
Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano,

Colby Tresness, Mark Russinovich, and Ricardo Bianchini

Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload

at a Large Cloud Provider

July 15, 2020

What is Serverless?
•Very attractive abstraction:
• Pay for Use

• Infinite elasticity from 0 (and back)

• No worry about servers

• Provisioning, Reserving, Configuring, patching, managing

•Most popular offering: Function-as-a-Service (FaaS)
• Bounded-time functions with no persistent state among invocations

• Upload code, get an endpoint, and go

For the rest of this talk, Serverless = Serverless FaaS

What is Serverless?

Bare Metal VMs (IaaS) Containers Functions (FaaS)

Unit of Scale Server VM Application/Pod Function

Provisioning Ops DevOps DevOps Cloud Provider

Init Time Days ~1 min Few seconds Few seconds

Scaling Buy new hardware Allocate new VMs 1 to many, auto 0 to many, auto

Typical Lifetime Years Hours Minutes O(100ms)

Payment Per allocation Per allocation Per allocation Per use

State Anywhere Anywhere Anywhere Elsewhere

Serverless
“…more than 20 percent of global enterprises will have deployed serverless computing

technologies by 2020.”
Gartner, Dec 2018

Serverless

So
ur

ce
: C

NC
F

Cl
ou

d
Na

tiv
e

In
te

ra
ct

ive
 L

an
ds

ca
pe

ht
tp

s:
//l

an
ds

ca
pe

.c
nc

f.i
o/

fo
rm

at
=s

er
ve

rle
ss

https://landscape.cncf.io/format=serverless

Serverless

“… we predict that (…) serverless computing will grow to dominate the future of cloud computing.”

December 2019

So what are people doing with FaaS?

•Many simple things
• ETL workloads

• IoT data collection / processing

• Stateless processing

• Image / Video transcoding

• Translation

• Check processing

• Serving APIs, Mobile/Web Backends

• Interesting Explorations
• MapReduce (pywren)

• Linear Algebra (numpywren)

• ExCamera

• gg “burst-parallel” functions apps

• ML training

• Limitations
• Communication

• Latency

• Locality (lack)

• State management

What is Serverless?
•Very attractive abstraction:
• Pay for Use

• Infinite elasticity from 0 (and back)

• No worry about servers

• Provisioning, Reserving, Configuring, patching, managing

If you are a cloud provider…

•A big challenge
• You do worry about servers!

• Provisioning, scaling, allocating, securing, isolating

• Illusion of infinite scalability

• Optimize resource use

• Fierce competition

•A bigger opportunity
• Fine grained resource packing

• Great space for innovating, and capturing new applications, new markets

Cold Starts

•Typically range between 0.2 to a few seconds1,2

91https://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/

OpenWhisk

Azure Functions

AWS Lambda

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/

Cold Starts and Resource Wastage

Cold Starts

Wasted
Memory

Keeping functions in
memory indefinitely.

Removing function instance from
memory after invocation.

10

?

Stepping Back: Characterizing the Workload

11

• How are functions accessed
• What resources do they use
• How long do functions take

2 weeks of all invocations to Azure Functions in July 2019

First characterization of the workload of a large serverless provider

Subset of the traces available for research:
https://github.com/Azure/AzurePublicDataset

https://github.com/Azure/AzurePublicDataset

12

Invocations per Application*

This graph is from a representative subset of the workload. See paper for details.

13

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.

14

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.

15

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.

16

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.

17

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.

18

Invocations per Application
18% >1/min

99.6% of invocations!
82% <1/min

0.4% of invocations

This graph is from a representative subset of the workload. See paper for details.

Apps are highly heterogeneous

19

20

What about memory?
If we wanted to keep all apps warm…

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

C
um

ul
at

ive
 F

ra
ct

io
n

of
 T

ot
al

 M
em

or
y

Allocated Memory
Physical Memory

21

What about memory?
If we wanted to keep all apps warm…

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

C
um

ul
at

ive
 F

ra
ct

io
n

of
 T

ot
al

 M
em

or
y

Allocated Memory
Physical Memory

82% of apps ->
0.4% of invocations ->

40% of all physical memory,
60% of virtual memory

90% of apps ->
1.05% of invocations -> 50% of all physical memory

22

Function Execution Duration

0.00
0.10

0.25

0.50

0.75

0.90
1.00

1ms 100ms 1s 10s 1m 10m 1h
Time(s)

C
D

F

Minimum
Average
Maximum
LogNormal Fit

•Executions are short
• 50% of apps on average run for <= 0.67s

• 75% of apps on run for <= 10s max

•Times at the same scale as cold start times1,2

1https://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/

23

Key Takeaways

• Highly concentrated accesses
• 82% of the apps are accessed <1/min on average

• Correspond to 0.4% of all accesses

• But in aggregate would take 40% of the service memory if kept warm

• Arrival processes are highly variable

• Execution times are short
• Same OOM as cold start times

Cold Starts and Resource Wastage

Cold Starts

Wasted
Memory

Keeping functions in
memory indefinitely.

