

HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined Model Parallelism and Data Parallelism

Jay H. Park,

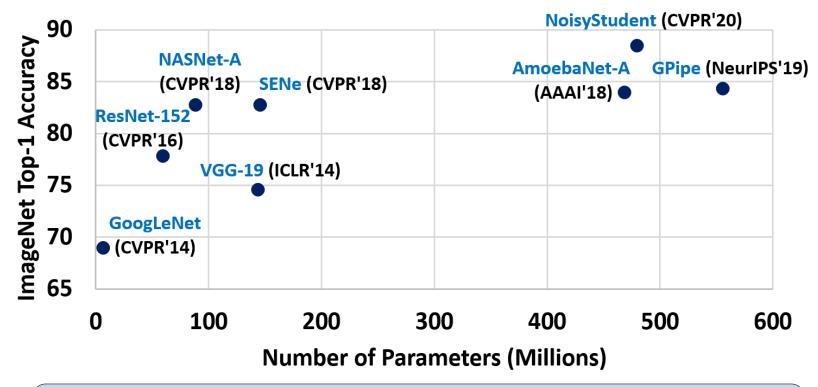
Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee, Jaesik Choi⁺, Sam H. Noh, and Young-ri Choi

Contents

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
- Evaluation
- Conclusion

Motivation

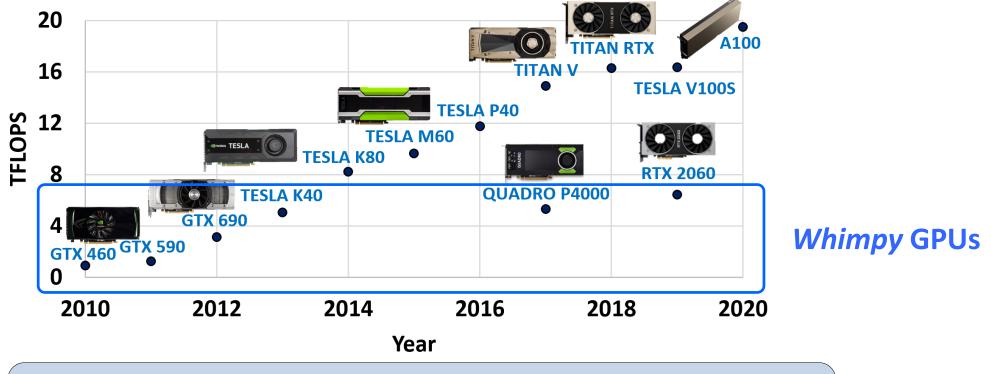
DNN (Deep Neural Network) models continue to grow



• Need more powerful GPUs for training!

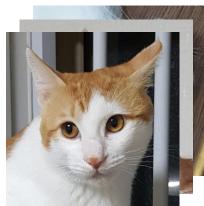
Motivation

Short release cycle of new GPU architectures

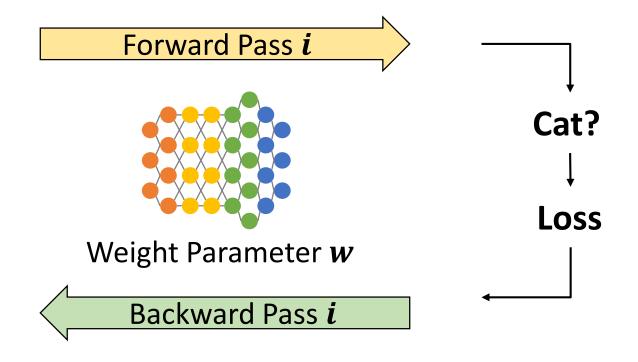


- Use of heterogeneous GPUs is inevitable!
- What to do with *whimpy* GPUs?

DNN Training



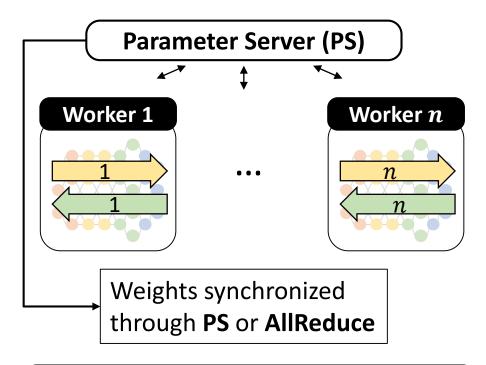
Minibatch *i* (Training Data)



 $w_{i+1} = w_i - \eta \cdot u_i$

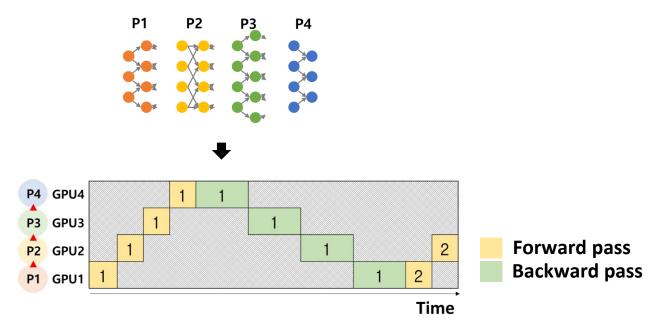
Parallelizing DNN Training

Data parallelism (DP)



• GPU memory limitation

Model parallelism (MP)



