
NetKernel: Making Network Stack
Part of the Virtualized Infrastructure

Zhixiong Niu, Hong Xu, Peng Cheng, Qiang Su, Yongqiang Xiong,
Tao Wang, Dongsu Han, Keith Winstein

Current architecture in the cloud

2

VM

APP

Guest OS

DCN Infrastructure

Hypervisor infrastructure

Network Stack

VM

APP

Guest OS
Network Stack

What’re the fundamental
limitations?

3

Have to deal with the network stack all
by myself

Motivation: Tenants

TCP parameters

initcwnd

initialRTO (ms)

minRTO (ms)

DelayedAckTimeout (ms)

4

BBR

CUBIC

MPTCP

PCC

CTCP

DCTCP

mTCPStackMap

FastSocket

MegaPipe

FlexSC Kernel

Buffer

net.ipv4.tcp_rmem

net.ipv4.tcp_wmem

net.core.rmem_max

net.core.wmem_max

Tenants are primarily concerned with
performance and functionality, not
implementation details.

5

KernelKernel

NICNICNIC

Motivation: Operator

6
Resources

DPDK

Kernel FPGARDMA

NIC

I know everything here.
I can really help my tenants (and make
some money!)

Motivation: Operator

7

Stack

VM

HypervisorProvider

Tenant

Can’t deploy new stacks (DCTCP)

Difficult to perform management tasks

Difficult to even define performance SLA

Difficult to troubleshoot

Zero visibility or control
of the network stack

Is there a better way?

8

Making Network Stack Part of the Virtualized
Infrastructure

Current architecture

9

Interface unchanged (BSD
sockets, etc.)

Packets handled in
the NSM

9

Benefits

• Better efficiency in management for the operator
• Orchestrate the resource provisioning strategies more flexibly
• Implement management functions as a part of user’s network stack

• Deployment and performance gains for users without efforts
• Enforce various kernel stack optimizations
• Enforce high-performance userspace stacks
• Use advanced hardware

10

Design Challenges

• How to transparently redirect socket API calls without changing
applications?
• How to transmit the socket semantics between the VM and NSM?
• How to ensure high performance with semantics transmission (e.g.,

100 Gbps)?

11

Transparent socket API redirection

12

socket(), socket_sendmsg(), …

nk_socket(), nk_socket_sendmsg(), …

• A new sock type, SOCK_NETKERNEL
• GuestLib: A complete implementation of BSD socket APIs

Tenant VM

GuestLib
nk_socket(), nk_sendmsg(), …

BSD Socket API
socket(), send(), …

GuestLib

• NQE: NetKernel queue elements for semantics

• NQE queues for semantics transmission and hugepages for data
transmission in NetKernel device

A lightweight semantics channel

13

1B
op

type

1B

VM ID

1B
Queue
set ID

4B
VM

socket ID

8B

op_data

8B

data pointer

4B

size

5B

rsved

Tenant VM

GuestLib
nk_bind(), nk_sendmsg(), …

Huge
pages

BSD Socket API
socket(), send(), …

NQE

(2) translate to NQE

(1) NetKernel socket

(3) response NQE

(4) return to app

NetKernel
device

Queues

Scalable lockless queues

14

• Per-core queue set, lockless queues
• NQE switching via CoreEngine

VM1

GuestLib

NK device

CoreEngine

connection table

queue set 1

ServiceLib

NSM 1

<VM ID, queue set ID, socket ID> <NSM ID, queue set ID, socket ID>
<01, 01, 2A 3E 97 C3> <01, 01, C8 5D 42 6F>
<01, 01, FC 68 4E 02> <01, 02, ?>

…

queue set 2queue set 1

VM based NSM.

