Optimizing Memory-mapped |/0
for Fast Storage Devices

Anastasios Papagiannis!?, Giorgos Xanthakis!?, Giorgos Saloustros?, Manolis
Marazakis!, and Angelos Bilas!2

Foundation for Research and Technology — Hellas (FORTH)! & University of Crete?

Ws@‘;»
s UNIVERSITY
4 OF CRETE

USENIX ATC 2020

Fast storage devices

* Fast storage devices =2 Flash, NVMe
* Millions of IOPS
e <10 us access latency

* Small I/Os are not such a big issue as in rotational disks
* Require many outstanding |/Os for peak throughput

Read/write system calls

* Read/write system calls + DRAM cache
* Reduce accesses to the device

* Kernel-space cache
* Requires system calls also for hits
e Used for raw (serialized) blocks

e User-space cache
* Lookups for hits + system calls only for misses
* Application specific (deserialized) data
» User-space cache removes system calls for hits

e Hit lookups in user space introduce
significant overhead [SIGMOD’08]

User Space

Kernel Space

USENIX ATC 2020 3

Memory-mapped /O

* In memory-mapped I/O (mmio) hits handled in hardware > MMU + TLB

* Less overhead compared to cache lookup

* In mmio a file mapped to virtual address space
* Load/store processor instructions to access data
» Kernel fetch/evict page on-demand

* Additionally mmio removes
 Serialization/deserialization
 Memory copies between user and kernel

Disadvantages of mmio

* Misses require a page fault instead of a system call
» 4KB page size 2 Small & random 1/Os

* With fast storage devices this is not a big issue

* Linux mmio path fails to scale with #threads

Million page-faults/sec (IOPS)

Mmio path scalability

Device: null_blk
“> 1 Dataset: 4TB

DRAM cache: 192GB

2.5
2
1.5
! /\
0.5
; =
1 2 4 8 16
——Linux-Read ===Linux-Write

USENIX ATC 2020

32

Million page-faults/sec (IOPS)

Mmio path scalability

Device: null_blk

“> 1 Dataset: 4TB
DRAM cache: 192GB

—Linux-Read (4.14)

2M IOPS

4 8

e Linux-Write (4.14) ——Linux-Read (5.4)

USENIX ATC 2020

/\

Queue depth = 27

1.3M IOPS

0

16

Linux-Write (5.4)

32

FastMap

* A novel mmio path that achieves high scalability and I/O concurrency
* |In the Linux kernel

* Avoids all centralized contention points
* Reduces CPU processing in the common path
» Uses dedicated data structures to minimize interference

Million page-faults/sec (IOPS)

Mmio path scalability

Device: null_blk

“> 1 Dataset: 4TB
DRAM cache: 192GB

1 2 4

=—Llinux-Read (4.14) e===Linux-Write (4.14) ==Linux-Read (5.4)

USENIX ATC 2020

8
Linux-Write (5.4)

16

= FastMap-Read

32

= FastMap-Write

3Xin
reads

6X In
writes

Outline

* Introduction

* Motivation

* FastMap design

* Experimental analysis
* Conclusions

Outline

* FastMap design

FastMap design: 3 main techniques

* Separates data structures that keep clean and dirty pages
* Avoids all centralized contention points

* Optimizes reverse mappings
e Reduces CPU processing in the common path

e Uses a scalable DRAM cache

* Minimizes interference and reduce latency variability

FastMap design: 3 main techniques

* Separates data structures that keep clean and dirty pages
* Avoids all centralized contention points

Linux mmio design

address_space

126x contented
lock acquisitions 155X more

. . wait time
* tree_lock acquired for 2 main reasons

* Insert/remove elements from page_tree & lock-free (RCU) lookups
* Modify tags for a specific entry = Used to mark a page dirty

USENIX ATC 2020

14

FastMap design

VMA PFD 0 1

N-1

dirty_tree
0

Keep dirty pages on a separate data structure

Marking a page dirty/clean does not serialize insert/remove ops
Choose data-structure based on page offset % num_cpus

Radix trees to keep ALL cached pages = lock-free (RCU) lookups
Red-black trees to keep ONLY dirty pages = sorted by device offset

dirty tree
1

dirty tree
N-1

FastMap design: 3 main techniques

* Optimizes reverse mappings
e Reduces CPU processing in the common path

Reverse mappings

* Find out which page table entries map a specific page
* Page eviction =2 Due to memory pressure or explicit writeback
* Destroy mappings = munmap

* Linux uses object-based reverse mappings
* Executables and libraries (e.g. libc) introduce large amount of sharing
* Reduces DRAM consumption and housekeeping costs

* Storage applications that use memory-mapped I/O
* Require minimal sharing
* Can be applied selectively to certain devices or files

