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Direct I/O

• The best performant I/O virtualization method, 

widely deployed in cloud and data centers.

• Guest directly interacts with I/O devices, 

eliminating the host intervention.

• Hardware IOMMU provides inter-guest 

protection with IOMMU page table (IOPT).
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Static Pinning in Direct I/O

• Most devices do not support DMA page fault. 

➢ DMA buffers need be pinned in the IOMMU.

• Hypervisor has no visibility of guest DMA 

activities.
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Static Pinning in Direct I/O

• Pre-allocate and pin the entire guest memory 

before guest DMA starts.

➢ E.g. at VM creation time.
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The Problem of Static Pinning

• Much increased VM creation time

➢ Up to 73x longer time observed for a VM with 128GB memory.

• Greatly reduced memory utilization

➢ Prevent many memory optimizations (overcommitment, late 

allocation, swap, etc.).
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Virtual IOMMU (vIOMMU)

• Primary purpose: intra-guest protection

➢ E.g. protection with virtual DMA remapping against bogus 

guest drivers.

• Side-effect: fine-grained pinning

➢ Guest uses vIOMMU to map/unmap DMA buffers.

➢ vIOMMU requests hypervisor to pin/unpin guest DMA buffers.

• A vIOMMU could be emulated or para-virtualized.
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The Problem

• Emulation cost of established vIOMMUs could be significant!

➢ E.g. 96.6% performance downgrade in memcached through 40Gbps NIC.

➢ SLA violation if forcing all tenants to turn on vIOMMU.

• Aggressive optimizations may compromise security!

➢ E.g. side-core emulation [8], map cache [52], etc.

Security
Performance
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The Reality

• Virtual DMA remapping is disabled in established vIOMMUs by most guest OSes.

➢ Users may opt in when security requirement is over performance concern.

➢ E.g. Linux uses ‘passthrough’ by default, leaving ‘strict’/’lazy’ for user opt-in.

• The guest security requirement varies. E.g.

➢ when an untrusted device is plugged in;

➢ when a device is assigned to untrusted userspace.

Established vIOMMUs are not suitable as a reliable way for fine-grained pinning!
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Motivation

• vIOMMU provides an architectural way for learning guest DMA buffers.

• However, mixing the requirements of protection and pinning, through the same 

costly DMA remapping interface, is needlessly constraining.

➢ Protection is an OPTIONAL guest-side requirement.

➢ Fine-grained pinning is a GENERAL host-side requirement.
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Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.
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Motivation

• Decouple DMA tracking and DMA remapping in vIOMMU.

vIOMMUDMA Remapping DMA Tracking

Intra-guest Protection

Fined-grained Pinning

Guest

Hypervisor

Goals

➢ Orthogonal to remapping

➢ Low cost

➢ Non-intrusive

➢ Widely applicable

➢ Extensible
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Cooperative DMA Buffer Tracking

• Bi-directional shared DMA buffer information

➢ To guest – whether a page is pinned in the IOMMU.

➢ To host – whether a page is mapped for DMA.

• A lightweight tracking interface for fine-grained 

pinning

➢ Minimize VM-exits when mapping DMA pages

➢ Eliminate VM-exits when unmapping DMA pages

➢ Enable flexible host memory management policies
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coIOMMU Architecture

• DMA Tracking Table (DTT)

➢ Hold shared DMA buffer info.

• coIOMMU driver

➢ Hook to guest DMA API layer.

• coIOMMU backend

➢ DMA remapping engine (remapEngine)

➢ DMA tracking engine (trackEngine)

➢ Page pinning manager (pManager)
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coIOMMU Architecture

• remapEngine
➢ Same as established DMA remapping 

interface.

• trackEngine
➢ Holds base address of the DTT.

➢ Emulates a doorbell register for notifying the 
host.

• pManager
➢ Implements fine-grained pinning policy.

➢ Invisible to guest.
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DMA Tracking Table (DTT)

• A multi-level paging structure
➢ Shared between host & guest.

➢ Indexed by guest page frame numbers (GFNs).

• TU - Tracking Unit for each guest 
page frame number(GFN)
➢ ‘M’ (mapped) – set/cleared by guest.

➢ ‘P’ (pinned)  - set/cleared by host.

➢ ‘A’ (accessed) – set by guest, cleared by host.