Low GPU utilization

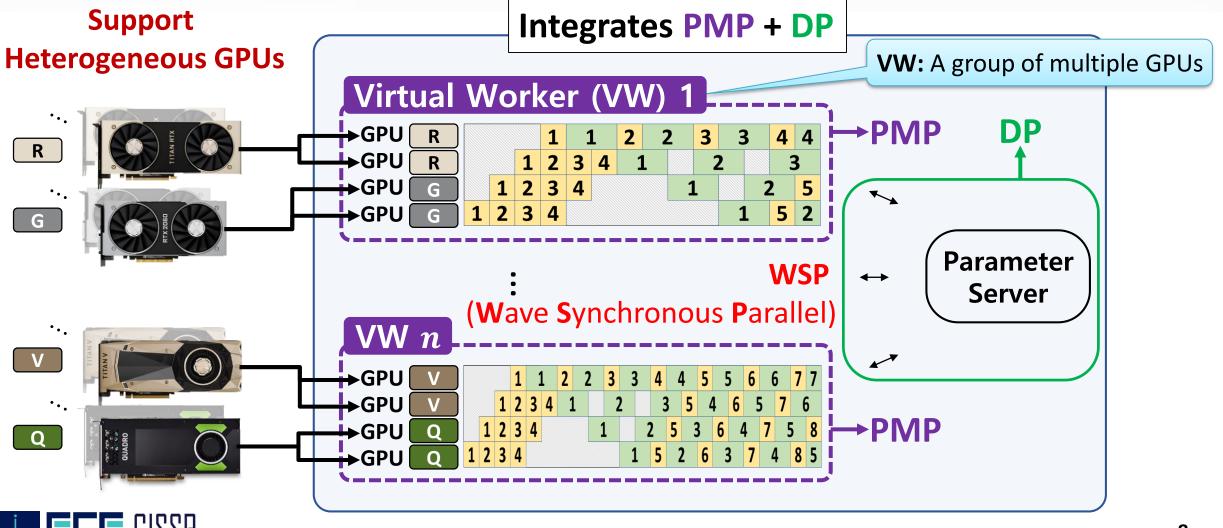
Parallelizing DNN Training

Attempts to improve MP utilization

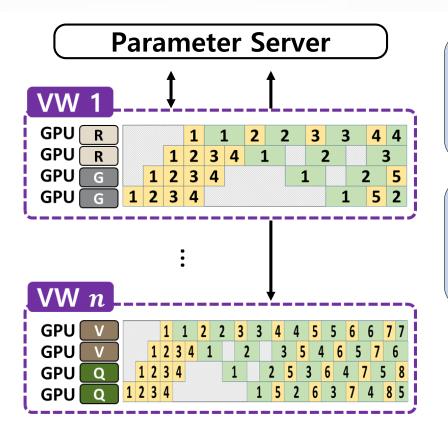
- Pipelined model parallelism (PMP)
 - **PMP Worker** GPU4 GPU3 GPU2 GPU1 Forward pass **Backward pass** Time
 - Designed for homogeneous GPUs
 - Designed for a single PMP worker

- PipeDream [SOSP'19]
- GPipe [NIPS'19]

HetPipe in a Nutshell



Challenges in integration PMP+DP in Heterogeneous GPUs



- What weight version should be used by each VW to synchronize with other VWs?
- How do we reduce virtual worker stragglers when we consider DP?

Many more in the paper

HetPipe Contributions

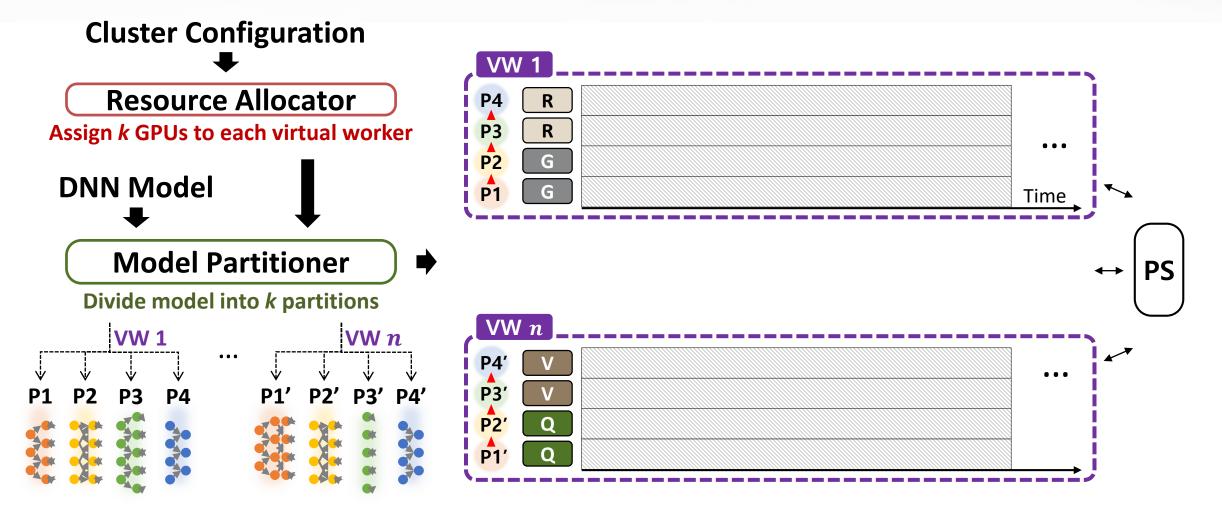
Enable Large DNN Training on Heterogeneous GPUs Aggregate heterogeneous resources Reduce the straggler problem

Integrates PMP + DP

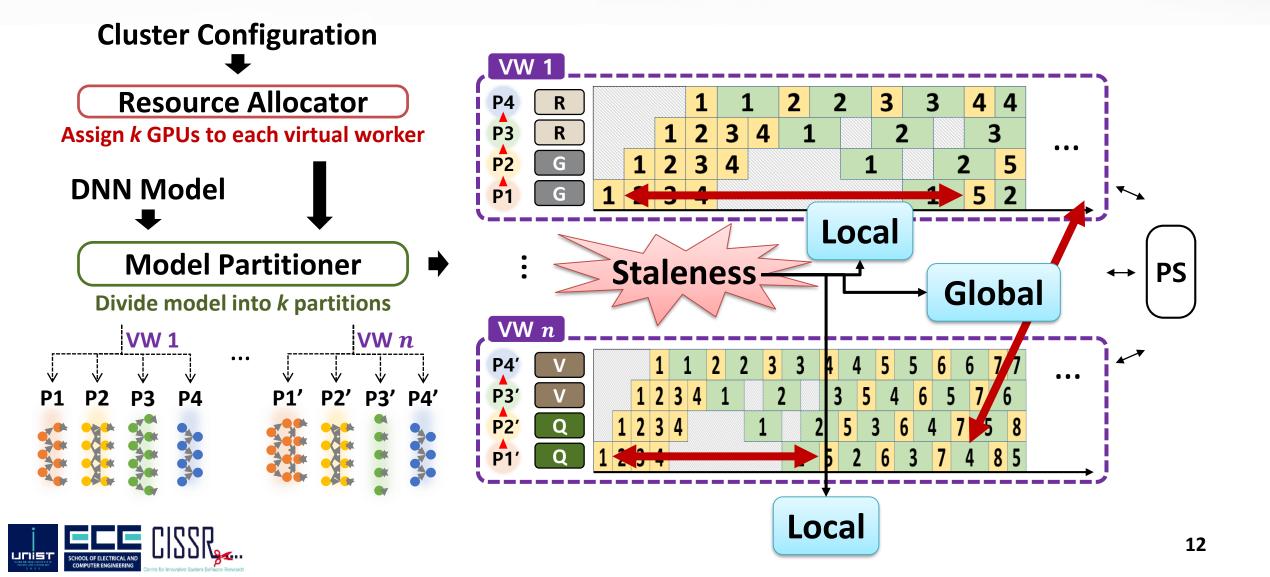
Novel parameter synchronization model WSP (Wave Synchronous Parallel)

Proof of WSP Convergence

HetPipe Workflow



HetPipe Workflow



Outline

- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe
 - Pipelined Model Parallelism Within a VW
 - Data Parallelism with Multiple VWs
- Evaluation
- Conclusion

