching interface and policy for another research.

5.2. Memory Footprint

We sample the number of pinned pages every 3 seconds, from
the beginning of the benchmarks to 6 seconds after its com-
pletion, in Figure 5. The extra 6 seconds are used to evaluate
the elasticity of the six modes, against transitional system
business. One note – the ‘max’ mark in the Y-axis indicates
the total number of guest pages, representing the case of static
pinning. It is 8M (for 32GB memory) in most benchmarks
and 1M (for 4GB memory) in OpenArena.

All six modes exhibit the same pattern in all benchmarks, ex-
cept PT-N. First, PT-O is tied to static pinning, thereby al-
ways sitting in the top ‘max’ location. Second, all four modes
with DMA remapping enabled (ST-O, ST-N, LA-O, and LA-
N) pin the least number of pages, because they need strictly

follow the desired protection semantics. As such, their lines
completely overlap in each diagram in Figure 5. The line of
PT-N (coIOMMU in the passthrough policy) fluctuates in the
middle due to smart pinning, which heuristically pins guest
pages for balancing performance and footprint. So, it is the
focus of our following analysis.

Networking - All four networking benchmarks (left four in
Figure 5) start and end with the same number of pinned pages
(~8800 pages) in PT-N. Those always-pinned pages come
from Intel i40e NIC driver, which pre-maps 512 pages per
vCPU as the receive buffer pool when the NIC is enabled.
The number sums up to 8192 pages with 16 vCPUs in our
configuration.

The largest footprint is observed in Netperf stream TX, with
up to 44530 pinned pages (174MB). It is ~4.4x of the pages
that are actually mapped for DMA at that time. The addition-
ally pinned 34158 pages reflect the DMA temporal locality,
occupying only 0.4% of the total 32GB guest memory.
coIOMMU recognizes such locality thus sustains the perfor-
mance of static pinning when keeping a small memory foot-
print. Netperf stream RX pins fewer pages (up to ~18000)
than TX, due to better DMA temporal locality – Intel i40e
NIC driver prefers to use the pre-mapped 8192 pages for in-
coming packets. On the other hand, Nginx and Memcached
are less throughput sensitive than Netperf TX/RX, yielding a
transfer rate of 2.3Gbps and 1.34 Gbps respectively. Accord-
ingly, there are fewer pages used for DMA in the two bench-
marks, leading to smaller footprint in coIOMMU.

Storage - We configure fio to perform asynchronous direct
random reads from the assigned SSD, to avoid page cache
and readahead optimization in guest Linux. 16 fio threads are
launched to read the disk with a 512-byte block size and 128
in-flight requests per I/O queue, summing up to 256 pages for
potential DMAs. The guest storage driver pre-maps 302
pages at boot time. Therefore, up to 558 pages may be
mapped for DMA simultaneously, at any time. Obviously,
coIOMMU precisely captures such temporal locality and
constantly pins 558 pages in our test.

GPU - There is no recognizable difference between the line of
PT-N and the bottom four lines, in OpenArena. The reason is

Figure 5: The number of pinned pages sampled in 3 second interval, taken from the beginning of the benchmarks to 6 seconds after their
completion. ‘max’ indicates the total pages of guest memory.

netperf s tream rx

max

15K
10K

5K

0

20K

netperf s tream tx

max

60K
40K

20K

0

80K

ngi nx

max

15K
10K

5K

0

20K

memcached

max

15K
10K

5K

0

20K

max

0.9K
0.6K

0.3K

0

1.2K

fio openarena

max

60K
40K

20K

0

80K

PT-O PT-N ST-O ST-N LA-O LA-N

488 2020 USENIX Annual Technical Conference USENIX Association

simple, as explained in §5.1, that OpenArena maps most of
its DMA pages (~240MB) one-off at launch time and then
unmaps them only at exit. In such circumstance, smart pin-
ning and lazy unpinning have no effect at all. Therefore, all
five fine-grained pinning modes pin the similar number of
guest pages, with only static pinning staying in the top.

5.3. Memory Overcommitment

Overcommitment allows the aggregated size of all VMs to
exceed the physical memory, thus improving memory utili-
zation. We explore this configuration in both coIOMMU (PT-
N) and the virtual VT-d (PT-O), to demonstrate the value of
fine-grained pinning.

