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Current architecture in the cloud
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What’re the fundamental 
limitations?
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Have to deal with the network stack all 
by myself

Motivation: Tenants
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Tenants are primarily concerned with 
performance and functionality,  not 
implementation details. 
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KernelKernel
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Motivation: Operator
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I know everything here.
I can really help my tenants (and make 
some money!)



Motivation: Operator
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Stack
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Can’t deploy new stacks (DCTCP)

Difficult to perform management tasks

Difficult to even define performance SLA

Difficult to troubleshoot

Zero visibility or control 
of the network stack



Is there a better way?

8



Making Network Stack Part of the Virtualized 
Infrastructure

Current architecture
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Interface unchanged (BSD 
sockets, etc.)

Packets handled in 
the NSM
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Benefits

• Better efficiency in management for the operator
• Orchestrate the resource provisioning strategies more flexibly
• Implement management functions as a part of user’s network stack

• Deployment and performance gains for users without efforts
• Enforce various kernel stack optimizations
• Enforce high-performance userspace stacks
• Use advanced hardware
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Design Challenges

• How to transparently redirect socket API calls without changing 
applications?
• How to transmit the socket semantics between the VM and NSM?
• How to ensure high performance with semantics transmission (e.g., 

100 Gbps)?
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Transparent socket API redirection
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socket(), socket_sendmsg(), …

nk_socket(), nk_socket_sendmsg(), …

• A new sock type, SOCK_NETKERNEL
• GuestLib: A complete implementation of BSD socket APIs

Tenant VM 

GuestLib 
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BSD Socket API
socket(), send(), …

GuestLib



• NQE: NetKernel queue elements for semantics

• NQE queues for semantics transmission and hugepages for data 
transmission in NetKernel device

A lightweight semantics channel

13

1B
op 

type

1B

VM ID

1B
Queue 
set ID

4B
VM 

socket ID

8B

op_data

8B

data pointer

4B

size

5B

rsved

Tenant VM 

GuestLib 
nk_bind(), nk_sendmsg(), …

Huge
pages

BSD Socket API
socket(), send(), …

NQE

(2) translate to NQE

(1) NetKernel socket

(3) response NQE

(4) return to app

NetKernel 
device

Queues



Scalable lockless queues
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• Per-core queue set, lockless queues
• NQE switching via CoreEngine
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VM based NSM.
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• Supports existing kernel and userspace stacks from various Oses
• Provide good isolation to guarantee the performance
• Run stacks independent of the hypervisor
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Implementation

• QEMU KVM 2.5.0, Linux Kernel 4.9
• Intel(R) Xeon(R) 16-core CPU @ 2.30GHz x 2
• 256GB DDR4 2133MHz
• Mellanox ConnectX-4 100G single port NIC
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Use Cases #1: Multiplexing
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Application Gateway (AG): L7 proxy and load balancing services

AG1 AG2 AG3

Normalized RPS Performance of a trace from a large cloud

4 core 4 core 4 core



Use Cases #1: Multiplexing
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Benefit: NetKernel can help operator perform network management more efficiently



Use Case #2: Deploying mTCP without API 
Change
• mTCP doesn't support Nginx yet
• mTCP ported as an NSM, fixed a bug in DPDK mlx5_core driver
• Unmodified Nginx on mTCP without any tenant effort
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Use Case #3: Shared Memory Networking
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• The operator can easily detect the on-host traffic with NetKernel
• For on-host traffic, it can use shared memory NSM to avoid TCP and 

bridge overhead

Shared memory NSM can achieve >2x performance gain for on-host traffic

Deployment and performance gains for users

Benefit: NetKernel can help user achieve deployment and performance gains



Microbenchmarks: Throughput
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• Baseline (a VM) and NetKernel (a VM with a Linux Kernel) using 
the same setting
• 8 TCP connections, 8KB messages

Send Receive

Can achieve 100Gbps with 3 cores (send), 8 cores (receive)
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Microbenchmarks: RPS
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• Simple epoll server, short TCP conn.
• 64B request/response

mTCP NSM brings 2x performance gain
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Discussion and future directions

• How can I do Netfilter?
• Hard to support for multiple-tenant NSM

• What about troubleshooting performance issues?
• Operator can easily monitor their NSMs by deploy additional mechanisms in the 

NSMs
• Does NetKernel increase the attack surface?

• Own address spaces for NK device
• Isolated channel between NSM and VM

• Future directions
• Performance isolation
• Charging policies
• FPGA/SoC
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Recap

• Designed and implemented NetKernel
• Decouples the network stack from the guest
• Making it part of the virtualized infrastructure in the cloud

• Enabled several new usecases
• Multiplexing, mTCP NSM, Shared mem. NSM

• Conducted comprehensive testbed evaluation with commodity 100G 
NICs
• Website
• https://netkernel.net
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https://netkernel.net/

