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Main Objective

• Maximum Accuracy

Main Objectives

• Timing predictability

• Energy efficiency

• Safety
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The focus of related research 

in AES is currently mostly on 

the DNN and the hardware.
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Efficient DNNs
• Quantization

• Lowrank approximation
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DNN

Special Processors
• AI accelerators

• DNN-focused SoCs

Framework/OS



Where system software/framework can help

Goals
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DNN

Challenges
• Meet timing requirements

• Be energy efficient

• Minimize accuracy loss.

All the above goals must be 

achieved at the same time.

Framework/OS



Timing predictable &

energy efficient

Can be achieved at system 

level via Dynamic Voltage 

Frequency Scaling (DVFS).

Timing predictable &

accurate

Can be achieved at 

application level via DNN 

configuration change.

Master of none

Combining the two (even at 

different rates) will yield 

unpredictable results.

Jack of all trades, master of none

Motivation
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Need per-layer 

adjustments.

Need per-layer 

adjustments.
Need coordination.



No one is alone

Multiple ResNet-50 instances executed together

The underlying system-level solution here is PredJoule1

Takeaways

The first DNN instance is 

the winner, other DNN 

instances not as lucky 

because the method used 

here is greedy.

The DVFS configurations 

chosen only work well for 

the first DNN instance.

Motivation

1Bateni, Soroush, Husheng Zhou, Yuankun Zhu, and Cong Liu. "Predjoule: A timing-predictable energy optimization framework 

for deep neural networks." In 2018 IEEE Real-Time Systems Symposium (RTSS) 13
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Core Targets

• Timing predictable: the system must meet 

deadlines set by the system designer for the 

DNN.

• Energy efficient: the system must use DVFS to 

achieve near-optimal energy usage for DNNs.

• Accurate: the system can change accuracy 

dynamically but must do so cautiously.

• Multi-DNN compatibility: the system should be 

able to coordinate and find an efficient 

solution for all DNN instances.

Optimization Targets

The system must also be flexible to adapt to 

different system constraints. We offer three 

optimization targets (switchable by an 

external policy controller):

• Min Energy (Mp) is used when our design is deployed in 

extremely low power scenario such as remote sensing.

• Max Accuracy (MA) is used when our design is deployed 

in extremely mission-critical scenarios.

• Balanced Energy and Accuracy is the scenario where our 

design can choose what is best given the timing 

requirement.

Design Goals

Design
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LAG analysis

• Keep track of per-layer progress

Proportional Deadline

• Build an ideal schedule by setting sub 

deadlines in proportion to their execution 

time

Timing predictability

Design
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Accumulative LAG Per-layer sub-deadline

Tracked execution time

Per-layer sub-deadline End-to-end deadline

for the DNN instance

Per-layer execution time



Building a cohort

We keep a pair of local 

variables for each DNN 

instance.

∆ Calculator

1. Based on the last reported 

values of LAG in the 

cohort, calculate a 

speedup (or slowdown)

2. Lookup1 the best possible 

DVFS configuration for 

that slowdown.

3. The output is a list (∆) of 

optimal DVFS 

configurations for each 

DNN instance.

Xi Calculator

1. For each element of ∆, 

calculate the required 

(further) speedup (or 

slowdown) for other DNN 

instances.

2. This time, lookup1 the best 

possible approximation 

configuration that 

matches that slowdown.

1Please see the paper and the source code for more information.

Coordination

Design
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The decision tree Overview of modes

Optimization

Design
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The decision tree Overview of modes

Choosing a δ (DVFS configuration) will have consequences in 

terms of accuracy for all DNNs in the cohort. Therefore, the 

question is, which δ is the best?

Min. Energy (Mp) chooses the δ that has the least PowerUp value in the 

PowerUp/SpeedUp table, without looking at accuracy loss.

Max. Accuracy (MA) chooses the δ so to minimize the value of σ∀𝛿𝑖
𝑆𝐴𝑖.

Balanced Energy and Accuracy uses the Bivariate Regression Analysis (BRA) to 

achieve a balanced approach backed by statistical analysis of the tree1.

1Please see the paper for more information.

Optimization

Design
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Based on Caffe

• Available as an open-source project on 

GitHub

• No need to use APIs

• No need to redesign DNN models

• Need to generate

• Hash tables

• Lowrank approximated version of your DNN model.

Tested extensively

• Tested on NVIDIA Jetson TX2 and Jetson 

AGX Xavier

• Tested using image recognition DNNs

• AlexNet, GoogleNet, ResNet-50, VGGNet

• Tested using three cohort sizes

• Small: 1 DNN instance

• Medium: 2-4 DNN instances

• Large: 6-8 DNN instances

• We include a mixed scenario that uses a 

combination of all the DNN models

Overview

Implementation and Evaluation
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Energy

Evaluation
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68% avg. improvement on TX2

46% avg. improvement on AGX Xavier
70% avg. improvement on TX2
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Latency

Evaluation
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Latency

Evaluation
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68% avg. improvement on TX2

40% avg. improvement on AGX Xavier

53% avg. improvement on TX2

32% avg. improvement on AGX Xavier



Small cohort

3.25% deadline miss rate.

Medium cohort

Deadline miss rate same as 

the small cohort.

Large cohort

Deadline miss rate same as 

the small cohort.

Tail Latency

Evaluation
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Relative Accuracy

Evaluation
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Flexibility

Evaluation
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Flexibility

Evaluation
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11759 DVFS configurations 

on Jetson TX2.

51967 DVFS configurations 

on Jetson AGX Xavier.



Computation

Relatively negligible execution overhead (in 

ms).

Memory

Overhead includes the lowrank version of 

each DNN model. The right side shows how 

much of the total memory of each device is 

occupied.

Overhead

Evaluation
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The system community to the rescue

Conclusion

30

• Certain problems cannot be solved at application level (by AI researchers) and at hardware level 

separately

• Ensuring timing predictability, energy efficiency, and accuracy for DNNs in Autonomous Embedded Systems requires coordination

• We presented the design of NeuOS that can achieve these three goals by

• Using LAG analysis to ensure real-time performance

• Efficiently propagating all possible choices

• Having flexibility in terms of choosing the best combination of configurations based on system designer’s criteria or external policy 

controller

• We extensively evaluated NeuOS

• Using the latest AES devices

• Using prominent image recognition DNNs

• Under multiple configurations, including various cohort sizes

• Against the most prominent accessible solutions available to researchers.



Questions

Please do not hesitate to send your 

questions to soroush@utdallas.edu.

Source Code

https://github.com/Soroosh129/Neu

OS

Thank you

mailto:soroush@utdallas.edu
https://github.com/Soroosh129/NeuOS

