Midgress-aware traffic provisioning for content delivery

Aditya Sundarrajan, Mangesh Kasbekar, Ramesh K. Sitaraman, Samta Shukla

CDNs serve more than 50% of content

Performance and cost metrics

End-user latency

Origin offload ratio

Bandwidth cost

Cache hit rate

100s of content providers

Past work has focused on cache management

How can we assign traffic classes to reduce midgress?

Traffic provisioning to reduce midgress

100s of traffic assignment scenarios!

Traffic provisioning to minimize midgress

Eviction age equality

Footprint descriptors*

* Footprint descriptors: Theory and practice of cache provisioning in a global CDN, A. Sundarrajan et al. in ACM CoNEXT 2017

Caching properties from FDs

* Footprint descriptors: Theory and practice of cache provisioning in a global CDN, A. Sundarrajan et al. in ACM CoNEXT 2017

Traffic mixing using FD calculus

* Footprint descriptors: Theory and practice of cache provisioning in a global CDN, A. Sundarrajan et al. in ACM CoNEXT 2017

Traffic provisioning to minimize midgress

Traffic provisioning as an optimization problem MILP – NP Hard!! T traffic classes $\lambda_{1}, \lambda_{2}, \dots, \lambda_{T}$ $\sum_{j} \mathbf{X}_{1j} \lambda_{j}$ $\sum_{j} \mathbf{X}_{Nj} \lambda_{j}$... Estimate Cache size, C miss rate of traffic 2 *N*-1 Ν 1 Traffic mix using N servers capacity, B

FD calculus

Min. $\sum_{ij} \mathbf{x}_{ij} \lambda_i \mathbf{m}_i(\mathbf{c}_{ij})$

Total miss traffic from cluster

FD-based local search is faster than MILP

FD-based local search is faster than MILP

Metro-level traffic provisioning Traffic classes Cluster 1 **Cluster N** Servers Servers

Midgress of metro area

Trace characteristics

Number of traffic classes	25
Length of trace	16 days
Traffic types	Web, media, download

Metro-level midgress reduced by 20%

Traffic provisioning in partitioned caches

Midgress-aware traffic provisioning reduced midgress by almost 20% in metro area

Midgress-aware heuristic performs within 1.1% of OPT but is much faster

Midgress-aware traffic provisioning can be extended to work with additional constraints such as minimum redundancy and maximum midgress, any cache management algorithm, and with partitioned caches

Thank you!

Email: asundar@cs.umass.edu