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SW Overhead Greater than Storage Latency
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Reconstruct SW 10 Path with Libnvmmio

* Libnvmmio

- Library

- Run on any POSIX FS (DAX-mmap)
- Transparent MMIO with logging

- Make common IO path efficient

* Handle data ops at user-level
* Route metadata ops to kernel FS

- Low-latency & scalable 10
- Data-atomicity
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User-Level 10 is Suitable in NVMM system

e Kernel’s 10 stacks introduce SW overhead

* User-level IO with mmap [ Application
- Access files directly with 1oad/store Pead/writeT load/store
- Reduce user/kernel mode switches g VES A
- Avoid complex 10 stacks File System
- No indexing, no permission checks Device Driver
OS Kernel

* MMIO is the fastest way to access files S 3

NVMM




Logging is more Efficeint than CoW

* CoW (or shadow paging)
- High write amplification
- Hugepages make CoW more expensive
- Frequent TLB-shutdown

* Logging (or journaling)
- Writing data twice: logs and files
- Differential logging
- Checkpointing can be postponed



Redo vs. Undo

* Most logging systems use only one policy (redo or undo)

* They have different pros & cons depending on access type
- REDO is better for writing, UNDO is better for reading
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Hybrid Logging

* Uses adaptive policy depending on the access type of a file
- Read-intensive file 2 Undo logging
- Write-intensive file > Redo logging

* Maintains per-file read/write counters
* Determines logging policy on each fsync

* Achieves the best case performance of two logging policies
- Reduce SW overhead and improve logging efficiency



Centralized Logging with Fine-Grained Locks

* Decentralized logging was desighed for transactions
- e.qg., per-thread logging, per-transaction logging

* Centralized logging is appropriate for file 10, but not scalable
- Requires fine-grained locks for scalable file 10

P

Log Log || Lo Log

! |
File File

Centralized Logging Decentralized Logging




Per-Block Logging
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Lock-Free Radix Tree
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Commit & Checkpoint based on Epoch

* Per-block logs are atomically committed on fsync

* Libnvmmio commits by increasing the global epoch value
- Committed logs have an epoch smaller than the global epoch
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Designh Summary

Libnvmmio provides low-latency and scalable 10
while guaranteeing data-atomicity

* Low-latency IO * Scalable 10
- User-level 10 with mmap - Per-block logging
- Differential logging — Lock-free index data structure

- Hybrid logging

—Various log sizes

- Epoch-based committing
- Background checkpointing
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Experimental Setup

* Experimental Machines
- 32GB NVDIMM-N, 20 cores and 32GB DRAM
- 256GB Optane DC, 16 cores and 128GB DRAM (in our paper)

* Comparison systems

Filesystem File 10 Data-Atomicity Kernel
Ext4-DAX Kernel X 5.1
PMFS Kernel X 4.13
NOVA Kernel @) 5.1
SplitFS User @) 4.13
Libnvmmio™ User O 5.1




Hybrid Logging
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FIO: Different Access Patterns

* A single thread, file size=4GB, block size=4KB, time=60s
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FIO: Different Write Sizes
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FIO: Random Write with Multithreads
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TPC-C on SQLite

* Underlying FS with WAL, and Libnvmmio without WAL

1 Only underlying FS Bl Libnvmmio on FS
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SQLite WAL vs. Libnvmmio

* SQLite WAL * Libnvmmio
— Design for block devices - Design for NVMM
- Similar to REDO logging - Hybrid Logging
- Read both WAL and DB file — Read DB file (UNDO)
—Only one writer at a time — Concurrent writes
- Synchronous checkpointing — Background checkpointing

* Easily improve performance with Libnvmmio
—Support any FS, Even FS that does not provide data-atomicity
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Conclusion

* It is important to minimize SW overhead in NVMM systems

* Libnvmmio is a simple and practical solution

- Reconstruct SW 10 path
- Run on any filesystem that provide DAX-mmap

* Low-latency, scalable IO while guaranteeing data-atomicity
- 2.2x better throughput
- 13x better scalability

* https://github.com/chjs/libnvmmio
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https://github.com/chjs/libnvmmio-private
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