• Extensible through 5 reserved bits
➢ E.g. add a ‘D (dirty)’ bit to assist dirty page 

tracking in live migration.

6
3

5
1

5
0

4
2

4
1

3
3

3
2

2
4

2
3

1
5

1
4

1
2

1
1 0

Reserved

<<3

+

DTT Base 
Pointer L4 Table

<<3

+

<<3

+

L3 Table

L2 Table

<<3

+

L1 Table

DTE TU0 TU1 TU2 TU3 TU4 TU5 TU6 TU7

R R R R R A P M

Tracking Unit (TU)

M: mapped
P: pinned
A:  accessed
R: Reserved

Guest Physical Address (GPA)



17

Fine-grained Pinning

• Smart pinning 
➢ Instant pinning – pinning must be instantly done before any mapped page is used for DMA.

➢ Precise notification – only notify the hypervisor for pages not pinned.

➢ Speculative pinning – pManager speculatively pins frequently used pages.

• Lazy unpinning 
➢ Asynchronously done by pManager.

➢ Only tries to unpin the pages that are no longer mapped.

➢ Unpinned pages are reclaimable.
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Guest Mapping Operations

Instant Pinning
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Lazy Unpinning & Speculative Pinning

Host asynchronously manages pinning & unpinning in a separate thread. 
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DMA Tracking vs. DMA Remapping

• When DMA remapping is disabled by guest (the majority case).

➢ DMA tracking is an efficient solution to achieve fine-grained pinning.

• When DMA remapping is conditionally enabled.

➢ E.g. only for selective devices (e.g. untrusted), or only in specific period (e.g. when the device is assigned to 

userspace).

➢ However, hypervisor requires full visibility of guest DMA activities for the entire VM life-cycle.

➢ In such cases, DMA tracking helps provide a reliable way for fine-grained pinning.

• When DMA remapping is always enabled (for all devices at all times).

➢ DMA tracking provides a consistent tracking interface as other two categories, with negligible cost.
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Implementation

• Based on KVM/QEMU.

• Extend existing virtual Intel VT-d. 
➢ Reused the remapping logic in vIOMMU as remapEngine.

➢ Developed pManager and trackEngine from scratch.

➢ Extended guest intel-iommu driver to support DMA tracking.

• Applicable to all kinds of direct I/O usages.
➢ No ad-hoc changes in hardware or device drivers.

• Applicable to other OSes.
➢ As long as a generic DMA API layer is afforded.

• Applicable to other vIOMMUs.
➢ New tracking interface is vendor-agnostic and self-contained.

New/Changed LOC

Guest Intel VT-d driver

832 new

47  changed

Host QEMU

trackEngine 131 new

pManager 552 new

▪ Less than 700 LOC in QEMU. 

▪ Less than 1000 LOC in guest.
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Implementation

• Huge page mappings

➢ The DTT tracks guest pages in 4KB granularity.

➢ pManager is optimized to conduct 2MB page pinning by merging continuous guest pages.

• Sub-page mappings

➢ Multiple DMA buffers may co-locate in the same 4KB guest page (e.g. network packets).

➢ Guest coIOMMU driver tracks the mapping count of each mapped page.
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Implementation

• Kernel Bypassing

➢ Kernel bypass APIs require userspace to pre-register a trunk of memory.

➢ Pre-registered memory is mapped through kernel driver, thus still trackable in coIOMMU.

• Concurrency
➢ coIOMMU must properly handle concurrent pinning/unpinning requests between multiple vCPU 

threads and the unpinning thread.
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Evaluation

• Evaluation targets

➢ Performance overhead imposed by coIOMMU.

➢ Memory footprint in various direct I/O usages.

➢ The desired performance and security under different intra-

guest protection policies.