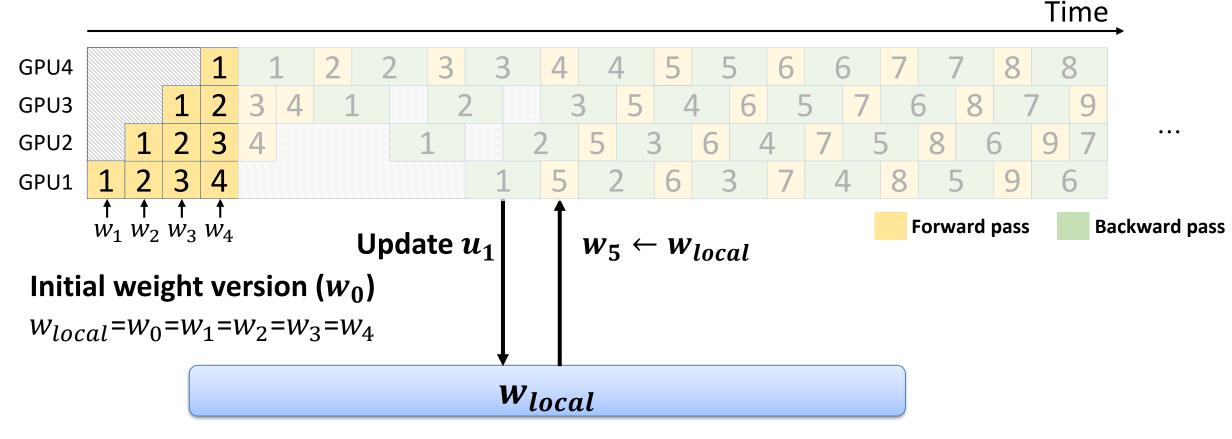
Execution of a virtual worker

 N_m minibatches processed concurrently in pipeline manner

W_{local}

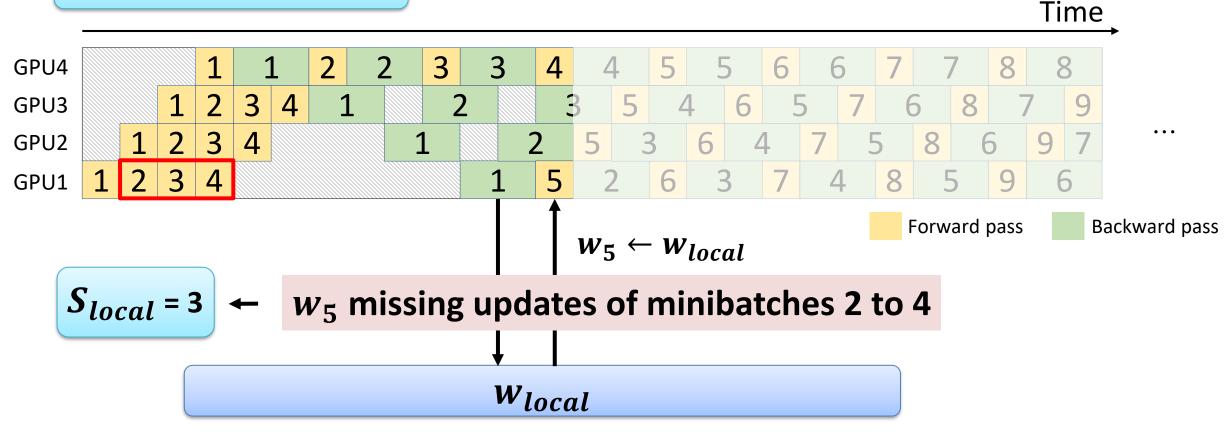
 W_{local} is a consistent version of weights within a VW

