
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

AutoSys: The Design and Operation of
Learning-Augmented Systems

Chieh-Jan Mike Liang, Hui Xue, Mao Yang, and Lidong Zhou, Microsoft Research;
Lifei Zhu, Peking University and Microsoft Research; Zhao Lucis Li and Zibo Wang,
University of Science and Technology of China and Microsoft Research; Qi Chen and

Quanlu Zhang, Microsoft Research; Chuanjie Liu, Microsoft Bing Platform;
Wenjun Dai, Microsoft Bing Ads

https://www.usenix.org/conference/atc20/presentation/liang-mike

AutoSys: The Design and Operation of Learning-Augmented Systems

Chieh-Jan Mike Liang‡ Hui Xue‡ Mao Yang‡ Lidong Zhou‡ Lifei Zhu∗‡ Zhao Lucis Li?‡

Zibo Wang?‡ Qi Chen‡ Quanlu Zhang‡ Chuanjie Liu◦ Wenjun Dai†
‡Microsoft Research ∗Peking University ?USTC ◦Microsoft Bing Platform †Microsoft Bing Ads

Abstract
Although machine learning (ML) and deep learning (DL)

provide new possibilities into optimizing system design and
performance, taking advantage of this paradigm shift requires
more than implementing existing ML/DL algorithms. This pa-
per reports our years of experience in designing and operating
several production learning-augmented systems at Microsoft.
AutoSys is a framework that unifies the development process,
and it addresses common design considerations including
ad-hoc and nondeterministic jobs, learning-induced system
failures, and programming extensibility. Furthermore, this
paper demonstrates the benefits of adopting AutoSys with
measurements from one production system, Web Search. Fi-
nally, we share long-term lessons stemmed from unforeseen
implications that have surfaced over the years of operating
learning-augmented systems.

1 Introduction

Learning-augmented systems represent an emerging paradigm
shift in how the industry designs modern systems in produc-
tion today [33]. They refer to systems whose design methodol-
ogy or control logic is at the intersection of traditional heuris-
tics and machine learning. Due to the interdisciplinary nature,
learning-augmented systems have long been widely consid-
ered difficult to build and require a team of engineers and data
scientists to operationalize. To this end, this paper reports
our years of experience in designing and operating learning-
augmented systems in production at Microsoft.

The need of learning-augmented system design stems from
the fact that heterogeneous and complex decision-makings
run through each stage of the modern system lifecycle. These
decisions govern how systems handle workloads to satisfy
user requirements under a particular runtime environment.

This work was done when Lifei Zhu, Zhao Lucis Li, and Zibo Wang
were interns at Microsoft Research.

Examples include in-memory cache eviction policy, query
plan formulation in databases, routing decisions by network-
ing infrastructure, job scheduling for data processing clusters,
document ranking in search engines, and so on.

Most of these decision-makings have been solved with ex-
plicit rules or heuristics based on human experience and com-
prehension. However, while heuristics perform well in gen-
eral, they can be suboptimal as modern systems evolve. First,
since many heuristics were designed at the time when com-
putation and memory resources were relatively constrained,
their optimality was often traded for execution cost. Second,
since heuristics are typically designed for some presumably
general cases, hardware/software changes and workload dy-
namics can break their intended usage or assumptions. Third,
many modern systems have grown in complexity and scale
beyond what humans can design heuristics for.

Recent advances in machine learning (ML) and deep learn-
ing (DL) have driven a shift in system design paradigm. Var-
ious efforts [6, 7, 16, 28, 34, 36, 48] have found success in
formulating certain system decision-makings into ML/DL
predictive tasks. Conceptually, from past benchmarks, ML/DL
techniques can learn factors that impact the system behavior.
For example, Cortez et al. [16] reported an 81% accuracy in
predicting average VM CPU utilization, which translates to
∼ 6×more opportunities for server oversubscription; Alipour-
fard et al. [7] reported near-optimal cloud configurations being
predicted for running analytical jobs on Amazon EC2.

AutoSys is a framework that unifies the development pro-
cess of several learning-augmented systems at Microsoft. Au-
toSys has driven decision-makings with ML/DL techniques,
for several critical performance optimization scenarios. These
scenarios range from web search engine, advertisement deliv-
ery infrastructure, content delivery network, to voice-over-IP
client. Not only do these scenarios allow us to gain insights
into the learning-augmented design, but they also reveal com-
mon design considerations that AutoSys should address.

Contributions. This paper makes the following key contribu-
tions, through reporting our years of experience in designing

USENIX Association 2020 USENIX Annual Technical Conference 323

and operating learning-augmented systems.
First, Section 2 analyzes the need for adopting the learning-

augmented design, with concrete observations from modern
systems in production. Due to its architectural similarities
to most modern systems, this paper uses web search infras-
tructure (Web Search) as the target system scenario for per-
formance optimization. We characterize sources of system
complexity and operation complexity in modern systems, to
contribute an understanding of the emergence of learning-
augmented system design in industry.

Second, Section 3 describes the AutoSys framework that
formulates a system decision-making as an optimization task.
AutoSys incorporates proven techniques to address common
design considerations in building learning-augmented sys-
tems. (1) To support scenario-specific decision-making, Au-
toSys employs a hybrid architecture – decentralizing infer-
ence plane for system-specific interactions such as actuations
and exploration, and centralizing training plane for hosting
an array of ML/DL algorithms with generalized abstractions.
(2) To handle ad-hoc and nondeterministic jobs spawned by
an optimization task, AutoSys employs a cross-layer solution
– prioritizing jobs based on their expected gains towards solv-
ing the given optimization task and executing jobs in a con-
tainer to satisfy heterogeneous job requirements in a resource-
sharing environment. (3) To handle learning-induced system
failures due to inference uncertainties, AutoSys incorporates
a rule-based engine with hard rules authored by experts to
check an inferred actuation’s commands and assumptions.

Third, we report long-term lessons stemmed from the years
of operations, and these lessons include higher-than-expected
learning costs, pitfalls of human-in-the-loop, generality, and
so on. Prior to sharing these lessons in Section 5, Section 4
quantifies benefits of the learning-augmented design, on Web
Search’s key application logic and data stores. Compared to
years of expert tuning, Web Search exhibits an 11.5% reduc-
tion in CPU utilization for a keyword-based selection engine,
3.4% improvement in relevance score for a ranking engine,
16.8% reduction in key-value lookups for a datastore cluster,
and so on. The core of AutoSys is open-sourced on GitHub
(https://github.com/Microsoft/nni).

2 Background and Motivations

As system performance drives end-user experience and rev-
enue, many modern systems are supported by large teams of
engineers and operators. This section shares concrete observa-
tions in production, which have motivated the industry to tran-
sit to the learning-augmented system design. Particularly, we
deep dive into one large-scale cloud system – the web-scale
search service, or Web Search. Web Search is architecturally
representative of modern systems, with fundamental building
blocks of networking, application logic, and data stores.

2.1 Overview of Web-Scale Search

This section describes the Web Search design with respect to
the fundamental building blocks of modern systems.

Distributed and Pipelined Infrastructure. Web Search re-
alizes a multi-stage pipeline of networked services (c.f. Fig-
ure 1), to iteratively refine the list of candidate documents
for a user search query. The first stage is Selection service
which selects relevant documents from massive web indexes
as candidates for subsequent Ranking service. It relies on both
keyword-based and semantics-based matching strategies, i.e.,
KSE and SSE. Then, Ranking service orders these documents
according to their expected relevance to the user query, by run-
ning the RE ranking engine. Finally, Re-ranking service adds
additional web contents that are relevant to the user query, and
it re-ranks search results. These additional contents are from
sources such as stock and weather, and verticals such as news
and images. Suppose the user query contains celebrity names,
search results will likely have relevant news and images.

Application Logic. We present three applications imple-
mented with rules, heuristics, and ML-based logic.