• Evaluated modes – coIOMMU vs. virtual VT-d

➢ Passthrough mode: no DMA remapping

▪ PT-N (coIOMMU) vs. PT-O (virtual VT-d)

➢ Strict mode: full protection with DMA remapping

▪ ST-N (coIOMMU) vs. ST-O (virtual VT-d)

➢ Lazy mode: relaxed protection with DMA remapping

▪ LA-N (coIOMMU) vs. LA-O (virtual VT-d)

mode abbr.
DMA 

remapping
DMA buffer 

tracking 
pinning
model

protection

passthrough (virtual VT-d) PT-O unused n/a static no

passthrough (coIOMMU) PT-N unused used fine-grained no

strict (virtual VT-d) ST-O used n/a fine-grained full

strict (coIOMMU) ST-N used used fine-grained full

lazy (virtual VT-d) LA-O used n/a fine-grained relaxed

lazy (coIOMMU) LA-N used used fine-grained relaxed
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Evaluation

• Three direct I/O usages: NIC/NVMe/GPU.

• Benchmarks

➢ Netperf: Aggregated throughput reported, for 16 concurrent Netperf

instances running stream RX & TX tests. 

➢ Nginx: Requests/second reported, for 16 concurrent requests to 

Nginx server installed in guest.

➢ Memcached: Requests/second reported, for 16*8 concurrent 

requests to Memcached installed in guest.

➢ FIO: IO requests/second reported, for 16 concurrent fio threads, 

each performing asynchronous direct random reads to NVMe.

➢ Open Arena: Frame-per-second (fps) reported as benchmark

VM configuration

Direct I/O device vCPU number RAM size

Intel XL710 40Gbps 

NIC
16 32GB

Intel 760P series 1TB 

NVMe SSDs 
16 32GB

Intel® Iris® Plus 

graphics 650 GPU
4 4GB
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No observable performance impact with DMA Tracking!

(even in mixed netperf/fio scenario – data not shown here)
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The number of pinned pages sampled in 3 second interval, taken from the beginning of the benchmarks to 6 

seconds after their completion. ‘max’ indicates the total pages of guest memory.

Memory Footprint

Entire 32GB guest memory is statically pinned 

w/o DMA tracking 

Fine-grained pinning with DMA Tracking, 

with only 0.5% of guest memory pinned
All four DMA remapping modes pin the 

minimal number of pages.
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Memory Overcommitment

• Test setup

➢ Host: 64GB RAM size.

➢ VM1: 32GB RAM, running sysbench(no assigned device).

➢ VM2: 48GB RAM, assigned with Intel XL710 40Gbps NIC, 

running Netperf.

➢ Performance compared with running each benchmark alone.

• Results 

➢ PT-O: Sysbench suffers 25+% performance drop, frequent 

page swaps.

➢ PT-N: No performance drop, with 49GB free memory.

The impact of memory overcommitment: 

static pinning (PT-O) vs. fine-grained pinning (PT-N)
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Guest User Space Driver

• Run DPDK with coIOMMU and with the virtual VT-d respectively.
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• No need to allocate and pin the entire guest memory in 

coIOMMU.

• No need to unpin the entire guest memory in coIOMMU.

• Likewise, static-pinning is avoided in coIOMMU when 

assigning NIC back to kernel driver.

• coIOMMU always adapts to the actual DMA buffer 

requirement, while virtual VT-d fails to do so when DMA 

remapping is off.
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DMA Temporal Locality
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DMA temporal locality when running Netperf

with ‘dd’

• Test setup

➢ 16 Netperf TX instances ran for 15 minutes.

➢ ‘dd’ the virtual disk to /dev/zero, to contend the page 

allocation with the networking stack. 

• Conclusion

➢ DMA temporal locality stays good, even in stressed 

scenario.
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Future Work

• Co-work with DMA page faults

➢ Help reduce the number of DMA faults by proactively pre-pin hot pages. 

➢ Mitigate non-faultable data paths if a device (e.g. many GPUs) only partially supports DMA page faults.

• Guest cooperation 

➢ A selfish guest may choose to not cooperate, e.g., by deliberately report fake DMA pages.

➢ A quota mechanism can be applied, based on the service level agreement.

• Support two-level IOMMU address translation.
➢ Hardware optimization to reduce virtual IOTLB invalidations.
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Conclusions

• Established vIOMMUs cannot reliably eliminate static pinning in direct I/O.

• coIOMMU offers a reliable approach to achieve fine-grained pinning, with a 
cooperative DMA buffer tracking method.

• coIOMMU 
➢ dramatically improves the efficiency of memory management in wide direct I/O usages with negligible cost;

➢ meanwhile sustains the desired security as required in specific protection usage;

➢ can be easily applied in various vIOMMU implementations.
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