Weight management procedure



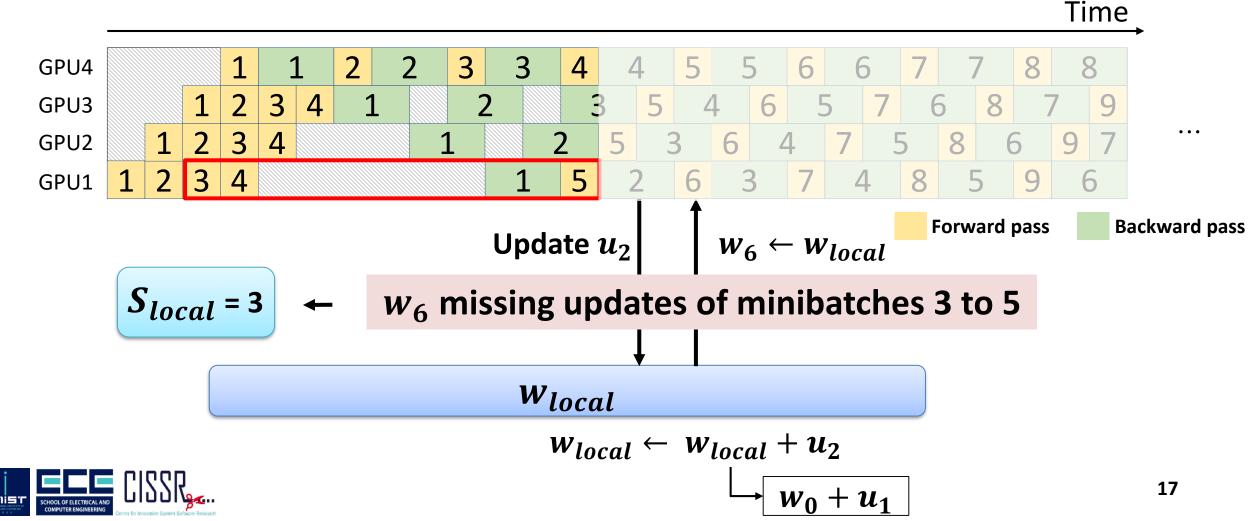
 $w_{local} \leftarrow w_{local} + u_1$

Local staleness (S_{local}): maximum missing updates



 $w_{local} \leftarrow w_{local} + u_1$

Local staleness (S_{local}): maximum missing updates

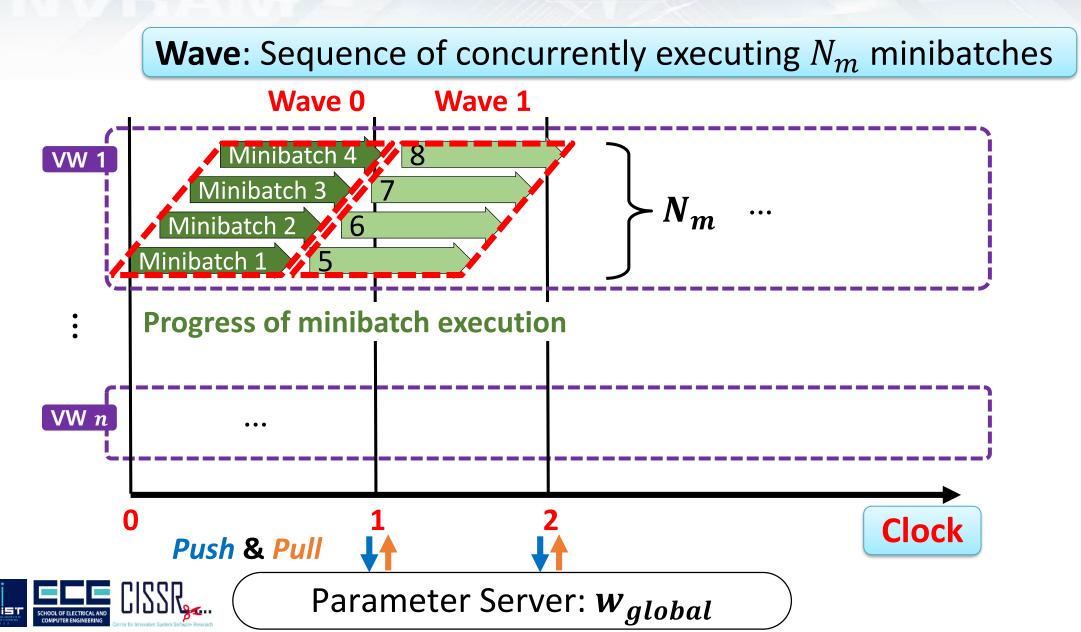


Outline

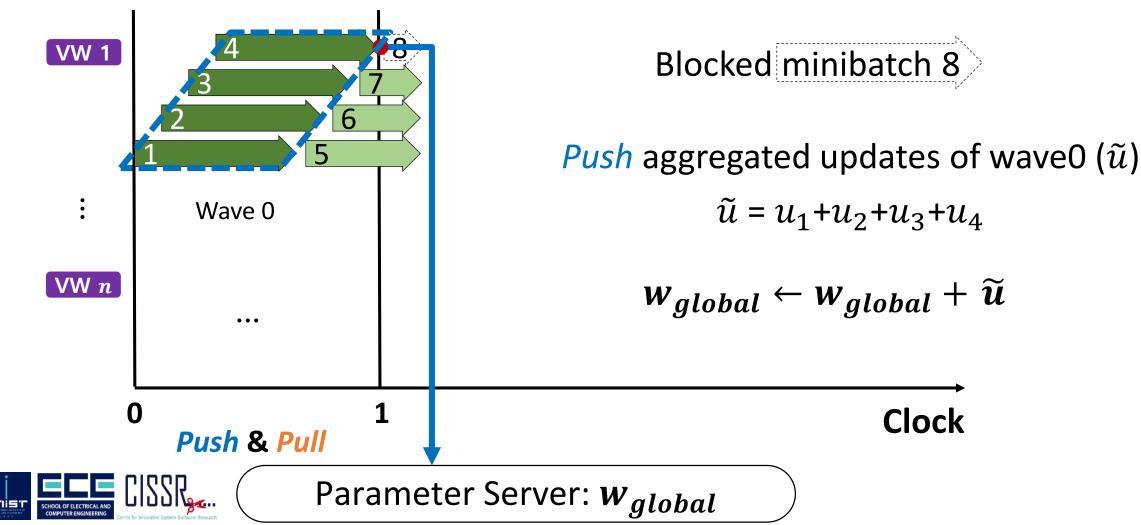
- Motivation & Background
- HetPipe in a Nutshell

Our System: HetPipe

- Pipelined Model Parallelism Within a VW
- Data Parallelism with Multiple VWs
- Evaluation
- Conclusion

