
1

coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer

Tracking for Efficient Memory Management in Direct I/O

Kun Tian, Yu Zhang (presenter), Luwei Kang, Yan Zhao, Yaozu Dong

Intel Corporation

2

Legal Disclaimer

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a

particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in

trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to

change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published

specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or

by visiting www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

3

Direct I/O

• The best performant I/O virtualization method,

widely deployed in cloud and data centers.

• Guest directly interacts with I/O devices,

eliminating the host intervention.

• Hardware IOMMU provides inter-guest

protection with IOMMU page table (IOPT).

App

Device A Device B

IOMMU

Hypervisor

Virtual Machine (0)

Device

Driver

App

Virtual Machine (n)

Device

Driver

App

Memory

4

Static Pinning in Direct I/O

• Most devices do not support DMA page fault.

➢ DMA buffers need be pinned in the IOMMU.

• Hypervisor has no visibility of guest DMA

activities.

VM

Device

IOMMU

Hypervisor

5

Static Pinning in Direct I/O

• Pre-allocate and pin the entire guest memory

before guest DMA starts.

➢ E.g. at VM creation time.

VM

Device

IOMMU

Hypervisor

6

The Problem of Static Pinning

• Much increased VM creation time

➢ Up to 73x longer time observed for a VM with 128GB memory.

• Greatly reduced memory utilization

➢ Prevent many memory optimizations (overcommitment, late

allocation, swap, etc.).

0.7

73X

0

10

20

30

40

50

60

4 32 64 96 128

Guest Memory Size (GB)

No Direct I/O

Direct I/O

G
u

e
s
t

C
re

a
ti

o
n

 T
im

e
 (

S
e
c
o

n
d

s
)

VM creation time increases with guest

memory size in static pinning.

7

Virtual IOMMU (vIOMMU)

• Primary purpose: intra-guest protection

➢ E.g. protection with virtual DMA remapping against bogus

guest drivers.

• Side-effect: fine-grained pinning

➢ Guest uses vIOMMU to map/unmap DMA buffers.

➢ vIOMMU requests hypervisor to pin/unpin guest DMA buffers.

• A vIOMMU could be emulated or para-virtualized.

VM

Device

IOMMU

Map/unmap

DMA buffers

Fine-grained

pinning

1

2

3

4

Hypervisor

DMA

remapping

vIOMMU

8

The Problem

• Emulation cost of established vIOMMUs could be significant!

➢ E.g. 96.6% performance downgrade in memcached through 40Gbps NIC.

➢ SLA violation if forcing all tenants to turn on vIOMMU.

• Aggressive optimizations may compromise security!

➢ E.g. side-core emulation [8], map cache [52], etc.

Security
Performance

9

The Reality

• Virtual DMA remapping is disabled in established vIOMMUs by most guest OSes.

➢ Users may opt in when security requirement is over performance concern.

➢ E.g. Linux uses ‘passthrough’ by default, leaving ‘strict’/’lazy’ for user opt-in.

• The guest security requirement varies. E.g.

➢ when an untrusted device is plugged in;

➢ when a device is assigned to untrusted userspace.

Established vIOMMUs are not suitable as a reliable way for fine-grained pinning!

10

Motivation

• vIOMMU provides an architectural way for learning guest DMA buffers.

• However, mixing the requirements of protection and pinning, through the same

costly DMA remapping interface, is needlessly constraining.

➢ Protection is an OPTIONAL guest-side requirement.

➢ Fine-grained pinning is a GENERAL host-side requirement.

11

Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.

vIOMMUDMA Remapping DMA Tracking

Intra-guest Protection

Fined-grained Pinning

Guest

Hypervisor

12

Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.

vIOMMUDMA Remapping DMA Tracking

Intra-guest Protection

Fined-grained Pinning

Guest

Hypervisor

Goals

➢ Orthogonal to remapping

➢ Low cost

➢ Non-intrusive

➢ Widely applicable

➢ Extensible

13

Cooperative DMA Buffer Tracking

• Bi-directional shared DMA buffer information

➢ To guest – whether a page is pinned in the IOMMU.

➢ To host – whether a page is mapped for DMA.