First, Selection service’s Keyword-based engine (KSE)
matches keywords in user queries and web documents, by
looking up inverted web indexes. Queries are first classified
into pre-specified categories. Each category corresponds to a
physical execution plan, or a hand-crafted sequence of sub-
plans to specify the document evaluation criteria. For example,
one sub-plan can specify whether a query keyword should
appear in the web document title/body/URL, and how many
documents should be retrieved. Sub-plan knobs determine the
trade-offs between search relevance and latency.

Second, Selection service’s semantics-based engine (SSE)
selects web documents with keywords semantically similar
to the user query. The problem can be formulated as Approxi-
mate Nearest Neighbor (ANN) search [14, 47] in the vector
space where keywords that share similar semantics are located
in close proximity. The search strategy is an iterative process,
and each step can take on one of the three possible actions:
(1) identifying some anchors in the vector space by looking
up the tree, (2) marking anchors’ one-hop neighbors in the
neighborhood graph as new anchors, and (3) terminating and
returning the best anchors that we have seen. The action se-
quence determines how fast SSE returns semantically relevant
document candidates.

Third, Ranking service’s ranking engine (RE) implements
a ranking algorithm based on high-performance Lamb-
daMART [12], which uses Gradient Boosted Decision Trees
(GBDT) [20]. GBDT is one of the sophisticated ranking algo-
rithms hosted by Web Search, and each targets different query
types, document types, languages, and query intentions. Since
GBDT combines a set of sub-models to produce the final
results, tuning RE requires data scientists to reason about how
tuning each sub-model would impact the overall performance.

324 2020 USENIX Annual Technical Conference USENIX Association

Figure 1: AutoSys drives transitions of several critical engines in Web Search to the learning-augmented design. These engines
include KSE (Keyword-based Selection Engine), SSE (Semantics-based Selection Engine), RE (Ranking Engine), RocksDB
key-value store engine, and MLTF (Multi-level Time and Frequency) key-value store engine. Since Web Search is architecturally
similar to modern systems in general, AutoSys has also been applied to other production systems at Microsoft.

Data Store. One common data structure of web indexes is
the key-value store. Web Search employs both open-sourced
RocksDB, and customized solutions such as Multi-level Time
and Frequency key-value store (MLTF). MLTF takes key ac-
cess time and frequency as signals to decide cache evictions.

The index of SSE engine is organized in a mixed structure
of space partition tree and neighborhood graph. Space parti-
tion tree is used to navigate the search to some coarse-grained
subspaces while the neighborhood graph is used to traverse
the keywords in these subspaces.

2.2 Sources of System Complexity
Heterogenous Classes of Decisions. Decision-makings in
systems can be grouped into three classes: application logic,
system algorithms, and system configurations. Each class re-
quires human experts with different skill sets and experience.

First, application logic implements features that fulfill user
requirements, so its decision-making process should adapt to
user usage. In the case of Web Search, Ranking service hosts
hundreds of lightweight and sophisticated ranking algorithms
for different user query types and document types. Optimizing
these ranking algorithms requires data scientists to have a
deep understanding of how different ML/DL capabilities can
be combined to match user preferences.

Second, the infrastructure implements system algorithms
to better support application requirements with available re-
sources. In the case of Web Search, Selection service has
algorithms responsible for compiling user queries into physi-
cal execution plans that are specific to underlying hardware
capabilities. Optimizing algorithms requires system designers
to consider the relationship between application requirements
and infrastructure capabilities.

Third, system configurations are knobs for operators to
customize systems. Optimizing knobs requires a deep under-
standing of their combined effects on system behavior [50].

Multi-Dimensional System Evaluation Metrics. Optimiz-
ing multiple metrics can be non-trivial if they have different
(and potentially conflicting) goals. For instance, Selection
service has tens of metrics in different categories: resource
usage, response latency, throughput, and search result rele-
vance. Reasoning about the trade-offs among multiple metrics
quickly becomes painstaking for humans, as the number of
evaluation metrics increases. In some cases, system designers
follow a rather conservative rule: improving some metrics
without causing other metrics to regress. In fact, any software
update in Web Search that can cause search quality degrada-
tion should not be deployed, even if it improves some crucial
metrics such as the query latency for top queries.

Modern systems can also have meta-metrics that aggregate
a set of metrics or measurements over a time period. One
example is the "weekly user satisfaction rate" of Ranking ser-
vice. To optimize these aggregated metrics, system operators
need to understand their compositions.

End-to-End and Full-Stack Optimization. Modern sys-
tems are constructed with subsystems and components to
achieve separation of concerns. Since the end-to-end system
performance represents an aggregated contribution of all com-
ponents, optimizing one component should consider how its
outputs would impact others. For example, we have observed
that Selection service may increase the number of potentially
relevant pages returned, at the risk of increasing spam pages.
If the subsequent Ranking service does not consider the pos-
sibilities of spam pages, it can hurt user satisfaction.

2.3 Sources of Operation Complexity

Environment Diversity and System Dynamics. While hard-
ware upgrades and infrastructure changes can offer new capa-
bilities, they potentially alter the existing system behavior. An
example is how we altered the in-memory caching mechanism

USENIX Association 2020 USENIX Annual Technical Conference 325

design, according to I/O throughput gaps between memory
and mass storage medium for different data sizes. Further-
more, hardware upgrades might be rolled out in phases [41],
and server resources can be shared with co-located tenants.
Therefore, it is possible that instances of a distributed system
face different resource budgets.

Modern systems have increasingly adopted tighter and
more frequent software update cycles [39]. These software
updates range from architecture, implementation, to even data.
For example, Selection service has bi-annual major revisions
to meet the increasing query volume and Web documents size,
or even to adopt new relevance algorithms. And, Re-ranking
service can introduce new data structures for new data types,
or new caching mechanisms for the storage hierarchy. Fi-
nally, software behavior can change with periodic patches,
bug fixes [54], and even the monthly index refresh.

Workload Diversity and Dynamics. Interestingly, there can
be non-trivial differences among the workloads that individ-
ual system components actually observe. The reason is that
subsystems can target different execution triggers, or depend
on the outputs of others. For example, the list of candidate
documents returned by Selection service predominately dic-
tates the workload of Ranking service. And, if a large number
of user queries do not have hits in web indexes, Ranking
service would have low utilization. The same observation is
applicable to the Re-ranking service.

Furthermore, the workload can have temporal dynamics
that are predictable and unpredictable, and an example is
where the search keyword trend can shift with national holi-
days and breaking news, respectively.

Non-Trivial System Knobs. Modern systems can expose a
large number of controllable knobs to system operators. These
knobs include software logic parameters, hardware configu-
rations, actions of an execution sequence, engine selections,
and so on. Operation complexity arises from the following
observations. A set of knobs can have dependencies [54], i.e.,
the effect of one knob depends on the setting of another knob.
In addition, knobs should be set with the prior knowledge
of runtime workloads and system specifications [52]. In the
presence of system and workload dynamics, operators need
to periodically adjust knob settings for optimal performance.
Finally, software parameters can take values of several types:
continuous numbers (e.g., 0 - 1,000), discrete numbers (e.g.,
1 and 2), and categorical values (e.g., ON and OFF).

3 AutoSys

We introduce the AutoSys framework to unify the development
of learning-augmented systems. While AutoSys has driven
performance optimization for several production systems at
Microsoft, our discussions here focus on Web Search.

Optimization Tasks. In AutoSys, a system decision-making

(a) Optimal decision is directly predicted

(b) Optimal decision is indirectly predicted

Figure 2: Heterogenous classes of decision-makings can be
formulated as ML/DL optimization tasks. This figure illus-
trates two common realizations of optimization tasks.

is formulated as an optimization task. In the case of system
performance optimization, the output of an optimization task
contains optimal values of system knobs. The input consists
of system and workload characteristics (e.g., traffic arrival
rate). During execution, an optimization task can trigger a se-
quence of jobs of the following types: (1) system exploration
jobs, (2) ML/DL model training and inferencing jobs, and (3)
optimization solver. Next, Figure 2 illustrates two use cases
of optimization tasks.