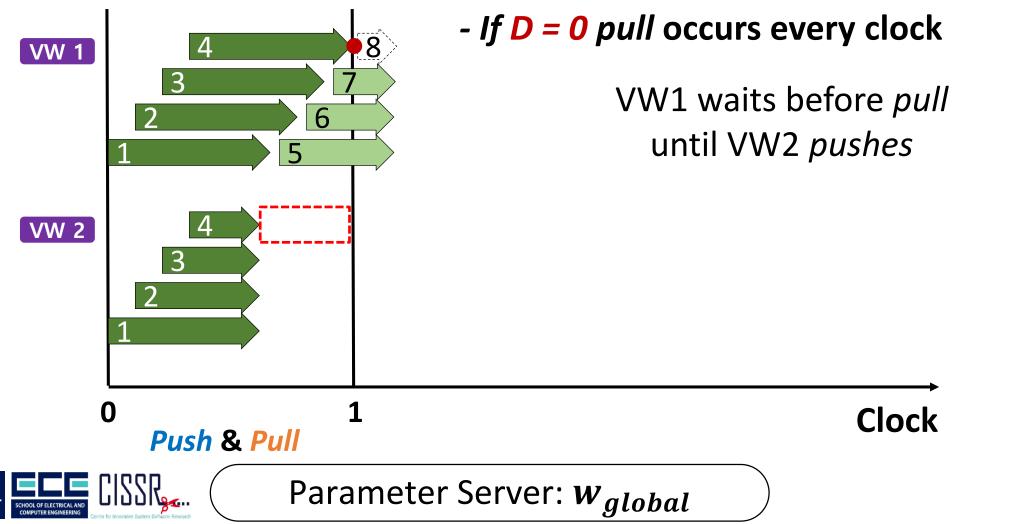


Push occurs every clock

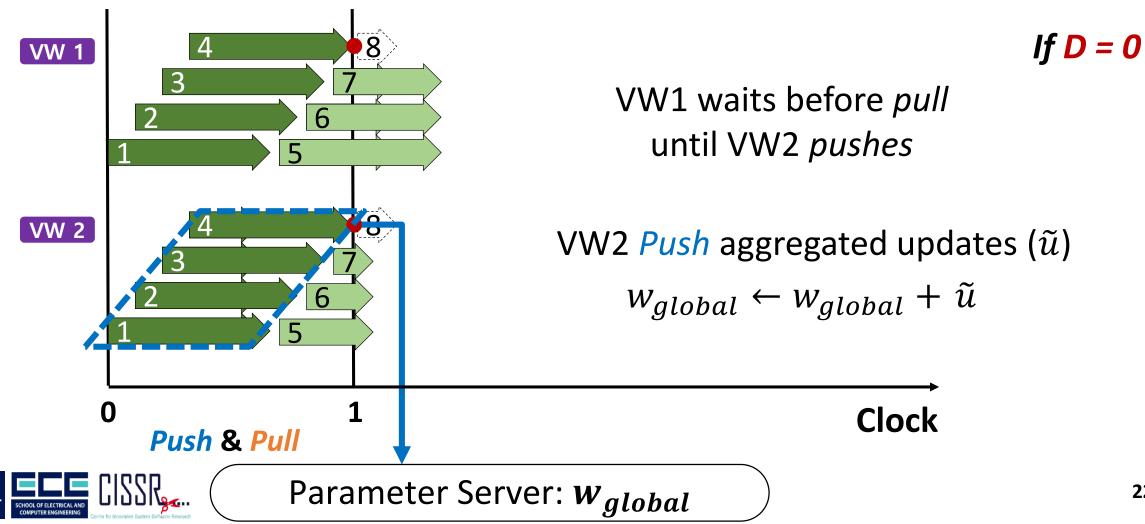


20

Pull occurs intermittently - Depending on user defined clock distance D

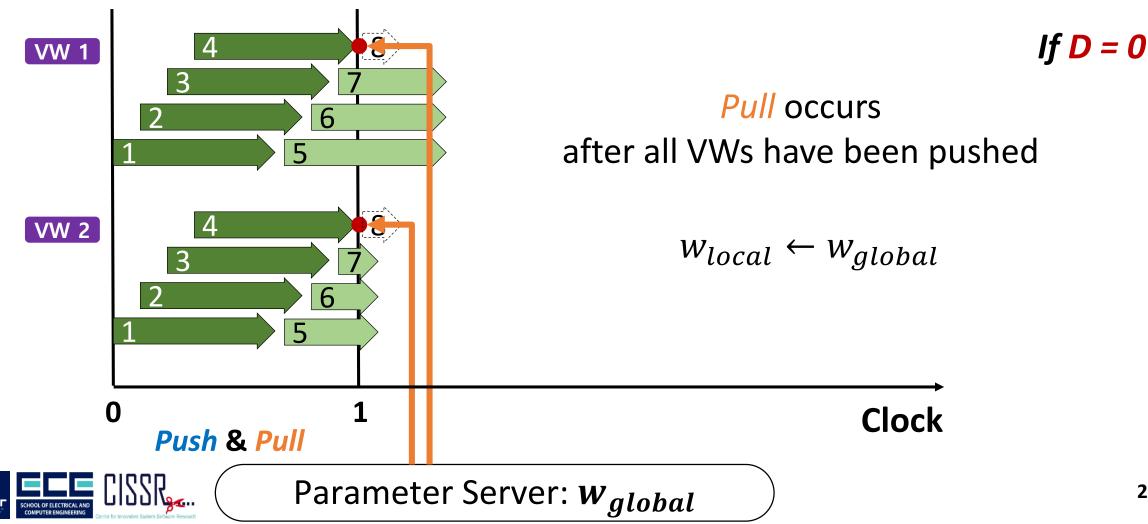


Pull occurs intermittently - Depending on user defined clock distance D



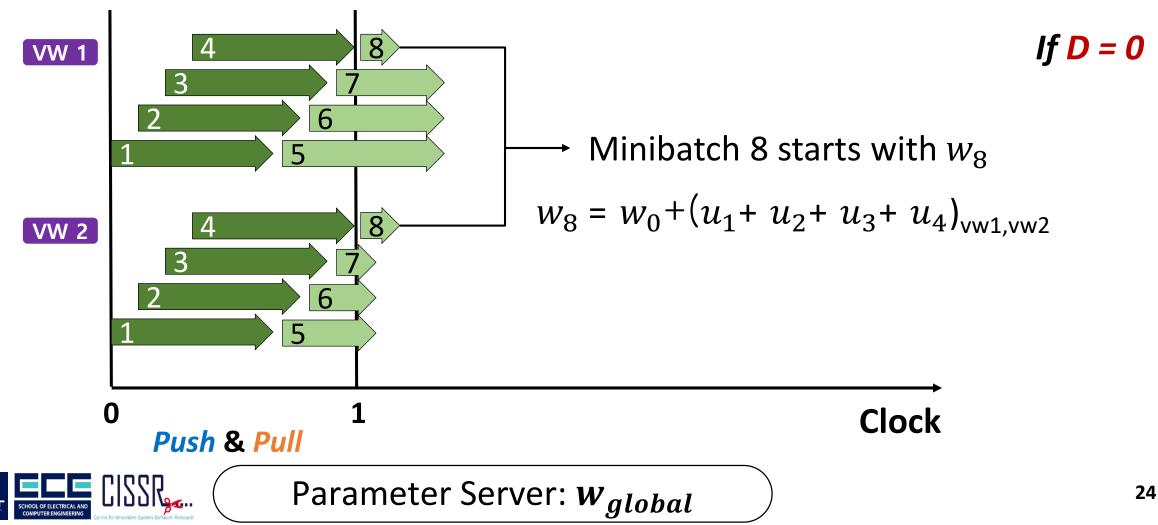
22

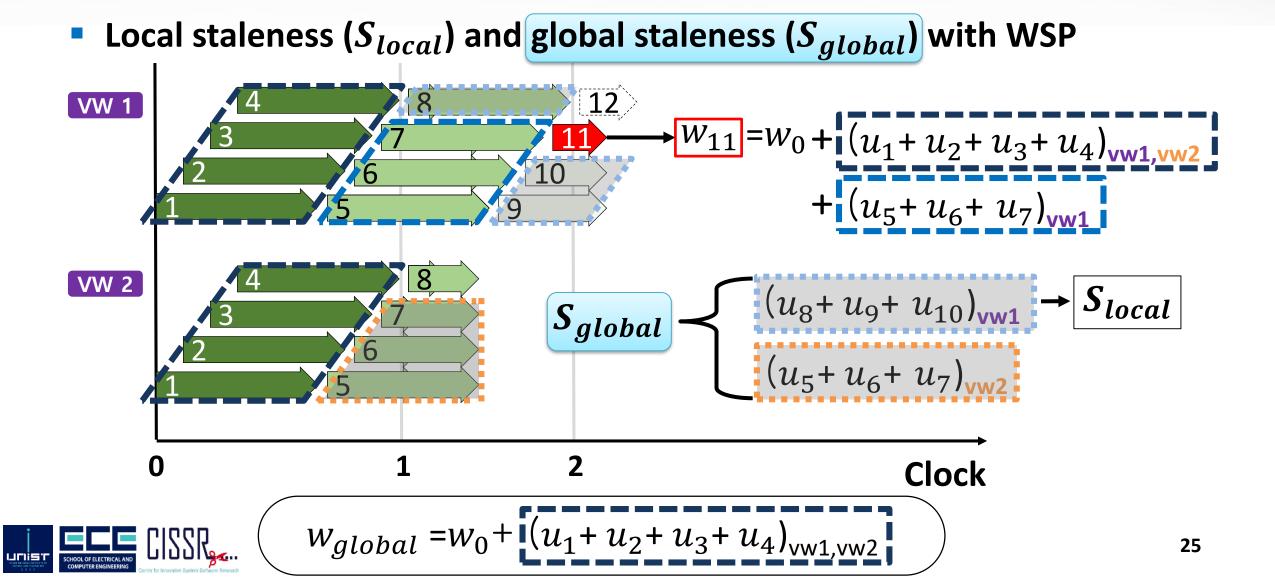
Pull occurs intermittently - Depending on user defined clock distance D

