
FAASM: Lightweight Isolation for Efficient
Stateful Serverless Computing

Simon Shillaker and Peter Pietzuch
Large-scale Data and Systems Group, Imperial College London

10101011
000010001
00100010

Serverless Big Data Vision

Cheap, highly scalable big data processing

10101011
000010001
00100010

+

Big dataApplication

😃 💻

Serverless functions

2

10101011
000010001
00100010

Serverless Under the Hood

Function

State in external storage

101010110
00010001
00100010

Container

Local copy of data

101010110
00010001
00100010

101010110
00010001
00100010

101010110
00010001
00100010

101010110
00010001
00100010

101010110
00010001
00100010

Host

Problem 2: Inefficient state sharing

Problem 1: Isolation overhead

3
Images: AWS , Azure , GCP , OpenWhisk

https://sites.google.com/site/teachcloudplatform/_/rsrc/1460396821252/home/logo_lockup_cloud_platform_icon_vertical.png
https://d1.awsstatic.com/logos/aws-logo/full-color/AWS-Logo_Full-Color_1000x600.9f51d0c53861b5fae75966c714e5630afc4c3e48.png
https://partner.microsoft.com/-/media/mssc/mpn/partner/marketing/azure-500x375.ashx
http://openwhisk.apache.org/images/logo/apache-openwhisk-dark-text.png

Problem 1: Isolation Overhead

Per tenant isolation, i.e. sharing containers
E.g. PyWren, Jonas et al., SoCC ‘17; Crucial, Barcelona et al., Middleware ‘19

✅ Spreads isolation overhead
❌ Loses fine-grained scaling

Software-based Isolation
E.g. “Micro” services, Boucher et. al, ATC ‘18; Cloudflare Workers; Fastly Terrarium

✅ Low overheads
❌ No resource isolation

Snapshots and restore
E.g. SOCK, Oakes et al., ATC ‘18; SEUSS, Cadden et al., Eurosys ‘20; Catalyzer, Du et al.,
ASPLOS ‘20

✅ Low initialisation time
❌ Same memory footprint

4

Problem 2: Inefficient State Sharing

Make external storage faster
E.g. Pocket, Klimovic et al., OSDI ‘18

✅ Reduces latency
❌ Still not sharing

Add extra services to containers
E.g. Cloudburst, Sreekanti et al., arXiv ‘20; SAND, Akkus et al., ATC ‘18

✅ Reduces network overhead
❌ Still duplicates locally, increases isolation overhead

Execute functions on external storage
E.g. Shredder, Zhang et al., SoCC ‘19

✅ Moves code to data
❌ Does not replicate across hosts

5

101010110
00010001
00100010

101010110
00010001
00100010

How Do We Efficiently Share State But Maintain Isolation?

101010110
00010001
00100010

👹

We need an isolation mechanism
that gives us fine-grained control over
memory

6

WebAssembly

- Lightweight memory safety
- Used by Fastly, Cloudflare, Krustlet

Software-Fault Isolation with WebAssembly

Challenges:

- Relax isolation to share memory at runtime
- Virtualisation between functions and host resources

7

Two-Tier State - Distribution and Locally-Shared State

10101011
000010001
00100010

101010110
00010001
00100010

101010110
00010001
00100010

8

Challenges:

- Hide complexity from the user
- Minimise synchronisation
- Schedule to optimise co-location

Global tier
Cross-host synchronisation

Local tier
Shared memory

Two-tier state

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing

10101011
000010001
00100010

101010110
00010001
00100010

Global
synchronisation

Faaslet isolation��

101010110
00010001
00100010

Shared memory
regions

https://github.com/lsds/Faasm

Proto-Faaslet
snapshots

9

https://github.com/lsds/Faasm

Problem 1: Isolation overheads

Faaslets - lightweight isolation based on WebAssembly

Host interface - minimal serverless-specific virtualisation

Proto-Faaslets - 500μs initialisation, 90kB memory

Problem 2: Inefficient state sharing

Faaslet shared regions - shared memory without breaking isolation

Two-tier state - global synchronisation

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing

10

Problem 1: Isolation overheads

Faaslets - lightweight isolation based on WebAssembly

Host interface - minimal serverless-specific virtualisation

Proto-Faaslets - 500μs initialisation, 90kB memory

Problem 2: Inefficient state sharing

Faaslet shared regions - shared memory without breaking isolation

Two-tier state - global synchronisation

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing

11

DataStack Heap

WebAssembly - memory safety with fine-grained control

std::vector<uint8_t> wasmMemory;

Offset: +0 +stack_base +heap_base +heap_top +heap_top

<=4GB

WebAssembly memory model

12

Memory safety and resource isolation

Faaslet

Virtual net interface

Network namespaceThread + cgroup

WASI capabilities

FilesystemHost interface

Memory safety (WebAssembly)

13

Faaslet multi-tenant isolation

Minimal Virtualisation for Serverless and POSIX applications

Category Sub-category API

Serverless
Chaining chain_call(), await_call(), ...

State get_state(), set_state(), ...

POSIX

Dynamic Linking dlopen(), dlsym(), ...

Memory mmap(), brk(), ...

Network socket(), connect(), bind(), ...

File I/O open(), close(), read(), ...

