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 Key-Value store (KVS) has become a necessary infrastructure

Key-Value Store is Everywhere!
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Web indexing, Caching, Storage systems  Algorithm
 SILK (ATC’19), 

 Dostoevsky (SIGMOD’18)

 Monkey (SIGMOD’17) …

 System
 FlashStore (VLDB’10)

 Wisckey (FAST’16)

 LOCS (Eurosys’14) …

 Architecture
 Bluecache (VLDB’16) …



Key-Value Interface

KV-SSD Device Driver

KV-SSD

Host KVS Engine

Block Device Driver

Block-SSD

Key-Value (KV) Storage Device
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Web indexing, Caching, Storage systems

Offloading KVS
functionality

Fewer Host Resources
Low Latency
High Throughput

capacitior
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Web indexing, Caching, Storage systems

Offloading KVS
functionality

Fewer Host Resources
Low Latency
High Throughput

 Academia
 LightStore (ASPLOS’19),

KV-SSD (SYSTOR’19),
iLSM-SSD(MASCOTS’19)
KAML (HPCA’17), NVMKV(ATC’15), 
Bluecache (VLDB’16) …

 Industry
 Samsung’s KV-SSD



 1. Limited DRAM resource

 SSDs usually have DRAM as much as 0.1% of NAND for indexing!

 Logical block: 4KB > KV-pair: 1KB on average

 DRAM scalability
slower than NAND!

Key Challenges of Designing KV-SSD
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NAND Scalability DRAM Scalability

1.43x / year 1.13x / year

4KB

DRAM

1KB

DRAM

Technology and Cost Trends at Advanced Nodes, 2020,

https://semiwiki.com/wp-content/uploads/2020/03/Lithovision-2020.pdf



Key Challenges of Designing KV-SSD (Cont.)
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Which algorithm is better for KV-SSD with these limitations,
Hash or Log-structured Merge-tree (LSM-tree)?

 2. Limited CPU performance

 SSDs have low power CPU (ARM based)

x86 CPU ARM CPU



 Samsung KV-SSD prototype

 hash-based KV-SSD*

 Benchmark

 KV-SSD: KVBench**, 
32B key and 1KB value 
read request

 Block-SSD: FIO,

1KB read request
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Experiments using Hash-based KV-SSD

What is the reason?

/ / / / / /

Long tail latency Performance drop

*KV-PM983, **Samsung KV-SSD benchmark tool
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Problem of Hash-based KV-SSD

Full key (32B) Pointer to value (4B)

Signature (2B) Pointer to KV (4B)

SSD: 4TB, DRAM:4GB

144GB >> 4GB

24GB > 4GB

KAML (HPCA’17)

Flashstore (VLDB’10)

Key: 32B, Value: 1KB

Value

Full key and Value

Hash bucket



probing

In-flash hash buckets

cached hash buckets

Flash Access

Read other KV-pair

DRAM

Flash
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Problem of Hash-based KV-SSD
Get (key 7)

Bucket

Hash 
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KEY: 7,Value

Bucket 10

Signature Ptr

1000

1001

1002

1003

LRU Cache

Bucket 10
Signature: 1000 

Signature Collision

Cache miss
Performance Drop

Long tail latency

KEY: 10, ValueKEY:16, Value

Key is not 7Key is not 7



 Another Option “LSM-tree”

 Low DRAM requirement

 No collision

 Easy to serve range query
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LSM-tree?