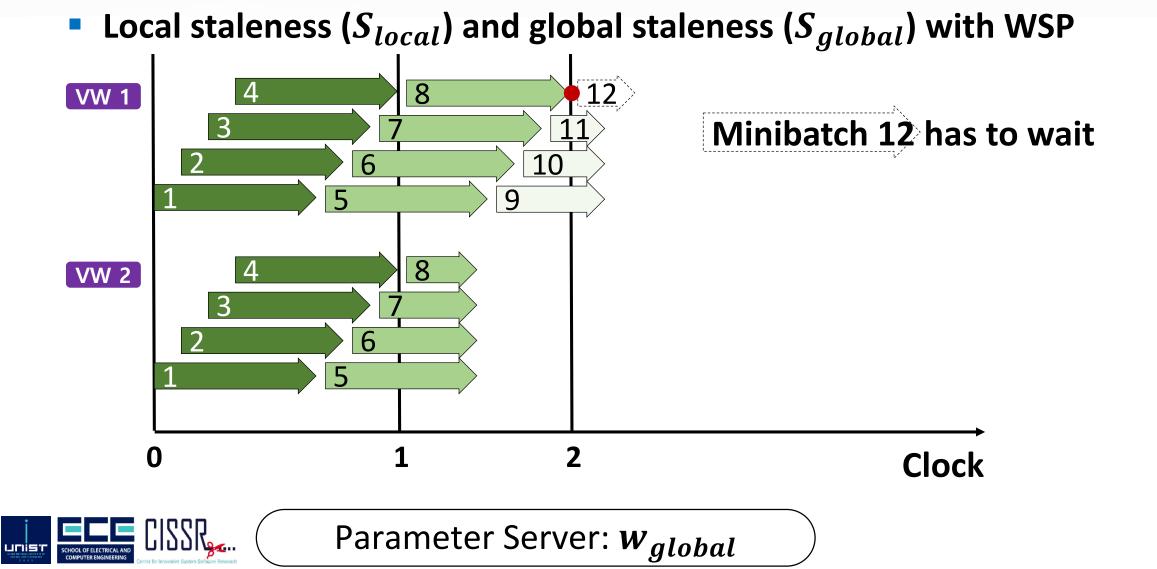


23

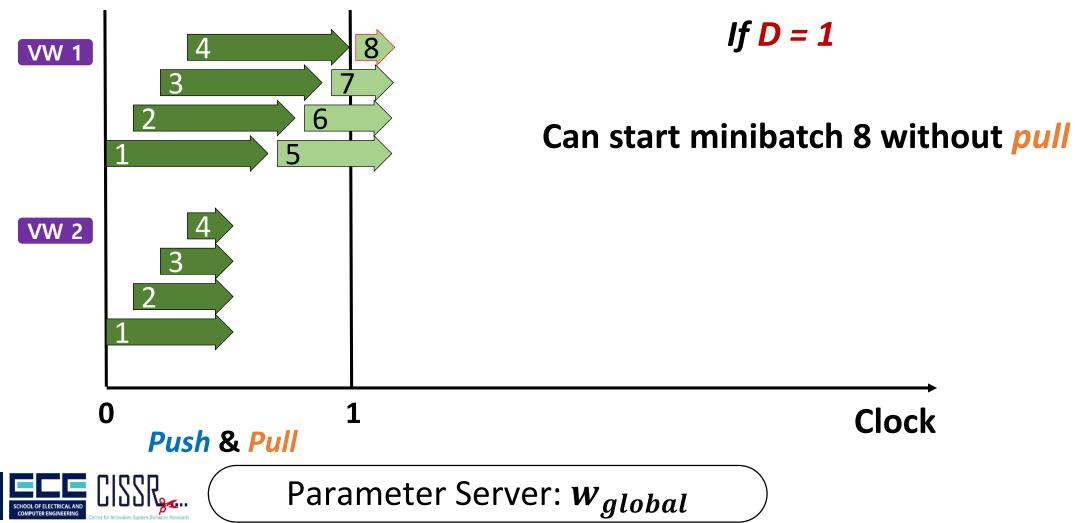
Pull occurs intermittently - Depending on user defined clock distance D

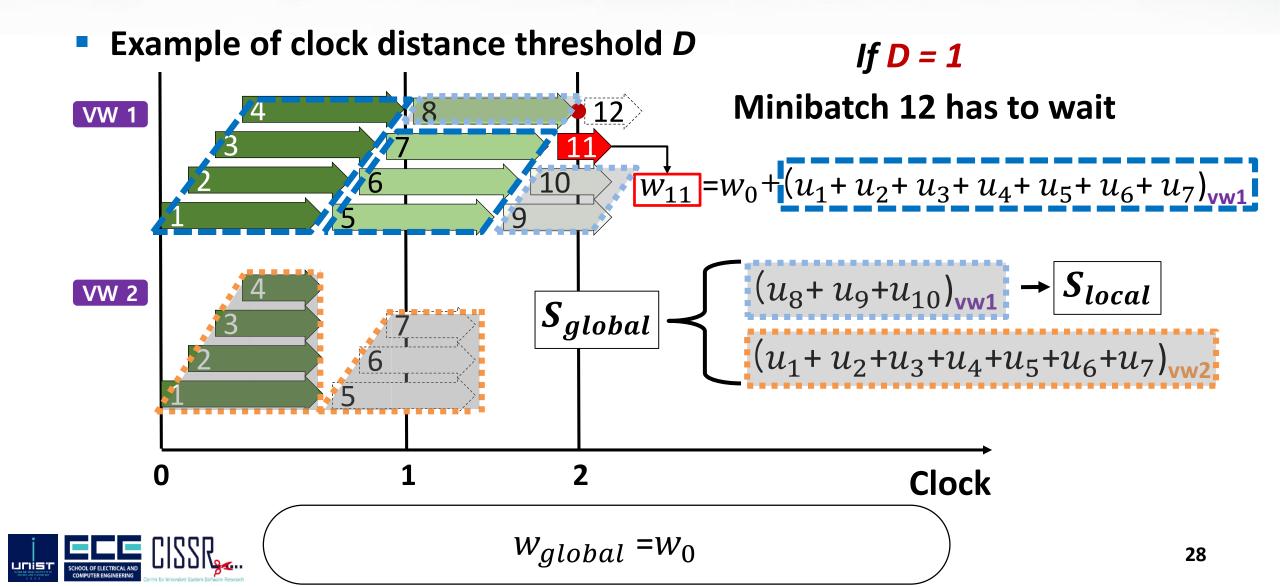






Example of clock distance threshold D





Outline

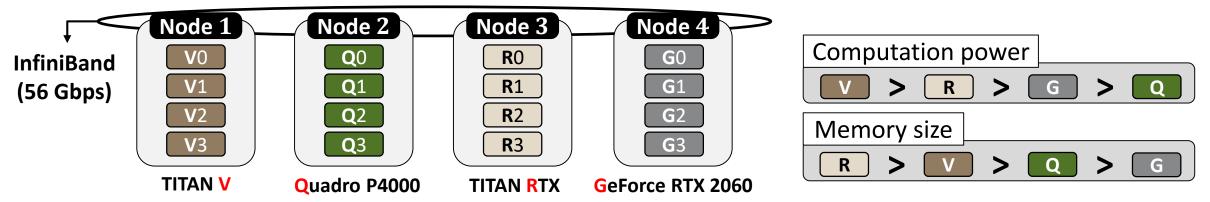
- Motivation & Background
- HetPipe in a Nutshell
- Our System: HetPipe

