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What happened 
before the crash?





REPT: Reverse Execution with Processor Trace



REPT: Reverse Execution with Processor Trace

• A practical reverse debugging solution for user-mode failures [OSDI’18]

• Online hardware tracing (e.g., Intel Processor Trace)
• Log the control flow with timestamps
• Low runtime overhead (1-5%)
• No data!

• Offline binary analysis
• Recovers data flow from the control flow

How to make REPT support the kernel?
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Can we simply inverse the tracing?



Can we simply inverse the tracing?

• There are too many processes/threads on a system
• High memory overhead for tracing

• Hardware events must be emulated in addition to CPU instructions
• Interrupts

• Exceptions

• System calls



Here comes Kernel REPT…
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context switch

… is irreversible, and we log it in software.
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exceptions

Interrupt Descriptor Table

INTERRUPT GATE 0

INTERRUPT GATE 1

INTERRUPT GATE 2

INTERRUPT GATE N

Different events can have 
different architectural effects

Kernel Stack

SS

RSP

RFLAGS

CS

RIP

Error Code
Stack Pointer



That’s it?



Automated Analyses

• A common bug pattern: missing undo operations
• EnterCriticalRegion vs LeaveCriticalRegion

• Root-Cause Analysis
• Scan the kernel execution trace to find missing undo operations

• Proactive Bug Detector
• Sanitize the kernel execution based on specified invariants

• 17 new bugs found and fixed!



Demo



Conclusion

• Debugging production kernel failures is hard

• REPT now supports the reverse debugging of the kernel
• Per-core control flow tracing in hardware
• Context switch logging in software
• Recovers data flow via CPU instruction and hardware event emulation

• REPT enables automated analysis beyond reverse debugging
• Root-cause analysis
• Sanitizing analysis