We create two VMs in the test machine with 64GB physical
memory. VM1 has no assigned device and is configured with
32GB memory. It runs sysbench to randomly access a 16GB
memory region. On the other hand, VM2 is assigned with an
Intel i40e NIC and is configured with 48GB memory. It runs
Netperf to send packets through the assigned NIC. The total
memory size of the two VMs (80GB) exceeds the physical
memory limitation.

We compare the performance of running them together to that
of running each alone, in Figure 6. With the virtual VT-d,
Netperf sustains the single-VM performance while sysbench
suffers 25% performance drop. The drop is caused by fre-
quent page swaps due to insufficient host memory. There is
only 8.8GB left after statically pinning 48GB memory for
VM2. The situation gets worse with random errors reported
in VM1, when increasing the memory intensity of sysbench.
Conversely, both VMs achieve their desired performance
with coIOMMU, with 49GB free memory available even
when two benchmarks are both running.

5.4. Guest User Space Driver

The guest kernel may directly assign a device to its user space
for improved performance. However, kernel bypassing im-
poses the risk of DMA attacks from the user space. In such
case, the guest kernel typically turns on DMA remapping of
vIOMMU when the device is being assigned to the user space
and then turns off remapping after the device is assigned

backed to the kernel. In such circumstance, coIOMMU can
help the hypervisor maintain fine-grained pinning reliably,
while state-of-the-art vIOMMUs suffer from increased over-
head by switching back and forth between static pinning and
fine-grained pinning. We demonstrate such an example using
DPDK pktgen, which offloads TCP packet processing from
the guest user space to the assigned NIC. We run DPDK with
coIOMMU and with the virtual VT-d respectively and show
the comparison in Figure 7.

coIOMMU dramatically reduces the latency in several stages,
compared with the virtual VT-d: (1) 18x reduction when the
VM is created (407ms vs. 7554ms); (2) 91x reduction when
the guest kernel assigns the NIC to user space DPDK (2ms
vs. 183ms); and (3) 407x reduction when the NIC is assigned
back to the guest kernel (2ms vs. 815ms). The cost of the em-
ulated VT-d is mostly caused by pinning or unpinning the en-
tire guest memory when switching to or away from static pin-
ning. The VM creation phase suffers most because every
guest page needs to be allocated and cleared in static pinning.
In the meantime, coIOMMU pins no more than 186K pages,
while the virtual VT-d pins many more pages varying be-
tween 186K and 8M.

5.5. DMA Temporal Locality

Good temporal locality on DMA buffers is crucial for high
performance I/O processing, both in virtualization and on
bare metal. Commercial OSes are optimized toward this goal,
as observed in our evaluation and also reported by previous
studies [7, 44, 51]. On the other hand, Markuze et al. [30]
observes that many pages may be used to hold DMA buffers,
over time, in stock Linux. Hence, we studied the DMA tem-
poral locality of the networking stack in a similar configura-
tion, by running 16 Netperf TX instances for 15 minutes,
shown in Figure 8. We also run a Linux ‘dd’ command along-
side Netperf, reading the raw virtual disk into /dev/zero. The
‘dd’ command constantly causes ~20K page cache misses per
second, leading to ~20K new page allocated and heavily con-
tending with the networking stack. The experiment is con-
ducted in PT-N mode, i.e. under the passthrough policy.

Figure 6: The impact of memory overcommitment:
static pinning (PT-O) vs. fine-grained pinning (PT-N) Figure 7: Running DPDK with virtual VT-d and coIOMMU

0%

25%

50%

75%

100%

125%

0

10

20

30

40

50

virtual VT-d coIOMMU

Throughput (Gbps) cpu [%]

7554ms

183ms

815ms

virtual
VT-d coIOMMU ratio

Spent Cycles

Create VM

Assign NIC

Deassign NIC

407ms

2ms

2ms

18x

91x

407x

8388608

186368

8838608

virtual
VT-d coIOMMU ratio

Pinned Pages

Before DPDK

In DPDK

After DPDK

548

186368

548

15307x

1x

15307x

USENIX Association 2020 USENIX Annual Technical Conference 489

Our data echoes the previous finding [30] – almost the entire
guest memory (~7.9M pages, 98.7% of total memory) has
ever been used for sending packets, over time. However, the
number of pinned pages almost stays flat when coIOMMU is
enabled. The peak number is ~106K (424MB), 2.4x of that
when running Netperf TX alone and just 1.3% of the total
guest memory. The result implies that the DMA locality in a
short period is still good in such stress case, allowing the hy-
pervisor to intelligently pin the guest pages with coIOMMU.

