
Adap%ve Placement for In-memory Storage Func%ons
Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman

University of Utah

Utah Scalable Computer
Systems Lab



Introduction

• Kernel-bypass key-value stores offer < 10µs latency, Mops throughput
• Fast because they are just dumb
• Inefficient – Data movement, client stalls

• Run application logic on the server?
• Storage server can become bottleneck, effects propagates back to clients

• Key-ideas: Put application logic in decoupled functions
• Profile invocations & adaptively place to avoid bottlenecks
• Challenge: efficiently shifting compute at microsecond-timescales



Disaggrega%on Improves U%liza%on and Scaling

Decouple Compute & Storage using Network
Provision at idle Capacity

Scale Independently

Compute

Storage



Disaggrega%on Improves U%liza%on and Scaling

FaRM <10µs latency

RAMCloud MOPS Throughput

Decouple Compute & Storage using Network
Provision at idle Capacity

Scale Independently

Compute

Storage



But, Data Movement Has a Cost

Compute

Storage
Da

ta
 M

ov
em

en
t

Massive Data Movement Destroys Efficiency

So, push code to storage?

Da
ta

 M
ov

em
en

t



Storage Function Requirements

• Microsecond-scale -> low invocaNon cost
• High-throughput, in-memory -> naNve code performance
• Amenable to mulN-core processing

• SoluNon: Splinter allows loadable compiled extensions of storage 
funcNons

Splinter: Bare-Metal Extensions for Mul5-Tenant Low-Latency Storage



Server-side Placement Can Improve Throughput

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 tr
ee

 tr
av

er
sa

ls
/s

ec
)

Traversal Depth (operations/invocation)

Client-side

Hash Table

Client

Server

get()/put()
over

Network

+RTT
+RTT

RTT



Server-side Placement Can Improve Throughput

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 tr
ee

 tr
av

er
sa

ls
/s

ec
)

Traversal Depth (operations/invocation)

Client-side
Server-side

Hash Table

Client

Server

invoke()
over

Network

50%

Reduces (N-1) RPCs and RTTs



Server-side Placement Can Improve Throughput

Hash Table

Client

Server

invoke()
over

Network0 200,000
ops/s/core

400,000
ops/s/core

FaRM

Server-side

Facebook TAO graph operaNons perform 2x beTer as 
compared to state-of-the-art system FaRM



Server-side Placement Can BoGleneck the Server

• Server-side placement is good for data-intensive funcNons
• Compute-intensive funcNons make the server CPU boTleneck
• Overloaded server stops responding to even get()/put() requests

• Overall system throughput drops



Server-side Placement Can Bottleneck the Server

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

55% Lower than 
Client-side

22% Higher than
Client-side

Tree Depth 2



What about Rebalancing and Load-Balancing?

• Workload change can happen in two ways
• Workload shiFs in funcGon call distribuGon over Gme
• ShiFs in per-invocaGon costs

• Migrate data only when the workload is stable

• Moving load to client and use the server CPU for migraNon

Time

Invoca/on Computa/on

Fr
eq

ue
nc

y
Lo

ad



Key Insight: Decoupled Func%ons Can Run Anywhere

• Tenants write logically decoupled funcNons using standard get/put 
interface
• Clients physically push and run funcNons server-side
• Or the clients could run the funcNons locally



Goal: The Best of Both Worlds

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Ideal
Data 
Intensive

Compute 
Intensive



Adap%ve Storage Func%on Placement (ASFP)

Client

Server G
et

G
et

Va
lid

at
e

Co
m

pu
te

Server-side Storage FuncNon ExecuNon



Adap%ve Storage Func%on Placement (ASFP)

Running heavy compute at client creates room for remaining work

Client

Server

Client

Server

G
et

G
et

Va
lid

at
e

Co
m

pu
te

G
et

Co
m

pu
te

Co
m

pu
te

G
et

Va
lid

at
e

G
et

Co
m

pu
te

Va
lid

at
e

G
et

Server-side Storage FuncNon ExecuNon

Pushed-back Storage FuncNon ExecuNon



Adap%ve Storage Func%on Placement (ASFP)

• Mechanisms
• Server-side: Run Storage FuncGons, suspend, pushback to client
• Client-side: RunGme, transparent remote data access
• Consistency and concurrency control

• Policies
• InvocaGon Profiling & Cost Modeling
• Overload detecGon



Server-side Storage Func%on Execu%on

Pushback

Running

Ready

Committed/
Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server 
Overload

State Change Request Response



Server-side Storage Func%on Execu%on

Pushback

Running

Ready

Committed/
Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server 
Overload

State Change Request Response



Server-side Storage Function Execution

Pushback

Running

Ready

Committed/
Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server 
Overload

State Change Request Response



Server-side Storage Function Execution

Pushback

Running

Ready

Committed/
Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server 
Overload

State Change Request Response



Consistency and Concurrency Control

• Problem: Invoke() tasks run concurrently on server on each core 
and pushed-back invocaNons run in parallel to the server tasks
• Solu9on: Run invocaNons in strict serializable transacNons
• Use opGmisGc concurrency control (OCC)

