
Can Applications Recover
from fsync Failures?

Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan,
Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau

University of Wisconsin-Madison

How does data reach the disk?
• Applications use the file system
• System calls – open(), read(), write()

• For Performance
• Data buffered in the page cache
• Modified pages are marked dirty
• Periodically flushed to disk

• Vulnerable to data loss while in RAM

• For Correctness
• Dirty pages can be flushed immediately

using fsync()
2

Applications

Disk

File System

Clean pages: same
content as disk

Dirty Pages: New data
to write to disk

Periodically
or on fsync()

fsync is really important
• Many applications care about durability
• Ensure data on non-volatile storage before acknowledging client

• Devices have volatile storage
• Direct IO: fsync can issue a FLUSH command

• Ordering of writes is important
• Force to disk with fsync before writing the next
• Optimistic Crash Consistency Chidambaram et al. [SOSP’13]

• Decouples ordering from durability

3

It’s hard to get durability correct
• Applications find it difficult
• Even when fsync works correctly

• Example: persisting a newly created file
• creat(/d/foo)
• write(/d/foo, “abcd”)
• fsync(/d/foo)
• fsync(/d) ß Ensure that directory entry is persisted

• All File Systems Are Not Created Equal Pillai et al. [OSDI’14]
• Studied 11 applications
• Update protocols are tricky
• More than 30 vulnerabilities under ext3, ext4, btrfs

4

fsync can fail
• Durability gets harder to get right
• Failures before interacting with disk
• Invalid arguments, insufficient space
• Easy to handle

• Failures while interacting with disk
• EIO: An error occurred during synchronization
• Transient disk errors, network disconnects
• In-memory data structures may need to be reverted

5

Why care about fsync failures?
“About a year ago the PostgreSQL community discovered that fsync (on Linux
and some BSD systems) may not work the way we always thought it is [sic],
with possibly disastrous consequences for data durability/consistency (which is
something the PostgreSQL community really values).”

- Tomas Vondra, FOSDEM 2019

6

Our work
• Systematically understand fsync failures

7

Applications

Disk

File System

2 • Application reactions to fsync failures
• Redis, LMDB, LevelDB, SQLite, PostgreSQL

1 • File system reactions to fsync failures
• Ext4, XFS, Btrfs

File System Results
• All file systems mark dirty pages clean on fsync failure

• Retries are ineffective

• File systems do not handle errors during fsync uniformly
• Content in pages is different

• Latest data (ext4, XFS), Old data (Btrfs)
• Failure notifications not always immediate

• Ext4 data mode reports errors later

• In-memory data structures are not entirely reverted after fsync failure
• Garbage/Zeroes in the files

• Free space and block allocation unaltered (ext4, XFS)
• User-space file descriptor offset unaltered (Btrfs)

8

Application Results
• Simple strategies fail

• Retries are ineffective
• Crash/Restart can be incorrect

• False Failures: Indicate failure but actually succeed
• Incorrect recovery from WAL using the page cache

• Defenseless against late error reporting
• Ext4 data mode

• Every application faced data loss
• Most faced corruption (all except PostgreSQL)

• Copy-on-write is good, but not invincible
• Btrfs is bad for rollback strategies

• But seems good for WAL recovery

9

Outline
• Introduction
• File Systems
• Methodology (dm-loki, workloads)
• Results

• Applications
• Methodology (CuttleFS)
• Results

• Challenges and Directions
• Summary

10

File System | Methodology: Fault Injection
• Goal: Understand file system reactions to fsync failures without modifying the kernel

11

Applications

Disk

File System

dm-loki: intercepts bio requests

• Intercept all block requests that go to disk
• Custom device mapper target – dm-loki

• Trace bio requests
• Fail ith write to sector/block

File System | Methodology: Workloads
• Common write patterns in applications
• Reduced to simplest form

• Single Block Update
• Modify a single block in a file
• Examples:

• LMDB, PostgreSQL, SQLite

• Multi Block Append
• Add new blocks to the end of a file
• Examples:

• Redis append-only file
• Write-ahead logs

• PostgreSQL, LevelDB, SQLite
12

A

A B

B

C

C A

A X

X

C

C

A

A

A

A B

B

C

C

File System | Result #1: Clean Pages
• Dirty page is marked clean after fsync failure on all three file systems

• Feature, not bug
• Avoids memory leaks when user removes USB stick

• Retries are ineffective
• No more dirty pages on the next fsync

13

A

A B

B

C

C

1

A

A *

B

C

C

2

A

A *

B

C

C

3Modify middle page fsync() fails
Page is marked clean

File System | Result #2a: Page Content
• File systems do not handle fsync errors uniformly
• Page content depends on file system

• Cannot reliably depend on page cache content after an fsync failure
14

A

A X

B

C

C

1Middle page
modified

A

A X

B

C

C

2a Ext4 and XFS
Keep latest data

A

A B

B

C

C

2b Btrfs reverts state

A

A ?

B

C

C

2fsync() fails
Page is marked clean

• Ext4 data mode reports success too early
• Two fsyncs can solve the problem

15

3

Journal

A

A X

B

C

C

fsync() succeeds
Data written to journal

Failure when writing
journal to disk

Fails next fsync()

File System | Result #2b: Notifications
• File systems do not report fsync failures uniformly
• Ext4 data mode reports failures later
• Ext4 ordered mode, XFS, Btrfs report immediately

A

A X

B

C

C

1Middle page
modified

Journal

A

A X

B

C

C

X

2

File System | Result #3: In-memory state
• In-memory data structures are not entirely reverted
• Free space and block allocation unaltered in ext4, XFS

• On EXT4 and XFS -
• Applications read block’s old contents - corruption

16

A

A B

1
Write to end
of file

No block allocated

A

A B

?

2fsync() fails
No metadata persisted

Block allocated
Link only in memory

A

A B

?

C

C

3b Link persisted if future
writes + fsync succeeds

A

A B

?

3a Link persisted after
some time or unmount

Non-overwritten
block

File System | Result #3: In-memory state
• In-memory data structures are not entirely reverted
• Holes in Btrfs as file descriptor offset is not reverted

• On Btrfs -
• Application reads zeroes at the hole offset - corruption

17

A

A B

1
Write to end
of file

No block allocated

A

A

2fsync() fails
State is reverted

A

A

?

C

Next write is at
updated offset 3

fsync() persists at
updated offset

A

A C

C

4

Hole in place of B

File System | Results Summary

• Dirty pages are marked clean
• Retries are ineffective

• Errors are not handled uniformly
• Page content varies across file systems
• Notifications are not always immediate

• In-memory data structures are not correct
• Future operations cause non-overwritten blocks (ext4, XFS), holes (Btrfs)
• Both are corruptions to the application

18

After fsync failure …

Applications

Applications
• Five widely used applications

20

Key Value Store Relational Database

Embedded

Server

LMDB v0.9.24

v5.0.7

v1.22

v12.0

v3.30.1

Applications | Methodology
• Goal: Are application strategies effective when fsync fails
• Simple workload
• Insert/Update a key-value pair
• Use two-column table for RDBMS

• Make fsync fail
• Dump all key-value pairs
• When running
• On application restart
• On page eviction
• On machine restart

21

Applications | Methodology: CuttleFS

• Deterministic fault injection with
configurable post-failure reactions
• Fail file offsets, not block numbers

• User-space page cache
• Easy to simulate different post-failure

reactions
• Dirty or clean pages
• New or old content
• Immediate or late error reporting

• Fine grained control over page eviction

22

Applications

Disk

File System

CuttleFS (FUSE)
Intercepts file system requests

Applications | Results: Overview

Redis

LMDB
LevelDB

SQLite
Rollback

WAL
PostgreSQL

Default
DirectIO

23

False
Failures

Ext4
Ordered Mode

CorruptionData
Loss

Ext4
Data Mode

Data
Loss

Corruption

Data
Loss

Btrfs

1

2

3

False
Failures

XFS

CorruptionData
Loss

False
FailuresCorruption CorruptionFalse

Failures

(Same as ext4 ordered)