5.6. Mixed Workloads

We run Netperf TX and fio together to check how coIOMMU
performs in mixed I/O workloads. The tested VM is config-
ured with 16 vCPUs and 32GB memory as previous tests. It
is directly assigned two devices: a XL710 NIC and a 760P
SSD. We launch 16 netperf instances and 16 fio threads sim-
ultaneously in the VM, with each vCPU holding one netperf
instance and one fio thread. Here we just compare PT-O vs.
PT-N under the passthrough policy, as the two modes can best
demonstrate the coIOMMU benefits according to the base-
line data.

The result is promising. First, there is no observable perfor-
mance difference when comparing Netperf and fio to their
baseline performance of running alone. The deviations are
less than 1% and within the error bar. Second, the peak num-
ber of pinned pages in mixed workloads is 45200 (176.5MB),
close to the sum of pinned pages of running Netperf (174MB)
and fio (2.2MB) alone. This result proves that coIOMMU can
effectively reduce the memory footprint with negligible over-
head, even when running mixed direct I/O usages together.

6. Conclusions and Future Work
Established vIOMMUs cannot reliably eliminate static pin-
ning in direct I/O, due to the emulation cost of their DMA
remapping interfaces. We instead propose coIOMMU, a new
vIOMMU architecture for efficient memory management.
coIOMMU introduces a cooperative DMA buffer tracking
mechanism for fine-grained pinning, orthogonal to the costly
DMA remapping interface. The new mechanism uses a
shared DMA tracking table (DTT) for hypervisor and guest
to exchange the DMA buffer information, without incurring

excessive notifications from the guest, due to smart pinning
and lazy unpinning. We demonstrate that coIOMMU not only
dramatically improves the efficiency of memory manage-
ment in wide direct I/O usages with negligible cost, but also
sustains the desired security as required in specific protection
policies. Last but not the least, although we implement
coIOMMU by extending an emulated vIOMMU - the virtual
Intel VT-d, this design can be easily ported to other vIOM-
MUs.

As for future work, we will focus on several areas. First, new
IOMMU trends [53, 54] begin to support two-level address
translations, allowing the guest to skip certain virtual IOTLB
invalidations for improved performance. coIOMMU should
provide efficient DMA buffer tracking in two-level transla-
tion and maintain its performance benefit. Second, some de-
vices (e.g. GPUs) partially support DMA page faults, e.g.
only for selective pages such as those used by applications.
We want to study a hybrid approach for fine-grained pinning,
by leveraging DMA page faults for faultable pages and using
coIOMMU for other non-faultable pages. Last, kernel by-
passing usually needs to pre-map a big trunk of memory for
the application to manage. We want to extend the coIOMMU
concept from the boundary between hypervisor and guest to
the boundary between kernel space and user space, to enable
finer-grained memory management in such usage.

References
[1] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian and

Haibing Guan. High Performance Network Virtualization with SR-IOV.
In IEEE International Symposium on High-Performance Computer Ar-
chitecture (HPCA), 2010. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://doi.org/10.1109/HPCA.2010.5416637.

[2] PCI-SIG. Address Translation Services Revision 1.1.
http://www.pcisig.com/specifications/iov/ats/, 2009.

[3] Intel Corporation. Intel® Virtualization Technology for Directed I/O.
Architecture specification, rev. 3.1. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
http://www.intel.com/content/dam/www/public/us/en/documents/prod-
uct-specifications/vt-directed-io-spec.pdf, Jun 2019.

[4] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-Level Cache Side-Channel Attacks are Practical. In IEEE Sympo-
sium on Security and Privacy, 2015. https://doi.org/10.1109/SP.2015.43.

[5] Khronos. The OpenCL Specification, rev 2.0. https://www.khronos.org
/registry/OpenCL/specs/opencl-2.0.pdf, July 2015.

[6] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grim-
berg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page
Fault Support for Network Controllers. In ACM International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), pages 449–466, 2016.
https://doi.org/10.1145/3093337.3037710.

[7] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On the
DMA mapping problem in direct device assignment. In ACM Interna-
tional Systems and Storage Conference (SYSTOR), pages 18:1–18:12,
2010. https://doi.org/10.1145/1815695.1815718.

[8] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster.
vIOMMU: efficient IOMMU emulation. In USENIX Annual Technical
Conference (ATC), pages 73–86, 2011. https://www.usenix.org/leg-
acy/events/atc11/tech/final_files/Amit.pdf.

