
Spool : Reliable Virtualized NVMe Storage Systems
in Public Cloud Infrastructure

†‡Shuai Xue, †‡Shang Zhao, †‡Quan Chen, ‡Gang Deng, ‡Zheng Liu, ‡Jie Zhang, ‡Zhuo Song
‡Tao Ma, ‡Yong Yang, ‡Yanbo Zhou, ‡Keqiang Niu, ‡Sijie Sun, †Minyi Guo

†Dept. of Computer Science and Engineering, SJTU
‡Alibaba Cloud

1

目录 Contents

2

3

1 Introduction and Motivation

Design of Spool

Spool key ideas

4 Evaluation

Page . 3

Introduction

LOW
PERFORMANCE

500 IOPS
2 ms LATENCY

HDD SATA NAND SSD NVMe NAND SSD NVMe V-NAND SSD

AFFORDABLE
PERFORMANCE

HIGH
PERFORMANCE

EXPTRME
PERFORMANCE

25 K IOPS
100 us LATENCY

400 K IOPS
100 us LATENCY

1,500 K IOPS
10 us LATENCY

With the development of storage hardware, software has become
the performance bottleneck.

Page . 4

The local NVMe SSD-based instance storage provided for:
- Amazon EC2 I3 series
- Azure Lsv2 series
- Alibaba ECS I2 series

The local NVMe SSD-based instance storage optimized for:
- low latency
- high throughput
- high IOPS
- low cost

Introduction

Page . 5

Introduction

VMM
NVMe SSD1

Host

Hardware
NVMe SSD1...

Guest3Guest2Guest1 ...Guest

1

2 2

3

High reliability is the most important and challenging problem:
- restarting the virtualization system
- removing the failed device
- performing the upgrade

Page . 6

Introduction

Guset OS(VM)
Virtio Frontend

Virtio Frontend

Hypervisor(VMM)

Generic Block Layer

NVMe Device

Virtio

Guset OS(VM)
Guest Driver

VFIO Driver

NVMe Device

PCI passthrough

Guset OS(VM)
Virtio Frontend

Hypervisor(VMM)

NVMe Device

VFIO Driver

Spool

SPDK Driver

Spool based on SPDK

Spool is proposed based on the SPDK NVMe driver but
focuses on the reliability of the virtualized storage system.

Page . 7

Motivation

Unnecessary Data Loss: reset device controller
- For Azure, a device failure results in the entire machine being taken offline for repair.
- For SPDK, the administrator directly replaces the failed device through hot-plug.
- Only 6% of the hardware failures are due to real media errors.

The current failure recovery method results in significant
unnecessary data loss.

Page . 8

Motivation

Poor Availability
- VM live migration is too costly.
- The downtime for SPDK restart is up to 1,200 ms.

The long downtime hurts the availability of the I/O virtualization
system.

1

目录 Contents

1

3

2

Introduction and Motivation

Design of Spool

Spool key ideas

4 Evaluation

Page . 10

Design of Amoeba
Spool is comprised of：
- A cross-process journal: records each I/O request

and its status to ensure data consistency.
- A fast restart component:

records the runtime data structures of the current
Spool process reduce the downtime.

- A failure recovery component: diagnoses the
device failure type online to minimize
unnecessary disk replacement.Bypass Kernel

HARDWARENVMe

IO
worker

NVMe

KERNEL

NVMe

USERSPACE
Control
Data

Restart
Optimization

SPDK User mode driver

Guest/QEMU

virtqueue

blk dev

Lvol Lvol Lvol
Storage Pool

 Failure Recovery

IO
worker

IO
worker

Spool

blk dev

block layer

virtio-blk driver
virtio-blk

device

Application

UNIX domain Socket

Journal

1

目录 Contents

2

1

3

Introduction and Motivation

Design of Spool

Spool key ideas

4 Evaluation

Page . 12

Reliable Cross-Process Journal

The I/O requests are processed in a producer-consumer model:
1. The guest driver places the head index of descriptor chain into the next ring entry of the

available ring, and avail_idx of the available ring is increased.
2. The backend running in the host obtains several head indexes of the pending I/O

requests in the available ring, increases last_idx of the available ring and submits the
I/O requests to hardware driver.

3. Once a request is completed, the backend places the head index of the completed
request into the used ring and notifies the guest.

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Used Ring

used_idx

IO1 IO2 IO3 IO4 IO2 IO3 IO4IO1

Used Ring

used_idx

IO2

1 2

3
IO1

N
V

M
e D

evice

Page . 13

Reliable Cross-Process Journal

Reliable problem:
- The backend obtains two I/O requests, IO1 and IO2.
- Then, the last_idx is incremented from IO1 to IO3 in the available ring.
- If the storage virtualization system restarts at this moment, the last available index will be lost.
Spool persists:
- last_idx
- the head index of each request
- the states of each request:INFLIGHT, DONE,or NONE.