Applications | Results #1: Crash/Restart
• Simple strategies fail
• Crash/restart is incorrect: recovers wrong data from page cache
• Example: PostgreSQL

24

Key Val

A 1

WAL

A 1

A 1A = 0

A = 0

Table

Key Val

A 1

A = 0

A = 0

Table WAL

A 1

A 1

A 2

WAL

A 1

A 1

A 2

App
Crash

+
Restart

A = 0

A = 0

Table WAL

A 1

A 1

A 2

Key Val

A 2

2a 2b1 3SET A = 2

fsync() fails
False Failure

Applications | Results #1: False Failures
• False Failures: Indicate failure but actually succeed

• PostgreSQL, SQLite, LevelDB WAL are affected
25

Expected State Actual State
Initially A=100 A=100

UPDATE Table SET A = A - 1
Reports failure A=100 A=99

False FailureRetry…
UPDATE Table SET A = A - 1

A=99 A=98
Double Decrement

Applications | Results #2: Late Error Reporting
• All applications susceptible to data loss on ext4 data mode

• Late error reporting
• Example:

• PostgreSQL WAL

26

Key Val

A 1

Key Val

A 2

A = 0

A = 0

Table WAL

A 1

A 1

A 2

2a

WAL

A 1

A 1A = 0

A = 0

Table

1 SET A = 2

fsync() succeeds

2b

WAL

A 1

A 1

A 2

Journal

A 1
A 2

Ext4
checkpointing
fails

3

WAL

A 1

A 1

A 2

Journal

Key Val

A 1

WAL

A 1

A 1A = 0

A = 0

Table

4

Machine
Restart

Data Loss

Applications | Results #3: Btrfs winning?
• Btrfs copy-on-write strategy is good, but not entirely
• Reverts page cache to match disk

• Works well for recovery from WAL
• Bad for rollback techniques
• Example: SQLite rollback mode

27

Applications | Results #3: Btrfs winning?

28

1

A

A B

B

C

C

SQLite DB

Rollback Journal

2a

A

A B

B

C

C

SQLite DB

Rollback Journal

B

A

A X

B

C

C

SQLite DB

2b

Rollback Journal

B

A

A X

B

C

C

SQLite DB

3

Rollback Journal

Query: Updates B
First write B to rollback Update B in main db

fsync() on rollback fails
Btrfs reverts contents
Nothing to rollback anymore

False FailureRollback should not assume page-cache contents
Corruptions in ext4 ordered mode / XFS.

Applications | Results Summary
• Simple strategies fail

• Applications have moved away from retries
• Crash/Restart not entirely correct

• Don’t trust the page cache while recovering

• Defenseless against late error reporting
• Ext4 Data Mode

• Data loss in all applications
• Corruptions in some
• Double fsync should help

• Copy-on-write file systems look promising
• Btrfs

• Works well with write-ahead logs
• Problematic with rollback journals

29

Wrapping Up
• Can applications recover from fsync failures?
• Maybe, if …

• Developers write file-system specific code

• Need to standardize file-system behavior for fsync failures

30

Challenges and Directions
• How should post-failure behavior be standardized?
• FreeBSD re-dirties pages

• Should applications code for specific file systems?
• Currently, OS-specific

• We need a stronger contract for failed intentions (ext4 data mode)
• Fault injection
• Don’t mock system calls

• Exercise file-system error handling
• dm-loki: https://github.com/WiscADSL/dm-loki

• Mock the file-system error handling
• CuttleFS: https://github.com/WiscADSL/cuttlefs

31

Summary
• Durability is important
• Hard to get right
• fsync is essential

• Failures are inevitable
• We don’t handle them uniformly

• Applications have different strategies to achieve durability
• No single strategy works well on all file systems

32

Questions?
• Anthony Rebello
• arebello@wisc.edu
• https://github.com/WiscADSL/cuttlefs
• https://github.com/WiscADSL/dm-loki

33

Thank You

http://wisc.edu
https://github.com/WiscADSL/cuttlefs
https://github.com/WiscADSL/dm-loki