Is the LSM-tree really good enough?
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Problem of LSM-tree-based KV-SSD

DRAM

Flash

4 15 20

Value Value Value Indices

Bloom filter

Indices

Bloom filter

Level 0: Memtable

Indices

Bloom filter

Level 1 Level 2 Level h

Get (key 7)

Indices

fh(7)

V1 V2 V4 V8

Indices

fh(7)

V1 V3 V11 V12

Indices

fh(7)

V4 V5 V6 V7

no key 7 : false positive no key 7 : false positive finally key 7 found

 1. Long tail latency! In the worst case,
h-1 flash accesses for 1 KV

(h = height of LSM-tree)

pass pass pass
…

0



 2. CPU overhead!

 Merge sort in compaction

 Building bloom filters

 3. I/O overhead!

 Compaction I/O added by LSM-tree
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Problem of LSM-tree-based KV-SSD

ARM CPU

15 13 11 9 7

Level N

16 14 12 10 8

Level N+1 6 5 4 3 2 1

New Level N+1

Bloom filter
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Experiments using LSM-tree-based KV-SSD

 Lightstore*: LSM-tree-based KV-SSD

 Key-value separation (Wisckey**) and Bloom filter (Monkey***)

 Benchmark

 Lightstore: YCSB-LOAD and YCSB-C (Read only), 
32B key and 1KB value

YCSB-CCompaction time-breakdown

Long tail latency

*ASPLOS’19, **FAST’16, ***SIGMOD’17



PinK : New LSM-tree-based KV-SSD 
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 Long tail latency?

 Using “Level-pinning”

 CPU overhead?

 “No Bloom filter”

 “HW accelerator” for compaction

 I/O overhead?

 Reducing compaction I/O 
by level-pinning

 Optimizing GC by 
reinserting valid data to LSM-tree

L0

L1

L2

L3

DRAM

Flash

L0

L1

L2

L3

DRAM

Flash

Bloom filter

Level N

Level N+1
Level N+1

Level N

Level N+1

Level N+1



Introduction

PinK

Overview of LSM-tree in PinK

Bounding tail latency

Memory requirement

Reducing search overhead

Reducing compaction I/O

Reducing sorting time

Experiments

Conclusion
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Level list (sorted array)

Skiplist

DRAM

Flash

Level 0
KV KV KV KV

 PinK is based on key-value separated LSM-tree

Overview of LSM-tree in PinK

2 4 11 19 2 K K KV V V V

Meta segment area Data segment area

Pointer to KVMeta segment Data segment

…

Level 1 2 23

Level 2

Level h-1 …

…

Start key

Address pointer



Bounding Tail Latency
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…

GET

LSM-tree: # of Levels 5

DRAM

Flash

…

…

GET

PinK

DRAM

Flash

…

…

…

Level list

Meta segment

Bloom filter

Binary search

Binary search

Binary search

Binary search

Binary search

In worst case, 
1 flash access!

In worst case,
4 flash access!

LSM-tree with bloom filter

Memory 
usage?

Binary search

L1

L2

L3

L4

L1

L2

L3

L4



 4TB SSD, 4GB DRAM (32B key, 1KB value)
 Total # of levels: 5

Memory Requirement
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DRAM

Flash

…

…

Level list

Meta segment

KV KV KV KVSkip list (L0) 8MB

432MB

3.5 GB < 4GB

Only one flash access for indexing

L1

L2

L3

L4

1 level: 1.47MB

2 levels: 68MB

3 levels: 3.1GB

4 levels: 144GB



 Fractional cascading

Reducing Search Overhead
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Binary search

Binary search

Binary search

Binary search

…

search complexity is 

…

Binary search on overlapped range

Binary search

Binary search

𝑂(ℎ2 log(𝑇)) 𝑂(ℎ log(𝑇))

……

Burdensome!

Binary search

Range pointer

h

× T

× T

× T



Reducing Search Overhead
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…

…

 Prefix

 Less compare overhead 

 Cache efficient search

…

Binary search

Binary search

Binary search

Binary search on same prefix

Binary search on keys

Prefix (4B)

Key (32B) Ptr (4B)

“Prefix” and “range pointer” memory usage:  
about 10% of level list



Reducing Compaction I/O
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DRAM

Flash

2 5 6 9

…

1 3

DRAM

Flash

2 5 6 9

1 3

…

…

…

PinK without level-pinning PinK with level-pinning 

1 2 3 5 6 9

Update level list

1 2 3 5 6 9

Update level list

Full Full

6 read & 6 write No read &  write

Burdensome!

capacitior



Reducing Sorting Time

ARM CPU

PinK

New
level list of Ln+1

15 14 11 9 2

Ln

16 14 12 10 2

Ln+1

Key Comparator
(==, >, <)

Ln Meta segment 
addresses

Ln+1 Meta segment 
addresses

New address for
Meta segments
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DRAM

Flash

DRAM

Flash

DRAM

Flash
Read DRAM or Flash

Write DRAM or Flash



 Long tail latency?

