
PinK: High-speed In-storage
Key-value Store with Bounded Tails

Junsu Im, Jinwook Bae, Chanwoo Chung*,

Arvind*, and Sungjin Lee

Daegu Gyeongbuk Institute of Science & Technology (DGIST)

*Massachusetts Institute of Technology (MIT)

2020 USENIX Annual Technical Conference (ATC’ 20, July 15 ~ 17)

DATA-INTENSIVE

COMPUTING SYSTEMS

LABORATORY

 Key-Value store (KVS) has become a necessary infrastructure

Key-Value Store is Everywhere!

2

Web indexing, Caching, Storage systems Algorithm
 SILK (ATC’19),

 Dostoevsky (SIGMOD’18)

 Monkey (SIGMOD’17) …

 System
 FlashStore (VLDB’10)

 Wisckey (FAST’16)

 LOCS (Eurosys’14) …

 Architecture
 Bluecache (VLDB’16) …

Key-Value Interface

KV-SSD Device Driver

KV-SSD

Host KVS Engine

Block Device Driver

Block-SSD

Key-Value (KV) Storage Device

3

Web indexing, Caching, Storage systems

Offloading KVS
functionality

Fewer Host Resources
Low Latency
High Throughput

capacitior

Key-Value Interface

KV-SSD Device Driver

KV-SSD

Host KVS Engine

Block Device Driver

Block-SSD

Key-Value (KV) Storage Device

4

Web indexing, Caching, Storage systems

Offloading KVS
functionality

Fewer Host Resources
Low Latency
High Throughput

 Academia
 LightStore (ASPLOS’19),

KV-SSD (SYSTOR’19),
iLSM-SSD(MASCOTS’19)
KAML (HPCA’17), NVMKV(ATC’15),
Bluecache (VLDB’16) …

 Industry
 Samsung’s KV-SSD

 1. Limited DRAM resource

 SSDs usually have DRAM as much as 0.1% of NAND for indexing!

 Logical block: 4KB > KV-pair: 1KB on average

 DRAM scalability
slower than NAND!

Key Challenges of Designing KV-SSD

5

NAND Scalability DRAM Scalability

1.43x / year 1.13x / year

4KB

DRAM

1KB

DRAM

Technology and Cost Trends at Advanced Nodes, 2020,

https://semiwiki.com/wp-content/uploads/2020/03/Lithovision-2020.pdf

Key Challenges of Designing KV-SSD (Cont.)

6

Which algorithm is better for KV-SSD with these limitations,
Hash or Log-structured Merge-tree (LSM-tree)?

 2. Limited CPU performance

 SSDs have low power CPU (ARM based)

x86 CPU ARM CPU

 Samsung KV-SSD prototype

 hash-based KV-SSD*

 Benchmark

 KV-SSD: KVBench**,
32B key and 1KB value
read request

 Block-SSD: FIO,

1KB read request

7

Experiments using Hash-based KV-SSD

What is the reason?

/ / / / / /

Long tail latency Performance drop

*KV-PM983, **Samsung KV-SSD benchmark tool

8

Problem of Hash-based KV-SSD

Full key (32B) Pointer to value (4B)

Signature (2B) Pointer to KV (4B)

SSD: 4TB, DRAM:4GB

144GB >> 4GB

24GB > 4GB

KAML (HPCA’17)

Flashstore (VLDB’10)

Key: 32B, Value: 1KB

Value

Full key and Value

Hash bucket

probing

In-flash hash buckets

cached hash buckets

Flash Access

Read other KV-pair

DRAM

Flash

9

Problem of Hash-based KV-SSD
Get (key 7)

Bucket

Hash
Function

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket 5

Signature Ptr

2000

2001

2002

2003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket

Signature Ptr

1000

1001

1002

1003

Bucket 9

Signature Ptr

1004

1005

1006

1007

KEY: 7,Value

Bucket 10

Signature Ptr

1000

1001

1002

1003

LRU Cache

Bucket 10
Signature: 1000

Signature Collision

Cache miss
Performance Drop

Long tail latency

KEY: 10, ValueKEY:16, Value

Key is not 7Key is not 7

 Another Option “LSM-tree”

 Low DRAM requirement

 No collision

 Easy to serve range query

10

LSM-tree?

