
Reverse Debugging of Kernel Failures 
in Deployed Systems

Xinyang Ge, Ben Niu and Weidong Cui

Microsoft Research

USENIX Annual Technical Conference, 2020



What happened 
before the crash?





REPT: Reverse Execution with Processor Trace



REPT: Reverse Execution with Processor Trace

• A practical reverse debugging solution for user-mode failures [OSDI’18]

• Online hardware tracing (e.g., Intel Processor Trace)
• Log the control flow with timestamps
• Low runtime overhead (1-5%)
• No data!

• Offline binary analysis
• Recovers data flow from the control flow

How to make REPT support the kernel?



USER

KERNEL

How REPT works?



USER

KERNEL

How REPT works?



USER

KERNEL

How REPT works?



USER

KERNEL

How REPT works?



USER

KERNEL

add rax,rbx
rax=3,rbx=1

rax=?,rbx=?

How REPT works?



USER

KERNEL

add rax,rbx
rax=3,rbx=1

rax=2,rbx=1

How REPT works?



Can we simply inverse the tracing?



Can we simply inverse the tracing?

• There are too many processes/threads on a system
• High memory overhead for tracing

• Hardware events must be emulated in addition to CPU instructions
• Interrupts

• Exceptions

• System calls



Here comes Kernel REPT…



USER

KERNEL

context switch

… is irreversible, and we log it in software.



USER

KERNEL

syscalls interrupts/
exceptions



USER

KERNEL

syscalls interrupts/
exceptions

Interrupt Descriptor Table

INTERRUPT GATE 0

INTERRUPT GATE 1

INTERRUPT GATE 2

INTERRUPT GATE N

Different events can have 
different architectural effects

Kernel Stack

SS

RSP

RFLAGS

CS

RIP

Error Code
Stack Pointer



That’s it?



Automated Analyses

• A common bug pattern: missing undo operations
• EnterCriticalRegion vs LeaveCriticalRegion

• Root-Cause Analysis
• Scan the kernel execution trace to find missing undo operations

• Proactive Bug Detector
• Sanitize the kernel execution based on specified invariants

• 17 new bugs found and fixed!



Demo



Conclusion

• Debugging production kernel failures is hard

• REPT now supports the reverse debugging of the kernel
• Per-core control flow tracing in hardware
• Context switch logging in software
• Recovers data flow via CPU instruction and hardware event emulation

• REPT enables automated analysis beyond reverse debugging
• Root-cause analysis
• Sanitizing analysis