• A lightweight tracking interface for fine-grained

pinning

➢ Minimize VM-exits when mapping DMA pages

➢ Eliminate VM-exits when unmapping DMA pages

➢ Enable flexible host memory management policies

Guest

Host

Shared

Memory

Mapping status

Pinning status

Updated by

guest

Updated by

host

Read by guest to decide

whether a pinning

request is required

Read by host to decide

whether a page can be

asynchronously

unpinned

14

coIOMMU Architecture

• DMA Tracking Table (DTT)

➢ Hold shared DMA buffer info.

• coIOMMU driver

➢ Hook to guest DMA API layer.

• coIOMMU backend

➢ DMA remapping engine (remapEngine)

➢ DMA tracking engine (trackEngine)

➢ Page pinning manager (pManager)

Guest

Device

IOMMU HW

System Memory

IOMMU

driver

Host

trackEngine

remapEngine

pManager

coIOMMU Backend
vIOPT

DTT

Device

driver

DMA

API

coIOMMU

driver

15

coIOMMU Architecture

• remapEngine
➢ Same as established DMA remapping

interface.

• trackEngine
➢ Holds base address of the DTT.

➢ Emulates a doorbell register for notifying the
host.

• pManager
➢ Implements fine-grained pinning policy.

➢ Invisible to guest.

Guest

Device

IOMMU HW

System Memory

IOMMU

driver

Host

trackEngine

remapEngine

pManager

coIOMMU Backend
vIOPT

DTT

Device

driver

DMA

API

coIOMMU

driver

16

DMA Tracking Table (DTT)

• A multi-level paging structure
➢ Shared between host & guest.

➢ Indexed by guest page frame numbers (GFNs).

• TU - Tracking Unit for each guest
page frame number(GFN)
➢ ‘M’ (mapped) – set/cleared by guest.

➢ ‘P’ (pinned) - set/cleared by host.

➢ ‘A’ (accessed) – set by guest, cleared by host.

• Extensible through 5 reserved bits
➢ E.g. add a ‘D (dirty)’ bit to assist dirty page

tracking in live migration.

6
3

5
1

5
0

4
2

4
1

3
3

3
2

2
4

2
3

1
5

1
4

1
2

1
1 0

Reserved

<<3

+

DTT Base
Pointer L4 Table

<<3

+

<<3

+

L3 Table

L2 Table

<<3

+

L1 Table

DTE TU0 TU1 TU2 TU3 TU4 TU5 TU6 TU7

R R R R R A P M

Tracking Unit (TU)

M: mapped
P: pinned
A: accessed
R: Reserved

Guest Physical Address (GPA)

17

Fine-grained Pinning

• Smart pinning
➢ Instant pinning – pinning must be instantly done before any mapped page is used for DMA.

➢ Precise notification – only notify the hypervisor for pages not pinned.

➢ Speculative pinning – pManager speculatively pins frequently used pages.

• Lazy unpinning
➢ Asynchronously done by pManager.

➢ Only tries to unpin the pages that are no longer mapped.

➢ Unpinned pages are reclaimable.

18

Guest Mapping Operations

Instant Pinning

GuestHost

trackEngine

pManager

DTT
coIOMMU

driver

Sets ‘mapped’ flag

Precise notification

(only when ‘pinned’ is 0)

1

2

3

Up to 99.9992% notifications can be avoided due to

DMA buffer locality!

GuestHost

trackEngine

pManager

DTT
coIOMMU

driver

Clears ‘mapped’ flag

1

No notification is required

Guest DMA map Guest DMA unmap

19

Lazy Unpinning & Speculative Pinning

Host asynchronously manages pinning & unpinning in a separate thread.

GuestHost

DTT

coIOMMU

driverPeriodically

checks the

‘mapped’ &

‘accessed’ flag

1

For pages that are not ‘mapped’
pManager

‘accessed’?

Lazy unpinning Speculative pinning

2 3

N

Y

20

DMA Tracking vs. DMA Remapping

• When DMA remapping is disabled by guest (the majority case).

➢ DMA tracking is an efficient solution to achieve fine-grained pinning.

• When DMA remapping is conditionally enabled.

➢ E.g. only for selective devices (e.g. untrusted), or only in specific period (e.g. when the device is assigned to

userspace).

➢ However, hypervisor requires full visibility of guest DMA activities for the entire VM life-cycle.

➢ In such cases, DMA tracking helps provide a reliable way for fine-grained pinning.