Is the LSM-tree really good enough?

11

Problem of LSM-tree-based KV-SSD

DRAM

Flash

4 15 20

Value Value Value Indices

Bloom filter

Indices

Bloom filter

Level 0: Memtable

Indices

Bloom filter

Level 1 Level 2 Level h

Get (key 7)

Indices

fh(7)

V1 V2 V4 V8

Indices

fh(7)

V1 V3 V11 V12

Indices

fh(7)

V4 V5 V6 V7

no key 7 : false positive no key 7 : false positive finally key 7 found

 1. Long tail latency! In the worst case,
h-1 flash accesses for 1 KV

(h = height of LSM-tree)

pass pass pass
…

0

 2. CPU overhead!

 Merge sort in compaction

 Building bloom filters

 3. I/O overhead!

 Compaction I/O added by LSM-tree

12

Problem of LSM-tree-based KV-SSD

ARM CPU

15 13 11 9 7

Level N

16 14 12 10 8

Level N+1 6 5 4 3 2 1

New Level N+1

Bloom filter

13

Experiments using LSM-tree-based KV-SSD

 Lightstore*: LSM-tree-based KV-SSD

 Key-value separation (Wisckey**) and Bloom filter (Monkey***)

 Benchmark

 Lightstore: YCSB-LOAD and YCSB-C (Read only),
32B key and 1KB value

YCSB-CCompaction time-breakdown

Long tail latency

*ASPLOS’19, **FAST’16, ***SIGMOD’17

PinK : New LSM-tree-based KV-SSD

14

 Long tail latency?

 Using “Level-pinning”

 CPU overhead?

 “No Bloom filter”

 “HW accelerator” for compaction

 I/O overhead?

 Reducing compaction I/O
by level-pinning

 Optimizing GC by
reinserting valid data to LSM-tree

L0

L1

L2

L3

DRAM

Flash

L0

L1

L2

L3

DRAM

Flash

Bloom filter

Level N

Level N+1
Level N+1

Level N

Level N+1

Level N+1

Introduction

PinK

Overview of LSM-tree in PinK

Bounding tail latency

Memory requirement

Reducing search overhead

Reducing compaction I/O

Reducing sorting time

Experiments

Conclusion

16

Level list (sorted array)

Skiplist

DRAM

Flash

Level 0
KV KV KV KV

 PinK is based on key-value separated LSM-tree

Overview of LSM-tree in PinK

2 4 11 19 2 K K KV V V V

Meta segment area Data segment area

Pointer to KVMeta segment Data segment

…

Level 1 2 23

Level 2

Level h-1 …

…

Start key

Address pointer

Bounding Tail Latency

17

…

GET

LSM-tree: # of Levels 5

DRAM

Flash

…

…

GET

PinK

DRAM

Flash

…

…

…

Level list

Meta segment

Bloom filter

Binary search

Binary search

Binary search

Binary search

Binary search

In worst case,
1 flash access!

In worst case,
4 flash access!

LSM-tree with bloom filter

Memory
usage?

Binary search

L1

L2

L3

L4

L1

L2

L3

L4

 4TB SSD, 4GB DRAM (32B key, 1KB value)
 Total # of levels: 5

Memory Requirement

18

DRAM

Flash

…

…

Level list

Meta segment

KV KV KV KVSkip list (L0) 8MB

432MB

3.5 GB < 4GB

Only one flash access for indexing

L1

L2

L3

L4

1 level: 1.47MB

2 levels: 68MB

3 levels: 3.1GB

4 levels: 144GB

 Fractional cascading

Reducing Search Overhead

19

Binary search

Binary search

Binary search

Binary search

…

search complexity is

…

Binary search on overlapped range

Binary search

Binary search

𝑂(ℎ2 log(𝑇)) 𝑂(ℎ log(𝑇))

……

Burdensome!