Figure 2a illustrates the first case where AutoSys predomi-
nately learns from human experts, who handcraft the training
dataset containing preferable knob settings for some system
states and workloads. In this case, the model takes in system
states and workload features as inputs, and directly infers
the optimal knob settings. As one example implementation,
AutoSys can assign a high reward for these preferable knob
settings, and the model can implement value functions to find
a policy that maximizes the reward for unforeseen inputs.

Figure 2b illustrates the second case where AutoSys pre-
dominately learns from interactive explorations with the target
system. By automatically generating system benchmark can-
didates, AutoSys collects measurements to train models. In
this case, the model takes in a knob setting and predicts the
expected value of performance metrics. Based on these model
predictions, an optimization solver can infer optimal knob
settings. An example implementation of model and solver
is regression models and gradient descent. For cases where
a sequence of step-wise actions is necessary such as Selec-
tion service’s search query plans, the solver can be based on
reinforcement learning.

3.1 Design Principles

AutoSys follows the design principles below, to address com-
mon considerations in building learning-augmented systems.

To support scenario-specific decision-makings, AutoSys
implements a hybrid architecture. Specifically, a centralized
training plane is shared across all target systems, and decen-

326 2020 USENIX Annual Technical Conference USENIX Association

Figure 3: AutoSys framework. It centralizes training plane
which hosts an array of ML/DL algorithms, and decentral-
izes inference plane for system-specific interactions such as
actuations and exploration.

tralized inference planes are deployed for each target system.
We observe that a centralized training plane promotes sharing
data and trained models among scenarios – for example, this
can help bootstrapping model training by initializing neural
network weights and model hyper-parameters. Decentralized
inference planes help distribute inference loads that grow
with the system scale, and they also allow scenario-specific
customizations such as verification rules.

To manage computation resources, AutoSys implements a
cross-layer solution. Specifically, AutoSys abstracts scenarios
as optimization tasks, and allows target systems to prioritize
jobs spawned by their tasks. Unifying learning-augmented
scenarios allows computation resources to be flexibly shared,
especially since tasks are ad-hoc and non-deterministic. First,
tasks are triggered in response to system dynamics, which
might not exhibit a regular pattern. Second, jobs are deter-
mined at runtime according to the optimization task progress.

To handle learning-induced system failures, AutoSys im-
plements a rule-based engine to validate actuations. Since
most models mathematically encode knowledge learned, ex-
isting verification tools might not be applicable. On the other
hand, rules are human-readable and human-verifiable.

3.2 Framework Overview
AutoSys executes an optimization task by spawning a number
of jobs: (1) system exploration jobs, (2) ML/DL model train-
ing and inferencing jobs, and (3) optimization solver. Figure 3
shows the overall AutoSys framework to support these jobs.

Training Plane. The training plane implements features to
support both system exploration jobs and ML/DL training
jobs. Figure 4 shows the training plane workflow. The first
step is candidate generation, which generates knob values to
benchmark for the purpose of building up the training dataset.
Considering the costs of running system benchmarks, the key
is to balance the number of candidates and the model accuracy.
Generation algorithms are wrapped in Tuner instances, and we

Figure 4: Workflow of training plane. System exploration jobs
are wrapped in a Trial object, which collects system bench-
mark outputs for training models in the Training Service.

have implemented algorithms based on TPE [9], SMAC [26],
Hyperband [30], Metis [31], and random search.

The second step is to benchmark configuration candidates.
Trial Manager abstracts each system benchmark as a Trial
object – the Trial object has fields holding (1) knob configura-
tions, (2) execution meta-data: the command to run binaries
and even ML/DL models (e.g., RE’s hyper-parameter tuning),
and metrics to log, (3) resource requirements (e.g., the number
of GPU cores). In the case of KSE, SSE, MLTF, RocksDB
engines, their Trial instances point to both the system ex-
ecutable and workload replay tool. The replay tool feeds a
pre-recorded workload trace to the executable. In contrast, RE
engine has a different goal of optimizing a ranking model’s
hyperparameters, its Trial instance contains the model and
the dataset location. And, invoking updateConfigs updates
model hyperparameters.

Table 2 presents the Trial Manager API. Invoking
startTrial submits a Trial instance to Trial Service. At any
time, updateConfigs can be called to change knob settings,
and getMetrics can be called to retrieve metric measure-
ments. A Trial can optionally assess its intermediate bench-
mark results, to decide whether it should terminate the bench-
mark early. To do so, Trial sends intermediate results to an
Assessor instance implementing early-stopping criteria. If the
criteria is met, Assessor can invoke Trial Manager’s stopJob.

The third step is model training. Upon the completion of
Trial instances, getMetrics outputs are merged with the cor-
responding knob settings to form a tabular dataset, for Train-
ing Service to train models. Historical results are optionally
stored in data store, for model re-training or data sharing
among similar scenarios.

Inference Plane. The inference plane implements features
to support ML/DL inferencing jobs and optimization solver.
Taking the current system states and workload characteristics
as inputs, these jobs infer optimal actuations. These jobs are
typically triggered by events, which are predefined by system
operators to support service level agreements. For example,
if the target system’s workload changes (e.g., an increase in
search queries per second), performance drops (e.g., a drop

USENIX Association 2020 USENIX Annual Technical Conference 327

Name Description
tuner.updateSearchSpace(args) Specify search space. args is a list of system knobs’ names, value types, and value ranges.
candidates = tuner.generateCandidates() Generate and return a list of configuration candidates.
tuner.generateModel() Train the Tuner instance’s model.

Table 1: Tuner instance API

Name Description
trial = submitTrial(args) Submit and deploy a benchmark trial. args include a configuration candidate, execution meta-data,

and scheduling meta-data.
trial.startTrial() Start a benchmark trial.
trial.stopJob() Stop a benchmark trial.
trial.updateConfigs(args) Update a trial’s configuration candidate. args is a configuration candidate.
measurements = trial.getMetrics() Return perf measurements of a trial.

Table 2: Trial Manager API

in tail latencies), or models update, inference plane initiates
optimization tasks to make system tuning decisions. Further-
more, inference plane can be configured to directly actuate
the target system, or simply inform system operators as sug-
gestions. Finally, the inference plane can relay online system
performance measurements to the training plane, for training.

3.3 Ad-hoc and Nondeterministic Jobs

In contrast to traditional systems, learning-augmented sys-
tems introduce jobs that are difficult for system operators to
provision beforehand. First, optimization tasks are ad-hoc
– they are triggered in response to adapting to system and
workload dynamics, which might not exhibit a regular pattern.
Second, optimization tasks have nondeterministic require-
ments – they spawn system exploration jobs and ML training
jobs according to the optimization progress at runtime. To this
end, AutoSys implements mechanisms to prioritize, schedule,
and execute these jobs.

Job Prioritization. The tuner can prioritize the list of can-
didates in generateCandidates, to highlight benchmarks
that are expected to subsequently improve model accuracy
the most. Unnecessary benchmarks waste time and resources,
especially for systems that require warm-up (e.g., in-memory
cache warm-up). In this mode, training plane iterates between
candidate generation, candidate prioritization, and model
training.

We illustrate some of the candidate prioritization strategies
that AutoSys Tuners have implemented. First, since the Metis
Tuner uses Gaussian process (GP) regression model, it lever-
ages GP’s capability to estimate the confidence interval of
its inference. A larger confidence interval represents lower
inference confidence. And, it prioritizes candidates by sorting
their confidence interval in descending order. Second, the TPE
Tuner maintains two mixture models to learn the distribution
of top-performing knob combinations [9]. It computes how
likely a candidate belongs to this distribution, and prioritizes
by sorting likelihood scores in descending order.

