AC-Key: Adaptive Caching for
LSM-based Key-Value Stores

Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, David H.C. Du

University of Minnesota, Twin Cities
July 2020. USENIX ATC’20

Key-Value Stores

e Key-value stores are popular.
* web searching, social networks, e-commerce, etc.

* LSM-tree based Key-value stores (LSM-KVS) are widely used.

S

cassandra

G‘@'GVG'DB ﬁ‘ " RocksDB ey

LSM Tree -- Write
DRAM m

| batch write

Storage

Level 1

(L

\\ merge

» write-optimized
10X Larger » batch and write sequentially
» never perform scattered in-place update

Level 2

Level 3

O Point Lookup
ah « D

LSM Tree -- Read

X DRAM m

Storage

(L

Block:

» sorted range of Key/Value pairs
» basic I/0O Unit (16KB)

Suffer from read performance issue

» Potentially every level needs to be checked
» Fetch whole block when only one key is queried

———————————————-—’

Level 3

Range Quer
® g Yy

e P LSM Tree -- Read

| merge > Result SRA Y

Storage

Level 1

(L

Level 2

Read performance issue: Both point lookup and range
query will fetch many blocks for one query.

Level 3

Addressing Read Issue | canwe use cache? |

______ Yes, workloads
-
have hotspots!

| Cache Space }

Storage
Level 1 “One key contributes 20% of a server’s requests”
Memcache [Atikoglu 2012]
“1% of the keys takes up 50% of total point lookup”
ZippyDB@Facebook [Cao, 2020]
Level 2 Range queries have hot ranges too
[Cooper 2012, Gilad 2020]
Level 3 A

Addressing Read Issue | canwe use cache? |

P = Yes, workloads
have hotspots!

| Cache Space }

But... popular caching

Storage schemes do NOT fit!!

Level 1
Unique caching challenge in LSM-KVS

» Data have different sizes/level -> different cache cost/benefit.
» Distinct types of read: point lookup and range query.

Level 2 Existing Solutions

» General caching schemes:

» No special consideration about the cache
cost/benefit in LSM-KVS.

» Existing LSM-KVS caching:

» Favors only particular workload.

» Not efficient for a different/dynamic workload.

Level 3

Different items can be cached

|

| \
Block KV KP
Key/Value
Key/Value
Key/Value Key/P®-
Key/Value

\ DRAM

-

Storage

__

Favorite workload

Block: Range query
KV: Point lookup
(small/hot value)

KP: Point lookup
(large/warm value)

LevelDB Inefficient Supported

RocksDB Yes Yes No Large Value inefficient Supported

Cassandra |No Yes Yes Efficient Not Supported
I AC-Key Yes Yes Yes Efficient Supported

Block Cache

KV Cache |

KP Cache _

Adaptive

Adaptive-sized

| Point

Cache

Key challenge: adjust the sizes of different types of caches according to dynamic workloads

Cache Size Adjustment using Ghost Cache

Real Cache —— Ghost Cache
Block Ghost
boundary Cache Hit
s V
Point Block |
;!
[] block
block UM
» Ghost Cache
Point Ghost » Store only metadata of evicted entries from the real cache
Cache Hit boundary » On ghost hit: Push boundary away to grow the real cache
\ /
o Point Block

Finally reach to a dynamic equilibrium for a given workload.

AC-Key — Hierarchical Adaptive Caching

» Upper level Point Cache vs Block Cache
» Lower level: KV Cache vs KP Cache

Real Cache —— Ghost Cache

Point Cache) Block Cache

Upper Level +———1 T Block | ~

dynamic boélndary

Lower Level . KV T KP

KV Cache KP Cache

Other Solved Challenges

» Measure caching efficiency to consider different entry cost/benefit
» Special cached entry handling due to compaction and flush

Evaluation

» Implement AC-Key based on RocksDB 'i "-""':.':5:' Roc ks DB

» Evaluate with various workloads and system settings

For complete evaluation result:
check out our paper

Evaluation

W ac-key & rocksdb O pure-kv Bpure-kp O offline

@ 4000

QP
—_— N W9
o O O
o O O
o O O
IIII
]
|

|

|

IHE IEHE b K R

0
@ 0% | 20% 40% 60% 80% 100%
Range Query Ratio

all point-lookup workload all range-query workload

R

Evaluating Adaptive Size

@ 6000
14000

=¥
2000

pure range-query pure point-lookup

===block ceekp kv

..I......IO....I.....ﬂ

1.5 2 2.5 3
—ad-key offline

1 1.5 2 2.5 3
Operations (million)

1000-1500 winner

500-1000 1000 o,
0-500 500 o
0
0.4
0.8
002 04 06 o3 | Block Cache
KP Cache Ratio

Ratio

competing scheme: offline
* try different combinations
* 1/10 cache granularity

e pick the winner

« fixed-configuration

Summary

»LSM-based key-value store is widely used
» Write-optimized; but has read performance issue.

» AC-Key: Adaptive caching for LSM-based key-value stores.
» Integrating all the KV, KP, Block cache components.
» Hierarchical size-adaptive design.
» Outperform industry solutions.

Thank youl!

Fenggang Wu
wuxx0835@umn.edu