Binary search

Range pointer

h

× T

× T

× T

Reducing Search Overhead

20

…

…

 Prefix

 Less compare overhead

 Cache efficient search

…

Binary search

Binary search

Binary search

Binary search on same prefix

Binary search on keys

Prefix (4B)

Key (32B) Ptr (4B)

“Prefix” and “range pointer” memory usage:
about 10% of level list

Reducing Compaction I/O

21

DRAM

Flash

2 5 6 9

…

1 3

DRAM

Flash

2 5 6 9

1 3

…

…

…

PinK without level-pinning PinK with level-pinning

1 2 3 5 6 9

Update level list

1 2 3 5 6 9

Update level list

Full Full

6 read & 6 write No read & write

Burdensome!

capacitior

Reducing Sorting Time

ARM CPU

PinK

New
level list of Ln+1

15 14 11 9 2

Ln

16 14 12 10 2

Ln+1

Key Comparator
(==, >, <)

Ln Meta segment
addresses

Ln+1 Meta segment
addresses

New address for
Meta segments

22

DRAM

Flash

DRAM

Flash

DRAM

Flash
Read DRAM or Flash

Write DRAM or Flash

 Long tail latency?

Using level-pinning

 CPU overhead?

Removing Bloom filter

Optimizing binary search

Adopting HW accelerator

 I/O overhead?

Reducing compaction I/O

Optimizing GC by
reinserting valid data to LSM-tree

PinK Summary

23

L0

L1

L2

L3

DRAM

Flash

L0

L1

L2

L3

DRAM

Flash

Bloom filter

Please refer to the paper!

ARM CPU

Introduction

PinK

Experiments

Conclusion

Zynq Ultrascale+ SoC

(Quad-core ARM Cortex-A53

with FPGA)

4GB DRAM

Raw NAND

Flash chips

(256GB)

Expansion Card

Connectors

Artix7 FPGA

Xilinx ZCU102

Custom

Flash Card

Custom KV-SSD Prototype and Setup

25

 All algorithms for KV-SSD were implemented on ZCU102 board

 For fast experiments: 64GB SSD, 64 MB DRAM (0.1% of NAND capacity)

10GbE NIC

Xeon E5-2640

(20 cores @ 2.4 GHz)

32GB DRAM

10GbE

KV-SSD platformClient Server

Benchmark Setup

26

 YCSB: 32B key, 1KB value

 Two phases

 Load: issue unique 44M KV pairs (44GB, 70% of total SSD)

 Run: issue 44M KV pairs following workload description

Load A B C D E F

R:W ratio 0:100 50:50 95:5 100:0 95:5 95:5 50:50(RMW)

Query type Point Range read Point

Request

distribution
Uniform Zipfian

Latest
(Highest locality)

Zipfian

Testing Algorithms

27

 Hash

 8-bit signature: total 320MB buckets

 LSM-tree

 The conventional LSM-tree implementation based on Lightstore*

 Total 5 levels (1~4 level in flash)

 PinK

 Total 5 levels (pinning top 3 levels, one level in flash)

 PinK+HW

 Using HW accelerator for compaction based on PinK

Hash LSM-tree PinK, PinK+HW

64MB DRAM LRU bucket caching (64MB)
Level list (9MB)

Bloom filter (55MB)

Level list + prefix, range (10MB)

Level-pinning (54MB)

*ASPLOS’19

Experiment: Throughput

28

156%21%

37% higher than Hash
44% higher than LSM-tree

Read Only

Experiment: Latency

29

Experiment: Impact of Level-pinning

30

 Settings
 PinK (NO-OPT): PinK without prefix and range pointer

 Benchmark: YCSB-Load and YCSB-C

Experiment: Search Optimization

31

LSM-tree PinK

 Benchmark: YCSB-C

 # of total levels: 4 ~ 8

 PinK

of levels: 4, 5

 Unpinned-level: 1

of levels: 6, 7

 Unpinned-level: 2

of levels:8

 Unpinned-level: 3

Experiment: Level-pinning on Higher LSM-tree

32

Same memory

Bad write performance

Good write performance
Bad read performance

Good write performance

Introduction

PinK

Experiments

Conclusion

Conclusion

34

 Since the conventional KV-SSD’s algorithms did not consider the
embedded system’s limitations well, they have suffered from long
tail latency and throughput degradation

 PinK

 Pinning KV indices of top levels of LSM-tree to DRAM to reduce
latency

 Using HW accelerator for compaction sorting

 Benefits

 99 percentile tail latency: 73%

 Average latency: 42%

 Throughput : 37%

Thank You !

Junsu Im (junsu_im@dgist.ac.kr)

35