Job Scheduling. Trial Manager schedules Trials according to
priorities and available resources, and passes this information
to underlying infrastructure [3, 49]. Trials can impose hetero-
geneous resource requirements to support their corresponding
decision-making scenarios. Taking system exploration jobs
as an example – benchmarking ML/DL-learned system com-
ponents in RE benefits from access to ML/DL acceleration
hardware such as GPUs, but benchmarking MLTF KV engine
must take place with SSDs. We note that scheduling learning
jobs also have similar considerations. For learning approaches
based on neural networks, their training jobs can be sched-
uled to machines with GPUs and TPUs [1] for acceleration.
Some learning approaches such as Metis maintain a collec-
tion of ML models, and their training and inference time can
significantly benefit from multiple CPU cores.

Job Execution. In addition to natively running system explo-
ration jobs (i.e., Trial instances) on real machines, AutoSys
also supports containers such as Docker [2]. The container
image packages a Trial’s software dependencies including the
target system’s binaries and libraries. Containers benefit Au-
toSys in the following ways. First, containers can be started
and stopped to share hardware resources among multiple tar-
get systems. Second, previous efforts reported that containers
exhibit a much lower overhead than virtual machines [19].
This improves the benchmark fidelity, hence AutoSys’s train-
ing data quality. Second, the capability of deploying an image
on heterogeneous machines easily enables benchmarking a
target system under different hardware environments.

In addition to allocating short-lived containers that run only
one benchmark, AutoSys also offers long-lived containers.
For Trials with multiple benchmarks, long-lived containers
effectively amortize the cost of initializing and loading the
image. Furthermore, if consecutive benchmarking jobs need
to share states (e.g., warmed-up caches) and data (e.g., weight
sharing for tuning ML/DL model hyperparameters), contents
in memory can be retained and reused.

328 2020 USENIX Annual Technical Conference USENIX Association

Figure 5: Workflow of rule engine in inference plane.

3.4 Learning-Induced System Failures

Being stochastic in nature, ML/DL inference exhibits some de-
grees of uncertainty, and this uncertainty can lead to learning-
induced system failures or suboptimality. While failures are
not unique to learning-augmented systems [8], handling them
requires a different approach for the following reasons. First,
ML/DL models mathematically encode knowledge learned
from the training data, the meaning of their internal weights is
not interpretable to humans and common formal verification
techniques. Second, as models autonomously learn from the
training data, it is difficult to assess whether a dataset would
guarantee a model to fully learn a particular concept.

Since it is hard to formally verify ML/DL correctness, Au-
toSys opts to validate ML/DL outputs with a rule-based en-
gine. These validation rules are authored by operators, and
the rule engine functions as a blacklist. Each rule specifies
conditions of a violation to catch, and it has the following
format: (Predicate1 AND|OR Predicate2...). A predicate is
one variable value comparison with operators such as ==,
! =, >=, >, <=, and <. Conceptually, AutoSys maintains
the following two rulesets for each target system.

First, ruleset validates ML/DL actuations, or inference run-
time outputs as illustrated in Figure 5. In addition to validating
parameter value constraints, if certain system states have been
known to cause failures (from either past experience or bug
reports), system operators can prevent those configurations
from being applied. Rules can also encode knob dependencies
– an example is the multi-tenant setup where the total mem-
ory allocated to all tenants must not exceed a budget, and the
blacklist rule can be written as capacity1+capacity2 > 1024.

Second, ruleset checks the actuation feedback, or target
system outputs as illustrated in Figure 5. One use case in our
deployments is to check discrepancies between actual system
states and ML/DL inference. Specifically, if the predicted

performance (of an actuation) significantly differs from the
actual performance measurement, this feedback is relayed to
the training plane as additional training data. An example rule
is |per f .latency− per fpred.latency|> 10 in Figure 5.

3.5 Extensibility
Since tuning scenarios can vary in requirements, we design
AutoSys to be extensible through the Tuner abstraction. Tuner
is agnostic to specific candidate generation algorithms, and it
provides APIs to wrap the underlying ML/DL details (c.f. Ta-
ble 1). After a Tuner instance is instantiated, users can specify
its search space by invoking updateSearchSpace method.
The method argument is a list of system knobs’ names, value
types, and value ranges. Invoking generateCandidates gen-
erates a list of configuration candidates to be benchmarked
for model training. Then, after benchmarks complete, Au-
toSys invokes generateModel to train and update the Tuner
instance’s model in Training Service.

We have implemented Tuners based on algorithms includ-
ing TPE [9], SMAC [26], Hyperband [30], Metis [31], and
random search. Our implementation of updateSearchSpace
allows system operators to specify each parameter’s expected
value type: choice (e.g., categorical values for KSE en-
gine’s RankingStreams parameter), uniform (e.g., continu-
ous number within a range for RE engine’s LearningRate),
randint (e.g., integers between within a range for RocksDB
engine’s WriteBufferSize parameter), and so on. Finally,
for model-less algorithms such as random search, it is not
necessary to implement generateModel.

3.6 Implementation
Our current implementation comprises ∼18,205 lines of
Python code (Tuner: 5,427, Assessor: 1,392, Trial Manager:
35, Trial Service: 28),∼12,852 lines of TypeScript code (Trial
Manager: 3,283, Trial Service: 6,638), and ∼13,344 lines of
code in other languages. We have implemented Tuners for
an array of popular optimization algorithms such as TPE
(Tree-structured Parzen Estimator) [9], SMAC (Sequential
Model-based Algorithm Configuration) [26], Hyperband [30],
Metis [31], anneal, naïve evolution, grid search, and random
search. We have also implemented two early-stopping al-
gorithms based on median stop [23] and curve fitting [18].
Our current implementation supports the following Trial
Service realizations: local machine, remote servers, several
Kubernetes-based platforms, and several internal experimen-
tal platforms. We have open-sourced the core of AutoSys on
GitHub (https://github.com/Microsoft/nni).

4 Production Deployment Measurements

This section presents production measurements of Web
Search, and Table 3 summarizes key results. The goal is to

USENIX Association 2020 USENIX Annual Technical Conference 329

Search space size Tuning time Key results (vs. long-term expert tuning)
Keyword-based Selection Engine (KSE) O(1000n) 1 week Up to 33.5% and 11.5% reduction in 99-percentile

latency and CPU utilization, respectively
Semantics-based Selection Engine (SSE) Action sequences 1 week Up to 20.0% reduction in average latency
Ranking Engine (RE) O(10n) 1 week 3.4% improvement in NDCG@5
RocksDB key-value cluster (RocksDB) O(100n) 2 days Lookup latency on-par with years of expert tuning
Multi-level Time and Frequency key-value cluster (MLTF) O(100n) 1 week 16.8% reduction on avg in 99-percentile latency

Table 3: Summary of adopting learning-augmented design to tune various systems of Web Search (c.f. Section 2.1). We compare
key results to the previous practice of manual tuning by human experts over the years. n represents the number of parameters.

quantify benefits of adopting learning-augmented system de-
sign in terms of (1) tuning effort reduction and (2) system
performance improvement.

4.1 Tuning Application Logic
This subsection considers both cases of tuning application
logic in a single step and in a sequence of step-wise actions.
Specifically, we present measurements from Selection ser-
vice’s KSE engine and SSE engine.

Performance Gain for KSE Engine. KSE engine exposes
the following key knobs. Each execution plan consists of a
hand-crafted sequence of sub-plans. Each sub-plan has a cat-
egorical parameter, RankingStreams (title, body, anchor,
and URL), that specifies document fields that a query keyword
should appear in. In addition, it has an integer parameter,
MaxSeekCount (1 - 1000), that dictates the maximum number
of documents the sub-plan should examine. These parameters
determine the trade-off between Selection service effective-
ness and latency – while a large MaxSeekCount potentially
increases the number of document candidates for ranking, it
also increases the Selection service latency. Depending on the
number of execution plans, there can be up to 20 controllable
knobs and parameters.

