
SweynTooth: Unleashing Mayhem over
Bluetooth Low Energy

Matheus Eduardo Garbelini1, Chundong Wang2, Sudipta Chattopadhyay1,
Sun Sumei3, Ernest Kurniawan3

USENIX Annual Technical Conference 2020, July 15-17
Track 2, The One on the Edge

1 Singapore University of Technology and Design (SUTD)
2 ShanghaiTech University. Work partly done when C. Wang worked at SUTD
3 Institute for Infocomm Research, A*Star

Partially sponsored by Keysight Technologies

Affected SoC Vendors (not exhaustive)

A family of over dozen new vulnerabilities in Bluetooth Low Energy (BLE) implementations
Named after Sweyn Forkbeard who revolted against his father King Harald Bluetooth.

Open Source BLE Stack (not exhaustive)

2

Why the Mayhem?

Many IoTs affected

Comprehensive testing equipment is expensive!
More complexity
More vulnerabilities!

3

A look into Bluetooth flavours - Past Vulnerabilities

Latest Attacks Affected stack
• [2017] BlueBorne (Classic)
• [2018] BleedingBit (BLE)
• [2019] Invalid Curve Attack (Classic/BLE)
• [2019] Knob (Classic)
• [2020] Bias (Classic)

Is everything well tested?

Our Target

Smart
Watch

Smartphone
Device roles – Central vs peripheral

4

Bluetooth Low Energy Overview
Can we test BLE security ourselves with off the shelve hardware?

Central

Peripheral

Connects to

Standard Testing Equipment

Advertises

Our target

 Ellisys Bluetooth
Explorer (Over $10k)

Can we avoid
this setup?

Smart
Watch

Smartphone
Device roles – Central vs peripheral

5

Bluetooth Low Energy Overview

Field Preamble Access
Address

Link Layer
Header PDU Length PDU

Payload CRC

Layer Radio Link Layer Link Layer Link Layer Host Layers Link Layer

Radio 2.4Ghz (GFSK)
Link Layer (LL)

GATT
ATTSMP

Application
GAP

L2CAP

BLE Stack
Can we test BLE security ourselves with off the shelve hardware?

Central

Peripheral

Connects to

BLE Frame

Advertises

Our target

Host

Controller

User

HCI

Host cannot access Link Layer via HCI!
How can we manipulate arbitrary LL fields?

Smart
Watch

Smartphone
Device roles – Central vs peripheral

6

Bluetooth Low Energy Overview
Can we test BLE security ourselves with off the shelve hardware?

Central

Peripheral

Connects to

Advertises

Our target

Main BLE Exchanges

1.

2.

3.

1. Peripheral switches from advertisement channels to data
channels;
2. Pairing procedure is perfomed acording to devices
capabilities;
3. Link Layer encryption (managed only by the controller).

From adv. channel
to data channel

3. Analyse
Data

1. Generate
Input

2. Run
Application

Report Bugs

Next attemptBlack/grey
box software

Crashes

Testing Security by Fuzzing

Output

Inject Input

Feedback

Is it possible to apply fuzzing to lower-level over the air communication?

Challenges:
1. Full control over BLE Link Layer (Including manipulation of the connection procedure)
2. What feedback metric to use? Most BLE stack implementation is closed source.
3. BLE is a heavily stateful protocol, simply mutating the input is not enough.
4. How to detect crashes or anomalies when fuzzing over the air?

7

8

Bluetooth
Controller

USB
Serial-CDC

Introducing a non-compliant controller implementation!

Internal Design

Setup

nRF52_driver_firmware.hex

No HCI
allowed here!

(~10-11USD)

Fuzzing
&

Optimization

Protocol Model
(State Machine)

Anomaly Report & Cost
Calculation

Normal Packet (P)

3.a Fuzzed Packet (P’)

4. Device Response Packet (Pr)

1. Initialization MBLE

3.b Well-crafted Packet sent at wrong state (Pdup)

Bluetooth
Controller

USB
Serial-CDC

TX

R
X

(Smart Home,
Wearables,

Trackers, etc.)

Peripheral

(iv)

2.b Mutation probabilities

9

Fuzzer Arquitecture Overview

Packet
Redundancy

(ii)Packet
Manipulation

(i) Packet
Validation

(iii)

10

Fuzzing BLE Layers - Fields mutation

Packet
Manipulation

(i)

11

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)
TX PKT 1

Transmission

Packet History

Peripheral
Advertises

Protocol Model

1

12

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii) TX PKT 1 Transmission

Packet History

Peripheral
Advertises

Protocol Model

TX PKT 2
2

13

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)
TX PKT 1

Transmission

Packet History

TX PKT 2
TX PKT 3 Peripheral

Advertises
Protocol Model

3

14

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)
TX PKT 1

Transmission

Packet History

TX PKT 2
TX PKT 3

Picked by
random chance

Peripheral
Advertises

Protocol Model

3

15

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)
Peripheral

AdvertisesTransmission

Packet History

TX PKT 2
TX PKT 3
TX PKT 1 Sent after packet 3

Protocol Model TX PKT 1

3

16

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)

TX PKT 1

Peripheral
AdvertisesTransmission

Packet History

TX PKT 2
TX PKT 3

Protocol Model

TX PKT 1
3

17

Fuzzing BLE Layers - Out of order sequences

Packet
Redundancy

(ii)

TX PKT 1

Peripheral
AdvertisesTransmission

Packet History

TX PKT 2
TX PKT 3
TX PKT 4

Redundant packets
are not saved in
packet history again

Protocol Model

4

18

Validation Strategy - Exemplified

Packet
Validation

Valid and invalid responses

19

Validation Strategy - Exemplified

NXP LLID Deadlock
(CVE-2019-17060)

Packet
Validation

Valid and invalid responses

20

Validation Strategy - Exemplified

Packet
Validation

Mixed Valid and invalid responses

21

Validation Strategy - Exemplified

Packet
Validation

Mixed Valid and invalid responses

Validation Strategy - Exemplified

Packet
Validation

Mixed Valid and invalid responses

Key Size Overflow
(CVE-2019-19196)

22

State N.