• When DMA remapping is always enabled (for all devices at all times).

➢ DMA tracking provides a consistent tracking interface as other two categories, with negligible cost.

21

Implementation

• Based on KVM/QEMU.

• Extend existing virtual Intel VT-d.
➢ Reused the remapping logic in vIOMMU as remapEngine.

➢ Developed pManager and trackEngine from scratch.

➢ Extended guest intel-iommu driver to support DMA tracking.

• Applicable to all kinds of direct I/O usages.
➢ No ad-hoc changes in hardware or device drivers.

• Applicable to other OSes.
➢ As long as a generic DMA API layer is afforded.

• Applicable to other vIOMMUs.
➢ New tracking interface is vendor-agnostic and self-contained.

New/Changed LOC

Guest Intel VT-d driver

832 new

47 changed

Host QEMU

trackEngine 131 new

pManager 552 new

▪ Less than 700 LOC in QEMU.

▪ Less than 1000 LOC in guest.

22

Implementation

• Huge page mappings

➢ The DTT tracks guest pages in 4KB granularity.

➢ pManager is optimized to conduct 2MB page pinning by merging continuous guest pages.

• Sub-page mappings

➢ Multiple DMA buffers may co-locate in the same 4KB guest page (e.g. network packets).

➢ Guest coIOMMU driver tracks the mapping count of each mapped page.

23

Implementation

• Kernel Bypassing

➢ Kernel bypass APIs require userspace to pre-register a trunk of memory.

➢ Pre-registered memory is mapped through kernel driver, thus still trackable in coIOMMU.

• Concurrency
➢ coIOMMU must properly handle concurrent pinning/unpinning requests between multiple vCPU

threads and the unpinning thread.

24

Evaluation

• Evaluation targets

➢ Performance overhead imposed by coIOMMU.

➢ Memory footprint in various direct I/O usages.

➢ The desired performance and security under different intra-

guest protection policies.

• Evaluated modes – coIOMMU vs. virtual VT-d

➢ Passthrough mode: no DMA remapping

▪ PT-N (coIOMMU) vs. PT-O (virtual VT-d)

➢ Strict mode: full protection with DMA remapping

▪ ST-N (coIOMMU) vs. ST-O (virtual VT-d)

➢ Lazy mode: relaxed protection with DMA remapping

▪ LA-N (coIOMMU) vs. LA-O (virtual VT-d)

mode abbr.
DMA

remapping
DMA buffer

tracking
pinning
model

protection

passthrough (virtual VT-d) PT-O unused n/a static no

passthrough (coIOMMU) PT-N unused used fine-grained no

strict (virtual VT-d) ST-O used n/a fine-grained full

strict (coIOMMU) ST-N used used fine-grained full

lazy (virtual VT-d) LA-O used n/a fine-grained relaxed

lazy (coIOMMU) LA-N used used fine-grained relaxed

25

Evaluation

• Three direct I/O usages: NIC/NVMe/GPU.

• Benchmarks

➢ Netperf: Aggregated throughput reported, for 16 concurrent Netperf

instances running stream RX & TX tests.

➢ Nginx: Requests/second reported, for 16 concurrent requests to

Nginx server installed in guest.

➢ Memcached: Requests/second reported, for 16*8 concurrent

requests to Memcached installed in guest.

➢ FIO: IO requests/second reported, for 16 concurrent fio threads,

each performing asynchronous direct random reads to NVMe.

➢ Open Arena: Frame-per-second (fps) reported as benchmark

VM configuration

Direct I/O device vCPU number RAM size

Intel XL710 40Gbps

NIC
16 32GB

Intel 760P series 1TB

NVMe SSDs
16 32GB

Intel® Iris® Plus

graphics 650 GPU
4 4GB

26

Performance
T

h
ro

u
g
h

p
u

t
(h

ig
h

e
r

is
 b

e
tt

e
r)

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

netperf stream rx
(Gbps)

40

30

20

10

0

netperf stream tx
(Gbps)

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

40

30

20

10

0

nginx
(req/sec)

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

2.4K

1.8K

1.2K

0.6K

0

memcached
(req/sec)

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

2.0M

1.5M

1.0M

0.5M

0

fio
(iops)

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

500K

375K

250K

125K

0

P
T

-O
P

T
-N

S
T

-O
S
T

-N
L
A

-O
L
A

-N

throughput cpu [%]

C
P

U
[%

]
(l

o
w

e
r

is
 b

e
tt

e
r)

openarena
(fps)

100

75

50

25

0

100%

75%

50%

25%

0%

No observable performance impact with DMA Tracking!

