Adaptive Placement for In-memory Storage Functions

Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman
University of Utah

SI[E\I I[IVERSITY Utah Scalable Computer
OF UTAH® Systems Lab

Introduction

* Kernel-bypass key-value stores offer < 10us latency, Mops throughput

* Fast because they are just dumb
* Inefficient — Data movement, client stalls

* Run application logic on the server?
» Storage server can become bottleneck, effects propagates back to clients

* Key-ideas: Put application logic in decoupled functions
* Profile invocations & adaptively place to avoid bottlenecks
* Challenge: efficiently shifting compute at microsecond-timescales

Disaggregation Improves Utilization and Scaling

Compute

— —

Storage
Decouple Compute & Storage using Network
Provision at idle Capacity
Scale Independently

Disaggregation Improves Utilization and Scaling

Compute

FaRM | | <10us latency
RAMCloud MOPS Throughput

— —

Storage
Decouple Compute & Storage using Network
Provision at idle Capacity
Scale Independently

But, Data Movement Has a Cost

Compute

=

Data Mo;r/n\ent
K<
N

Data Movement

E

@ Massive Data Movement Destroys Efficiency

So, push code to storage?

Storage Function Requirements

* Microsecond-scale -> low invocation cost
* High-throughput, in-memory -> native code performance
* Amenable to multi-core processing

 Solution: Splinter allows loadable compiled extensions of storage
functions

Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage

Server-side Placement Can Improve Throughput

Client

B
o

Client-side

W W A
o u o

get()/put()

N
o
|

over

I I I Network
2 3 4 5 6 7 8

Traversal Depth (operations/invocation)

Throughput
(millions of tree traversals/sec)
— — N
o o)

o
o
|

o
o

Server

Server-side Placement Can Improve Throughput

Throughput

Client

Client-side
Server-side

invoke()

over
Network

2 3 4 5 6 7 8
Traversal Depth (operations/invocation)

Reduces (N-1) RPCs and RTTs

Server

Server-side Placement Can Improve Throughput

Client

FaRM
Server-side .
invoke()
> over
0 200,000 400,000 Network

ops/s/core ops/s/core

Facebook TAO graph operations perform 2x better as
compared to state-of-the-art system FaRM

Server

Server-side Placement Can Bottleneck the Server
* Server-side placement is good for data-intensive functions
* Compute-intensive functions make the server CPU bottleneck

* Overloaded server stops responding to even get()/put() requests

* Overall system throughput drops

Server-side Placement Can Bottleneck the Server

4.0
% 3.5

O

N
o 01 O

Throughput
(millions of invocations

O\
o O

Client-side —8—
22% Higher than Server-side —e—

_: Client-side
| = g —f

1]
1]
1]
1]
1]
1]
I

55% Lower than
Client-side

o ©
o O

O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Invocation Computation (cycles/invocation)

(Tree Depth 2D

What about Rebalancing and Load-Balancing?

* Workload change can happen in two ways

Load

 Workload shifts in function call distribution over time
 Shifts in per-invocation costs

Time

* Migrate data only when the workload is stable

o)
g e L P

Invocation Computation

* Moving load to client and use the server CPU for migration

Frequency

Key Insight: Decoupled Functions Can Run Anywhere

* Tenants write logically decoupled functions using standard get/put
interface

* Clients physically push and run functions server-side

* Or the clients could run the functions locally

Goal: The Best of Both Worlds

4.0
% 3.5

N
on O

o

Throughput
(millions of invocations

_ =2 N
o O

o ©
o O

- I
I . .
Data 1 Compute SCIlent-s!ge —a—
Intensive] Intensive erverigleael __ o

o

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Invocation Computation (cycles/invocation)

Adaptive Storage Function Placement (ASFP)

Server-side Storage Function Execution

Client § /

Server

Get
Validate

Get
Compute

Adaptive Storage Function Placement (ASFP)

Server-side Storage Function Execution

Client | /
Server :
\ o A
G)

