
Peregreen – modular database for 
efficient storage of historical time series 

in cloud environments

Alexander A. Visheratin, Alexey Struckov, Semen Yufa, 
Alexey Muratov, Denis Nasonov, Nikolay Butakov

ITMO University

Yury Kuznetsov, Michael May
Siemens



Motivation

Use cases:

- Browsing large amounts of historical data – quick zoom-in and zoom-out in 

long time intervals.

- Conditional search for the data (e.g. anomalies search) – complex conditions, 

visualization of results.

2



Requirements

- Store terabytes of time series data for tens of years.

- 1 second for conditional search in whole database.

- Execution speed of 450,000 entries per second per node.

- All data must be stored in Amazon S3.

3



Main goal: minimize network overheads for search and extraction.

Challenges:

- Precise navigation in files at the backend storage.

- Minimize the number of requests for reading and writing.

- Minimize the size of index and data files.

Proposed approach

4



Three-tier data indexing

- Split data into chunks by equal time steps 
(block interval).

- Create index blocks with meta for 
extraction and metrics for search.

- Combine blocks into segments by equal 
time steps (segment interval).

- Combine segments into the sensor index.

5



Index metadata

Block:
- Number of elements (preallocate arrays during extraction).
- Length of the encoded data (navigate and read data from backend storage).
- Compression flag (whether to decompress binary data).

Segment:
- Unique identifier (file name in backend storage).
- Start time (search and extraction).
- Version (storage consistency).

6

Index:
- Unique identifier (sensor name).
- Data type (int32, float32, int64, etc.)
- Block and segment intervals (CRUD operations).
- Version (storage consistency).



Read-optimized series encoding (I)

Two-step process:

1. Delta encoding for timestamps and values.

2. (Optional) Byte array compression using Zstandard algorithm.

Compressed byte arrays are stored in segment files.

7



Read-optimized series encoding (II)

- Timestamp-value pairs are stored together (extraction with one read).

- Timestamp deltas are stored as unsigned int32 (maximum 49 days in ms).

- For values delta - IEEE 754 binary representations (longer zero-filled bit 

sequences).

- Zstandard algorithm gives 2x compression and 10-15% overhead.

8



Peregreen overview

- Core implements indexing and 
encoding logic.

- Upload, delete, search and extract 
operations are supported via HTTP 
API.

- Modules as programming interfaces 
for easy adding new functionality.

- Raft cluster with replication to 
achieve consistency and 
fault-tolerance.

9



Peregreen core. Upload

1. Split input data into chunks. Load existing data if needed.

2. Generate index and data blocks.

3. Combine data blocks to segment files.

4. Combine index blocks to segments and write to index.

5. Update versions of segments and index.

6. Write segment files and index to backend storage.

10



Peregreen core. Search

- Performed using only index.

- Time granularity is the block interval.

- Core checks time and value conditions in segments and blocks.

- Time condition - interval set by user in the request.

- Value condition - queries consisting of metric conditions combined by logic 

operations.

11

Query example:
min lte 200 & max gte 50 | avg eq 75
(1) minimum metric is lower or equal to 200 and 
maximum metric is greater or equal to 50, or
(2) average metric is equal to 75.



Four types of extraction:

1. Full - all values within an interval.

2. Sampling - points, timestamps of which differ by user-specified interval.

3. Aggregation - calculate a set of metrics for every user-specified interval.

4. Transformation - apply some functions to the extracted data.

Peregreen core. Extraction (I)

12



1. Calculate segments to use based on start and finish timestamps. Uses 

segment start times and segment interval.

2. Select blocks to be extracted. Uses segment start time and block interval.

3. Calculate range of bytes to be loaded from segment files in backend 

storage. Uses encoded data lengths from blocks.

4. Extract the data.

5. (Optional) Decompress the data.

6. Read the data and apply required functions during 

reading.

Peregreen core. Extraction (II)

13



Peregreen modules

14

Integration with backend storage - indices reading and writing, writing 
segment files and reading parts of segment files.

Reading data elements from the input stream one by one. Create data chunks 
on the fly.

Converting results - search results, timestamp-value pairs, aggregations or 
transformations - into desirable output format.

Aggregated statistical characteristics for the data. 
Can be combined (segment and block metrics).

Change the data as it is extracted.



- High horizontal scalability.

- Sensors are distributed equally across nodes.

- Sensors replication for fault tolerance.

- Write requests go through leader node that 

applies lock on the sensor.

- Read requests are redirected to the responsible 

node.

Peregreen cluster

15



Experiments

1. On-premise: Blade servers, Intel Xeon with 32 vCPUs, 128 GB RAM. 1, 4, 7 

nodes. Compared to ClickHouse and InfluxDB.

2. Amazon EC2: c5.4xlarge instances with 16 vCPUs, 32 GB RAM and 500 GB 

attached EBS storages. 1, 4, 7 nodes. Compared EBS vs S3 as backend 

storages.

16



On-premise: Uploading

Uploading time, minutes

17

1 instance 4 instances 7 instances

Peregreen 891 243 150

ClickHouse 530 193 83

InfluxDB 1847 583 N/A

Stored data volume, GB

Peregreen ClickHouse InfluxDB

172 301 272

Initial data volume - 750 GB.



On-premise: Search and extraction

18

Data search Data extraction

Small requests (1 hour)

Large requests (10 days)

Y axis in
log scale



Amazon EC2: Extraction

19

S3 efficiency compared to EBS 1000 concurrent requests for 1, 6, 24 and 240 hours.
4 instances:

7 instances:



Conclusion

Peregreen - fast time series database designed for efficient work with backend 

storage:

- Three-tier data indexing for small and powerful indices.

- Read-optimized series encoding for compact data representation.

- 5 types of modules for great extensibility.

- Fast uploading, search and extraction in both on-premise and cloud setups.

20



Thank you for your attention!

21

Peregreen – modular database for 
efficient storage of historical time 

series in cloud environments

Alexander A. Visheratin
ITMO University

alexvish91@gmail.com

Acknowledgements
This work is carried out in the Siemens-ITMO Industrial 
Cognitive Technologies Lab and is funded by Siemens.