[9] Pirmin Vogel, Andrea Marongiu, and Luca Benini. Exploring Shared
Virtual Memory for FPGA Accelerators with a Configurable IOMMU.
In IEEE Transactions on Computers, volume 68, issue 4, 2019.
https://doi.org/10.1109/TC.2018.2879080.

[10] Avi Kivity, Yaniv Kamay, and Dor Laor. kvm: the Linux Virtual

Figure 8: DMA temporal locality when running Netperf with ‘dd’

490 2020 USENIX Annual Technical Conference USENIX Association

Machine Monitor. In Ottawa Linux Symposium (OLS), pages 225-230,
2007. https://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-
230.pdf.

[11] Chris Schlaeger. AWS EC2 Virtualization: Introducing Nitro. In AWS
Summit, 2018. http://aws-de-media.s3.amazonaws.com/images/AWS_
Summit_2018/June7/Alexandria/Introducing-Nitro.pdf.

[12] Alibaba Corporation. Ali cloud elastic bare metal server – Shenlong ar-
chitecture (X-Dragon) secret. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
http://www.programmersought.com/article/7752222651/.

[13] PCI-SIG. Single root I/O virtualization and sharing 1.0 specification.
https://pcisig.com/specifications/iov/single_root/, Sep 2007.

[14] AMD Corporation. AMD IOMMU architecture specification, rev 3.00.
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf, De
c 2016

[15] Christopher Clark, Keir Fraser, Seven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2nd Conference on Sympo-
sium on Networked Systems Design & Implementation (NSDI), volume
2, pages 273-286, 2005. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/legacy/event/nsdi05/tech/full_pa-
pers/clark/clark.pdf.

[16] ARM Corporation. ARM System Memory Management Unit Architec
ture Specification, rev 2.0. http://infocenter.arm.com/help/topic/com.ar
m.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specificati
on.pdf, 2016

[17] Intel Corporation. Intel Scalable I/O Virtualization Technical Specifi-
cation, rev 1.0. https://software.intel.com/en-us/download/intel-scala-
ble-io-virtualization-technical-specification, Jun 2018

[18] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis
Bruemmer, and Leendert van Doorn. The price of safety: Evaluating
IOMMU performance. In Ottawa Linux Symposium (OLS), pages 9–20,
2007. https://www.kernel.org/doc/ols/2007/ols2007v1-pages-9-20.pdf.

[19] Amazon Corporation. Amazon EC2 Instance Types. https://aws.ama-
zon.com/ec2/instance-types/, 2019

[20] Xin Xu, Bhavesh Davda. SRVM: Hypervisor Support for Live Migra-
tion with Passthrough SR-IOV Network Devices. In Proceedings of the
12th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE), pages 65-77, 2016. https://dl.acm.org/cita-
tion.cfm?doid=2892242.2892256.

[21] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda, Alex
Landau, Assaf Schuster, and Dan Tsafrir. Bare-Metal Performance for
Virtual Machines with Exitless Interrupts. In Communications of ACM,
volume 59, issue 1, pages 108-116, 2016.
https://doi.org/10.1145/2845648.

[22] Alibaba Corporation. Elastic Compute Service Instance Type Families.
https://www.alibabacloud.com/help/doc-detail/25378.htm, Jul 2019.

[23] Eric Auger. vIOMMU/ARM: full emulation and virtio-iommu ap-
proaches. In KVM Forum, 2017. http://events17.linuxfounda-
tion.org/sites/events/files/slides/viommu_arm.pdf.

[24] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. DAMN:
Overhead-Free IOMMU Protection for Networking. In ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 301–315, 2018.
https://doi.org/10.1145/3173162.3173175.

[25] James E.J. Bottomley. Dynamic DMA mapping using the generic de-
vice. https://www.kernel.org/doc/Documentation/DMA-API.txt. Linux
kernel documentation.

[26] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. Live Migration
with Pass-through Device for Linux VM. In Ottawa Linux Symposium
(OLS), pages 261-268, 2008. https://landley.net/kdocs/ols/2008/ols20

08v2-pages-261-267.pdf.
[27] The HSA Foundation. http://www.hsafoundation.com/.
[28] Asim Kadav and Michael M. Swift. Live Migration of Direct-Access

Devices. In ACM SIGOPS Operating System Review (OSR), volume 43,
issue 3, pages 95-104, 2009. http://pages.cs.wisc.edu/~swift/pa-
pers/shadow-migrate-osr.pdf.

