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ÁDNN (Deep Neural Network) models continue to grow

3

Motivation

Å Need more powerful GPUs for training!



ÁShort release cycle of new GPU architectures
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Motivation

Å Use of heterogeneous GPUs is inevitable!
Å What to do with whimpyGPUs?

WhimpyGPUs
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DNN Training
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ÁModel parallelism (MP)ÁData parallelism (DP)
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Parallelizing DNN Training 

Å Low GPU utilization

Weights synchronized
through PSor AllReduce

Å GPU memory limitation 
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ÁAttempts to improve MP utilization

ÅPipelined model parallelism (PMP)
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Parallelizing DNN Training 

Å Designed for homogeneous GPUs
Å Designed for a single PMP worker

Forward pass
Backward pass

PMP Worker
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HetPipe in a Nutshell
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Challenges in integration PMP+DP in Heterogeneous GPUs

ÅWhat weight version should be used 
by each VW to synchronize with other VWs?

Parameter Server

Χ ÅHow do we reduce virtual worker stragglers 
when we consider DP?

Many more in the paper
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