• Read/Write set tracking is also used in pushback
• Pushback invocaGon never generate work for Server
• Server don’t need to maintain any state for pushed-back invocaGons



Client-side Execu%on for Pushed-back Invoca%ons

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execu%on for Pushed-back Invoca%ons

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execu%on for Pushed-back Invoca%ons

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execu%on for Pushed-back Invoca%ons

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execution for Pushed-back Invocations

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execution for Pushed-back Invocations

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Client-side Execu%on for Pushed-back Invoca%ons

ReadyCreate

Awaiting
Validation

Awaiting
Data

Running

Get
(in local Read Set)

Yield

Schedule

Get (Remote)

Install
RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/
Aborted



Adap%ve Storage Func%on Placement (ASFP)

• Mechanism
• Server-side: Storage FuncGons, suspend, move back to client
• Client-side: RunGme, transparent remote data access
• Consistency and Concurrency Control

• Policy
• Server Overload DetecGon
• InvocaGon Profiling and ClassificaGon



Server Overload Detec%on

• Always run the invocaNons on 
server, if underloaded

• Guarantees
• Start pushback only when there 

are some old tasks and server 
receives even more tasks
• Keep at least 𝑡 tasks even aFer 

pushback, to avoid server idleness
• Consider only invoke() tasks for 

overload detecGon

PollRecvQueue

PacketToTask

#OldTasks > t

#NewTasks > t

Classify&Pushback AddTasksToQueue

ExecuteTasks-RR

Yes

Yes

No

No

Shenango: Achieving High CPU Efficiency for Latency-sensi5ve Datacenter Workloads

Pushback



Invoca%on Profiling and Classifica%on

• Profile each invocaNon for Nme spent in compute and data access
• Classify an invocaNon compute-bound if
• Spent more Gme in compute than data access
• Crossed a threshold 𝑐 > 𝑛𝐷

• 𝑐 𝑖𝑠 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛
• 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑙𝑙 𝑛𝑜𝑤
• 𝐷 𝑖𝑠 𝐶𝑃𝑈 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑛𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡



Evalua%on

GAINS AND COSTS RW-SET EFFECT APPLICATION MIX



Experimental Setup

• One Server and Four Client
• CPU - Ten-core Intel E5-2640v4 at 2.4 GHz
• RAM - 64GB Memory (4x 16 GB DDR4-2400 DIMMs)
• NIC - Mellanox CX-4, 25 Gbps Ethernet

• 15GB Read-write set as 120M Records, 30B key and 100B value



Does ASFP improve server throughput?

3 data-accesses per invocaNon

33%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback



What is the cost of using ASFP?

2 data-accesses per invocation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

15% lower than 
Client-side



What is the cost of using ASFP?

Aggressive overload detecNon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

3% lower than 
Client-side



How do ASFP and OCC interact?

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback
Pushback-wo-rwset

33% lower than 
Pushback



Solid: Run Server-side, Hashed: Run Client-side

Data Bound Compute Bound Compute Bound

Does ASFP improve throughput for an Applica%on Mix?



Does ASFP improve throughput for an Applica%on Mix?

More room on server to respond to more get/puts

Data Bound Compute Bound Compute Bound



Does ASFP improve throughput for an Application Mix?

More room on server to respond to more get/puts

Data Bound Compute Bound Compute Bound

160%

33% 77%

65%



TAO ↑ by avoiding data movement; Pushback makes room for TAO

Data Bound Compute Bound Compute Bound

36%
4%

10%

• 80% higher than Server-side
• 10% higher than Client-side

Does ASFP improve throughput for an Applica%on Mix?

0.5%



Related Work

• Storage Procedures, UDFs
• SQL - Poor fit for specialized computaGon
• Redis – Extension provided at server start Gme
• Splinter- build on top of it

• Offloading and code migraNon in mobile and edge compuNng 
• MAUI – different Gmescales and use-cases

• Thread and Process MigraNon
• Sprite, Condor – slow and unsuitable for µs scale



Conclusion

• Kernel-bypass key-value stores offer < 10µs latency, Mops throughput
• Fast because they are just dumb
• Inefficient – Data movement, client stalls

• Run applicaNon logic on the server?
• Storage server can become bofleneck, effects propagates back to clients

• AdapNvely place the invocaNons to avoid boTlenecks
• Up to 42% gain for low-compute invocaGons (vs client-side)
• Comparable performance for high-compute invocaGon(vs client-side)


