ALERT: Accurate Learning for Energy and Timeliness

Chengcheng Wan, Muhammad Husni Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire and Shan Lu

DNN is Deployed Everywhere

DNN Deployment is Challenging.

값 Challenges

- Configuration space is huge
- Environment may change dynamically
- Must be low overhead

Road

Previous Work

[1] H. Hoffmann et. al. Jouleguard:

energy guarantees for approximate applications. SOSP, 2015. [2] C. Imes et. al. Poet: a portable approach to minimizing energy

under soft real-time constraints. RTAS, 2015

[3] N. Mishra et. al. CALOREE: learning control for predictable latency and low energy. ASPLOS, 2018.

[4] A. Rahmani et. al. SPECTR: formal supervisory control and coordination for many-core systems resource management. ASPLOS, 2018.

- Environment may change dynamically ٠
- Must be low overhead ٠

Road

Evaluation Highlights

✓ ALERT satisfies LAE constraints.

99.9% cases for vision; 98.5% cases for NLP

✓ Probabilistic design overcomes dynamic variability efficiently. ALERT achieves 93-99% of Oracle's performance

Coordinating App- and Sys- level improves performance.
 Reduces 13% energy and 27% error over prior approach

Outline

Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results

Outline

Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results

Experiment Settings

Tradeoffs from DNNs

42 DNNs on ImageNet classifications

Tradeoffs from System Settings

Inference Time of One Image (s)

Run-time Variability

Run-time Variability

Potential Solutions

Constraint Settings (deadline × accuracy_goal)

Outline

Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results

Three Dimensions & Two Tasks

Maximize Accuracy

With energy consumption goal and inference deadline

With accuracy goal and inference deadline

Maximize Accuracy Task

• Two key challenges

• Runtime variation: The inference time may be different even for same the configuration

- Two key challenges
 - Runtime variation
 - \circ $\,$ Too many combinations of DNNs and resources

Potential Solution

- Kalman filter
 - Estimate latency for each configuration
 - Use recent execution history

CHICAGO

Potential Solution: drawback

- Cannot solve the problem
 - Not enough history for each configuration

- Global Slow-down factor ξ
 - Use recent execution history under any DNN or resources

- Mean estimation is not sufficient
 - The variation might be too big to provide a good prediction.
- Different implications on DNN selection

- Global Slow-down factor ξ
 - Use recent execution history under **any** DNN or resources
 - Estimate its distribution: mean and variance

How to estimate accuracy under a deadline?

- Can inference be finished before deadline?
 - If yes, training accuracy of the selected DNN
 - If not, random guess accuracy
 - Unless it's an Anytime DNN.

[1] C. Wan et. al. Orthogonalized SGD and Nested Architectures for Anytime Neural Networks . ICML, 2020. ²⁷

How to estimate accuracy under a deadline?

- Can inference be finished before deadline?
 - If yes, training accuracy of the selected DNN
 - If not,
 - Traditional DNN: random guess accuracy.
 - Anytime DNN: accuracy of the last output

Time

How to manage energy?

- Power-cap as a knob to configure system resource
- Idle power: other process may still consume energy when DNN inference has finished

E

How to estimate the energy consumption?

- Estimate energy from power
 - DNN active power is power setting
 - DNN idle power is estimated by Kalman filter

Outline

Understanding DNN Deployment Challenges

ALERT Run-time Inference Management

Experiments and Results

Experiment Settings

Schemes

Oracles

- **Oracle**: Change configuration for every input. Assume perfect knowledge of future. Emulated from profiling result.
- Oracle-static: Same configuration for all inputs.

Baselines

- Sys-only: Only adjust power-cap
- App-only: Use an Anytime DNN
- No-coord: Anytime DNN without coordination with power-cap

Evaluation: Scheduler Performance

Average performance normalized to Oracle_Static (Smaller is better)

Evaluation: Scheduler Performance

Average performance normalized to Oracle_Static (Smaller is better)

How ALERT Works with Traditional DNN

38

How ALERT Works with Traditional DNN

Meet requirements in most cases

Quickly detect contention changes

Use anytime DNN under unstable environment

How ALERT Works with Anytime +Traditional DNN

Quickly detect contention changes

Use anytime DNN under unstable environment

Conclusion