Metrics of interests include per-query latency, CPU uti-
lization, and relevance. As Selection outputs an un-ranked
list, we use the popular NCG (Normalized Cumulative Gain)
score to quantify the overall relevance, and this is a variant of
NDCG [5] that does not consider position-based discounting.
Importantly, the higher the NCG, the more likely users will
click the corresponding search result. For KSE, the optimiza-
tion target is to reduce latency and CPU utilization, while
keeping relevance score the same.

We optimized KSE for the image and video domain. Web
Search divides the image and video domain into several seg-
ments: generic, tail (e.g., lower popularity), regions (e.g., US
market), and so on. With production workloads, we ran the
TPE (Tree-structured Parzen Estimator) Tuner for a week,
on a machine with 2.1 GHz CPU (with 8 cores) and 16 GB
RAM. Compared to years of expert-tuning, we highlight the
following improvements. For the image domain, AutoSys low-
ered KSE 99-percentile latency by another 16.9% - 33.5%,
and CPU utilization by another 9.0% - 11.0%. For the video
domain, compared to expert-tuned configurations, AutoSys

lowered KSE 99-percentile latency by another 19.4% - 29.7%,
and CPU utilization by another 10.1% - 11.5%. These im-
provements represent a Selection latency reduction up to 33
msec; for reference, many companies have reported an∼1.0%
revenue gain from reducing the end-to-end search engine la-
tency by 100 msec.

Performance Gain for SSE Engine. SSE engine optimiza-
tion concerns with deciding the action for each step of the ex-
ecution sequence. In contrast to other engines in Web Search,
SSE requires a correct ordering of actions. The problem can
be formulated as the Approximate Nearest Neighbor (ANN)
search [14, 47] in the vector space. As we mentioned before,
given a user query, each step of SSE chooses one of the three
possible actions: (1) identifying some anchors in the vector
space by looking up the tree, (2) making anchors’ one-hop
neighbors in the neighborhood graph as new anchors, and (3)
terminating and returning the best anchors that we have seen.
At each step, SSE provides the following system states and
environment features for the decision-making: the number
of distance calculations between candidates and the query so
far, the number of tree searches so far, whether top K candi-
dates have been updated in the last T actions, and the average
distance between current top K candidates and the query.

We implemented a reinforcement learning Tuner with tab-
ular based models (Q-tables). Reinforcement learning ex-
cels in discovering the action sequence that would maxi-
mize the overall reward. We define the reward of step t as
a trade-off between relevance gain and latency cost: Rt =
α× relevance_gaint −β× latency_costt (α and β are hyper-
parameters). Under Web Search production workload, we
observed that learned execution sequences are able to achieve
an average of 20.0% reduction in latency while keeping the
relevance score the same.

Additional Consideration: Actuation Granularity. While
setting up AutoSys for KSE, we encountered the question
of actuation granularity – should AutoSys generate coarse-
grained actuations (i.e., one actuation for all system in-
stances) or fine-grained actuations (i.e., one actuation for
each system instance, user segment, region, and so on)?
Coarse-grained actuations impose less computation loads,
but fine-grained actuations potentially offer higher perfor-
mance gains. Unfortunately, the real-world value of learning-
augmented design diminishes with either high learning cost

330 2020 USENIX Annual Technical Conference USENIX Association

RS MS1 MS2 MS3 MS4
Image-generic U,T,B 300 6 9,00 160
Image-tail U,T,B 484 10 6,30 130
Image-US U,T,B,C 245 50 4,80 90
Video-generic U,T,C 220 160 6,50 10
Video-tail U,T,C 125 30 6,40 180

Table 4: Optimal decisions should vary with workload di-
versity. This table illustrates the optimal configuration of
key KSE knobs for several segments of the image and video
search domain. RS and MS are the abbreviated name for Rank-
ingStreams and MaxSeekCount parameters, respectively.

or low performance gain.
To balance the trade-off, we experimented with three lev-

els of granularity: system-wide, per-instance, and per-search-
segment. Due to restrictions imposed by the production envi-
ronment, we performed exploration jobs on a random selec-
tion of 3 instances in each search segment. Results suggested
that per-search-segment granularity best balances the trade-off
for KSE. Table 4 illustrates the best-performing knob config-
urations for five popular segments, and there is a noticeable
variance in their knob settings.

4.2 Tuning ML Algorithms
This subsection considers tuning system components that host
ML/DL algorithms. Specifically, we present measurement
from Ranking service’s RE engine.

Performance Gain for RE Engine. RE engine runs a set of
decision trees, or random forest. Its key controllable knobs
include LearningRate, NumberOfLeaves, MinimumDocsPer-
Leaf, NumberOfTrees, and so on. LearningRate takes a con-
tinuous number (0.01 - 0.99), for adjusting gradient descent
speed that trades off between learning convergence time and
accuracy. NumberOfLeaves takes an integer (10 - 5,000), for
adjusting the maximum number of base tree leaves, which
relates to the model’s learning capability. MinimumDocsPer-
Leaf takes an integer (5 - 1,000), for adjusting the minimum
number of documents in a leaf. NumberOfTrees takes an in-
teger (5 - 100), for adjusting the number of decision trees.
In total, there are approximately 5×108 possible parameter
combinations in the configuration space.

The optimization metric is NDCG (c.f. Section 4.1), and
we ran the TPE (Tree-structured Parzen Estimator) Tuner
in AutoSys for one week, on a machine with 2.1 GHz CPU
(with 8 cores) and 16 GB RAM. Compared to years of expert-
tuning, we highlight the following improvements (evaluated
on a production workload containing 150K queries and 2.5M
URLs): AutoSys improved NDCG@1 (i.e., top 1 result’s
NDCG score) by another 2.9%, NDCG@2 (i.e., top 2 results’
NDCG score) by another 3.4%, NDCG@3 by another 3.4%,
NDCG@4 by another 3.4%, and NDCG@5 by another 3.4%.
We note that ranking relevance has a direct correlation with

conversion rate (e.g., ads clicking).

Additional Consideration: Human-in-the-Loop. We note
that solving the combinatorial optimization from a total of
5×108 possibilities is theoretically doable, but it might not
be practically feasible. With RE, we took advantage of hu-
man knowledge of the engine design, and reduced the value
range of several parameters during the process. Interestingly,
we have encountered cases where information from humans
unintentionally misled learning or caused unexpected conse-
quences, and Section 5 shares these cases.

4.3 Tuning Data Store

Through both RocksDB engine and MLTF engine in Re-
ranking service, we demonstrate data store optimization.

Performance Gain for RocksDB Engine. From years of
operation, Web Search operators selected the following key
knobs to optimize RocksDB read and write throughputs (in
MB per second): WriteBufferSize (1 - 96 MB), BlockSize
(128 - 2,000 KB), Level0FileNumCompactionTrigger (2 - 64),
and MaxBackgroundJobs (1 - 45). Details of these knobs
are available online [4]. We used the Metis Tuner because
gaussian process models have been shown to be effective for
tuning databases [6].

We allocated a two-day computation budget (on an 8-core
2.1 GHz CPU), for AutoSys to search for the optimal configu-
ration with respect to a 5-day trace of production Web Search
traffic. AutoSys improves the maximum write throughput to
50.36 MB per second, which matches the throughput achieved
by Web Search operators’ years of manual tuning. This re-
sult demonstrates that AutoSys can significantly reduce the
amount of human efforts.

Performance Gain for MLTF Engine. MLTF (Multi-level
Time and Frequency) KV engine has the following key knobs.
There are NumCacheLevels (1 - 10) cache levels. A cached
object can move up a level if it has been queried CachePromo-
tionThreshold (1 - 1,000) times. Top NumInevictableLevels (0
- 9) cache levels can be specified as being inevictable. Further-
more, MLTF does not immediately admit large keys with an
object size larger than AdmissionThreshold (1 - 1,000) bytes,
but it first holds them in a shadow buffer of ShadowCapacity
(1 - 10) MB. Then, keys in the shadow buffer are moved to the
cache only if they have been queried more than ShadowPro-
motionFreq (1 - 1,000) times. The dataset partition on each
server is divided into NumShards (1 - 64) shards. The met-
ric of interests is the 99-percentile query latency. Due to the
noise in latency measurements, we used the Metis Tuner. We
collected measurements from one production cluster whose
servers have a 512 MB in-memory cache and SSD.