Linux object-based reverse mappings

page vma

t .
— address_space i_mmap
vma
Joe read/write
Pas semaphore
vma

_mapcount

* mapcount can still results in useless page table traversals

* rw-semaphore acquired as read on all operations
* Cross NUMA-node traffic
* Spend many CPU cycles

PGD

PGD

PGD

FastMap full reverse mappings

VMA, vaddr VMA, vaddr

VMA, vaddr

* Full reverse mappings
 Reduce CPU overhead

e Efficient munmap

* No ordering required =»
scalable updates

* More DRAM required

* Limited by small degree of
sharing in pages

FastMap design: 3 main techniques

e Uses a scalable DRAM cache

* Minimizes interference and reduce latency variability

Batched TLB invalidations

 Under memory pressure FastMap evicts a batch of clean pages
* Cache related operations
* Page table cleanup
* TLB invalidation

* TLB invalidation require an IPI (Inter-Processor Interrupt)
* Limits scalability [EuroSys’13, USENIX ATC’17, EurorSys’20]

* Single TLB invalidation for the whole batch
* Convert batch to range including unnecessary invalidations

Other optimizations in the paper

* DRAM cache
* Eviction/writeback operations
* Implementation details

Outline

* Experimental analysis

Testbed

e 2x Intel Xeon CPU E5-2630 v3 CPUs (2.4GHz)
* 32 hyper-threads

e Different devices

* Intel Optane SSD DC P4800X (375GB) in workloads
* null_blk in microbenchmarks

e 256 GB of DDR4 DRAM
e CentOS v7.3 with Linux 4.14.72

Workloads

e Microbenchmarks

 Storage applications
* Kreon [ACM SoCC’18] — persistent key-value store (YCSB)
 MonetDB — column oriented DBMS (TPC-H)

* Extend available DRAM over fast storage devices
 Silo [SOSP’13] — key-value store with scalable transactions (TPC-C)
e Ligra [PPoPP’13] — graph algorithms (BFS)

FastMap Scalability

4x Intel Xeon CPU E5-4610 v3 CPUs (1.7 GHz)
80 hyper-threads

8 [I

) FastMap-Rd-SPF - -3 -
% 7 [~ FastMap-Wr-SPF —4— .
= FastMap-Rd —<— o
S 61 FastMap-Wr —H— PR X
@ 51 mmap-Ra e 22D - 11.8x
% . mmap-Wr —&— - 37.4%

I~ o/ -7 K B
& 7.6% 23:4%
) 3 o —
&
> 2 & &
CC) ,.)‘,-
= 1
= 0 a5 Q s

40 80
#threads

USENIX ATC 2020 26

FastMap execution time breakdown

#samples (x1000)

600

500

400

300

200

100

m mark_dirty
m address-space
m page-fault

m other

mmap-Read mmap-Write FastMap-Read FastMap-Write

USENIX ATC 2020 27

Kreon key-value store

* Persistent key-value store based on LSM-tree
* Designed to use memory-mapped I/O in the common path

e YCSB with 80M records
e 80GB dataset
* 16GB DRAM

Kreon — 100% inserts

#
DES-S=2T N0 C
|aeuwr30
© X ()]

o O = >
. O c X
223 °

=

...7////V. X

(o]

p h

m o

= Z%ZSNv--ﬁTbbm4

o

..‘\\\\I'A.:. voooooomwo.'

o

)

©

p ~—

Wa 0

7 .
L

(q\|

#cores

29

USENIX ATC 2020

Kreon — 100% lookups

idle vzzz2

lowait

kworker ——

ycsbh &
kreon XXX2

pgfault E—=—1
others ==

30

USENIX ATC 2020

Batched TLB invalidations

* TLB batching results in 25.5% more TLB misses

* Improvement due to fewer IPls

* 24% higher throughput
* 23.8% lower average latency

 Less time in flush_tlb_mm_range()

* 20.3% 2 0.1%

USENIX ATC 2020

Silo key-value store
&

TPC-C

31

Conclusions

* FastMap, an optimized mmio path in Linux
e Scalable with number of threads & low CPU overhead

* FastMap has significant benefits for data-intensive applications

» Fast storage devices
* Multi-core servers

* Up to 11.8x more IOPS with 80 cores and null_blk
* Up to 5.2x more IOPS with 32 cores and Intel Optane SSD

Optimizing Memory-mapped I/O for Fast Storage Devices

Anastasios Papagiannis
Foundation for Research and Technology Hellas (FORTH) & University of Crete
email: apapag@ics.forth.gr

4 m" -
((@Q?‘\‘;% UNIVERSITY
) OF CRETE

\/

T

INSTITUTE OF COMPUTER SCIENCE USENIX ATC 2020 33

mailto:apapag@ics.forth.gr

