
1

OPTIMUSCLOUD: Heterogeneous

Configuration Optimization for

Distributed Databases in the Cloud

Ashraf Mahgoub1, Alexander Medoff1 , Rakesh Kumar2, Subrata Mitra3, Ana

Klimovic4, Somali Chaterji1, Saurabh Bagchi1

Supported by NIH R01 AI123037-01 (2016-21), WHIN center (2018-22)

1: Purdue University; 2: Microsoft 3: Adobe Research; 4: Google Research

2

Agenda

• Introduction

• Challenges in Key-Value Stores Online Tuning

• Dynamic Workloads

• Prior work

• Proposed Approach

• Heterogeneous Configurations Benefits

• Use cases and Evaluation

• Conclusion

3

Introduction

• OPTIMUSCLOUD’s Goal: Achieving cost and performance

efficiency for cloud-hosted distributed key-value store using online

configuration tuning

• OPTIMUSCLOUD considers two set of configuration parameters:

– Key-value store parameters: Cloud VM parameters:

Cache size,

Reading\Writing threads,

Compaction

method/throughput

etc.

VM size/type which controls:

Number of cores

Memory Size

Network Bandwidth,

etc.

4

Challenges in Online Tuning for Key-Value Stores

• Combining both sets of configuration parameters (Key-Value store + VM

type/size) produces a large configuration space

• Dependency between key-value store and VM configurations:

– For example, the cache size of Cassandra is limited by the available RAM in

the cloud VM

25+ Performance

Tuning Parameters

133 instance types/sizes

Prices vary by a factor of 5,000X

• OPTIMUSCLOUD performs joint optimization

while taking into account the dependencies

between the two spaces to achieve globally

optimized performance

5

Cassandra’s Performance on different VM types/sizes

Takeaways:

❑ Best configurations vary across different VM types/sizes

❑ Therefore, jointly tuning key-value store and cloud VM

parameters is crucial to achieve cost-optimal performance

6

OPTIMUSCLOUD’S OVERVIEW

7

Dynamic workloads and online reconfiguration

• Dynamic workloads:

– Workload characteristics (e.g. Read-to-Write ratio, Request-rate, etc.)

change over time, sometimes unpredictably

– New characteristics causes current configurations to perform sub-optimally,

necessitating reconfigurations

• Impact of online reconfiguration :

– Changing configurations at runtime usually requires a server-restart, causing

a downtime and a degradation in performance

– For fast changing workloads, frequent reconfiguration of the overall cluster

could severely degrade performance

• Q: Can we reconfigure only a subset of the

nodes in the cluster? Which subset?

– This will lead to heterogenous configuration

8

Why heterogeneous configurations is beneficial?

Best Configurations To optimize Perf/$:

Write-Heavy -> All C4.L

Read-Heavy -> 2 C4.L & 2 R4.XL

9

OPTIMUSCLOUD’S Solution

• Heterogeneous configurations: Reduce reconfiguration downtime &

avoids overprovisioning

• However, heterogeneity increases the configuration space size

– Consider a cluster of N=20 nodes and I=15 configurations

– Homogeneous: We have I=15 possible configurations

– Heterogeneous: We have 𝑁+𝐼−1
I−1 = 1.3×109 possible configurations

• OPTIMUSCLOUD uses the concept of Complete-Sets to reduce the

size of the search space

– Complete-Set: the minimum subset of nodes for which the union of their

data records covers all the records in the database at least once

10

Complete-Sets
• This concept of Complete-Set relies on selecting the fastest replica for a

given request

– Dynamic Snitch (Cassandra) or Adaptive Replica Selection (Elasticsearch)

• Consistency-Level (CL) defines how many replicas need to reply to a

request before it is satisfied

– Therefore, the slow replica will dominate the response latency

– The servers within a Complete-Set must be upgraded to the faster

configuration upon a workload change for the cluster performance to

improve

• OPTIMUSCLOUD keeps the configurations homogeneous within the same

Complete-Set, while allowing different Complete-Sets to have different

configurations

11

How partitioning the cluster into Complete-Sets reduces

the search space?

• First, we show that we have at most #Complete-Sets =

Replication-Factor for any cluster (proof is given in the paper)

– RF is practically low (3 or 5)

• Second, reconfiguring #Complete-Sets = Consistency-Level

(CL<=RF), all requests are served from nodes with optimized

configurations

• With S Complete-Sets, the size space is reduces to
𝑆+𝐼−1
I−1 = 680

possible configurations for a cluster with RF=3

(Compared to 1.3×109)

12

Using data-placement info to identify Complete-Sets

First,

13

Applications
1. MG-RAST:

– Real workload traces from the largest metagenomics analysis portal

– Its workload does not have any discernible daily or weekly pattern, as the requests

come from all across the globe

– Workload can change drastically over a few minutes (accurately predictable for 5min)

2. Bus-Tracking:

– Real workload traces from a bus-tracking mobile application

– Traces show a daily pattern of workload switches.