With measurements from a 14-day window, we try to an-
swer the question, can AutoSys continuously maintain optimal
system performance over time? AutoSys generated a new con-
figuration every two hours to adapt to workload dynamics.

USENIX Association 2020 USENIX Annual Technical Conference 331

Day

La
te

nc
y

Re
du

ct
io

n
(%

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

20
30

40
50

Figure 6: The figure summarizes the 99-percentile latency
reduction over a 14-day window, as compared to the static de-
fault configuration. AutoSys periodically tuned MLTF every
two hours, so we have 12 actuation feedbacks per day.

Figure 6 summarizes the latency reduction for each day, as
compared to the default configuration from human operators.
We highlight the following observations. First, AutoSys low-
ered the 99-percentile latency by an average of 16.8%. Second,
if the workload changes too frequently, AutoSys might not be
able to always update the system configure in time.

Additional Consideration: System Measurement Quality.
Noise and outliers are the common factors that system engi-
neers typically consider in terms of measurement quality. In
fact, as mentioned above, they are the reason that we used
the Metis Tuner for MLTF. Interestingly, while setting up Au-
toSys for RocksDB, we encountered another factor of system
measurement quality – imbalanced measurements. In imbal-
anced datasets, data points are not roughly equally distributed
among all classes of behavior (e.g., read vs. write requests).
For example, in one RocksDB scenario, the workload trace is
significantly skewed, and writes significantly dominate reads.
As a result of using this trace for training, AutoSys optimiza-
tion tasks frequently produced actuations that sacrificed read
throughput for write throughput. These actuations might not
be acceptable in the real world.

5 Long-Term Lessons Learned

Although AutoSys addresses common design considerations
(c.f. Section 3), unforeseen implications have surfaced over
years of operation. They reveal roadblocks in the transition to
learning-augmented system design, from the perspective of
system operators.

5.1 Higher-Than-Expected Learning Costs

While we anticipated model training would incur some costs,
these costs sometimes exceed our expectations due to how
operators set up models. The common approach is to model
an entire system deployment as one black box. Since ML/DL
models directly learn from the observed system execution
behavior, operators are freed from worrying about non-trivial
component interactions and resource contentions within the

deployment. This benefit of simplicity is attractive because in-
teractions and contentions are unavoidable in modern systems
– if multiple service instances are deployed on the same server,
they would contend for computation and I/O resources, es-
pecially on over-subscribed servers. Even for single-instance
servers, instances share network resources, job dispatcher, etc.

The first unapparent trade-off of modeling an entire system
deployment as one black box is re-training cost. Compared
to traditional systems, most modern systems are designed to
be elastic. Individual instances can be created and destroyed
on demand, and they can run on heterogeneous hardware as
required. Unfortunately, any changes to the deployment setup
would invalidate model assumptions and cause the trained
model to be irrelevant. In our example above, system setup
changes include the number of co-located instances on a
server and instance migration. Re-training models for mod-
ern systems can be costly. Complex systems require complex
ML/DL models, which tend to be difficult to train and require
a large amount of training data.

The second unapparent trade-off of modeling an entire
system deployment as one black box is exploration cost. Con-
sidering optimizing the job completion time for a cluster of
hundreds (or even thousands) workers and job dispatchers,
if we consider individual nodes’ CPU utilization, the model
would already have hundreds of inputs to learn. Furthermore,
preparing training datasets for this model scale can be chal-
lenging: (1) testbeds rarely match the target system’s hyper
scale in the real world, and (2) exploratory actuations on criti-
cal systems in production are prohibitive.

To mitigate higher-than-expected learning costs, one on-
going effort is to take advantage of the target system’s soft-
ware modularity [40]. Software modularity emphasizes sep-
arating code functionality to promote maintainability. Simi-
larly, instead of modeling an entire system deployment with
a monolithic model, we modularize the learning task into
composable units of learning assignments. One realization
is to dedicate a model to learn a subsystem or a component.
Considering a content-aggregation application that queries
two local key-value stores for images and videos in series, we
can have separate latency-predicting models for these stores,
Mimage and Mvideo. And, the end-to-end latency can be com-
puted by aggregating outputs of Mimage and Mvideo. Due to the
separation, each model has less to learn and can be re-trained
independently. Furthermore, if the application is updated to
aggregate new content types, additional models (e.g., Mtext)
can be added without updating Mimage and Mvideo.

We acknowledge that software design modularity might
not always be the appropriate level of modularity, especially
that software modularity is typically based on the criteria of
code functionality and maintainability, rather than learning
complexity. This process is currently a manual trial-and-error
process for individual systems, and we are accumulating ex-
perience to standardize the methodology.

332 2020 USENIX Annual Technical Conference USENIX Association

5.2 Pitfalls of Human-in-the-Loop

Senior engineers and operators likely have a wealth of knowl-
edge and experience on the target system, which can guide
AutoSys optimization tasks. This subsection describes cases
where information from humans unintentionally misled learn-
ing or caused unexpected consequences.

First, human experts can inject biases into training datasets,
by providing a large number of labeled data points for cer-
tain search space regions. This is possible if human experts
are already familiar with these regions. As a result, models
would exhibit an uneven distribution of uncertainties. For op-
timization algorithms that tend to exploit regions with lower
uncertainties, e.g., Expected Improvement (EI) [44], decisions
would likely lean towards regions labeled by human experts.
While the academic community has investigated data bias
in the context of classification (e.g., images [46]), learning-
augmented systems also rely on regression. Our current prac-
tice is to advise operators to mix human-labeled datasets with
random exploration.

Second, human experts can write conflicting specifications
for optimization tasks. Specifically, human experts can help
AutoSys narrow down the search space by specifying the
valid value ranges of each configuration knob, and an example
is RE described in Section 4.2. At the same time, they can
specify invalid configurations for the rule engine to check
optimization task outputs. Due to human errors, if the invalid
space completely covers the valid space, any outputs would
effectively be rejected by AutoSys. Our current practice is to
run a tool to check this overlapping condition.

5.3 Closed-Loop System Control Interfaces

We have worked with many production systems that lack
closed-loop control interfaces. The closed loop refers to how
AutoSys actuates a system to achieve optimality, based on
the current system feedback. To this end, not only do modern
systems need interfaces to accept external actuations, but they
should also have well-defined interfaces that abstract system
measurements and logs in a way of facilitating learning.

We describe common issues that motivate this need. First,
some systems distribute configurable parameters and error
messages over a set of not-well documented configuration
files and logs [42]. And, directly modifying configuration
files means that the system can not enforce value checks or
provide immediate feedbacks. Second, parsing raw logs can
be time-consuming, especially if system components disagree
on a unified logging format or excessively log [27]. Third,
many system feedbacks are not natively learnable, e.g., stack
traces and core dumps.

To this end, we have been customizing closed-loop con-
trol interfaces for individual systems. Our current practice
consists of the following steps. We ensure interfaces contain
accessors for all configurable knobs and also accessors for

system metrics. The latter output system measurements in the
format of time-series values, which capture system measure-
ments since the last AutoSys actuation. Furthermore, control
interfaces implement mechanisms to remove system-specific
data outliers (e.g., Gaussian noise and spikes), to improve the
quality of system benchmark measurements as training data.

5.4 Applicability to Other Systems
This subsection summarizes our experience in applying Au-
toSys to systems other than Web Search. AutoSys works ex-
tremely well in a well-controlled learning environment where
high-quality workload traces can be easily collected from
the target system, and training can take place offline on high-
fidelity testbeds or simulators. Interestingly, many critical
scenarios already have the infrastructure to satisfy these strict
requirements for debugging purposes.