Using level-pinning

 CPU overhead?

Removing Bloom filter

Optimizing binary search

Adopting HW accelerator

 I/O overhead?

Reducing compaction I/O

Optimizing GC by 
reinserting valid data to LSM-tree

PinK Summary
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L0

L1

L2

L3

DRAM

Flash

L0

L1

L2

L3

DRAM

Flash

Bloom filter

Please refer to the paper!

ARM CPU



Introduction

PinK

Experiments

Conclusion



Zynq Ultrascale+ SoC

(Quad-core ARM Cortex-A53

with FPGA)

4GB DRAM

Raw NAND

Flash chips

(256GB)

Expansion Card 

Connectors

Artix7 FPGA

Xilinx ZCU102

Custom 

Flash Card

Custom KV-SSD Prototype and Setup
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 All algorithms for KV-SSD were implemented on ZCU102 board

 For fast experiments: 64GB SSD, 64 MB DRAM (0.1% of NAND capacity)

10GbE NIC

Xeon E5-2640

(20 cores @ 2.4 GHz)

32GB DRAM

10GbE 

KV-SSD platformClient Server



Benchmark Setup
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 YCSB: 32B key, 1KB value

 Two phases

 Load: issue unique 44M KV pairs (44GB, 70% of total SSD)

 Run: issue 44M KV pairs following workload description

Load A B C D E F

R:W ratio 0:100 50:50 95:5 100:0 95:5 95:5 50:50(RMW)

Query type Point Range read Point

Request

distribution
Uniform Zipfian

Latest 
(Highest locality)

Zipfian



Testing Algorithms
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 Hash

 8-bit signature: total 320MB buckets

 LSM-tree 

 The conventional LSM-tree implementation based on Lightstore*

 Total 5 levels (1~4 level in flash)

 PinK

 Total 5 levels (pinning top 3 levels, one level in flash)

 PinK+HW

 Using HW accelerator for compaction based on PinK

Hash LSM-tree PinK, PinK+HW

64MB DRAM LRU bucket caching (64MB)
Level list (9MB)

Bloom filter (55MB)

Level list + prefix, range (10MB) 

Level-pinning (54MB)

*ASPLOS’19



Experiment: Throughput
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156%21%

37% higher than Hash
44% higher than LSM-tree

Read Only



Experiment: Latency
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Experiment: Impact of Level-pinning
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 Settings
 PinK (NO-OPT): PinK without prefix and range pointer

 Benchmark: YCSB-Load and YCSB-C

Experiment: Search Optimization
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LSM-tree PinK

 Benchmark: YCSB-C

 # of total levels: 4 ~ 8

 PinK

# of  levels: 4, 5

 Unpinned-level: 1

# of levels: 6, 7

 Unpinned-level: 2

# of levels:8

 Unpinned-level: 3

Experiment: Level-pinning on Higher LSM-tree
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Same memory

Bad write performance

Good write performance
Bad read performance

Good write performance



Introduction

PinK

Experiments

Conclusion



Conclusion

34

 Since the conventional KV-SSD’s algorithms did not consider the 
embedded system’s limitations well, they have suffered from long 
tail latency and throughput degradation

 PinK

 Pinning KV indices of top levels of LSM-tree to DRAM to reduce 
latency

 Using HW accelerator for compaction sorting

 Benefits

 99 percentile tail latency: 73%

 Average latency: 42%

 Throughput : 37%



Thank You !

Junsu Im (junsu_im@dgist.ac.kr)
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