Running heavy compute at client creates room for remaining work

Get
Compute
Get
Validate

Pushed-back Storage Function Execution

Client

}ompute

Get
Get
Compute
Validate

Validate

Server

Get
Compute

Adaptive Storage Function Placement (ASFP)

* Mechanisms
* Server-side: Run Storage Functions, suspend, pushback to client
* Client-side: Runtime, transparent remote data access
* Consistency and concurrency control

* Policies
* Invocation Profiling & Cost Modeling
e Overload detection

Server-side Storage Function Execution

Get (Local) Result

Server
Overload

State Change Request Response
P @ — — e

Server-side Storage Function Execution

Get (Local)

Yield

Push k
Schedule Hs bac‘
Invoke
— — Offload
Server
Overload
State Change Request Response
- — — -

Server-side Storage Function Execution

Get (Local)

Yield

Push k
Schedule Hs bac‘
Invoke
— — Offload
Server
Overload
State Change Request Response
. — — -

Server-side Storage Function Execution

Get (Local)

Yield

Pushback
Schedule oo bac‘
Invoke ‘
—_— — Offload
Server
Overload
State Change Request Response
. — — .

Consistency and Concurrency Control

* Problem: Invoke() tasks run concurrently on server on each core
and pushed-back invocations run in parallel to the server tasks

* Solution: Run invocations in strict serializable transactions
e Use optimistic concurrency control (OCC)

* Read/Write set tracking is also used in pushback
* Pushback invocation never generate work for Server
* Server don’t need to maintain any state for pushed-back invocations

Client-side Execution for Pushed-back Invocations

Validation

Committed/ + _
Aborted Validate

\J

|
Awaiting
Validation
It

Resu

Pushback RW Set
State Change> Request Response

—_—— = >

Client-side Execution for Pushed-back Invocations

Validation

Committed/ + _
Aborted Validate

\J

I
Awaiting
Validation
Result
Completed
Install

Pushback RW Set

State Change Request Response
B — —— = .

Client-side Execution for Pushed-back Invocations

Committed/ + _
Aborted Validate

\J

Awaiting

(Get (Remote)
Validation K_/

Result Validation

Completed
Install

Pushback RW Set

State Change Request Response
B — —— = .

Client-side Execution for Pushed-back Invocations

Validation

Committed/ + _
Aborted Validate

\J

I
Awaiting
Validation
It
Completed

Resu

7 Awaiting
Data

Pushback RW Set
State Change> Request Response

—_—— = >

Client-side Execution for Pushed-back Invocations

Validation

Committed/ + _
Aborted Validate

\J

I
Awaiting
Validation
Result
Completed
Install

Pushback RW Set

State Change Request Response
B — —— = .

Client-side Execution for Pushed-back Invocations

Committed/ + _
Aborted Validate

\J

Awaiting

(Get (Remote)
Validation k/

Result Validation

Completed
Install

Pushback RW Set

State Change Request Response
B — —— = .

Client-side Execution for Pushed-back Invocations

Committed/‘
Aborted | Validate . Get
Y | (in local Read Set)
¢ Awaiting
Naldaion,
Result Validation/ | Get
Yield —_—

Completed

Pushback RW Set
State Change> Request Response

—_—— = >

Adaptive Storage Function Placement (ASFP)

* Policy
e Server Overload Detection
* Invocation Profiling and Classification

Server Overload Detection PollRecvQueue

* Always run the invocations on PacketToTask
server, if underloaded

No
#OIldTasks > t

e Guarantees

 Start pushback only when there
are some old tasks and server
receives even more tasks

» Keep at least t tasks even after
pushback, to avoid server idleness Classify&Pushback AddTasksToQueue

e Consider only invoke() tasks for
overload detection Pushback

ExecuteTasks-RR

No

#NewTasks > t

Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads

Invocation Profiling and Classification

* Profile each invocation for time spent in compute and data access

e Classify an invocation compute-bound if

* Spent more time in compute than data access

* Crossed a threshold ¢ > nD
* cis amount of compute done by the invocation
* nis the total number of data access till now
* D is CPU cost to process one request

Evaluation

GAINS AND COSTS RW-SET EFFECT APPLICATION MIX

Experimental Setup

* One Server and Four Client
 CPU - Ten-core Intel E5-2640v4 at 2.4 GHz
* RAM - 64GB Memory (4x 16 GB DDR4-2400 DIMMs)
* NIC - Mellanox CX-4, 25 Gbps Ethernet

* 15GB Read-write set as 120M Records, 30B key and 100B value

Does ASFP improve server throughput?