Available Ring

last_idx avail_idx

Available Ring

last_idx avail_idx

Used Ring

used_idx

IO1 IO2 IO3 IO4 IO2 IO3 IO4IO1

Used Ring

used_idx

IO2

1 2

3
IO1

N
V

M
e D

evice

Page . 14

Reliable Cross-Process Journal

A multiple-instruction transaction model
- In T0, we make a copy of the variable to be modified.
- In T1, the transaction will be in the START state, and the variables are modified.
- After all the variables modified completely, the transaction will be in the FINISHED state in T2.

Valid
Data

State

Write memory barrier

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

T0: Init Phase T1: Instrs Execution T2: Valid Phase

Invalid

Valid
Data

State

last_avail_idx++
last_req_head=head

req[head]=INFLIGHT

Memory Memory Memory

Valid

The challenge to ensure the consistency of the journal is to:
- guarantee that instructions to increase last_idx and change the request‘s status are executed in an

atomic manner.

Page . 15

Reliable Cross-Process Journal

An auxiliary data structure:
- It is a valuable trick to efficiently maintain journal consistency to eliminate the overhead of

making a copy in T0.
- The state, last available index, and head index of the related request are padding to 64 bits

and a union memory block with a 64-bit value.
- The three records are updated within one instruction.

union atomic_aux {
 struct {

uint8_t pad0;
uint8_t state;
uint16_t last_avail_idx;
uint16_t last_req_head;
uint16_t pad1;

 };
 uint64_t val;
};

val

pad0
state

last_avail_idx

last_req_head

pad1 8 bit

Page . 16

Reliable Cross-Process Journal

Every step Spool takes in algorithm 1 is likely to restart for upgrade.

Page . 17

Reliable Cross-Process Journal

The recovery algorithm:
- The new Spool process before the restart only needs to check the state and decide

whether to redo the transactions.
- The states of IO request is repaired based on used index of vring and the last used

index in the journal.

Page . 18

Optimizing Spool Restart

Start stage 1: Init EAL
- Obtaining memory layout information: 70.9% of the total time.
- The runtime configurations and memory layout information can be

reused.

Start stage 2: Probe device
- Resetting the controller of NVMe devices: 90% of the total time.
- The controller information can be reused.

Page . 19

Optimizing Spool Restart

Reusing Stable Configurations
- Global runtime configurations.
- Memory layout information.

Skipping Controller
- NVMe device controller-related information.
- Gracefully terminate: SIGTERM and SIGINT signals.

Page . 20

Hardware Fault Diagnosis and Processing

Handling Hardware Failures
- A device failures or hot-remove cause process to crash.
- A SIGBUS handler is registered.

Failure Model
- Based on S.M.A.R.T. diagnosis
- Hardware media error: hot-plug a new

device.
- Other hardware errors: reset the controller.

1

目录 Contents

2

3

4

Introduction and Motivation

Design of Spool

Spool key ideas

1

Evaluation

Page . 22

Experimental configuration

Page . 23

Experimental configuration

Performance: Bandwidth, IOPS,Average Latency

Page . 24

Reliability of Handling Hardware Failure

SSD2 is hot-removed and hot-pluged.
The storage service for VM2 is back online automatically.
The storage service for VM1 is not affected.

Page . 25

Reliability of Handling Random Upgrades

The file contents is verified with FIO on a Guest VM.
Spool can guarantee data consistency during upgrades.

Page . 26

Reducing Restart Time

Spool reduces the total restart time from 1,218 ms to 115 ms.

Page . 27

Case 1: Single VM Performance

Spool achieves similar performance to SPDK.

I/O Performance of Spool

Page . 28

Case 2: Scaling to Multiple VMs

Spool improves the IOPS of Randread by 13% compared
with SPDK vhost-blk.

Spool reduces the average data access latency of Randread
by 54% compared with SPDK vhost-blk.

I/O Performance of Spool

Page . 29

Spool increases the average data access latency no
more than 3%.

And Spool reduces the IOPS by less than 0.76%

Overhead of the Cross-Process Journal

Page . 30

Deployment on an In-production Cloud

The maximum IOPS of a single disk is 50% higher.
The maximum IOPS of a largest specification instance

is 51% higher.

Thanks for listening！

Question?
xueshuai@sjtu.edu.cn or

chen-quan@cs.sjtu.edu.cn

mailto:xueshuai@sjtu.edu.cn

	Spool : Reliable Virtualized NVMe Storage Systems �in Public Cloud Infrastructure
	目录 Contents
	Introduction
	Introduction
	Introduction
	Introduction
	Motivation
	Motivation
	目录 Contents
	Design of Amoeba
	目录 Contents
	Reliable Cross-Process Journal
	Reliable Cross-Process Journal
	Reliable Cross-Process Journal
	Reliable Cross-Process Journal
	Reliable Cross-Process Journal
	Reliable Cross-Process Journal
	Optimizing Spool Restart
	Optimizing Spool Restart
	Hardware Fault Diagnosis and Processing
	目录 Contents
	Experimental configuration
	Experimental configuration
	Reliability of Handling Hardware Failure
	Reliability of Handling Random Upgrades
	Reducing Restart Time
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	Deployment on an In-production Cloud
	Thanks for listening！