[29] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor,
Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman and
Ben-Ami Yassour. The Turtles Project: Design and Implementation of
Nested Virtualization. In USENIX Symposium on Operating Systems

Design & Implementation (OSDI), pages 423-436, 2010.
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Ben-Ye-
huda.pdf.

[30] Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU protec-
tion from DMA attacks: When copy is faster than zero copy. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 249–262, 2016.
https://doi.org/10.1145/2872362.2872379.

[31] Ardalan Amri Sani, Kevin Boos, Shaoqu Qin, and Lin Zhong. I/O Para-
virtualizatoin at the Device File Boundary. In ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2014. aaaaaaaaaaaaaaaaaaaa
http://doi.org/10.1145/2541940.2541943.

[32] Intel Corporation. DPDK: Data Plane Development Kit. http://dpdk.org.
[33] AF_XDP. https://www.kernel.org/doc/html/v4.18/networking/af_xdp.

html. Linux networking documentation.
[34] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection

Based Architecture for Intrusion Detection. In Proceedings of Network
and Distributed Systems Security Symposium (NDSS), 2003.
https://suif.stanford.edu/papers/vmi-ndss03.pdf.

[35] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, Zhijiao Zhang.
CompSC: Live Migration with Pass-through Devices. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE), pages 109-120, 2012.
https://doi.org/10.1145/3139645.3139649.

[36] Yuval Yarom and Katrina Falkner. Flush+Reload: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd

USENIX conference on Security Symposium (SEC), pages 719–732,
2014. https://www.usenix.org/system/files/conference/usenixsecu-
rity14/sec14-paper-yarom.pdf.

[37] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chi-
ueh. A Comprehensive Implementation and Evaluation of Direct Inter-
rupt Delivery. In Proceedings of the 11th ACM SIGPLAN/SIGOPS Con-
ference on Virtual Execution Environments (VEE), pages 1-15, 2015.
https://doi.org/10.1145/2731186.2731189.

[38] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir. Uti-
lizing the IOMMU Scalably. In USENIX Annual Technical Conference
(ATC), pages 549–562, 2011. aaaaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/system/files/conference/atc15/atc15-paper-
peleg.pdf.

[39] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Gotz. Un-
modified Device Driver Reuse and Improved System Dependability via
Virtual Machines. In USENIX Symposium on Operating Systems Design
& Implementation (OSDI), volume 6, pages 2-2, 2004. https://www.use-
nix.org/legacy/events/osdi04/tech/full_papers/levasseur/levasseur.pdf.

[40] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and Ab-
hishek Bhattacharjee. Observations and Opportunities in Architecting
Shared Virtual Memory for Heterogeneous Systems. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016. https://doi.org/10.1109/ISPASS.2016.7482091.

[41] Nikolay Sakharnykh. Everything You Need to Know About Unified
Memory. In NVIDIA’s GPU Technology Conference (GTC), 2018.
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-eve-
rything-you-need-to-know-about-unified-memory.pdf.

[42] Intel Corporation. Intel Open Source HD Graphics and Intel® Iris®
Plus graphics Programmer’s Reference Manual, page 139, 2017.
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-kbl-
vol05-memory_views.pdf.

[43] Vinod Mamtani. DMA directions and Windows. http://download.mi-
crosoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-
b4085a80e34e/sys-t304_wh07.pptx, 2007.

[44] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection Strategies
for Direct Access to Virtualized I/O Devices. In USENIX Annual Tech-
nical Conference (ATC), 2008. aaaaaaaaaaaaaaaaaaaaaaaaaa
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/will-
mann/willmann_html/.

[45] Alex Williamson. VFIO: A user’s perspective. In KVM Forum, 2012.
http://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf.

[46] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security Im-
plications of Memory Deduplication in a Virtualized Environment. In

USENIX Association 2020 USENIX Annual Technical Conference 491

Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013.
https://www.eecis.udel.edu/~hnw/paper/memdedup.pdf.

[47] Moshe Malka, Nadav Amit, and Dan Tsafrir. Efficient Intra-Operating
System Protection Against Harmful DMAs. In USENIX Conference on
File and Storage Technologies (FAST), pages 29-44, 2015.
https://www.usenix.org/system/files/conference/fast15/fast15-paper-
malka.pdf.