Many target systems have a more relaxed learning envi-
ronment. First, real-time exploration can be slow, especially
for systems that require warm-up (e.g., in-memory cache).
For Tuners based on Bayesian optimization or reinforcement
learning, training can take a long time. Our current practice
is to run multiple Trials for multiple concurrent benchmarks,
at each iteration of exploration. Second, online in-situ explo-
ration with production systems can be restricting and even
prohibitive. our current practice is to construct base models
offline by running exploration on testbeds or simulators, and
then fine-tune models online with live traffic. This practice
is useful, especially for systems where individual instances
exhibit different workload characteristics. Finally, Section 5.1
discusses cases of frequent model retraining, due to various
types of dynamics.

6 Related Work

There are efforts on exploring and demonstrating the poten-
tial of learning in solving certain system challenges. Building
on these efforts, AutoSys takes a step towards unifying the
development of learning-augmented systems. Anticipating
growing system scale and complexity, Self-* [22] stated a
vision of autonomic computing that satisfies a collection of
"self-*" properties, and proposed a conceptual model. Recent
efforts include learning index structures and memory access
patterns [25, 28], optimizing data query evaluations [37], sys-
tem performance tuning [7, 31], database configuration tun-
ing [6, 13], placing deep learning computational graphs onto
hardware device [35, 36], anomaly detection [21, 29, 55], etc.

There are efforts on building general-purpose predictive
service. Resource Central [16] is a predictive service to drive
Azure’s VM scheduler, and it builds random forest and XG-
Boost models from past VM telemetry, rather than interactive
explorations. Vizier [23] is a general-purpose black-box opti-
mization service, and it has enabled tasks such as parameter
tuning at Google. Vizier implements Bayesian optimization to

USENIX Association 2020 USENIX Annual Technical Conference 333

learn the search space through interactive explorations. Clip-
per [17] is a general-purpose low-latency prediction serving
system which introduces a modular architecture to simplify
model deployment across frameworks. However, these efforts
do not consider some of the challenges in operationalizing
learning-augmented systems such as interactive explorations,
learning-induced system failures, and so on.

Some AutoSys components are inspired by decades of
research and experience in the system community. Many ef-
forts heavily focus on system challenges to support learning
tasks [15, 38, 49], and Berkeley shared their views of sys-
tem challenges for artificial intelligence (AI) [45]. Related
to control interfaces, interfaces and methods for controlling
and exploring systems state are used for implementation-level
model checking (e.g., MaceMC [24] and Modist [51]). One
approach to drive automating system performance tuning
is interactive exploration. Fuzz testing has been effectively
used in generating inputs to induce unexpected software be-
havior [10, 32, 53], and there is a rich literature on software
testing and system debugging. Inspired by the idea of com-
posable AI [45], we are exploring how assembling previously
trained models can scalably model large-scale systems.

Finally, some AutoSys components are inspired by research
in the ML/DL community. Examples include online learn-
ing [11], continual learning [43], and so on.

7 Conclusion

This paper reports our years of experience in designing and
operating learning-augmented systems at Microsoft. To unify
the development process of these systems, we introduce the
AutoSys framework that addresses common design consid-
erations. Furthermore, we present production measurements
and discuss long-term lessons learned from operating one
such system, Web Search. Going forward, we will study how
learning-augmented systems should evolve models over time,
and how end-to-end and full-stack system optimization can
be safely carried out in practice.

Acknowledgments

We thank anonymous reviewers and our shepherd, Prof. Ana
Klimovic, for their extensive comments and suggestions. We
also thank our colleagues at Microsoft, for their help in deploy-
ing AutoSys: Mingqin Li (Bing Platform), Wei Li (Bing Plat-
form), Haidong Wang (Bing Platform), Yuanchi Yan (Bing
Platform), Chao Zhang (Bing), Qiang Zhang (Bing), and Wen-
jin Zhang (Bing).

References

[1] Cloud TPU. http://cloud.google.com/tpu/.

[2] Docker. http://www.docker.com.

[3] Resource Scheduling and Cluster Management for AI.
http://github.com/microsoft/pai.

[4] RocksDB Tuning Guide. http://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[5] AGICHTEIN, E., BRILL, E., AND DUMAIS, S. Improv-
ing Web Search Ranking by Incorporating User Behav-
ior Information. In SIGIR (2016), ACM.

[6] AKEN, D. V., PAVLO, A., GORDON, G. J., AND
ZHANG, B. Automatic Database Management Sys-
tem Tuning Through Large-scale Machine Learning. In
SIGMOD (2017), ACM.

[7] ALIPOURFARD, O., LIU, H. H., CHEN, J.,
VENKATARAMAN, S., YU, M., AND ZHANG,
M. CherryPick: Adaptively Unearthing the Best Cloud
Configurations for Big Data Analytics. In NSDI (2017),
USENIX.

[8] BENSON, T., AKELLA, A., AND SHAIKH, A. De-
mystifying Configuration Challenges and Trade-offs in
Network-based ISP Services. In SIGCOMM (2011),
ACM.

[9] BERGSTRA, J., BARDENET, R., BENGIO, Y., AND
KEGL, B. Algorithms for Hyper-Parameter Optimiza-
tion. In NIPS (2011).

[10] BIRD, D. L., AND MUNOZ, C. U. Automatic Genera-
tion of Random Self-checking Test Cases. IBM Systems
Journal (1983).

[11] BOTTOU, L., AND CUN, Y. L. Large Scale Online
Learning. In NIPS (2003).

[12] BURGES, C. J. From RankNet to LambdaRank to Lamb-
daMART: An Overview.

[13] CAO, Z., TARASOV, V., TIWARI, S., AND ZADOK,
E. Towards Better Understanding of Black-box Auto-
Tuning: A Comparative Analysis for Storage Systems.
In ATC (2018), USENIX.

[14] CHEN, Q., WANG, H., LI, M., REN, G., LI, S., ZHU, J.,
LI, J., LIU, C., ZHANG, L., AND WANG, J. SPTAG: A
Library for Fast Approximate Nearest Neighbor Search.
http://github.com/microsoft/SPTAG, 2018.

[15] CHEN, T., MOREAU, T., JIANG, Z., ZHENG, L., YAN,
E., SHEN, H., COWAN, M., WANG, L., HU, Y., CEZE,
L., GUESTRIN, C., AND KRISHNAMURTHY, A. TVM:
An Automated End-to-End Optimizing Compiler for
Deep Learning. In OSDI (2018), USENIX.

334 2020 USENIX Annual Technical Conference USENIX Association

http://cloud.google.com/tpu/
http://www.docker.com
http://github.com/microsoft/pai
http://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://github.com/microsoft/SPTAG

[16] CORTEZ, E., BONDE, A., MUZIO, A., RUSSINOVICH,
M., FONTOURA, M., AND BIANCHINI, R. Resource
Central: Understandingand Predicting Workloads for
Improved Resource Management in Large Cloud Plat-
forms. In SOSP (2017), ACM.

[17] CRANKSHAW, D., WANG, X., ZHOU, G., FRANKLIN,
M. J., GONZALEZ, J. E., AND STOICA, I. Clipper:
A Low-Latency Online Prediction Serving System. In
NSDI (2017), USENIX.

[18] DOMHAN, T., SPRINGENBERG, J. T., AND HUTTER, F.
Speeding up Automatic Hyperparameter Optimization
of Deep Neural Networks by Extrapolation of Learning
Curve. In IJCAI (2015).

[19] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RU-
BIO, J. An Updated Performance Comparison of Virtual
Machines and Linux Containers. Tech. rep., IBM Re-
search, 2014.

[20] FRIEDMAN, J. H. Greedy Function Approximation: A
Gradient Boosting Machine. Annals of Statistics (2001).

[21] GABEL, M., SCHUSTER, A., BACHRACH, R.-G., AND
BJORNER, N. Latent Fault Detection in Large Scale
Services. In DSN (2012), IEEE.