3.0 1

N
O3
T

N
o

[
=1

—
o
T

Throughput
(millions of invocations/s)
(&)

o
o

Client-side —&—
Server-side —e—
Pushback —=&—

o
o

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Invocation Computation (cycles/invocation)

3 data-accesses per invocation

What is the cost of using ASFP?

3.5
© 3.0

:

1]

; a 15% lower than
4 (Client-side

1]
1]

T[]
L[]
P

—— e —Ar A

= DN
o o o
|

—_
o
T

Throughput
illions of invocations

Client-side —&—
Server-side —e—
Pushback —=a—

m
o O
o o

|

0O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Invocation Computation (cycles/invocation)

2 data-accesses per invocation

What is the cost of using ASFP?

3.5
© 3.0

:

£ 3% lower than
Client-side

P
il
21l
I
11
KE(l
F]

= DN
o o o
|

—_
o
T

Throughput
illions of invocations

Client-side —&—
Server-side —e—
Pushback —=a—

m
o ©
o (@)
|

0O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Invocation Computation (cycles/invocation)

Aggressive overload detection

How do ASFP and OCC interact?

3.5
390 \a\
(V)]
c
5 '®
_8'§ 20 I * “ — 4—3%33% lower than
g.E — v Pushback
OS5 15 |
i -
7
s 1.0 Client-side —&—
= Server-side —e—
€05 ¢ Pushback —=—
0.0 Pushback-wo-rwset —v—

0O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Invocation Computation (cycles/invocation)

Does ASFP improve throughput for an Application Mix?

2 5. DataBound Compute Bound Compute Bound
B TAO Bl D-Tree B R-Forest B Total

o

Server-side

N
o

=
u
L}

=
o

Throughput
(millions of invocations/second)

O
8

%%/

ide Pushback

lien

oN\

~+
n

O
o

Solid: Run Server-side, Hashed: Run Client-side

Does ASFP improve throughput for an Application Mix?

2 5. DataBound Compute Bound Compute Bound
B TAO Bl D-Tree B R-Forest B Total

N
o

=
u
1

=

Throughput
(millions of invocations/second)

O
U

%%/

Pushback

o N\
N

O
o

More room on server to respond to more get/puts

Does ASFP improve throughput for an Application Mix?

2 5. DataBound Compute Bound Compute Bound
B TAO Bl D-Tree B R-Forest B Total

-50.5- /1/50%///%/ 7

More room on server to respond to more get/puts

Does ASFP improve throughput for an Application Mix?

2 5. DataBound Compute Bound Compute Bound
B TAO B D-Tree B R-Forest Total

N
o

- N\
° -
505 / //%/%
Server-side Cllent side

TAO T by avoiding data movement; Pushback makes room for TAO

Related Work

 Storage Procedures, UDFs
e SQL - Poor fit for specialized computation
* Redis — Extension provided at server start time
 Splinter- build on top of it

* Offloading and code migration in mobile and edge computing
* MAUI — different timescales and use-cases

* Thread and Process Migration
 Sprite, Condor — slow and unsuitable for us scale

Conclusion

* Kernel-bypass key-value stores offer < 10us latency, Mops throughput
* Fast because they are just dumb
* Inefficient — Data movement, client stalls

* Run application logic on the server?
e Storage server can become bottleneck, effects propagates back to clients

* Adaptively place the invocations to avoid bottlenecks
* Up to 42% gain for low-compute invocations (vs client-side)
 Comparable performance for high-compute invocation(vs client-side)

