
1

OPTIMUSCLOUD: Heterogeneous 

Configuration Optimization for 

Distributed Databases in the Cloud

Ashraf Mahgoub1, Alexander Medoff1 , Rakesh Kumar2,  Subrata Mitra3, Ana 

Klimovic4, Somali Chaterji1, Saurabh Bagchi1

Supported by NIH R01 AI123037-01 (2016-21), WHIN center (2018-22)

1: Purdue University; 2: Microsoft  3: Adobe Research; 4: Google Research



2

Agenda

• Introduction

• Challenges in Key-Value Stores Online Tuning

• Dynamic Workloads

• Prior work

• Proposed Approach

• Heterogeneous Configurations Benefits

• Use cases and Evaluation

• Conclusion



3

Introduction

• OPTIMUSCLOUD’s Goal: Achieving cost and performance 

efficiency for cloud-hosted distributed key-value store using online 

configuration tuning

• OPTIMUSCLOUD considers two set of configuration parameters:

– Key-value store parameters:  Cloud VM parameters: 

Cache size, 

# Reading\Writing threads, 

Compaction 

method/throughput

etc.

VM size/type which controls:

Number of cores

Memory Size

Network Bandwidth,

etc.
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Challenges in Online Tuning for Key-Value Stores

• Combining both sets of configuration parameters (Key-Value store + VM 

type/size) produces a large configuration space

• Dependency between key-value store and VM configurations:

– For example, the cache size of Cassandra is limited by the available RAM in 

the cloud VM

25+ Performance 

Tuning Parameters

133 instance types/sizes

Prices vary by a factor of 5,000X

• OPTIMUSCLOUD performs joint optimization 

while taking into account the dependencies 

between the two spaces to achieve globally 

optimized performance
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Cassandra’s Performance on different VM types/sizes

Takeaways:

❑ Best configurations vary across different VM types/sizes

❑ Therefore, jointly tuning key-value store and cloud VM 

parameters is crucial to achieve cost-optimal performance
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OPTIMUSCLOUD’S OVERVIEW
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Dynamic workloads and online reconfiguration 

• Dynamic workloads: 

– Workload characteristics (e.g. Read-to-Write ratio, Request-rate, etc.) 

change over time, sometimes unpredictably

– New characteristics causes current configurations to perform sub-optimally, 

necessitating reconfigurations

• Impact of online reconfiguration :

– Changing configurations at runtime usually requires a server-restart, causing 

a downtime and a degradation in performance

– For fast changing workloads, frequent reconfiguration of the overall cluster 

could severely degrade performance

• Q: Can we reconfigure only a subset of the 

nodes in the cluster? Which subset?

– This will lead to heterogenous configuration



8

Why heterogeneous configurations is beneficial?

Best Configurations To optimize Perf/$:

Write-Heavy -> All C4.L

Read-Heavy -> 2 C4.L & 2 R4.XL
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OPTIMUSCLOUD’S Solution

• Heterogeneous configurations: Reduce reconfiguration downtime & 

avoids overprovisioning

• However, heterogeneity increases the configuration space size

– Consider a cluster of N=20 nodes and I=15 configurations

– Homogeneous: We have I=15 possible configurations

– Heterogeneous: We have 𝑁+𝐼−1
I−1 = 1.3×109 possible configurations 

• OPTIMUSCLOUD uses the concept of Complete-Sets to reduce the 

size of the search space

– Complete-Set: the minimum subset of nodes for which the union of their 

data records covers all the records in the database at least once
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Complete-Sets
• This concept of Complete-Set relies on selecting the fastest replica for a 

given request

– Dynamic Snitch (Cassandra) or Adaptive Replica Selection (Elasticsearch)

• Consistency-Level (CL) defines how many replicas need to reply to a 

request before it is satisfied

– Therefore, the slow replica will dominate the response latency 

– The servers within a Complete-Set must be upgraded to the faster 

configuration upon a workload change for the cluster performance to 

improve

• OPTIMUSCLOUD keeps the configurations homogeneous within the same 

Complete-Set, while allowing different Complete-Sets to have different 

configurations
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How partitioning the cluster into Complete-Sets reduces 

the search space?

