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Learning-Augmented Systems

• Systems whose design methodology or control logic is at the intersection of 
traditional heuristics and machine learning
• Not a stranger to academic communities: “Workshop on ML for Systems”, “MLSys

Conference”, …

• This work reports our years of experience in designing and operating learning-
augmented systems in production

1. AutoSys framework

2. Long-term operation lessons



Our Scope in This Paper:
Auto-tuning System Config Parameters

• The problem is simple…
• A great application of black-box optimization

• Find the configuration that best optimizes the performance counters
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Our Scope in This Paper:
Auto-tuning System Config Parameters

• But, the problem is very difficult for system operators in practice…
• Vast system-specific parameter search space

• Continual optimization based on system-specific triggers
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Our Scope in This Paper:
Bing Web Search
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Towards A Unified Framework - AutoSys

• Addressing common pain points in building learning-augmented systems
• Job scheduling and prioritization for sequential optimization approaches

• Handling learning-induced system failures (due to ML inference uncertainty)

• Generality and extensibility

• Lowering the cost of bootstrapping new scenarios, by sharing data and models
• System deployments typically contain replicated service instances

• Different system deployments can contain the same service 

• Facilitating computation resource sharing
• Difficult to provision job resources

• Jobs in AutoSys are ad-hoc and nondeterministic



Jobs Within AutoSys

• AutoSys jobs are ad-hoc:
• Jobs are triggered in response to system and workload dynamics

• AutoSys jobs are nondeterministic:
• Jobs are spawned as necessary, according to optimization progress at runtime

• Job completion time depends on system benchmarks and runtime (e.g., cache warmup)

Types Descriptions Examples

Tuners Executes (1) ML/DL model training and inferencing, and (2)
optimization solver

Hyperband, TPE, SMAC, 
Metis, random search, …

Trials Executes system explorations RocksDB, …
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1.) From assessing current model progress, AutoSys 
generates benchmark candidates to iteratively improve the 
model
• Exploration: benchmarks that are of high uncertainty
• Exploitation: benchmarks that are likely being optimal
• Re-sampling: benchmarks that likely contain measurement noises or 

outliers



Overview – Learning
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2.) AutoSys prioritizes benchmark candidates, according to 
how likely they would help discover the optimum in the 
search space
• E.g., its Metis tuner uses Gaussian process to estimate the 

information gain
• E.g., its TPE tuner uses two GMM to estimate the likelihood of a 

candidate being the optimum



Overview – Auto-Tuning Actuations
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Overview – Auto-Tuning Actuations
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3.) As it is difficult to formally verify ML/DL correctness, 
AutoSys opts to validate ML/DL outputs with a rule-based 
engine.
• Useful for validating parameter value constraints and dependencies
• Useful for preventing known bad configurations from be applied
• Useful for implementing triggers based on the system’s actuation 

feedback



Summary of Production Deployments

Tuning time Key results (vs. long-term expert tuning)

Keyword-based Selection 
Engine (KSE)

1 week Up to 33.5% and 11.5% reduction in 99-percentile
latency and CPU utilization, respectively

Semantics-based Selection 
Engine (SSE)

1 week Up to 20.0% reduction in average latency

Ranking Engine (RE) 1 week 3.4% improvement in NDCG@5

RocksDB key-value cluster 
(RocksDB)

2 days Lookup latency on-par with years of expert tuning

Multi-level Time and 
Frequency-value cluster (MLTF)

1 week 16.8% reduction on avg in 99-percentile latency



Long-term Lessons Learned

Higher-than-expected learning costs

• Various types of system dynamics can frequently trigger re-training
• System deployments can scale up/down over time

• Workloads can drift over time

• Learning large-scale system deployments can be costly
• Testbeds might not match the scale and fidelity of the production environment

• It is typically infeasible to explore system behavior in the production environment



Long-term Lessons Learned

Pitfalls of human-in-the-Loop

• Human experts can inject biases into training datasets
• E.g., human experts can provide labeled data points for certain search space regions

• Human errors can prevent AutoSys from functioning correctly
• E.g., wrong parameter value ranges



Long-term Lessons Learned

System control interfaces should abstract system measurements and logs to 
facilitate learning

• Many systems distribute configuration parameters and error messages over a 
set of not-well documented files and logs

• Many system feedbacks are not natively learnable, e.g., stack traces and core 
dump

• Some systems require customized measurement aggregation and cleaning



Conclusion

• This work reports our years of experience in designing and operating learning-
augmented systems in production

1. AutoSys framework, for unifying the development at Microsoft

2. Long-term operation lessons

• Core components of AutoSys are publicly available at 
https://github.com/Microsoft/nni

https://github.com/Microsoft/nni
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