SPINFER: Inferring Semantic Patches for the

Linux Kernel

Lucas SERRANO, Van-Anh NGUYEN, Ferdian THUNG

Lingxiao JIANG, David Lo, Julia LAwALL, Gilles MULLER

th 5.{ SINGAPORE
‘‘‘‘‘) mvmﬁlmma__"m SORBONNE \A MANAGEMENT
UNIVERSITE UNIVERSITY

Maintenance of the Linux kernel

Maintenance tasks are very common in all software projects.

Maintenance of the Linux kernel

Maintenance tasks are very common in all software projects.
These tasks can consist of:

= Refactoring portions of code
» (Cleaning dead code
= Migrating APIs to new version

Maintenance of the Linux kernel

Maintenance tasks are very common in all software projects.
These tasks can consist of:

= Refactoring portions of code
» (Cleaning dead code
= Migrating APIs to new version

But maintaining the Linux kernel is particularly hard:

= 18M lines of C code
= 13M lines of driver code
= The same kernel API can be used by thousands of files

Even simple API migrations can be difficult to do

Motivating Example

Example of APl migration

Example of low-resolution timer structure initialization:

= Originally with the init_timer function

= Since 2006 with setup_timer

Example of APl migration

Example of low-resolution timer structure initialization:

= Originally with the init_timer function

= Since 2006 with setup_timer

Old function was not removed, the migration was not mandatory.

init_timer migration

drivers/atm/nicstar.c

@0 -284,10 +284,8 @@ static int _ _dinit nicstar_init (void)

= init_timer (&ns_timer) ;

+ setup_timer (&ns_timer , ns_poll, OUL) ;
ns_timer.expires = jiffies + NS_POLL_PERIOD;

= ns_timer.data = OUL;

- ns_timer.function = ns_poll;

drivers/gpu/drm/omapdrm/dss/dsi.c
@@ -5449,9 +5449,7 0@ static int dsi_bind(struct device *dev,
= init_timer (&dsi->te_timer) ;

- dsi->te_timer.function = dsi_te_timeout;
= dsi->te timer.data = 0;
+ setup_timer (&dsi->te_timer, dsi_te_timeout, 0);

Ratio of timer functions migrated

init_timer migration (1000+ changes)

0.75-

0.50-

0.25-

O AV P O A

O 0 oS 0%° N° 0%
RS 6 V'S aQ Y 4,;» O % S RN
35 3 3
A " S s ,19 N S S

Linux versions

In 2018 these interfaces were considered insecure and were both replaced.

But at this time APl usage was in inconsistent state:

= 60% using the new setup_timer

» 40% using the old init_timer

In 2018 these interfaces were considered insecure and were both replaced.

But at this time APl usage was in inconsistent state:

= 60% using the new setup_timer

» 40% using the old init_timer

Could the transformation have been done automatically?

First contribution:
Taxonomy of transformation

challenges

Related work

There are a lot of tools to perform API migration by learning from examples:
REFAZER, LASE, AppEvolve, Meditor, ...

But it was hard to know what kind of transformation they could handle.

Our first contribution is to classify transformation challenges.

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

1. Control-flow dependencies

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

1. Control-flow dependencies

2. Data-flow dependencies

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

1. Control-flow dependencies
2. Data-flow dependencies

3. Number of variants

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

1. Control-flow dependencies
2. Data-flow dependencies

3. Number of variants
4

. Number of instances

Transformation challenges taxonomy

Challenges can be organized in 5 main categories:

Control-flow dependencies
Data-flow dependencies
Number of variants

Number of instances

ogm @ =

Presence of unrelated changes

Need for a new tool

We found that all tools cannot handle transformation that:

= Require control-flow dependencies

= Have multiple variants

Need for a new tool

We found that all tools cannot handle transformation that:

= Require control-flow dependencies

= Have multiple variants

Both of these constraints are common in Linux kernel transformations.

And they were necessary for our timer example.