Evaluation

- Setup
- Resource Allocation for Virtual Workers
- Results
- Conclusion

Evaluation Setup

Cluster setup - 4 heterogeneous GPU nodes

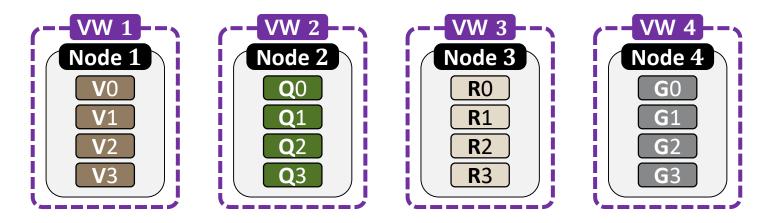


Two DNN models

	ResNet-152	VGG-19
Dataset, minibatch size	ImageNet, 32	
Model parameter size	230 MB	548 MB
Characteristic	Large activation output	Large parameter size

Resource Allocation for Virtual Workers: NP, ED, HD

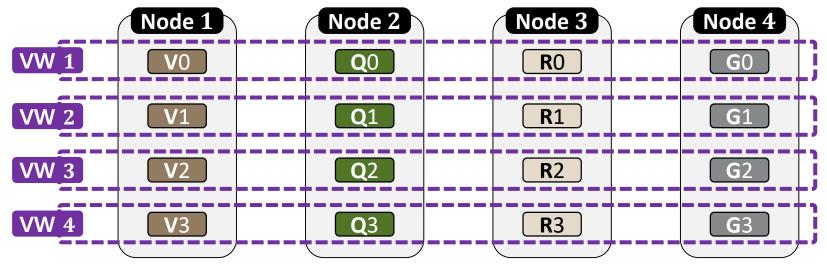
NP (Node Partition)



- Minimum communication overhead within VW
- Performance of each virtual worker varies
- Straggler may degrade performance with DP

Resource Allocation for Virtual Workers: NP, ED, HD

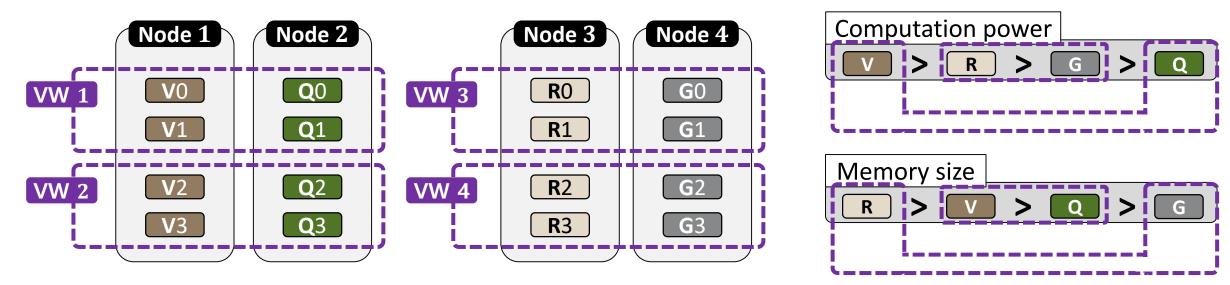
ED (Equal Distribution)



- Performance will be the same across the VWs
- Mitigates the straggler problem
- High communication overhead within each VW

Resource Allocation for Virtual Workers: NP, ED, HD

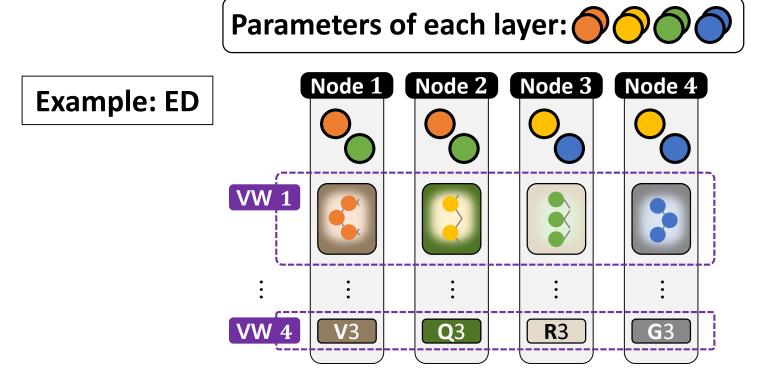
HD (Hybrid Distribution)



- Mitigates the straggler problem
- Reduces communication overhead within each VW

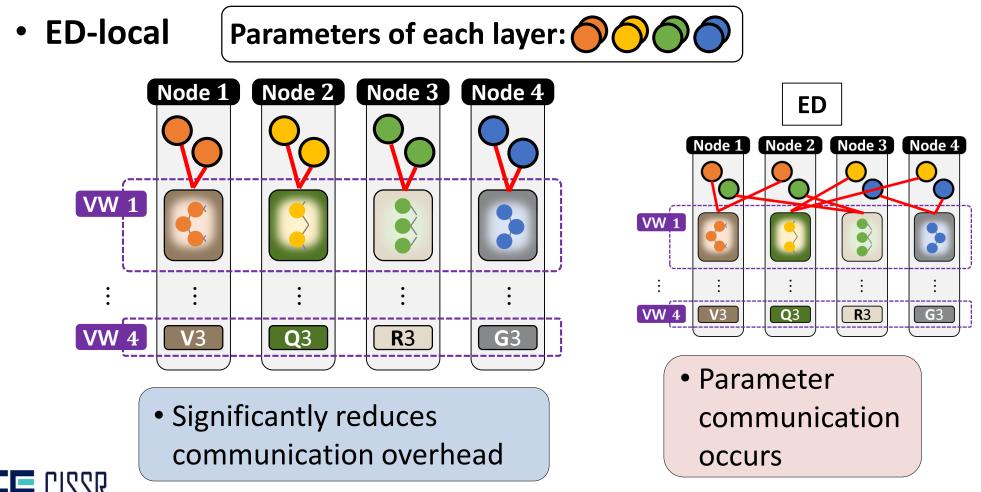
Parameter Placement

- Round-robin policy (default)
 - Can be used in all three policies: NP, ED, and HD