(even in mixed netperf/fio scenario – data not shown here)

27

The number of pinned pages sampled in 3 second interval, taken from the beginning of the benchmarks to 6

seconds after their completion. ‘max’ indicates the total pages of guest memory.

Memory Footprint

Entire 32GB guest memory is statically pinned

w/o DMA tracking

Fine-grained pinning with DMA Tracking,

with only 0.5% of guest memory pinned
All four DMA remapping modes pin the

minimal number of pages.

28

Memory Overcommitment

• Test setup

➢ Host: 64GB RAM size.

➢ VM1: 32GB RAM, running sysbench(no assigned device).

➢ VM2: 48GB RAM, assigned with Intel XL710 40Gbps NIC,

running Netperf.

➢ Performance compared with running each benchmark alone.

• Results

➢ PT-O: Sysbench suffers 25+% performance drop, frequent

page swaps.

➢ PT-N: No performance drop, with 49GB free memory.

The impact of memory overcommitment:

static pinning (PT-O) vs. fine-grained pinning (PT-N)

29

Guest User Space Driver

• Run DPDK with coIOMMU and with the virtual VT-d respectively.

0%

25%

50%

75%

100%

125%

0

10

20

30

40

50

virtual VT-d coIOMMU

Throughput (Gbps) cpu [%]

7554ms

183ms

815ms

virtual
VT-d coIOMMU ratio

Spent Cycles

Create VM

Assign NIC

Deassign NIC

407ms

2ms

2ms

18x

91x

407x

8388608

186368

8838608

virtual
VT-d coIOMMU ratio

Pinned Pages

Before DPDK

In DPDK

After DPDK

548

186368

548

15307x

1x

15307x

• No need to allocate and pin the entire guest memory in

coIOMMU.

• No need to unpin the entire guest memory in coIOMMU.

• Likewise, static-pinning is avoided in coIOMMU when

assigning NIC back to kernel driver.

• coIOMMU always adapts to the actual DMA buffer

requirement, while virtual VT-d fails to do so when DMA

remapping is off.

30

DMA Temporal Locality

time [seconds]

0 150 300 450 600 750 900

ever been used for DMA

currently pinned for DMA

10M

7.5M

5M

2.5M

0M
106K

T
h

e
 n

u
m

b
e

r
o

f
p

a
ge

s

DMA temporal locality when running Netperf

with ‘dd’

• Test setup

➢ 16 Netperf TX instances ran for 15 minutes.

➢ ‘dd’ the virtual disk to /dev/zero, to contend the page

allocation with the networking stack.

• Conclusion

➢ DMA temporal locality stays good, even in stressed

scenario.

31

Future Work

• Co-work with DMA page faults

➢ Help reduce the number of DMA faults by proactively pre-pin hot pages.

➢ Mitigate non-faultable data paths if a device (e.g. many GPUs) only partially supports DMA page faults.

• Guest cooperation

➢ A selfish guest may choose to not cooperate, e.g., by deliberately report fake DMA pages.

➢ A quota mechanism can be applied, based on the service level agreement.

• Support two-level IOMMU address translation.
➢ Hardware optimization to reduce virtual IOTLB invalidations.

32

Conclusions

• Established vIOMMUs cannot reliably eliminate static pinning in direct I/O.

• coIOMMU offers a reliable approach to achieve fine-grained pinning, with a
cooperative DMA buffer tracking method.

• coIOMMU
➢ dramatically improves the efficiency of memory management in wide direct I/O usages with negligible cost;

➢ meanwhile sustains the desired security as required in specific protection usage;

➢ can be easily applied in various vIOMMU implementations.

33

Thanks!

kevin.tian@intel.com
yu.c.zhang@intel.com
luwei.kang@intel.com
yan.y.zhao@intel.com
eddie.dong@intel.com

mailto:kevin.tian@intel.com
mailto:yu.c.zhang@intel.com
mailto:luwei.kang@intel.com
mailto:yan.y.zhao@intel.com
mailto:eddie.dong@intel.com