23

Optimization

Fuzzing
&

Optimization

(iv)
Peripheral

Start of new iteration

Central
(Fuzzer)

State Machine
(Protocol Model)

Mutation Probabilities

State 1.

State 2.

Transmission

Reception

Particle Swarm Optimization
(PSO)

Cost Function:
Total number of anomalies & crashes

24

Evaluation - Setup

SoCs BLE SDK

User
Code

SDK API
BLE Stack

Programmer

BLE SoC

Static Library (binary blob)

Some SoCskeep parts of
the stack in the read-only
memory (ROM)

BLE Firmware Layout

Saved to non-volatile or
static random-access
memory

2. Modify the sample
code to enable SMP,
serial output & flash it

3. Configure the fuzzer
with BLE Public

address of the target

4. Run the fuzzer

5. Get reports &
captures of

anomalies or crashes

6. Manually verify if
anomalies are

security bypass

7. Create PoC &
report vulnerability

(SweynTooth github)

1. Get SoC
Development Board

25

Evaluation - Setup

Serial output
not required, but
recommended

Target BLE SoC Dev. Kits

BlueNRG-2
DA14580

DA14680

CC2640R2

KW41Z

CY5677

CY8CPROTO-63

SAMB11ESP32

TLSR8258
CC2540

nRF51422

nRF52840

WB55

26

Evaluation - Comparison

Qualitative comparison with publicly available tools

• BT Classic only. Adaption was needed for comparison;
• Only a subset of L2CAP is available for BLE;
• Previous Bluetooth fuzzers detect crashes, but not logic problems (anomalies);
• Link Layer was not supported by other fuzzers.

27

Evaluation

Anomalies vs iteration Summary of Evaluation Time for Each Device
(*channel hop Interval = 20ms)

*Same as Connection Interval

28

Evaluation

Anomalies vs iteration Summary of Evaluation Time for Each Device
(*channel hop Interval = 20ms)

Repeated anomaly in
differente states
(LLID Deadlock)

Repeated anomaly in
different states (Multiple
Version indication response)

*Same as Connection Interval

29

Impact - Non-compliance in the wild!

*Test scripts are available on https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks/tree/master/extras
*Details of all vulnerabilities & non-compliances on https://asset-group.github.io/disclosures/sweyntooth/

1st SweynTooth disclosure
(9th February, 2020)
*DHCheck reported later

30

Impact - Non-compliance in the wild!

*Test scripts are available on https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks/tree/master/extras
*Details of all vulnerabilities & non-compliances on https://asset-group.github.io/disclosures/sweyntooth/

Security bypass issues were
found to be a mishandling of
A1 - Encryption setup
happens during SMP pairing
procedure

1st SweynTooth disclosure
(9th February, 2020)
*DHCheck reported later

31

Impact - Non-compliance in the wild!

*Test scripts are available on https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks/tree/master/extras
*Details of all vulnerabilities & non-compliances on https://asset-group.github.io/disclosures/sweyntooth/

Widely spread non-compliance.
hopIncrement is a fundamental field used
during the connection procedure.
Certification didn't catch it?

1st SweynTooth disclosure
(9th February, 2020)
*DHCheck reported later

32

Impact - Non-compliance in the wild!

*Test scripts are available on https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks/tree/master/extras
*Details of all vulnerabilities & non-compliances on https://asset-group.github.io/disclosures/sweyntooth/

2nd SweynTooth disclosure
(13th July, 2020)

33

Some affected IoT products

Impact
CubiTag: Public Key Crash (Deadlock)

https://youtu.be/Iw8sIBLWE_w

• Disclosure window of 90 days, starting since the last communicated SoC vendor;
• Second batch of SweynTooth vulnerabilities privately shared in advance with CSA and HSA, Singapore;
• Bluetooth SIG has also requested early access to the non-disclosed information of the 2nd batch (13th July, 2020);
• As far as we now, only one vendor has yet to create a firmware patch!

34

Disclosure process

Exploits repository (GitHub)
Asset Research Website

Public Disclosure
(9th February, 2020) https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks

35

Conclusion

• Certification does not prevent against bad implementation nor guarantee an BLE
stack to be free of non-compliances.

• Procedures which conflict with each other could be better clarified on the standard
(i.g., unexpected encryption response) to avoid related security bypass attacks.

• Over-the-air fuzzing is still a good way to find many wireless bugs, given it a proper
control over the lowest layers of the target wireless protocol.

• What about other wireless technologies? BLE Mesh, Wi-Fi EasyMesh, 5G, NB-IoT?
More fuzzing tool are needed.

• Lesson learned. Product vendors may rethink their solution and give it more priority
for SoC vendors with greater security response and easier patching process.

• The fuzzer is available open source upon request to sweyntooth@gmail.com

36

Thank you

Questions?
Feel free to reach us by our email sweyntooth@gmail.com

37

Final Remark: Get Ready for BLE Experimentation
What if I want to experiment with BLE myself?

Simplest Setup: Scapy Python API to get you started with BLE experimentation is available on our GitHub repo.
Use of our custom firmware requires a nRF52840 Dongle (~10-11USD). Works on Linux, OSX and Windows distros.

nRF52_driver_firmware.hex

driver.send(ll_bytes)

driver.receive() Target BLE PeripheralBLE