14

The Faaslet Host Interface

Faasm host A

Proto-Faaslet cache
(copy-on-write memory)

Proto-Faaslets - Host-Independence, μs Restore, kBs Memory Footprint

Proto-Faaslet store

Faasm host B

Stack Data Heap

Function table

.wasm .o

Proto-Faaslet snapshot and restore

Capture complete execution state
Support arbitrarily initialisation code
E.g. pre-initialised language runtime
CPython in <1ms

15

Problem 1: Isolation overheads

Faaslets - lightweight isolation based on WebAssembly

Host interface - minimal serverless-specific virtualisation

Proto-Faaslets - 500μs initialisation, 90kB memory

Problem 2: Inefficient state sharing

Faaslet shared regions - shared memory without breaking isolation

Two-tier state - global synchronisation

Faasm: Lightweight Isolation for Efficient Stateful Serverless Computing

16

Two-Tier State Architecture Top-Down View

10101011
000010001
00100010

Global tier

101010110
00010001
00100010Local tier

101010110
00010001
00100010

2. Faaslet shared memory regions

3. Two-tier push-pull

1. FAASM programming model

4. Serialisation-free data transfer

17

t_a = SparseMatrixReadOnly("training_a")
t_b = MatrixReadOnly("training_b")
weights = VectorAsync("weights")

@serverless_func
def weight_update(idx_a , idx_b):

 for col_idx , col_a in t_a.columns[idx_a:idx_b]:
 col_b = t_b.columns[col_idx]
 adj = calc_adjustment(col_a , col_b)

 for val_idx , val in col_a.non_nulls ():
 weights[val_idx] += val * adj

 if iter_count % threshold == 0:
 weights.push()

@serverless_func
def sgd_main(n_workers , n_epochs):
 for e in n_epochs:
 args = divide_problem(n_workers)
 c = chain(weight_update, n_workers, args)
 await_all(c)

FAASM Programming Model - Distributed Machine Learning (SGD)

High-level Object-Oriented abstractions
Read-only matrices
Asynchronous vector
Flexible consistency

Standard Programming constructs
Transparent optimisations
Direct access to shared memory

18

Intuitive mark-up
Function annotation
Fork-join parallelism

BAProc. memory

0 +B

0 +A

Faaslet A

Faaslet B

Offset:

Shared Memory Without Breaking Safety Guarantees

+B+S

+A+S

S

Faaslet Shared Memory Regions

19

Push-pull - Global Synchronisation with Variable Consistency

Host A

F1: F2:

Host B

F3:

“state_x”: 011100100Local tier

“state_x”: 011100100Global tier

PUSH(“state_x”)

“state_x”: 011100100

PULL(“state_x”)

20

Two-Tier Push-Pull

Serialisation-Free Transfer of Arbitrarily Complex Data Structures

AkA: kB: B

A B

F1 F2

Byte arrays

Host A

B

F3
Host B

Faasm’s serialisation-free state

21

Distributed KVS

Sub-arrays

kC: C

C1 C2

F4

Evaluation

Questions:

1. How do Faaslets compare to containers?

2. Can FAASM improve efficiency and performance of ML training?

3. Can FAASM improve throughput of ML inference?

4. Does Faaslet isolation affect performance of dynamic languages?

Image: Knative

Comparison:

- Knative running identical code

- Code compiled natively for Knative

- Code compiled to WebAssembly for FAASM
22

https://knative.dev/

How do Faaslet Overheads Compare to Containers?

Docker (alpine) Faaslets Proto-Faaslets vs. Docker

Initialisation 2.8s 5.2ms 0.5ms 5.6K x

CPU cycles 251M 1.4K 650 385K x

Memory Footprint 1.3MB 200KB 90KB 15 x

Density ~8K ~70K >100K 12 x

Lower overheads mean lower latency and lower costs

23

How do Faaslets “Churn” Compared to Containers?

High Churn

1000x increase in max throughput
5000x reduction in latency

Higher churn means higher utilisation of shared infrastructure

24

Can Faasm Improve Efficiency and Performance of Parallel ML Training?

Faster training with increasing parallelism

80% reduction in training time
Knative hosts restricted by memory pressure

Parallel processing on co-located data reduces training time

25

Can Faasm Improve Efficiency and Performance of Parallel ML Training?

Reduced network transfers

60% reduction in network transfers
Reduction increases with higher parallelism

Reduced data shipping reduces costs

26

Can Faasm Improve Throughput and Reduce Latency Serving ML Inference?

Increased Throughput

Negligible cold starts with Proto-Faaslets
120% increase in max throughput with 5% cold starts

Proto-Faaslets increase max throughput and reduce latency

27

Decreased tail latency

90% reduction in tail latency

Does Faaslet Isolation Affect Performance of Dynamic Languages?

Comparable performance

Faaslet isolation shows no significant overhead
Effect persists with increasing matrix size

Faaslet isolation has negligible impact on a distributed Python application

28

Does Faaslet Isolation Affect Performance of Dynamic Languages?

Performance overheads increase as applications become more complex

Mostly native-like performance in C
WebAssembly loses certain loop
optimisations.

More pronounced overhead with Python
Especially with big integer arithmetic.
More instructions, branches and cache
misses compounded (Jangda et.al ATC ‘19). 29

FAASM makes serverless faster and cheaper:

- Current systems exhibit isolation overhead and inefficient state sharing

- FAASM reduces overheads with Faaslets and Proto-Faaslets

- FAASM supports efficient locally shared and globally synchronised state

- Future work: serverless HPC, trusted hardware, unikernel-based runtime

Conclusions

https://github.com/lsds/Faasm

30

Thank you

https://github.com/lsds/Faasm

