
AC-Key: Adaptive Caching for 
LSM-based Key-Value Stores
Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, David H.C. Du
University of Minnesota, Twin Cities
July 2020. USENIX ATC’20



Key-Value Stores

• Key-value stores are popular.
• web searching, social networks, e-commerce, etc.

• LSM-tree based Key-value stores (LSM-KVS) are widely used.



Storage

DRAM

KV

batch write

merge

merge

Ø write-optimized
Ø batch and write sequentially
Ø never perform scattered in-place update

10X Larger

LSM Tree -- Write

Level 1

Level 2

Level 3



Storage

DRAM

K LSM Tree -- Read
Point Lookup

Block: 
Ø sorted range of Key/Value pairs
Ø basic I/O Unit (16KB)

Level 1

Level 2

Level 3

Suffer from read performance issue
Ø Potentially every level needs to be checked
Ø Fetch whole block when only one key is queried



Storage

DRAM

LSM Tree -- ReadK1, K2

Range Query

Result

Level 1

Level 2

Level 3

merge

Read performance issue: Both point lookup and range 
query will fetch many blocks for one query.



Storage

DRAM

Addressing Read Issue

Cache Space

“One key contributes 20% of a server’s requests”
Memcache [Atikoglu 2012]

“1% of the keys takes up 50% of total point lookup”
ZippyDB@Facebook [Cao, 2020]

Range queries have hot ranges too
[Cooper 2012, Gilad 2020]

Can we use cache?

Yes, workloads 
have hotspots!

Level 1

Level 2

Level 3



Storage

DRAM

Ø Data have different sizes/level -> different cache cost/benefit.
Ø Distinct types of read: point lookup and range query.

But… popular caching 
schemes do NOT fit!!

Cache Space

Unique caching challenge in LSM-KVS

Existing Solutions

Ø General caching schemes:
Ø No special consideration about the cache 

cost/benefit in LSM-KVS.
Ø Existing LSM-KVS caching:

Ø Favors only particular workload.
Ø Not efficient for a different/dynamic workload.

Yes, workloads 
have hotspots!

Level 1

Level 2

Level 3

Addressing Read Issue Can we use cache?



Block KV KP Point Range Adaptive

LevelDB Yes No No Inefficient Supported Fix-sized

RocksDB Yes Yes No Large Value inefficient Supported Fix-sized

Cassandra No Yes Yes Efficient Not Supported Fix-sized

AC-Key Yes Yes Yes Efficient Supported Adaptive-sized

Key/Value

Key/Value

…

Key/Value

Key/Value Key/P

P

Block KV KP
Block: Range query

KV: Point lookup 
(small/hot value)

KP: Point lookup 
(large/warm value)

Key challenge: adjust the sizes of different types of caches according to dynamic workloads

Storage

DRAM

Block Cache

KV Cache

KP Cache

Point 
Cache

Different items can be cached
Favorite workload



Cache Size Adjustment using Ghost Cache

BlockPoint

boundary

Real Cache Ghost Cache

BlockPoint

boundary

Block Ghost 
Cache Hit

Point Ghost 
Cache Hit

Ø Ghost Cache
Ø Store only metadata of evicted entries from the real cache
Ø On ghost hit: Push boundary away to grow the real cache

Finally reach to a dynamic equilibrium for a given workload.

block
block
num



Point Cache Block Cache

Block

KV Cache KP Cache

KPKV

Upper Level

Lower Level

Real Cache Ghost Cache

dynamic boundary

AC-Key – Hierarchical Adaptive Caching

ØUpper level Point Cache vs Block Cache
Ø Lower level: KV Cache vs KP Cache



Other Solved Challenges

ØMeasure caching efficiency to consider different entry cost/benefit
ØSpecial cached entry handling due to compaction and flush



Evaluation

Ø Implement AC-Key based on RocksDB
Ø Evaluate with various workloads and system settings

For complete evaluation result:
check out our paper



0

1000
2000

3000
4000

0% 20% 40% 60% 80% 100%

Q
PS

Range Query Ratio

ac-key rocksdb pure-kv pure-kp offline

pure-block-cache / 
industry

all point-lookup workload all range-query workload

Evaluation



0 0.2 0.4 0.6 0.8 1

0
500
1000
1500

0
0.4

0.8
Block Cache

Ratio

Q
PS

KP Cache 
Ratio

1000-1500
500-1000
0-500

winner

0
2000
4000
6000

0 0.5 1 1.5 2 2.5 3

Q
PS

Operations (million)

ac-key offline

0
400
800

1200

0 0.5 1 1.5 2 2.5 3

Si
ze

 (K
B)

block kp kv

Evaluating Adaptive Size
pure range-query pure point-lookup

competing scheme: offline
• try different combinations
• 1/10 cache granularity
• pick the winner
• fixed-configuration



Summary

ØLSM-based key-value store is widely used
ØWrite-optimized; but has read performance issue.

ØAC-Key: Adaptive caching for LSM-based key-value stores.
ØIntegrating all the KV, KP, Block cache components.
ØHierarchical size-adaptive design.
ØOutperform industry solutions.



Thank you!
Fenggang Wu
wuxx0835@umn.edu


