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DNN is Deployed Everywhere
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QA robot
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DNN System

DNN Deployment is Challenging.
?

Road

Challenges
• Configuration space is huge
• Environment may change dynamically 
• Must be low overhead
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Previous Works Challenges

Low Overhead
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Environment

Huge Space of
Configuration

DNN design

Resource
Management

[1] H. Hoffmann et. al. Jouleguard: 
energy guarantees for approximate applications. SOSP, 2015. 
[2] C. Imes et. al. Poet: a portable approach to minimizing energy 
under soft real-time constraints. RTAS, 2015
[3] N. Mishra et. al. CALOREE: learning control for predictable 
latency and low energy. ASPLOS, 2018. 
[4] A. Rahmani et. al. SPECTR: formal supervisory control and 
coordination for many-core systems resource management. 
ASPLOS, 2018.
…
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Evaluation Highlights

7

✔ ALERT satisfies LAE constraints.

99.9% cases for vision; 98.5% cases for NLP

✔ Probabilistic design overcomes dynamic variability efficiently.

ALERT achieves 93-99% of Oracle’s performance

✔ Coordinating App- and Sys- level improves performance.

Reduces 13% energy and 27% error over prior approach



Outline

8

Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results
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Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results



Experiment Settings
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3 Tasks
Image classification (ImageNet) 
Sentence prediction (PTB)      
Question Answering (SQuAD)

Platforms
ODroid, CPUs, GPU44

DNNs
ResNet50, VGG16, 

RNN, Bert
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42 DNNs on ImageNet classifications
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MobileNet-v1 (α=1)

MobileNet-v2 (α=1.3)

ResNet50

NasNet-large

PnasNet-large

Tradeoffs from DNNs

High accuracy comes with long latency.
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Tradeoffs from System Settings

Power limit setting (W) 

Least
Energy

Fastest

No setting is optimal for both energy and latency.



Run-time Variability
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Run-time Variability
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Latency variation increased by co-located jobs.
Without co-locate job With co-locate job
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Potential Solutions
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Constraint Settings (deadline × accuracy_goal) 

Sys-level
App-level
Combined

∞

Deadline 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s
Combining both level achieves best performance.
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Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results



Three Dimensions & Two Tasks
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Minimize Energy
With accuracy goal and inference
deadline

AL
EInference 

Deadline
Accuracy 
Goal

Energy Consumption
Goal

Maximize Accuracy
With energy consumption goal
and inference deadline
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Configurations Constraints
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How to estimate the inference latency?
● Two key challenges

○ Runtime variation: The inference time may be different even for
same the configuration
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How to estimate the inference latency?
● Two key challenges

○ Runtime variation

○ Too many combinations of DNNs and resources
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Potential Solution

● Kalman filter

○ Estimate latency for each configuration

○ Use recent execution history

21

L

DNN2, P1 43 58 49 51

DNN1, P2 3031

History Prediction

52

29



Potential Solution: drawback

● Cannot solve the problem

○ Not enough history for each configuration
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DNN1, P1 ?

DNN2, P2 ?



How to estimate the inference latency?

● Global Slow-down factor ξ

○ Use recent execution history under any DNN or resources
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How to estimate the inference latency?

● Mean estimation is not sufficient

○ The variation might be too big to provide a good prediction.

● Different implications on DNN selection
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How to estimate the inference latency?

● Global Slow-down factor ξ

○ Use recent execution history under any DNN or resources

○ Estimate its distribution: mean and variance
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How to estimate accuracy under a deadline?
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A
● Can inference be finished before deadline?

○ If yes, training accuracy of the selected DNN

○ If not, random guess accuracy

■ Unless it’s an Anytime DNN. Inference
Accuracy
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What is an Anytime DNN?
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A

Traditional DNN

Anytime DNN Timeline

Deadline

Road

Chocolate Ground Road

[1] C. Wan et. al. Orthogonalized SGD and Nested Architectures for Anytime Neural Networks . ICML, 2020. 



How to estimate accuracy under a deadline?
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A
● Can inference be finished before deadline?

○ If yes, training accuracy of the selected DNN

○ If not,
■ Traditional DNN: random guess accuracy.

■ Anytime DNN: accuracy of the last output

Traditional DNNAnytime DNN

Inference Accuracy

Time

!"

#"

!&'()

Time

!"
!*
!+

Inference Accuracy

#+#*#"

!&'()



How to estimate accuracy under a deadline?
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How to manage energy?
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● Power-cap as a knob to configure system resource

● Idle power: other process may still consume energy when DNN 
inference has finished

E

Power

Time

DNN active1

DNN active2

DNN Idle

New input Latency Target



？× time

Power setting
× time

How to estimate the energy consumption?
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● Estimate energy from power

○ DNN active power is power setting

○ DNN idle power is estimated by Kalman filter
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DNN active

DNN Idle

New input Latency Target



Our ALERT System
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Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results



Experiment Settings
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3
Platforms

CPUs, GPU

5 Scenarios
Default,
Compute intensive (2),
Memory intensive (2)

2
DNNs

Sparse ResNet50, RNN

2
Tasks
1. Minimize energy
2. Maximize accuracy



Schemes
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Oracles

• Oracle: Change configuration for every input. Assume perfect
knowledge of future. Emulated from profiling result.

• Oracle-static: Same configuration for all inputs.

Baselines

• Sys-only: Only adjust power-cap
• App-only: Use an Anytime DNN
• No-coord: Anytime DNN without coordination with power-cap
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Average performance normalized to Oracle_Static (Smaller is better)

Violations (%)
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Average performance normalized to Oracle_Static (Smaller is better)
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How ALERT Works with Traditional DNN
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Meet requirements in most 
cases

Quickly detect contention 
changes

Use anytime DNN under 
unstable environment 



How ALERT Works with Traditional DNN

39

Meet requirements in most 
cases

Quickly detect contention 
changes

Use anytime DNN under 
unstable environment 



How ALERT Works with Anytime +Traditional DNN
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Meet requirements in most 
cases

Quickly detect contention 
changes

Use anytime DNN under 
unstable environment 



Conclusion
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• Understand DNN inference challenges

• ALERT Run-time inference System

• High performance and energy efficiency