[22] GANGER, G. R., STRUNK, J. D., AND KLOSTERMAN,
A. J. Self-* Storage: Brick-based Storage with Auto-
mated Administration. Tech. rep., CMU, 2003.

[23] GOLOVIN, D., SOLNIK, B., MOITRA, S., KOCHAN-
SKI, G., KARRO, J., AND SCULLEY, D. Google Vizier:
A Service for Black-Box Optimization. In SIGKDD
(2017), ACM.

[24] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND
ZHANG, L. Practical Software Model Checking via
Dynamic Interface Reduction. In SOSP (2011), ACM.

[25] HASHEMI, M., SWERSKY, K., SMITH, J. A., AYERS,
G., LITZ, H., CHANG, J., KOZYRAKIS, C., AND RAN-
GANATHAN, P. Learning Memory Access Patterns.
CoRR (2018).

[26] HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. Se-
quential Model-Based Optimization for General Algo-
rithm Configuration. In LION (2011), Springer.

[27] JIANG, W., HU, C., PASUPATHY, S., KANEVSKY, A.,
LI, Z., AND ZHOU, Y. Understanding Customer Prob-
lem Troubleshooting from Storage System Logs. In
FAST (2009), USENIX.

[28] KRASKA, T., BEUTEL, A., CHI, E. H., DEAN, J., AND
POLYZOTIS, N. The Case for Learned Index Structures.
In SIGMOD (2018), ACM.

[29] LAPTEV, N., AMIZADEH, S., AND FLINT, I. Generic
and Scalable Framework for Automated Time-series
Anomaly Detection. In KDD (2015), ACM.

[30] LI, L., JAMIESON, K., DESALVO, G., ROS-
TAMIZADEH, A., AND TALWALKAR, A. Hyperband:
A Novel Bandit-Based Approach to Hyperparameter
Optimization. In ICML (2018).

[31] LI, Z. L., LIANG, C.-J. M., HE, W., ZHU, L., DAI,
W., JIANG, J., AND SUN, G. Metis: Robustly Optimiz-
ing Tail Latencies of Cloud Systems. In ATC (2018),
USENIX.

[32] LIANG, C.-J. M., LANE, N. D., BROUWERS, N.,
ZHANG, L. L., KARLSSON, B., LIU, H., LIU, Y.,
TANG, J., SHAN, X., CHANDRA, R., AND ZHAO, F.
Caiipa: Automated Large-scale Mobile App Testing
through Contextual Fuzzing. In MobiCom (2014), ACM.

[33] LIANG, C.-J. M., XUE, H., YANG, M., AND ZHOU,
L. The Case for Learning-and-System Co-design. In
SIGOPS Operating Systems Review (2019), ACM.

[34] MAO, H., NETRAVALI, R., AND ALIZADEH, M. Neural
Adaptive Video Streaming with Pensieve. In SIGCOMM
(2017), ACM.

[35] MIRHOSEINI, A., GOLDIE, A., PHAM, H., STEINER,
B., LE, Q. V., AND DEAN, J. A Hierarchical Model
for Device Placement. In ICLR (2018).

[36] MIRHOSEINI, A., PHAM, H., LE, Q. V., STEINER, B.,
LARSEN, R., ZHOU, Y., KUMAR, N., NOROUZI, M.,
BENGIO, S., AND DEAN, J. Device Placement Opti-
mization with Reinforcement Learning. CoRR (2017).

[37] MITRA, C. R. D. J. G. G. B., AND TIWARY, S. Opti-
mizing Query Evaluations using Reinforcement Learn-
ing for Web Search. In SIGIR (2018), ACM.

[38] MORITZ, P., NISHIHARA, R., WANG, S., TUMANOV,
A., LIAW, R., LIANG, E., ELIBOL, M., YANG, Z.,
PAUL, W., JORDAN, M. I., AND STOICA, I. Ray: A
Distributed Framework for Emerging AI Applications.
In OSDI (2018), USENIX.

[39] NEAMTIU, I., AND DUMITRAS, T. Cloud Software
Upgrades: Challenges and Opportunities. In MESOCA
(2011), IEEE.

[40] PARNAS, D. On the Criteria To Be Used in Decom-
posing System into Modules. In ACM Communication
(1972), ACM.

[41] PATTERSON, D. A. Technical Perspective: The Data
Center Is The Computer. ACM Communication (2008).

USENIX Association 2020 USENIX Annual Technical Conference 335

[42] RABKIN, A., AND KATZ, R. Static Extraction of Pro-
gram Configuration Options. In ICSE (2011), ACM.

[43] RING, M. B. CHILD: A First Step Towards Continual
Learning. In Machine Learning (1997), Springer.

[44] RYZHOV, I. O. On the Covergence Rates of Expected
Improvement Methods. In Operations Research (2014).

[45] STOICA, I., SONG, D., POPA, R. A., PATTERSON,
D. A., MAHONEY, M. W., KATZ, R. H., JOSEPH,
A. D., JORDAN, M., HELLERSTEIN, J. M., GONZA-
LEZ, J., GOLDBERG, K., GHODSI, A., CULLER, D. E.,
AND ABBEEL, P. A Berkeley View of Systems Chal-
lenges for AI. Tech. rep., Berkeley, 2017.

[46] TORRALBA, A., AND EFROS, A. A. Unbiased Look at
Dataset Bias. In CVPR (2011).

[47] WANG, J., AND LI, S. Query-driven Iterated Neigh-
borhood Graph Search for Large Scale Indexing. In
SIGMM (2012), ACM.

[48] WANG, M., CUI, Y., WANG, X., XIAO, S., AND JIANG,
J. Machine Learning for Networking: Workflow, Ad-
vances and Opportunities. IEEE Network (2018).

[49] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., YANG, F., AND ZHOU, L. Gan-
diva: Introspective Cluster Scheduling for Deep Learn-
ing. In OSDI (2018), USENIX.

[50] XU, T., JIN, L., FAN, X., ZHOU, Y., PASUPATHY, S.,
AND TALWADKE, R. Hey, You Have Given Me Too
Many Knobs. In FSE (2015), ACM.

[51] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN,
H., YANG, M., LONG, F., ZHANG, L., AND ZHOU, L.
MODIST: Transparent Model Checking of Unmodified
Distributed Systems. In NSDI (2009), USENIX.

[52] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVA-
SUNDARAM, L. N., AND PASUPATHY, S. An Empirical
Study on Configuration Errors in Commercial and Open
Source Systems. In SOSP (2011), ACM.

[53] ZHANG, L. L., LIANG, C.-J. M., LIU, Y., AND CHEN,
E. Systematically Testing Background Services of Mo-
bile Apps. In ASE (2017), ACM.

[54] ZHANG, S., AND ERNST, M. D. Which Configuration
Option Should I Change? In ICSE (2014), ACM.

[55] ZHANG, X., LIN, Q., XU, Y., QIN, S., ZHANG, H.,
QIAO, B., DANG, Y., YANG, X., CHENG, Q., CHIN-
TALAPATI, M., WU, Y., HSIEH, K., SUI, K., MENG,
X., XU, Y., ZHANG, W., SHEN, F., AND ZHANG, D.
Cross-dataset Time Series Anomaly Detection for Cloud
Systems. In ATC (2019), USENIX.

336 2020 USENIX Annual Technical Conference USENIX Association

	Introduction
	Background and Motivations
	Overview of Web-Scale Search
	Sources of System Complexity
	Sources of Operation Complexity

	AutoSys
	Design Principles
	Framework Overview
	Ad-hoc and Nondeterministic Jobs
	Learning-Induced System Failures
	Extensibility
	Implementation

	Production Deployment Measurements
	Tuning Application Logic
	Tuning ML Algorithms
	Tuning Data Store

	Long-Term Lessons Learned
	Higher-Than-Expected Learning Costs
	Pitfalls of Human-in-the-Loop
	Closed-Loop System Control Interfaces
	Applicability to Other Systems

	Related Work
	Conclusion