15

• Supports existing kernel and userspace stacks from various Oses
• Provide good isolation to guarantee the performance
• Run stacks independent of the hypervisor

NetKernel

Tenant VM

GuestLib
(NetKernel Socket)

pNICs

NetKernel
device

Huge
pages

Huge
pages

 queues

stripped area indicates a shared memory region

mmap

BSD Socket

APP2APP1

NSM

ServiceLib

Huge
pages

Network Stack

NetKernel CoreEngine Virtual Switch or Embedded
Switch (SR-IOV)

vNIC

 queues

16

Implementation

• QEMU KVM 2.5.0, Linux Kernel 4.9
• Intel(R) Xeon(R) 16-core CPU @ 2.30GHz x 2
• 256GB DDR4 2133MHz
• Mellanox ConnectX-4 100G single port NIC

17

Use Cases #1: Multiplexing

0 10 20 30 40 50 60
Time (min)

0

20

40

60

80

100

120

N
or

m
al

iz
ed

rp
s

pe
rfo

rm
an

ce
AG1 AG2 AG3

18

Application Gateway (AG): L7 proxy and load balancing services

AG1 AG2 AG3

Normalized RPS Performance of a trace from a large cloud

4 core 4 core 4 core

Use Cases #1: Multiplexing

19

0 10 20 30 40 50 60
Time (min)

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

rp
s

pe
rc

or
e

Baseline Netkernel

AG1

AG2

AG3

NSM

CoreEngine

1 core

1 core

1 core

5 cores

1 core

NetKernel: 9 Cores
Baseline: 12 Cores

Benefit: NetKernel can help operator perform network management more efficiently

Use Case #2: Deploying mTCP without API
Change
• mTCP doesn't support Nginx yet
• mTCP ported as an NSM, fixed a bug in DPDK mlx5_core driver
• Unmodified Nginx on mTCP without any tenant effort

20

0
50

100
150
200
250
300
350
400

1 vCPU 2 vCPUs 4 vCPUs

Kernel Stack NSM mTCP NSM
Krps

mTCP NSM brings ~1.8x performance gain

Use Case #3: Shared Memory Networking

64 128 256 512 1024 2048 4096 8192

0essage 6ize (B)

0

20

40

60

80

100

120

T
K

ro
u

g
K

S
u

t
(G

b
S

s)

Baseline

1et.ernel w. sKareG mem 160

21

• The operator can easily detect the on-host traffic with NetKernel
• For on-host traffic, it can use shared memory NSM to avoid TCP and

bridge overhead

Shared memory NSM can achieve >2x performance gain for on-host traffic

Deployment and performance gains for users

Benefit: NetKernel can help user achieve deployment and performance gains

Microbenchmarks: Throughput

22

1 2 3 4 5 6 7 8
of vC38s

0

20

40

60

80

100

120

7
K

Uo
u

g
K

p
u

t
(G

b
p

s)

Baseline

1etKeUnel

• Baseline (a VM) and NetKernel (a VM with a Linux Kernel) using
the same setting
• 8 TCP connections, 8KB messages

Send Receive

Can achieve 100Gbps with 3 cores (send), 8 cores (receive)

1 2 3 4 5 6 7 8
of vC38s

0

20

40

60

80

100

120

7
K

Uo
u

g
K

p
u

t
(G

b
p

s)

Baseline

1etKeUnel

Microbenchmarks: RPS

23

• Simple epoll server, short TCP conn.
• 64B request/response

mTCP NSM brings 2x performance gain

1 2 3 4 5 6 7 8
Rf vC38s

0

200

400

600

800

1000

1200

5
e
T
u
e
st

s
/

se
c

(x
 1
03

)

Baseline

1et.eUnel

1et.eUnel w. P7C3 160

P7C3

Discussion and future directions

• How can I do Netfilter?
• Hard to support for multiple-tenant NSM

• What about troubleshooting performance issues?
• Operator can easily monitor their NSMs by deploy additional mechanisms in the

NSMs
• Does NetKernel increase the attack surface?

• Own address spaces for NK device
• Isolated channel between NSM and VM

• Future directions
• Performance isolation
• Charging policies
• FPGA/SoC

24

Recap

• Designed and implemented NetKernel
• Decouples the network stack from the guest
• Making it part of the virtualized infrastructure in the cloud

• Enabled several new usecases
• Multiplexing, mTCP NSM, Shared mem. NSM

• Conducted comprehensive testbed evaluation with commodity 100G
NICs
• Website
• https://netkernel.net

25

https://netkernel.net/