Removing function instance from
memory after invocation.

24

?

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

Cu
m

ul
at

ive
 F

ra
ct

io
n

of
 To

ta
l M

em
or

y

Allocated Memory
Physical Memory

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

Cu
m

ula
tiv

e
Fr

ac
tio

n
of

 To
ta

l M
em

or
y

Allocated Memory
Physical Memory

0.00
0.10

0.25

0.50

0.75

0.90
1.00

1ms 100ms 1s 10s 1m 10m 1h
Time(s)

CD
F

Minimum
Average
Maximum
LogNormal Fit

0.00
0.10

0.25

0.50

0.75

0.90
1.00

1ms 100ms 1s 10s 1m 10m 1h
Time(s)

CD
F

Minimum
Average
Maximum
LogNormal Fit

What do serverless providers do?

Mikhail Shilkov, Cold Starts in Serverless Functions, https://mikhail.io/serverless/coldstarts/

Amazon Lambda

Fixed 10-minute
keep-alive.

C
ol

d
st

ar
t p

ro
ba

bi
lit

y

Time since last invocation (mins)

Azure Functions

Time since last invocation (mins)

C
ol

d
st

ar
t p

ro
ba

bi
lit

y
Fixed 20-minute

keep-alive.

25

https://mikhail.io/serverless/coldstarts/

Fixed Keep-Alive Policy
Results from simulation of the entire workload for a week.

Longer
keep-alive

26

Time

8 mins

Cold Start

8 mins

Fixed Keep-Alive Won’t Fit All

Warm Start

Time

11 mins 11 mins

10-minute
Fixed

Keep-alive

27

Fixed Keep-Alive Is Wasteful

Function image kept in
memory but not used.

28

Time

8 mins 8 mins

Cold Start

Warm Start

10-minute
Fixed

Keep-alive

Hybrid Histogram Policy

Adapt to each application

Pre-warm in addition to keep-alive

Lightweight implementation

29

A Histogram Policy To Learn Idle Times

Time

8 mins8 minsIdle Time (IT):

Idle Time (IT)

Fr
eq

ue
nc

y

8

30

Cold Start

Warm Start

10-minute
Fixed

Keep-alive

Idle Time (IT)

Fr
eq

ue
nc

y

8 97

Pre-warm
Keep-alive

31

A Histogram Policy To Learn Idle Times

A Histogram Policy To Learn Idle Times

Fr
eq

ue
nc

y

Idle Time (IT)

Pre-warm Keep-alive

5th
pe

rc
en

til
e

99
th

pe
rc

en
til

e

Minute-long bins Limited number of bins
(e.g., 240 bins for 4-hours) 32

The Hybrid Histogram Policy

Fr
eq

ue
nc

y

Idle Time (IT)

Pre-warm Keep-alive

5th
pe

rc
en

til
e

99
th

pe
rc

en
til

e

Out of Bound
(OOB)

We can afford to run complex predictors given the low arrival rate.

A histogram might be too wasteful.
Time Series Forecast

33

Time-series forecast
(ARIMA)

Use IT distribution
(histogram)

Be conservative
(standard keep-alive)

Too many
OOB ITs

No

Yes

Pattern
Significant

New
invocation

The Hybrid Histogram Policy

Yes

No

Update
app’s IT

distribution

ARIMA: Autoregressive Integrated Moving Average
34

More Optimal Pareto Frontier

35

Implemented in OpenWhisk

REST
Interface

Controller

Load
Balancer

Distributed
Messaging

Invoker

Distributed
Database

ContainerContainerContainer
ContainerContainerContainer

ContainerContainerContainer

Invoker Invoker

• Open-sourced industry-grade
(IBM Cloud Functions)
• Functions run in docker containers
• Uses 10-minute fixed keep-alive

• Built a distributed setup with 19 VMs
36

0 25 50 75 100
App Cold StDrt (%)

0.00

0.25

0.50

0.75

1.00

C
D

)

Hybrid
)ixHd (10-min)

Simulation Experimental4-Hour Hybrid Histogram

Latency overhead: < 1ms (835.7µs)

Container memory reduction: 15.6%Average exec time reduction: 32.5%

99th–percentile exec time reduction: 82.4%

37

Closing the loop

Ø First serverless characterization from a provider’s point of view

38

Ø Azure Functions traces available to download:

https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md

Ø A dynamic policy to manage serverless workloads more efficiently
(First elements now running in production.)

https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md