Parameter Placement

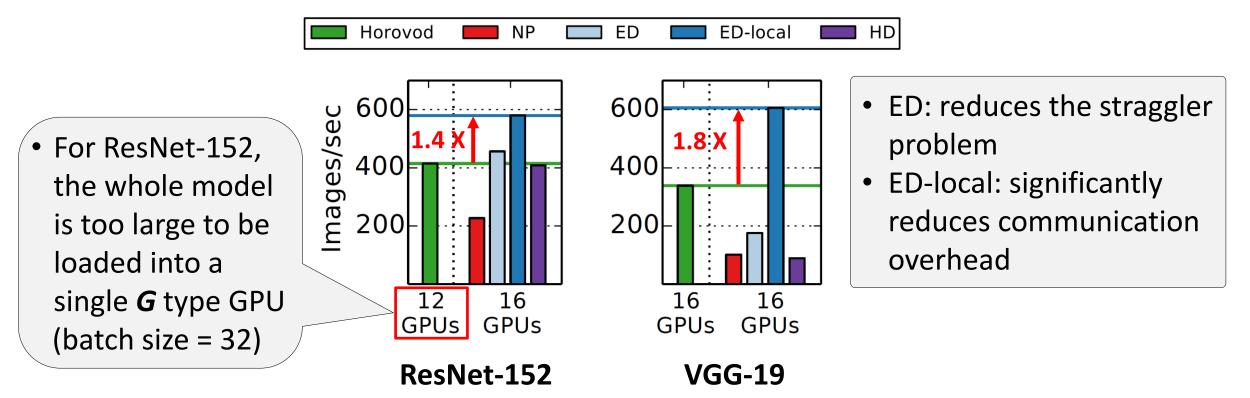
Local placement policy



Compare Throughput with Horovod

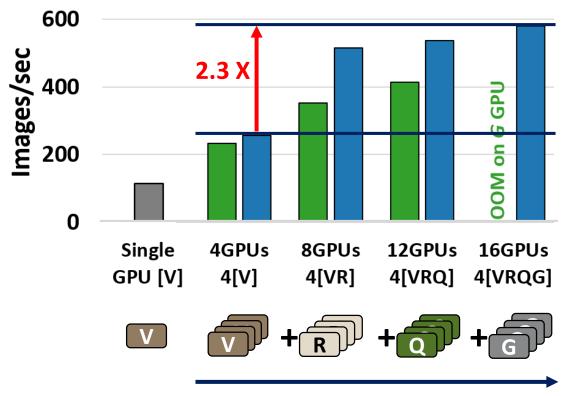
Baseline Horovod

• State-of-the-art DP using AllReduce



Performance Improvement of Adding Whimpy GPUs

ResNet-152



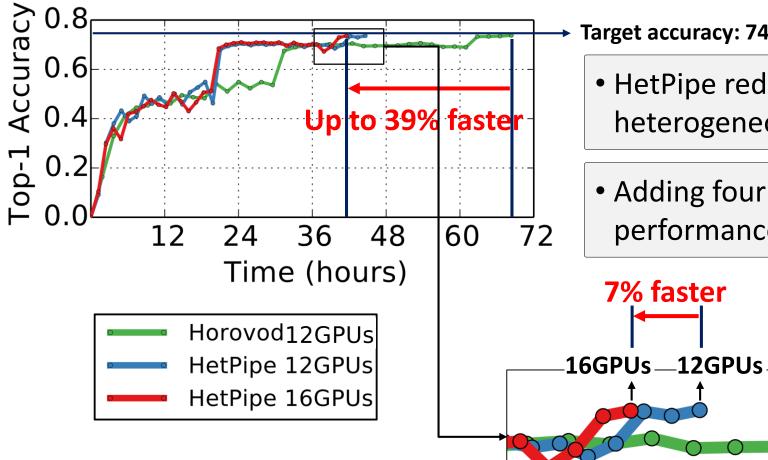
Adding whimpy GPUs

■ Single GPU ■ Horovod ■ HetPipe

- With additional GPUs, HetPipe achieves up to 2.3X speed up
- Additional whimpy systems allow for faster training

Convergence Results

ResNet-152

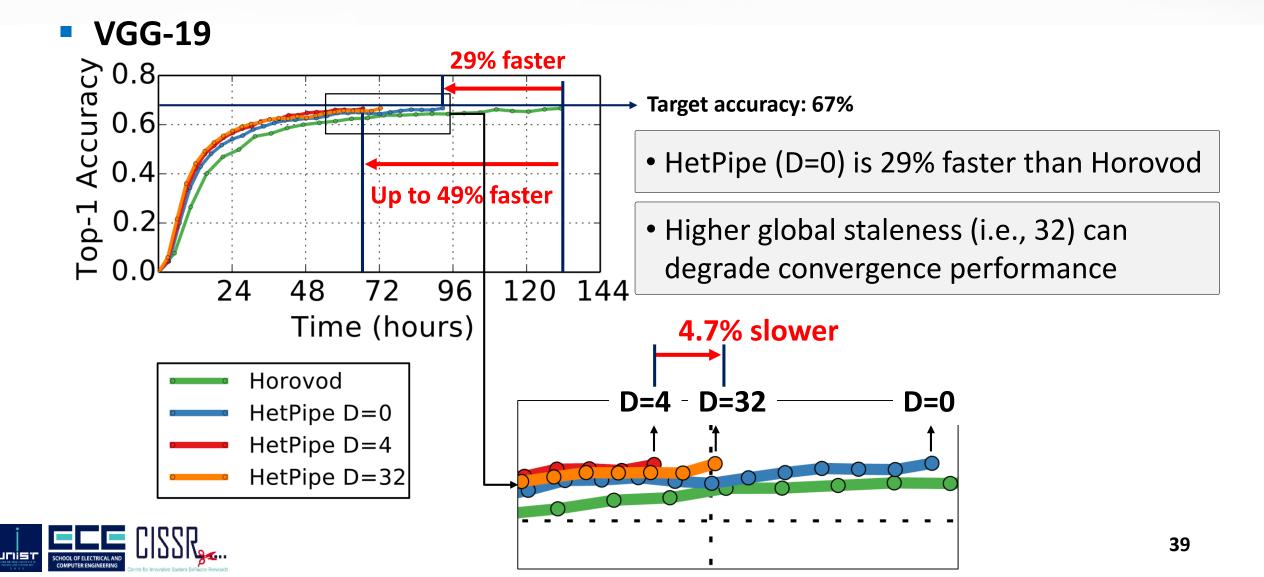


Target accuracy: 74%

7% faster

- HetPipe reduces straggler problem in heterogeneous environment
- Adding four more whimpy G GPUs, performance improves even more

Convergence Results



Not Presented But Discussed in Paper

- Provide convergence proof of WSP
- Partitioning algorithm
- Performance of a single virtual worker
- Comparison to PipeDream

Conclusion

- HetPipe makes it possible to efficiently train large DNN models with heterogeneous GPUs
- Integrate pipelined model parallelism with data parallelism
- Propose a novel parameter synchronization model: WSP
- DNN models converge up to 49% faster with HetPipe

Thank you!