[48] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. Hi
gh Performance VMM-bypass I/O in virtual machines. In USENIX An
nual Technical Conference (ATC), Pages 3-3, 2006. https://www.useni
x.org/legacy/event/usenix06/tech/full_papers/liu/liu_html/usenix06.ht
ml.

[49] Himanshu Raj and Karsten Schwan. High Performance and scalable I/
O virtualization via self-virtualized devices. In Proceedings of the 16th

International Symposium on High Performance Distributed Computing
(HPDC), pages 189-188, 2007. https://doi.org/10.1145/1272366.1272

390.
[50] Kaushik Kumar Ram, Jose Renato Santos, Yoshio Turner, Alan L. Cox,

and Scott Rixner. Achieving 10Gbps Using Safe and Transparent Net-
work Interface Virtualization. In Proceedings of the International Con-
ference on Virtual Execution Environments (VEE), 2009.
https://www.cs.rice.edu/~rixner/publication/ram-09/.

[51] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. IOMMU: strat-
egies for mitigating the IOTLB bottleneck. In Proceedings of Interna-
tional Conference on Computer Architecture (ISCA), pages 256-274,
2010. https://doi.org/10.1007/978-3-642-24322-6_22.

[52] Hongwei Tang, Qiang Li, Shengzhong Feng, Xiaofang Zhao, and Yan
Jin. IOMMU Para-Virtualization for Efficient and Secure DMA in Vir-
tual Machines. In KSII Transactions on Internet and Information Sys-
tems, vol. 10, no. 12, pp. 5938-5963, 2016. DOI:
10.3837/tiis.2016.12.014.

[53] Eric Auger. SMMUv3 Nested Stage Setup. aaaaaaaaaaaaaaaaaaaaa
https://lkml.org/lkml/2019/3/17/124.

[54] Baolu Lu. Use 1st-level for IOVA translation. aaaaaaaaaaaaaaaaaaa
https://lwn.net/Articles/807079/

[55] Jun Nakajima. Enhancing KVM for Guest Protection and Security. In
KVM Forum, 2019. aa
https://static.sched.com/hosted_files/kvmforum2019/23/nakajima-en-
hancing-kvm-for-guest-protection.pdf/.

[56] AMD. Secure Encrypted Virtualization. https://developer.amd.com/sev/.
[57] Carl A. Waldspurger. Memory Resource Management in VMware ESX

Server. In USENIX Symposium on Operating Systems Design & Imple-
mentation (OSDI), 2002. sssssssssssssssssssssssssssssssssssss
https://doi.org/10.1145/844128.844146

[58] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the annual conference on USENIX Annual Technical
Conference (ATEC), 2005. sss
https://www.usenix.org/legacy/event/usenix05/tech/freenix/full_pa-
pers/bellard/bellard.pdf

[59] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir.
rIOMMU: Efficient IOMMU for I/O Devices that Employ Ring Buffers.
In ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2015.
https://dl.acm.org/doi/pdf/10.1145/2775054.2694355/.

[60] Peter Xu. Device Assignment with Nested Guest and DPDK. In KVM
Forum, 2017. https://www.linux-kvm.org/images/a/a6/KVM_Fo-
rum_2018_viommu_vfio.pdf.

[61] Baolu Lu. IOMMU: Bounce Page for Untrusted Devices.
https://lwn.net/Articles/794595/.

[62] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison
Pearce, Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson.
Thunderclap: Exploring Vulnerabilities in Operating System IOMMU
Protection via DMA from Untrustworthy Peripherals. In Network and
Distributed System Security (NDSS) Symposium, 2019.
https://www.ndss-symposium.org/wp-content/up-
loads/2019/02/ndss2019_05A-1_Markettos_paper.pdf.

[63] Rick A. Jones. A network performance benchmark (revision 2.0). Tech-
nique report, Hewlett Packard, 1995.
http://www.netperf.org/netperf/training/Netperf.html

[64] Nginx. https://www.nginx.com/.
[65] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,

2004. https://memcached.org/.
[66] Fio. https://fio.readthedocs.io/en/latest/fio_doc.html.
[67] OpenArena. https://en.wikipedia.org/wiki/OpenArena.
[68] Sysbench. https://wiki.gentoo.org/wiki/Sysbench.
[69] Apachebench. http://en.wikipedia.org/wiki/ApacheBench.
[70] Brian Aker. Memslap – load testing and benchmarking a server.

http://docs.libmemcached.org/bin/memslap.html.

492 2020 USENIX Annual Technical Conference USENIX Association

