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What is Serverless?
•Very attractive abstraction:
• Pay for Use

• Infinite elasticity from 0 (and back)

• No worry about servers

• Provisioning, Reserving, Configuring, patching, managing

•Most popular offering: Function-as-a-Service (FaaS)
• Bounded-time functions with no persistent state among invocations

• Upload code, get an endpoint, and go

For the rest of this talk, Serverless = Serverless FaaS



What is Serverless?

Bare Metal VMs (IaaS) Containers Functions (FaaS)

Unit of Scale Server VM Application/Pod Function

Provisioning Ops DevOps DevOps Cloud Provider

Init Time Days ~1 min Few seconds Few seconds

Scaling Buy new hardware Allocate new VMs 1 to many, auto 0 to many, auto

Typical Lifetime Years Hours Minutes O(100ms)

Payment Per allocation Per allocation Per allocation Per use

State Anywhere Anywhere Anywhere Elsewhere



Serverless
“…more than 20 percent of global enterprises will have deployed serverless computing 

technologies by 2020.”
Gartner, Dec 2018
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Serverless

“… we predict that (…) serverless computing will grow to dominate the future of cloud computing.”

December 2019



So what are people doing with FaaS?

•Many simple things
• ETL workloads

• IoT data collection / processing

• Stateless processing

• Image / Video transcoding

• Translation

• Check processing

• Serving APIs, Mobile/Web Backends

• Interesting Explorations
• MapReduce (pywren)

• Linear Algebra (numpywren)

• ExCamera

• gg “burst-parallel” functions apps

• ML training

• Limitations
• Communication

• Latency

• Locality (lack)

• State management



What is Serverless?
•Very attractive abstraction:
• Pay for Use

• Infinite elasticity from 0 (and back)

• No worry about servers

• Provisioning, Reserving, Configuring, patching, managing



If you are a cloud provider…

•A big challenge
• You do worry about servers!

• Provisioning, scaling, allocating, securing, isolating

• Illusion of infinite scalability

• Optimize resource use

• Fierce competition

•A bigger opportunity
• Fine grained resource packing

• Great space for innovating, and capturing new applications, new markets



Cold Starts

•Typically range between 0.2 to a few seconds1,2

91https://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/

OpenWhisk

Azure Functions

AWS Lambda

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/


Cold Starts and Resource Wastage

Cold Starts

Wasted 
Memory

Keeping functions in 
memory indefinitely.

Removing function instance from 
memory after invocation.

10

?



Stepping Back: Characterizing the Workload
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• How are functions accessed
• What resources do they use
• How long do functions take

2 weeks of all invocations to Azure Functions in July 2019

First characterization of the workload of a large serverless provider

Subset of the traces available for research: 
https://github.com/Azure/AzurePublicDataset

https://github.com/Azure/AzurePublicDataset
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Invocations per Application*

This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application

This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application

This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application

This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application

This graph is from a representative subset of the workload. See paper for details.



17

Invocations per Application

This graph is from a representative subset of the workload. See paper for details.
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Invocations per Application
18% >1/min

99.6% of invocations!
82% <1/min

0.4% of invocations

This graph is from a representative subset of the workload. See paper for details.



Apps are highly heterogeneous
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What about memory?
If we wanted to keep all apps warm…

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Least Invoked Apps

C
um

ul
at

ive
 F

ra
ct

io
n 

of
 T

ot
al

 M
em

or
y

Allocated Memory
Physical Memory



21

What about memory?
If we wanted to keep all apps warm…
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82% of apps ->
0.4% of invocations -> 

40% of all physical memory, 
60% of virtual memory

90% of apps -> 
1.05% of invocations -> 50% of all physical memory
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Function Execution Duration
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•Executions are short
• 50% of apps on average run for <= 0.67s

• 75% of apps on run for <= 10s max

•Times at the same scale as cold start times1,2

1https://levelup.gitconnected.com/1946d32a0244 2https://mikhail.io/serverless/coldstarts/big3/

https://levelup.gitconnected.com/1946d32a0244
https://mikhail.io/serverless/coldstarts/big3/
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Key Takeaways

• Highly concentrated accesses
• 82% of the apps are accessed <1/min on average

• Correspond to 0.4% of all accesses

• But in aggregate would take 40% of the service memory if kept warm

• Arrival processes are highly variable

• Execution times are short
• Same OOM as cold start times



Cold Starts and Resource Wastage

Cold Starts

Wasted 
Memory

Keeping functions in 
memory indefinitely.

Removing function instance from 
memory after invocation.

24
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What do serverless providers do?

Mikhail Shilkov, Cold Starts in Serverless Functions, https://mikhail.io/serverless/coldstarts/

Amazon Lambda

Fixed 10-minute 
keep-alive.
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https://mikhail.io/serverless/coldstarts/


Fixed Keep-Alive Policy
Results from simulation of the entire workload for a week.

Longer 
keep-alive

26



Time

8 mins

Cold Start

8 mins

Fixed Keep-Alive Won’t Fit All

Warm Start

Time
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10-minute 
Fixed 

Keep-alive
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Fixed Keep-Alive Is Wasteful

Function image kept in 
memory but not used.
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Hybrid Histogram Policy

Adapt to each application

Pre-warm in addition to keep-alive

Lightweight implementation

29



A Histogram Policy To Learn Idle Times
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Cold Start

Warm Start
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A Histogram Policy To Learn Idle Times



A Histogram Policy To Learn Idle Times
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Minute-long bins Limited number of bins
(e.g., 240 bins for 4-hours) 32



The Hybrid Histogram Policy
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We can afford to run complex predictors given the low arrival rate.

A histogram might be too wasteful.
Time Series Forecast

33



Time-series forecast
(ARIMA)

Use IT distribution
(histogram)

Be conservative
(standard keep-alive)

Too many 
OOB ITs

No

Yes

Pattern
Significant

New 
invocation

The Hybrid Histogram Policy

Yes

No

Update 
app’s IT 

distribution

ARIMA: Autoregressive Integrated Moving Average
34



More Optimal Pareto Frontier 

35



Implemented in OpenWhisk 

REST
Interface

Controller

Load
Balancer

Distributed
Messaging

Invoker

Distributed
Database

ContainerContainerContainer
ContainerContainerContainer

ContainerContainerContainer

Invoker Invoker

• Open-sourced industry-grade 
(IBM Cloud Functions) 
• Functions run in docker containers
• Uses 10-minute fixed keep-alive

• Built a distributed setup with 19 VMs
36
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Latency overhead: < 1ms (835.7µs)

Container memory reduction: 15.6%Average exec time reduction: 32.5%

99th–percentile exec time reduction: 82.4%
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Closing the loop

Ø First serverless characterization from a provider’s point of view

38

Ø Azure Functions traces available to download: 

https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsDataset2019.md

Ø A dynamic policy to manage serverless workloads more efficiently
( First elements now running in production. ) 

https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsDataset2019.md