Need for a new tool

We found that all tools cannot handle transformation that:

= Require control-flow dependencies

= Have multiple variants

Both of these constraints are common in Linux kernel transformations.

And they were necessary for our timer example.

Moreover transformation rules used by these tools are not exposed
Meaning that developers cannot check if the transformation will be correct.

Second contribution:
Spinfer

A tool suitable for the Linux kernel

To perform APl migration in the Linux kernel we want a tool that:

= Learns transformation from examples
= Handles both control-flow dependencies and transformation variants

= Exposes transformation rules to developers

10

Transformation rules

Fortunately, a transformation rules language is already used in the Linux kernel.
Since 2008 Coccinelle rules are used to perform some transformations.

Even used in our motivating example.

11

Coccinelle

Semantic Patch Automatically generated diffs
e

SP @ a.c

12

Semantic patch

©Q

expression EO, E1, E2;
00

- init_timer (EO);

+ setup_timer(EO, E1, E2);

- EO.data = E2;
- EO.function = E1;

13

Semantic patch

©Q

expression EO, E1, E2;
00

- init_timer (EO);

+ setup_timer(EO, E1, E2);

- EO.data = E2;
- EO.function = E1;

Generates diffs like this:

init timer (&ns timer);
setup_timer(&ns_timer, ns_poll, OUL);
ns_timer.expires = jiffies + NS_P_P;
ns_timer.data = OUL;

ns_timer.function = ns_poll;

13

Our approach: Spinfer

Semantic patch Automatically generated diffs

—

SP @ a.c

14

Our approach: Spinfer

Example files Semantic patch Automatically generated diffs
| | I
| | I
bar.c b.c
JE—
c.c
JE—
d.c

14

Infering semantic patches

How to convert transformation instances. to a semantic patch.
@@
expression EO, E1, E2;
@@
- init_timer(&ns_timer); - init_timer (EO) ;
+ setup_timer(&ns_timer, ns_poll, OUL); + setup_timer (EO, E1, E2);

ns_timer.expires = jiffies + NS_P_P;

EO.data = E2;
EO.function = E1;

- ns_timer.data = OUL;

- ns_timer.function = ns_poll;

15

1: Extracting modified statements

- init_timer(&ns_timer);

+ setup_timer (&ns_timer, ns_poll, OUL);
ns_timer.expires = jiffies + NS_POLL_PERIOD;

- ns_timer.data = OUL;

- ns_timer.function = ns_poll;

- init timer (&dsi->te timer) ;
- dsi->te_timer.function = dsi_te_ timeout;
- dsi->te_timer.data = 0;

+ setup_timer (&dsi->te_timer, dsi_te_timeout, 0);

16

1: Extracting modified statements

- init_timer(&ns_timer);

+ setup_timer (&ns_timer, ns_poll, OUL);

- ns_timer.data = OUL;

- ns_timer.function = ns_poll;

- init timer (&dsi->te timer) ;
- dsi->te_timer.function = dsi_te_ timeout;
- dsi->te_timer.data = 0;

+ setup_timer (&dsi->te_timer, dsi_te_timeout, 0);

16

2: Clustering similar statements

- init_timer (&ns_timer) ;

- init_timer (&dsi->te_timer);

+ setup_timer(&ns_timer, ns_poll, OUL);

+ setup_timer(&dsi->te_timer, dsi_te_timeout, 0);

- ns_timer.data = OUL;
- dsi->te_timer.data = 0;

- ns_timer.function = ns_poll;

- dsi->te_timer.function = dsi_te_timeout;

17

3: Abstracting clusters

- init__timer(Expr);
+ setup__timer(Expr, Expr, Expr);
- Expr.data = Expr;

- Expr.function = Expr;

18

4: Assembling abstractions

- init_timer (Expr) ; - Expr.data = Expr;
- Expr.function = Expr; + setup_timer (Expr, Expr, Expr);

19

4: Assembling abstractions

- Expr.data = Expr;
- Expr.function = Expr; + setup_timer (Expr, Expr, Expr);