• First, we show that we have at most #Complete-Sets = 

Replication-Factor for any cluster (proof is given in the paper)

– RF is practically low (3 or 5)

• Second, reconfiguring #Complete-Sets = Consistency-Level 

(CL<=RF), all requests are served from nodes with optimized 

configurations  

• With S Complete-Sets, the size space is reduces to 
𝑆+𝐼−1
I−1 = 680 

possible configurations for a cluster with RF=3 

(Compared to 1.3×109)
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Using data-placement info to identify Complete-Sets

First, 
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Applications
1. MG-RAST: 

– Real workload traces from the largest metagenomics analysis portal

– Its workload does not have any discernible daily or weekly pattern, as the requests 

come from all across the globe

– Workload can change drastically over a few minutes (accurately predictable for 5min) 

2. Bus-Tracking: 

– Real workload traces from a bus-tracking mobile application

– Traces show a daily pattern of workload switches. 

– Workload is accurately predictable for longer look-ahead periods (e.g. 2 hours)

3. HPC: 

– Simulated workload traces from data analytics jobs submitted to a shared HPC queue.

– Using profiling techniques, job execution times can be predicted with high accuracy 

and for long look-ahead periods.
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Performance Prediction Accuracy
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Baselines

1. Homogeneous-Static: the single best configuration to use for the entire duration 

of the predicted workload. Impractical because assumes perfect knowledge of 

future workload

2. CherryPick [NSDI-17]: Uses Bayesian Optimization to find a heterogeneous 

cloud configuration for a representative job/phase of the workload

3. Selecta [ATC-18]: uses SVD techniques to select the optimized homogeneous 

cloud  configuration for different jobs/phases of the workload

4. SOPHIA [ATC-19]: uses Genetic-Algorithms and performance modeling to 

find optimized homogeneous configurations for Key-Value store parameters 
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Evaluation: Cassandra
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OPTIMUSCLOUD

achieves up-to 86% 

better Perf/$ over the 

homogeneous-

configuration due to its 

online reconfiguration 

capability. 

OptimusCloud achieves 

up to 173% and 130% 

over CherryPick and 

Selecta due to its ability 

to find heterogeneous 

configurations which 

minimizes the 

reconfiguration 

downtime and avoids 

overprovisioning.

Compared to SOPHIA, 

OPTIMUSCLOUD

achieves up to 212% 

better Perf/$ as Sophia 

considers only 

homogeneous 

configurations for key-

value store parameters 

without considering 

online reconfiguration 

for the cloud VM 

type/size.
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Tolerance to Prediction Errors
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OPTIMUSCLOUD’s improvement over 

Homogeneous-Static decreases with 

increasing levels of noise, as the 

selected configurations deviate from 

the best configurations. 

OPTIMUSCLOUD’s is more sensitive 

to errors in the throughput predictor 

compared to errors in the workload 

predictor, which is demonstrated in 

the steeper downward slope in the 

noisy throughput predictor curve.
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Conclusion

• For cost-optimal performance of a distributed Key-Value store in the cloud, it is 

critical to jointly tune Key-Value store and cloud configurations.

• OPTIMUSCLOUD provides the insight that it is optimal to create 

heterogeneous configurations and for this, it determines at runtime the minimum 

number of servers to reconfigure. 

• Using a novel concept of Complete-Sets, OPTIMUSCLOUD provides a technique 

to reduce the large search space that is brought out by heterogeneity

• Configurations found by OPTIMUSCLOUD

outperform those by prior works, CherryPick, 

Selecta, and SOPHIA, in both Perf/$ and Tail 

Latency (P99)
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