– Workload is accurately predictable for longer look-ahead periods (e.g. 2 hours)

3. HPC:

– Simulated workload traces from data analytics jobs submitted to a shared HPC queue.

– Using profiling techniques, job execution times can be predicted with high accuracy

and for long look-ahead periods.

14

Performance Prediction Accuracy

15

Baselines

1. Homogeneous-Static: the single best configuration to use for the entire duration

of the predicted workload. Impractical because assumes perfect knowledge of

future workload

2. CherryPick [NSDI-17]: Uses Bayesian Optimization to find a heterogeneous

cloud configuration for a representative job/phase of the workload

3. Selecta [ATC-18]: uses SVD techniques to select the optimized homogeneous

cloud configuration for different jobs/phases of the workload

4. SOPHIA [ATC-19]: uses Genetic-Algorithms and performance modeling to

find optimized homogeneous configurations for Key-Value store parameters

16

Evaluation: Cassandra

0

1

2

0%

50%

100%

Homo-

 Static

Cherry-

Pick

Selecta SOPHIA Optimus

Cloud

L
a
te

n
cy

 (
se

c)

N
o
rm

a
li

ze
d

 O
p

s/
s/

$
 MG-RAST (Cluster-Size=6, RF=3, CL=1, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+86.5% +115%

+46.9%

+212%

0

1

2

0%

50%

100%

Homo-

 Static

Cherry

-Pick

Selecta SOPHIA Optimus

Cloud

L
a
te

n
cy

 (
se

c)

N
o
rm

a
li

ze
d

 O
p

s/
s/

$ HPC (Cluster-Size=6, RF=3, CL=1, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+143%

+20% +23.2%

+130%

0

0.5

1

1.5

0%

50%

100%

Homo-

 Static

Cherry

-Pick

Selecta SOPHIA Optimus

Cloud

L
a
te

n
cy

 (
se

c)

N
o
rm

a
li

ze
d

 O
p

s/
s/

$ Bus-Tracking (Cluster-Size=6, RF=3, CL=1, 16GB/server)

Normalized Ops/s/$ Latency (P99)

+43.8%

+173%

+67.3%
+22.3%$

OPTIMUSCLOUD

achieves up-to 86%

better Perf/$ over the

homogeneous-

configuration due to its

online reconfiguration

capability.

OptimusCloud achieves

up to 173% and 130%

over CherryPick and

Selecta due to its ability

to find heterogeneous

configurations which

minimizes the

reconfiguration

downtime and avoids

overprovisioning.

Compared to SOPHIA,

OPTIMUSCLOUD

achieves up to 212%

better Perf/$ as Sophia

considers only

homogeneous

configurations for key-

value store parameters

without considering

online reconfiguration

for the cloud VM

type/size.

17

Tolerance to Prediction Errors

0

5

10

15

20

25

0% 5% 10% 15% 20% 25% 50%

%
 I

m
p

ro
v
e
m

e
n

t
o
v
e
r

H
o
m

o
g
e
n

eo
u

s-
S

ta
ti

c

% Noise

HPC (RF=3, CL=1,Cluster-Size=6, 16GB/server)

Noisy Workload Predictor Noisy Throughput Predictor

OPTIMUSCLOUD’s improvement over

Homogeneous-Static decreases with

increasing levels of noise, as the

selected configurations deviate from

the best configurations.

OPTIMUSCLOUD’s is more sensitive

to errors in the throughput predictor

compared to errors in the workload

predictor, which is demonstrated in

the steeper downward slope in the

noisy throughput predictor curve.

18

Conclusion

• For cost-optimal performance of a distributed Key-Value store in the cloud, it is

critical to jointly tune Key-Value store and cloud configurations.

• OPTIMUSCLOUD provides the insight that it is optimal to create

heterogeneous configurations and for this, it determines at runtime the minimum

number of servers to reconfigure.

• Using a novel concept of Complete-Sets, OPTIMUSCLOUD provides a technique

to reduce the large search space that is brought out by heterogeneity

• Configurations found by OPTIMUSCLOUD

outperform those by prior works, CherryPick,

Selecta, and SOPHIA, in both Perf/$ and Tail

Latency (P99)

19

