
AutoSys: The Design and Operation of 
Learning-Augmented Systems

Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong Zhou, Lifei Zhu, Zhao Lucis Li, 
Zibo Wang, Qi Chen, Quanlu Zhang, Chuanjie Liu, Wenjun Dai

Microsoft Research, Peking University, USTC, Bing Platform, Bing Ads

USENIX ATC 20



Learning-Augmented Systems

• Systems whose design methodology or control logic is at the intersection of 
traditional heuristics and machine learning
• Not a stranger to academic communities: “Workshop on ML for Systems”, “MLSys

Conference”, …

• This work reports our years of experience in designing and operating learning-
augmented systems in production

1. AutoSys framework

2. Long-term operation lessons



Our Scope in This Paper:
Auto-tuning System Config Parameters

• The problem is simple…
• A great application of black-box optimization

• Find the configuration that best optimizes the performance counters

System

Performance 
counters

Storage

Inputs Outputs

NetworkHardware

Software

Configuration 
parameters



Our Scope in This Paper:
Auto-tuning System Config Parameters

• But, the problem is very difficult for system operators in practice…
• Vast system-specific parameter search space

• Continual optimization based on system-specific triggers

System

Performance 
counters

Storage

Inputs Outputs

NetworkHardware

Software

Configuration 
parameters



Our Scope in This Paper:
Bing Web Search

Re-ranking ServiceRanking ServiceSelection Service

Inverted
index

Server

Selection engines

Per-document 
forward index

Server

Ranking engines

Server

...

KV cluster

Key-value store engines

Search 
query

Search 
results

...

Vectorized
index

Keyword-based Semantics-based ML/DL Models

Re-ranking engines

RocksDB MLFT

...



Our Scope in This Paper:
Bing Web Search

Re-ranking ServiceRanking ServiceSelection Service

Inverted
index

Server

Selection engines

Per-document 
forward index

Server

Ranking engines

Server

...

KV cluster

Key-value store engines

Search 
query

Search 
results

...

Vectorized
index

Keyword-based Semantics-based ML/DL Models

Re-ranking engines

RocksDB MLFT

...

Auto-tuning Selection 
engines to optimally select 
relevant documents



Our Scope in This Paper:
Bing Web Search

Re-ranking ServiceRanking ServiceSelection Service

Inverted
index

Server

Selection engines

Per-document 
forward index

Server

Ranking engines

Server

...

KV cluster

Key-value store engines

Search 
query

Search 
results

...

Vectorized
index

Keyword-based Semantics-based ML/DL Models

Re-ranking engines

RocksDB MLFT

...

Auto-tuning Ranking models 
to optimally rank documents



Our Scope in This Paper:
Bing Web Search

Re-ranking ServiceRanking ServiceSelection Service

Inverted
index

Server

Selection engines

Per-document 
forward index

Server

Ranking engines

Server

...

KV cluster

Key-value store engines

Search 
query

Search 
results

...

Vectorized
index

Keyword-based Semantics-based ML/DL Models

Re-ranking engines

RocksDB MLFT

...
Auto-tuning key-value stores 
to reduce lookup latency



Towards A Unified Framework - AutoSys

• Addressing common pain points in building learning-augmented systems
• Job scheduling and prioritization for sequential optimization approaches

• Handling learning-induced system failures (due to ML inference uncertainty)

• Generality and extensibility

• Lowering the cost of bootstrapping new scenarios, by sharing data and models
• System deployments typically contain replicated service instances

• Different system deployments can contain the same service 

• Facilitating computation resource sharing
• Difficult to provision job resources

• Jobs in AutoSys are ad-hoc and nondeterministic



Jobs Within AutoSys

• AutoSys jobs are ad-hoc:
• Jobs are triggered in response to system and workload dynamics

• AutoSys jobs are nondeterministic:
• Jobs are spawned as necessary, according to optimization progress at runtime

• Job completion time depends on system benchmarks and runtime (e.g., cache warmup)

Types Descriptions Examples

Tuners Executes (1) ML/DL model training and inferencing, and (2)
optimization solver

Hyperband, TPE, SMAC, 
Metis, random search, …

Trials Executes system explorations RocksDB, …



Target System #1

Overview

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime



Overview – Learning

Target System #1

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime



Overview – Learning

Target System #1

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime

1.) From assessing current model progress, AutoSys 
generates benchmark candidates to iteratively improve the 
model
• Exploration: benchmarks that are of high uncertainty
• Exploitation: benchmarks that are likely being optimal
• Re-sampling: benchmarks that likely contain measurement noises or 

outliers



Overview – Learning

Target System #1

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime

2.) AutoSys prioritizes benchmark candidates, according to 
how likely they would help discover the optimum in the 
search space
• E.g., its Metis tuner uses Gaussian process to estimate the 

information gain
• E.g., its TPE tuner uses two GMM to estimate the likelihood of a 

candidate being the optimum



Overview – Auto-Tuning Actuations

Target System #1

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime



Overview – Auto-Tuning Actuations

Target System #1

Training Plane Inference Plane

Control Interface

Candidate Generator

Model TrainerTrial Manager

Model Repository

Rule Engine

Inference Runtime

Target System #2

Control Interface

Inference Plane

Rule Engine

Inference Runtime

3.) As it is difficult to formally verify ML/DL correctness, 
AutoSys opts to validate ML/DL outputs with a rule-based 
engine.
• Useful for validating parameter value constraints and dependencies
• Useful for preventing known bad configurations from be applied
• Useful for implementing triggers based on the system’s actuation 

feedback



Summary of Production Deployments

Tuning time Key results (vs. long-term expert tuning)

Keyword-based Selection 
Engine (KSE)

1 week Up to 33.5% and 11.5% reduction in 99-percentile
latency and CPU utilization, respectively

Semantics-based Selection 
Engine (SSE)

1 week Up to 20.0% reduction in average latency

Ranking Engine (RE) 1 week 3.4% improvement in NDCG@5

RocksDB key-value cluster 
(RocksDB)

2 days Lookup latency on-par with years of expert tuning

Multi-level Time and 
Frequency-value cluster (MLTF)

1 week 16.8% reduction on avg in 99-percentile latency



Long-term Lessons Learned

Higher-than-expected learning costs

• Various types of system dynamics can frequently trigger re-training
• System deployments can scale up/down over time

• Workloads can drift over time

• Learning large-scale system deployments can be costly
• Testbeds might not match the scale and fidelity of the production environment

• It is typically infeasible to explore system behavior in the production environment



Long-term Lessons Learned

Pitfalls of human-in-the-Loop

• Human experts can inject biases into training datasets
• E.g., human experts can provide labeled data points for certain search space regions

• Human errors can prevent AutoSys from functioning correctly
• E.g., wrong parameter value ranges



Long-term Lessons Learned

System control interfaces should abstract system measurements and logs to 
facilitate learning

• Many systems distribute configuration parameters and error messages over a 
set of not-well documented files and logs

• Many system feedbacks are not natively learnable, e.g., stack traces and core 
dump

• Some systems require customized measurement aggregation and cleaning



Conclusion

• This work reports our years of experience in designing and operating learning-
augmented systems in production

1. AutoSys framework, for unifying the development at Microsoft

2. Long-term operation lessons

• Core components of AutoSys are publicly available at 
https://github.com/Microsoft/nni

https://github.com/Microsoft/nni


Mike Liang
Systems and Networking Research Group
Microsoft Research Asia

liang.mike@microsoft.com

www.microsoft.com/en-us/research/people/cmliang