Spinfer takes a first abstraction

- init__timer(Expr);

19

4: Assembling abstractions

- Expr.data = Expr;
+ setup_timer (Expr, Expr, Expr);

It extends rules using control-flow dependencies
- init_timer (Expr) ;

- Expr.function = Expr;

19

5: Rule splitting

When there are inconsistencies in control-flow, rules are split:
- init_timer (Expr) ; - init_timer (Expr) ;

- Expr.data = Expr; - Expr.function = Expr;

- Expr.function = Expr; - Expr.data = Expr;

This allows Spinfer to discover transformation variants.

20

6: Iterating

This process goes on until all abstractions are exhausted.

- init_timer (Expr) ; - init_timer (Expr) ;
+ setup_timer (Expr, Expr, Expr); + setup_timer (Expr, Expr, Expr);
- Expr.data = Expr; - Expr.function = Expr;

Expr.function = Expr; Expr.data = Expr;

21

7: Metavariable discovery

To obtain a valid rule Spinfer transforms abstractions into metavariables:

A unique name is chosen for each set of terms found in the examples.

0@
expression EO, E1, E2;
0@

- init_timer (Expr); - init_timer(EO);

+

setup_timer (Expr, Expr, Expr); + setup_timer(EO, E1, E2);

- Expr.data = Expr; - EO.data = E2;

Expr.function = Expr; - EO.function = E1;

22

Obtained semantic patch

Spinfer obtained these two rules:

00

expression EO, E1, E2;

0@

- init_timer (EO0);

+ setup_timer(EO, E1, E2);

- EO0.data = E2;
- EO.function = E1i;

@@

expression EO, E1, E2;

@@

- init_timer(EO);

+ setup_timer(EO, E1, E2);

- EO.function = E1;
- EO.data = E2;

23

Evaluation

Evaluation

We evaluated Spinfer by learning real Linux kernel transformations.

We extracted two datasets of 40 groups of transformation each:

= One selected to be challenging

= Another randomly sampled from changes in 2018

We compared the results produced by Spinfer generated semantic patches to the
results produced by a human written semantic patch.

24

Results on the randomly sampled dataset

Spinfer was learning on one part of the changes and evaluated on the other part.

Learning set was 10 files or half the dataset.

25

Results on the randomly sampled dataset

Spinfer was learning on one part of the changes and evaluated on the other part.

Learning set was 10 files or half the dataset.

Two metrics:

= Precision: fraction of changes produced that were correct
» Recall: fraction of needed changes that were produced

25

Results on the randomly sampled dataset

Spinfer was learning on one part of the changes and evaluated on the other part.

Learning set was 10 files or half the dataset.

Two metrics:

= Precision: fraction of changes produced that were correct
» Recall: fraction of needed changes that were produced

Spinfer obtained 87% precision and 62% recall in average.
In 8 cases Spinfer obtained a perfect semantic patch.

More experiments on the paper

25

Conclusion

Spinfer learns semantic patches from examples.
It can learn transformations variants with many constraints such as:

= Control-flow dependencies
= Data-flow dependencies
= Transformation variants

26

Conclusion

Spinfer learns semantic patches from examples.
It can learn transformations variants with many constraints such as:

= Control-flow dependencies
= Data-flow dependencies
= Transformation variants

It uses code clustering to find similar pieces of code and abstract them.

Abstractions are assembled using control-flow information.

26

Conclusion

Spinfer learns semantic patches from examples.
It can learn transformations variants with many constraints such as:

= Control-flow dependencies
= Data-flow dependencies
= Transformation variants

It uses code clustering to find similar pieces of code and abstract them.
Abstractions are assembled using control-flow information.

Produced semantic patches can be checked and fixed by developers.

26

Thank you

If you have more questions:
Lucas.Serrano@lip6.fr

27

	Motivating Example
	First contribution: Taxonomy of transformation challenges
	Second contribution: Spinfer
	Evaluation

