Libnvmmio: Reconstructing SW |0 Path with
Failure-Atomic Memory-Mapped Interface

Jungsik Choi?, Jaewan Hong?, Youngjin Kwon?, Hwansoo Han

@sw\lc uNkwAN  IKALST

=) UNIVERSITY

USENIX ATC ‘20



SW Overhead Greater than Storage Latency

_atency

©

ns

NVDIMM-N PM

Time

SW Overhead



Reconstruct SW 10 Path with Libnvmmio

* Libnvmmio

- Library

- Run on any POSIX FS (DAX-mmap)
- Transparent MMIO with logging

- Make common IO path efficient

* Handle data ops at user-level
* Route metadata ops to kernel FS

- Low-latency & scalable 10
- Data-atomicity

Application

o “ ~ B Vs
1'08’7 l \)3‘@ l Qc90’ l y”o l e
L A I
Libnvmmio Logs
Atomic Write‘],
Memory Mapped Files
7
open munmap
| /mmap MMIO ] /close
Kernel NVM-aware FS
L —— Y —
NVMM Files




User-Level 10 is Suitable in NVMM system

e Kernel’s 10 stacks introduce SW overhead

* User-level IO with mmap [ Application
- Access files directly with 1oad/store Pead/writeT load/store
- Reduce user/kernel mode switches g VES A
- Avoid complex 10 stacks File System
- No indexing, no permission checks Device Driver
OS Kernel

* MMIO is the fastest way to access files S 3

NVMM




Logging is more Efficeint than CoW

* CoW (or shadow paging)
- High write amplification
- Hugepages make CoW more expensive
- Frequent TLB-shutdown

* Logging (or journaling)
- Writing data twice: logs and files
- Differential logging
- Checkpointing can be postponed



Redo vs. Undo

* Most logging systems use only one policy (redo or undo)

* They have different pros & cons depending on access type
- REDO is better for writing, UNDO is better for reading

UNDO - File REDO
Log Log

=== File

Write =m=pp  Async Write == == =p Read =——p



Hybrid Logging

* Uses adaptive policy depending on the access type of a file
- Read-intensive file 2 Undo logging
- Write-intensive file > Redo logging

* Maintains per-file read/write counters
* Determines logging policy on each fsync

* Achieves the best case performance of two logging policies
- Reduce SW overhead and improve logging efficiency



Centralized Logging with Fine-Grained Locks

* Decentralized logging was desighed for transactions
- e.qg., per-thread logging, per-transaction logging

* Centralized logging is appropriate for file 10, but not scalable
- Requires fine-grained locks for scalable file 10

P

Log Log || Lo Log

! |
File File

Centralized Logging Decentralized Logging




Per-Block Logging

Multi-Level _
b b

et (@] (@ al [a
DD

File




Lock-Free Radix Tree

9 9 9 9 12
A

File Offset | Global | Upper | Middle | Table Offset

---------------------------------------------------
“““““
- .

LMD

LUD : :
LGD size | i |entry 4> )
—> rwlock =

> > offset

len D

: elta
> > dest
lg(,j > policy
skip i | epoch

v
~
x
o

radix_root

¢ *
‘‘‘‘‘‘
--------------------------------------------------

Per-Block Log



Commit & Checkpoint based on Epoch

* Per-block logs are atomically committed on fsync

* Libnvmmio commits by increasing the global epoch value
- Committed logs have an epoch smaller than the global epoch

 Background ckeckpointin o
—P 2 LL

(b} ©

()] ()]

5 .

2 X &z

g a

Per-File o S

Metadata —» 2 E g

Per-Block  Background

Logs Threads
11



Designh Summary

Libnvmmio provides low-latency and scalable 10
while guaranteeing data-atomicity

* Low-latency IO * Scalable 10
- User-level 10 with mmap - Per-block logging
- Differential logging — Lock-free index data structure

- Hybrid logging

—Various log sizes

- Epoch-based committing
- Background checkpointing

12



Experimental Setup

* Experimental Machines
- 32GB NVDIMM-N, 20 cores and 32GB DRAM
- 256GB Optane DC, 16 cores and 128GB DRAM (in our paper)

* Comparison systems

Filesystem File 10 Data-Atomicity Kernel
Ext4-DAX Kernel X 5.1
PMFS Kernel X 4.13
NOVA Kernel @) 5.1
SplitFS User @) 4.13
Libnvmmio™ User O 5.1




Hybrid Logging

N
o

=
Ul
|

=
o

@) Elapsed Time (sec) (9

un
1

o

O Undo

o O

\/QQ S Qq? A Q@ Q.")Q Q@ RO
S A Vv XN 97 00 AT T O AN

R:W Ratio

14



FIO: Different Access Patterns

* A single thread, file size=4GB, block size=4KB, time=60s

(00)

[ 1 Ext4-DAX
X1 PMFS
BN NOVA
Bl Libnvmmio

ol

SR RR SW RW
Access Pattern

D

N

o

@® Bandwidth (GiB/s) ()
(&)}



FIO: Different Write Sizes

[ 1 Ext4-DAX X1 PMFS B NOVA I Libhnvmmio

15

4

a 41
9, 1.0 3-
e

fd

T 2-
2 0.5

2 11
s e B

@ 9.0 0
@ 128B 1KB AKB 64KB 1MB

Write Size




FIO: Random Write with Multithreads

N
Ul

N
o

§® Bandwidth (Gi/s) ()

Private file

l—l
o
1

[
o

ul
1

O Ext4-DAX

| =@~ PMFS
{ == NOVA

=sfe= Libnvmmio

Vg
Ao s
1 2 4 16
# Threads

25 1

20

15 -

10 A

Shared file

R R S

2 4 8 16
# Threads

17



TPC-C on SQLite

* Underlying FS with WAL, and Libnvmmio without WAL

1 Only underlying FS Bl Libnvmmio on FS

=
Ul

=
o

o
8

o
o

@' Normalized tpmC @

Ext4-DAX PMFS NOVA SplitFS

18



SQLite WAL vs. Libnvmmio

* SQLite WAL * Libnvmmio
— Design for block devices - Design for NVMM
- Similar to REDO logging - Hybrid Logging
- Read both WAL and DB file — Read DB file (UNDO)
—Only one writer at a time — Concurrent writes
- Synchronous checkpointing — Background checkpointing

* Easily improve performance with Libnvmmio
—Support any FS, Even FS that does not provide data-atomicity

19



Conclusion

* It is important to minimize SW overhead in NVMM systems

* Libnvmmio is a simple and practical solution

- Reconstruct SW 10 path
- Run on any filesystem that provide DAX-mmap

* Low-latency, scalable IO while guaranteeing data-atomicity
- 2.2x better throughput
- 13x better scalability

* https://github.com/chjs/libnvmmio

20


https://github.com/chjs/libnvmmio-private

QnA

chjs@skku.edu



http://skku.edu

