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Introduction

* Kernel-bypass key-value stores offer < 10us latency, Mops throughput

* Fast because they are just dumb
* Inefficient — Data movement, client stalls

* Run application logic on the server?
» Storage server can become bottleneck, effects propagates back to clients

* Key-ideas: Put application logic in decoupled functions
* Profile invocations & adaptively place to avoid bottlenecks
* Challenge: efficiently shifting compute at microsecond-timescales
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But, Data Movement Has a Cost
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So, push code to storage?



Storage Function Requirements

* Microsecond-scale -> low invocation cost
* High-throughput, in-memory -> native code performance
* Amenable to multi-core processing

 Solution: Splinter allows loadable compiled extensions of storage
functions

Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage
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Server-side Placement Can Improve Throughput
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Server-side Placement Can Improve Throughput
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Server-side Placement Can Bottleneck the Server
* Server-side placement is good for data-intensive functions
* Compute-intensive functions make the server CPU bottleneck

* Overloaded server stops responding to even get()/put() requests

* Overall system throughput drops



Server-side Placement Can Bottleneck the Server
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What about Rebalancing and Load-Balancing?

* Workload change can happen in two ways

Load

 Workload shifts in function call distribution over time
 Shifts in per-invocation costs

Time

* Migrate data only when the workload is stable
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* Moving load to client and use the server CPU for migration
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Key Insight: Decoupled Functions Can Run Anywhere

* Tenants write logically decoupled functions using standard get/put
interface

* Clients physically push and run functions server-side

* Or the clients could run the functions locally



Goal: The Best of Both Worlds
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Adaptive Storage Function Placement (ASFP)

* Mechanisms
* Server-side: Run Storage Functions, suspend, pushback to client
* Client-side: Runtime, transparent remote data access
* Consistency and concurrency control

* Policies
* Invocation Profiling & Cost Modeling
e Overload detection
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Consistency and Concurrency Control

* Problem: Invoke() tasks run concurrently on server on each core
and pushed-back invocations run in parallel to the server tasks

* Solution: Run invocations in strict serializable transactions
e Use optimistic concurrency control (OCC)

* Read/Write set tracking is also used in pushback
* Pushback invocation never generate work for Server
* Server don’t need to maintain any state for pushed-back invocations



Client-side Execution for Pushed-back Invocations
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Client-side Execution for Pushed-back Invocations
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Client-side Execution for Pushed-back Invocations
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Client-side Execution for Pushed-back Invocations
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Adaptive Storage Function Placement (ASFP)

* Policy
e Server Overload Detection
* Invocation Profiling and Classification



Server Overload Detection PollRecvQueue

* Always run the invocations on PacketToTask
server, if underloaded

No
#OIldTasks > t

e Guarantees

 Start pushback only when there
are some old tasks and server
receives even more tasks

» Keep at least t tasks even after
pushback, to avoid server idleness Classify&Pushback AddTasksToQueue

e Consider only invoke() tasks for
overload detection Pushback

ExecuteTasks-RR

No

#NewTasks > t

Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads



Invocation Profiling and Classification

* Profile each invocation for time spent in compute and data access

e Classify an invocation compute-bound if

* Spent more time in compute than data access

* Crossed a threshold ¢ > nD
* cis amount of compute done by the invocation
* nis the total number of data access till now
* D is CPU cost to process one request



Evaluation

GAINS AND COSTS RW-SET EFFECT APPLICATION MIX



Experimental Setup

* One Server and Four Client
 CPU - Ten-core Intel E5-2640v4 at 2.4 GHz
* RAM - 64GB Memory (4x 16 GB DDR4-2400 DIMMs)
* NIC - Mellanox CX-4, 25 Gbps Ethernet

* 15GB Read-write set as 120M Records, 30B key and 100B value



Does ASFP improve server throughput?
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What is the cost of using ASFP?
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What is the cost of using ASFP?
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How do ASFP and OCC interact?
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Does ASFP improve throughput for an Application Mix?
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Does ASFP improve throughput for an Application Mix?
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Does ASFP improve throughput for an Application Mix?
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Does ASFP improve throughput for an Application Mix?
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Related Work

 Storage Procedures, UDFs
e SQL - Poor fit for specialized computation
* Redis — Extension provided at server start time
 Splinter- build on top of it

* Offloading and code migration in mobile and edge computing
* MAUI — different timescales and use-cases

* Thread and Process Migration
 Sprite, Condor — slow and unsuitable for us scale



Conclusion

* Kernel-bypass key-value stores offer < 10us latency, Mops throughput
* Fast because they are just dumb
* Inefficient — Data movement, client stalls

* Run application logic on the server?
e Storage server can become bottleneck, effects propagates back to clients

* Adaptively place the invocations to avoid bottlenecks
* Up to 42% gain for low-compute invocations (vs client-side)
 Comparable performance for high-compute invocation(vs client-side)



