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Introduction

• Kernel-bypass key-value stores offer < 10µs latency, Mops throughput
• Fast because they are just dumb
• Inefficient – Data movement, client stalls

• Run application logic on the server?
• Storage server can become bottleneck, effects propagates back to clients

• Key-ideas: Put application logic in decoupled functions
• Profile invocations & adaptively place to avoid bottlenecks
• Challenge: efficiently shifting compute at microsecond-timescales
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But, Data Movement Has a Cost
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Storage Function Requirements

• Microsecond-scale -> low invocaNon cost
• High-throughput, in-memory -> naNve code performance
• Amenable to mulN-core processing

• SoluNon: Splinter allows loadable compiled extensions of storage 
funcNons

Splinter: Bare-Metal Extensions for Mul5-Tenant Low-Latency Storage



Server-side Placement Can Improve Throughput
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Server-side Placement Can Improve Throughput
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Server-side Placement Can Improve Throughput
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Server-side Placement Can BoGleneck the Server

• Server-side placement is good for data-intensive funcNons
• Compute-intensive funcNons make the server CPU boTleneck
• Overloaded server stops responding to even get()/put() requests

• Overall system throughput drops



Server-side Placement Can Bottleneck the Server
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What about Rebalancing and Load-Balancing?

• Workload change can happen in two ways
• Workload shiFs in funcGon call distribuGon over Gme
• ShiFs in per-invocaGon costs

• Migrate data only when the workload is stable

• Moving load to client and use the server CPU for migraNon
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Key Insight: Decoupled Func%ons Can Run Anywhere

• Tenants write logically decoupled funcNons using standard get/put 
interface
• Clients physically push and run funcNons server-side
• Or the clients could run the funcNons locally



Goal: The Best of Both Worlds
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Adap%ve Storage Func%on Placement (ASFP)
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Adap%ve Storage Func%on Placement (ASFP)

Running heavy compute at client creates room for remaining work
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Adap%ve Storage Func%on Placement (ASFP)

• Mechanisms
• Server-side: Run Storage FuncGons, suspend, pushback to client
• Client-side: RunGme, transparent remote data access
• Consistency and concurrency control

• Policies
• InvocaGon Profiling & Cost Modeling
• Overload detecGon
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Server-side Storage Function Execution
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Server-side Storage Function Execution
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Consistency and Concurrency Control

• Problem: Invoke() tasks run concurrently on server on each core 
and pushed-back invocaNons run in parallel to the server tasks
• Solu9on: Run invocaNons in strict serializable transacNons
• Use opGmisGc concurrency control (OCC)

• Read/Write set tracking is also used in pushback
• Pushback invocaGon never generate work for Server
• Server don’t need to maintain any state for pushed-back invocaGons
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Client-side Execution for Pushed-back Invocations
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Adap%ve Storage Func%on Placement (ASFP)

• Mechanism
• Server-side: Storage FuncGons, suspend, move back to client
• Client-side: RunGme, transparent remote data access
• Consistency and Concurrency Control

• Policy
• Server Overload DetecGon
• InvocaGon Profiling and ClassificaGon



Server Overload Detec%on

• Always run the invocaNons on 
server, if underloaded

• Guarantees
• Start pushback only when there 

are some old tasks and server 
receives even more tasks
• Keep at least 𝑡 tasks even aFer 

pushback, to avoid server idleness
• Consider only invoke() tasks for 

overload detecGon

PollRecvQueue

PacketToTask

#OldTasks > t

#NewTasks > t

Classify&Pushback AddTasksToQueue

ExecuteTasks-RR

Yes

Yes

No

No

Shenango: Achieving High CPU Efficiency for Latency-sensi5ve Datacenter Workloads

Pushback



Invoca%on Profiling and Classifica%on

• Profile each invocaNon for Nme spent in compute and data access
• Classify an invocaNon compute-bound if
• Spent more Gme in compute than data access
• Crossed a threshold 𝑐 > 𝑛𝐷

• 𝑐 𝑖𝑠 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛
• 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑙𝑙 𝑛𝑜𝑤
• 𝐷 𝑖𝑠 𝐶𝑃𝑈 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑛𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡



Evalua%on

GAINS AND COSTS RW-SET EFFECT APPLICATION MIX



Experimental Setup

• One Server and Four Client
• CPU - Ten-core Intel E5-2640v4 at 2.4 GHz
• RAM - 64GB Memory (4x 16 GB DDR4-2400 DIMMs)
• NIC - Mellanox CX-4, 25 Gbps Ethernet

• 15GB Read-write set as 120M Records, 30B key and 100B value



Does ASFP improve server throughput?

3 data-accesses per invocaNon

33%
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What is the cost of using ASFP?

2 data-accesses per invocation
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What is the cost of using ASFP?

Aggressive overload detecNon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Th
ro

ug
hp

ut
(m

illi
on

s 
of

 in
vo

ca
tio

ns
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

3% lower than 
Client-side



How do ASFP and OCC interact?
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Solid: Run Server-side, Hashed: Run Client-side

Data Bound Compute Bound Compute Bound

Does ASFP improve throughput for an Applica%on Mix?



Does ASFP improve throughput for an Applica%on Mix?

More room on server to respond to more get/puts

Data Bound Compute Bound Compute Bound



Does ASFP improve throughput for an Application Mix?

More room on server to respond to more get/puts

Data Bound Compute Bound Compute Bound

160%

33% 77%

65%



TAO ↑ by avoiding data movement; Pushback makes room for TAO

Data Bound Compute Bound Compute Bound

36%
4%

10%

• 80% higher than Server-side
• 10% higher than Client-side

Does ASFP improve throughput for an Applica%on Mix?

0.5%



Related Work

• Storage Procedures, UDFs
• SQL - Poor fit for specialized computaGon
• Redis – Extension provided at server start Gme
• Splinter- build on top of it

• Offloading and code migraNon in mobile and edge compuNng 
• MAUI – different Gmescales and use-cases

• Thread and Process MigraNon
• Sprite, Condor – slow and unsuitable for µs scale



Conclusion

• Kernel-bypass key-value stores offer < 10µs latency, Mops throughput
• Fast because they are just dumb
• Inefficient – Data movement, client stalls

• Run applicaNon logic on the server?
• Storage server can become bofleneck, effects propagates back to clients

• AdapNvely place the invocaNons to avoid boTlenecks
• Up to 42% gain for low-compute invocaGons (vs client-side)
• Comparable performance for high-compute invocaGon(vs client-side)


