Optimizing Memory-mapped |/0
for Fast Storage Devices

Anastasios Papagiannis!?, Giorgos Xanthakis!?, Giorgos Saloustros?, Manolis
Marazakis!, and Angelos Bilas!2

Foundation for Research and Technology — Hellas (FORTH)! & University of Crete?

Ws@‘;»
s UNIVERSITY
4 OF CRETE

USENIX ATC 2020




Fast storage devices

* Fast storage devices =2 Flash, NVMe
* Millions of IOPS
e <10 us access latency

* Small I/Os are not such a big issue as in rotational disks
* Require many outstanding |/Os for peak throughput



Read/write system calls

* Read/write system calls + DRAM cache
* Reduce accesses to the device

* Kernel-space cache
* Requires system calls also for hits
e Used for raw (serialized) blocks

e User-space cache
* Lookups for hits + system calls only for misses
* Application specific (deserialized) data
» User-space cache removes system calls for hits

e Hit lookups in user space introduce
significant overhead [SIGMOD’08]

User Space

Kernel Space

USENIX ATC 2020 3



Memory-mapped /O

* In memory-mapped I/O (mmio) hits handled in hardware > MMU + TLB

* Less overhead compared to cache lookup

* In mmio a file mapped to virtual address space
* Load/store processor instructions to access data
» Kernel fetch/evict page on-demand

* Additionally mmio removes
 Serialization/deserialization
 Memory copies between user and kernel



Disadvantages of mmio

* Misses require a page fault instead of a system call
» 4KB page size 2 Small & random 1/Os

* With fast storage devices this is not a big issue

* Linux mmio path fails to scale with #threads



Million page-faults/sec (IOPS)

Mmio path scalability
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Mmio path scalability
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FastMap

* A novel mmio path that achieves high scalability and I/O concurrency
* |In the Linux kernel

* Avoids all centralized contention points
* Reduces CPU processing in the common path
» Uses dedicated data structures to minimize interference
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Outline

* FastMap design



FastMap design: 3 main techniques

* Separates data structures that keep clean and dirty pages
* Avoids all centralized contention points

* Optimizes reverse mappings
e Reduces CPU processing in the common path

e Uses a scalable DRAM cache

* Minimizes interference and reduce latency variability



FastMap design: 3 main techniques

* Separates data structures that keep clean and dirty pages
* Avoids all centralized contention points



Linux mmio design

address_space

126x contented
lock acquisitions 155X more

. . wait time
* tree_lock acquired for 2 main reasons

* Insert/remove elements from page_tree & lock-free (RCU) lookups
* Modify tags for a specific entry = Used to mark a page dirty
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FastMap design

VMA PFD 0 1

N-1

dirty_tree
0

Keep dirty pages on a separate data structure

Marking a page dirty/clean does not serialize insert/remove ops
Choose data-structure based on page offset % num_cpus

Radix trees to keep ALL cached pages = lock-free (RCU) lookups
Red-black trees to keep ONLY dirty pages = sorted by device offset

dirty tree
1

dirty tree
N-1




FastMap design: 3 main techniques

* Optimizes reverse mappings
e Reduces CPU processing in the common path



Reverse mappings

* Find out which page table entries map a specific page
* Page eviction =2 Due to memory pressure or explicit writeback
* Destroy mappings = munmap

* Linux uses object-based reverse mappings
* Executables and libraries (e.g. libc) introduce large amount of sharing
* Reduces DRAM consumption and housekeeping costs

* Storage applications that use memory-mapped I/O
* Require minimal sharing
* Can be applied selectively to certain devices or files



Linux object-based reverse mappings

page vma

t .
— address_space i_mmap
vma
Joe read/write
Pas semaphore
vma

_mapcount

* mapcount can still results in useless page table traversals

* rw-semaphore acquired as read on all operations
* Cross NUMA-node traffic
* Spend many CPU cycles

PGD

PGD

PGD



FastMap full reverse mappings

VMA, vaddr VMA, vaddr

VMA, vaddr

* Full reverse mappings
 Reduce CPU overhead

e Efficient munmap

* No ordering required =»
scalable updates

* More DRAM required

* Limited by small degree of
sharing in pages




FastMap design: 3 main techniques

e Uses a scalable DRAM cache

* Minimizes interference and reduce latency variability



Batched TLB invalidations

 Under memory pressure FastMap evicts a batch of clean pages
* Cache related operations
* Page table cleanup
* TLB invalidation

* TLB invalidation require an IPI (Inter-Processor Interrupt)
* Limits scalability [EuroSys’13, USENIX ATC’17, EurorSys’20]

* Single TLB invalidation for the whole batch
* Convert batch to range including unnecessary invalidations



Other optimizations in the paper

* DRAM cache
* Eviction/writeback operations
* Implementation details



Outline

* Experimental analysis



Testbed

e 2x Intel Xeon CPU E5-2630 v3 CPUs (2.4GHz)
* 32 hyper-threads

e Different devices

* Intel Optane SSD DC P4800X (375GB) in workloads
* null_blk in microbenchmarks

e 256 GB of DDR4 DRAM
e CentOS v7.3 with Linux 4.14.72



Workloads

e Microbenchmarks

 Storage applications
* Kreon [ACM SoCC’18] — persistent key-value store (YCSB)
 MonetDB — column oriented DBMS (TPC-H)

* Extend available DRAM over fast storage devices
 Silo [SOSP’13] — key-value store with scalable transactions (TPC-C)
e Ligra [PPoPP’13] — graph algorithms (BFS)



FastMap Scalability

4x Intel Xeon CPU E5-4610 v3 CPUs (1.7 GHz)
80 hyper-threads
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FastMap execution time breakdown

#samples (x1000)
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Kreon key-value store

* Persistent key-value store based on LSM-tree
* Designed to use memory-mapped I/O in the common path

e YCSB with 80M records
e 80GB dataset
* 16GB DRAM



Kreon — 100% inserts
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Kreon — 100% lookups
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Batched TLB invalidations

* TLB batching results in 25.5% more TLB misses

* Improvement due to fewer IPls

* 24% higher throughput
* 23.8% lower average latency

 Less time in flush_tlb_mm_range()

* 20.3% 2 0.1%
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Conclusions

* FastMap, an optimized mmio path in Linux
e Scalable with number of threads & low CPU overhead

* FastMap has significant benefits for data-intensive applications

» Fast storage devices
* Multi-core servers

* Up to 11.8x more IOPS with 80 cores and null_blk
* Up to 5.2x more IOPS with 32 cores and Intel Optane SSD
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