_—— T —p— I

.. L N\
usenix \.
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

FuZZan: Efficient Sanitizer Metadata

Design for Fuzzing

Yuseok Jeon, Purdue University; WookHyun Han, KAIST; Nathan Burow,
Purdue University; Mathias Payer, EPFL

https://www.usenix.org/conference/atc20/presentation/jeon

This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.
July 15-17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference
is sponsored by USENIX.

NERRNRNIRMIE

+

FuZZan: Efficient Sanitizer Metadata Design for Fuzzing

Yuseok Jeon
Purdue University

Wookhyun Han
KAIST

Abstract

Fuzzing is one of the most popular and effective techniques
for finding software bugs. To detect triggered bugs, fuzzers
leverage a variety of sanitizers in practice. Unfortunately,
sanitizers target long running experiments—e.g., developer
test suites—not fuzzing, where execution time is highly
variable ranging from extremely short to long. Design
decisions made for developer test suites introduce high
overhead on short lived fuzzing executions, decreasing the
fuzzer’s throughput and thereby reducing effectiveness.

The root cause of this sanitization overhead is the heavy-
weight metadata structure that is optimized for frequent
metadata operations over long executions. To address this, we
design new metadata structures for sanitizers, and propose
FuZZan to automatically select the optimal metadata structure
without any user configuration. Our new metadata structures
have the same bug detection capabilities as the ones they
replace. We implement and apply these ideas to Address
Sanitizer (ASan), which is the most popular sanitizer.

Our evaluation shows that on the Google fuzzer test suite,
FuZZan improves fuzzing throughput over ASan by 48%
starting with Google’s provided seeds (52% when starting with
empty seeds on the same applications). Due to this improved
throughput, FuZZan discovers 13% more unique paths given
the same 24 hours and finds bugs 42% faster. Furthermore,
FuZZan catches all bugs ASan does; i.e., we have not traded
precision for performance. Our findings show that sanitizer
performance overhead is avoidable when metadata structures
are designed for fuzzing, and that the performance difference
will have a meaningful difference in squashing software bugs.

1 Introduction

Fuzzing [33] is a powerful and widely used software security
testing technique that uses randomly generated inputs to find
bugs. Fuzzing has seen near ubiquitous adoption in industry,
and has discovered countless bugs. For example, the state-
of-the-art fuzzer American Fuzzy Lop (AFL) has discovered

Nathan Burow
Purdue University

Mathias Payer
EPFL

hundreds of bugs in widely-used software [57], while Google
has found 16,000 bugs in Chrome and 11,000 bugs in over
160 other open source projects using fuzzing [10]. On its own,
fuzzing only discovers a subset of all triggered bugs, e.g., failed
assertions or memory errors causing segmentation faults. Bugs
that silently corrupt the program’s memory state, without caus-
ing a crash, are missed. To detect such bugs, fuzzers must be
paired with sanitizers that enforce security policies at runtime
by turning a silent corruption into a crash. To date, around 34
sanitizers [47] have been prototyped. So far, only the LLVM-
based sanitizers ASan, MSan, LeakSan, UBSan, and TSan
have seen wide-spread use. For brevity, we use sanitizers to
refer to such frequently used sanitizers in the rest of the paper.

Unfortunately, sanitizers are designed for developer-driven
software testing rather than fuzzing, and are consequently
optimized for minimal per-check cost, not startup/teardown of
the metadata structure. Consequently, they are based around
a shadow-memory data structure wherein the address space is
partitioned, and metadata is encoded into the “shadow” mem-
ory at a constant offset from program memory. Optimizing for
long executions makes sense in the context of developer-driven
software testing, which generally verifies correct behavior on
expected input, leading to relatively long test execution times.
Fuzzing has a more diverse set of inputs that cause both short
(i.e., invalid inputs) and long running executions with billions
of executions. For example, the Chrome developers use
Address Sanitizer (ASan) for their unit tests and long-running
integration tests [39]. However, the underlying design
decisions that make ASan a highly performant sanitizer for
long running tests result in high performance overhead—up
to 6.59x—for short executions, as observed in a fuzzing
environment'. This high overhead reduces throughput,
thereby preventing a fuzzer from finding bugs effectively.

We analyze the source of this overhead across a variety
of sanitizers, and attribute the cost to heavy-weight metadata
structures employed by these sanitizers. For example, Address
Sanitizer maps an additional 20TB of memory for each exe-

The average time for a single execution across the first 500,000 tests for
the full Google fuzzer test suite is 0.61ms.

USENIX Association

2020 USENIX Annual Technical Conference 249

cution, Memory Sanitizer (MSan) 72TB, and Thread Sanitizer
(TSan) 97TB on a 64-bit platform. The high setup/teardown
cost of heavy-weight metadata structures is amortized over
the long execution of programs due to the low per-check cost.
In contrast, a fuzzing campaign typically consists of massive
amounts of short-lived executions, effectively transforming
what is a large one-time cost into a large runtime cost. For ex-
ample, Table | indicates that memory management is the main
source of overhead for ASan under fuzzing on the Google fuzz
test suite, accounting for 40.16% of the total execution time we
observe. Memory management is the key bottleneck for using
sanitizers with fuzzers, and has to date gone unaddressed.

Instead, increasing the efficiency and efficacy of fuzzing has
received significant research attention on two fronts: (i) mech-
anisms that reduce the overhead of fuzzers [27,55,57]; and (ii)
mechanisms that reduce the overhead of sanitization on longer
running tests and conflicts between sanitizers [25,37,38, 52,
54]. These works address fuzzers and sanitizers in isolation,
ignoring the core sanitizer design decision to optimize for long
running test cases using a heavy-weight metadata structure that
limits sanitizer performance in combination with fuzzers. Con-
sequently, optimization of sanitizer memory management for
short execution times remains an open challenge, motivated by
the need to design sanitizers that are optimal under fuzz testing.

We present FuZZan, which uses a two-pronged approach
to optimize sanitizers for short execution times, as seen under
fuzzing: (i) two new light-weight metadata structures that trade
significantly reduced startup/teardown costs ~ for moderately
higher (or equivalent) per access costs and (ii) a dynamic meta-
data structure switching technique, which dynamically selects
the optimal metadata structure during a fuzzing campaign
based on the current execution profile of the program; i.e., how
often the metadata is accessed. Each of our proposed metadata
structures is optimized for different execution patterns; i.e.,
they have different costs for creating an entry when an object
is allocated versus looking up information in the metadata
table. By observing the metadata access and memory usage
patterns at runtime, FuZZan dynamically switches to the best
metadata structure without user interaction, and tunes this
configuration throughout the fuzzing campaign.

We apply our ideas to ASan, which is the most widely
used sanitizer [43, 44,47]. ASan focuses on memory safety
violations—arguably the most dangerous class of bugs,
accounting for 70% of vulnerabilities at Microsoft [34]—and
has already detected over 10,000 memory safety viola-
tions [9, 12,50] in various applications (e.g., over 3,000 bugs in
Chrome in 3 years [50]) and the Linux kernel (e.g., over 1,000
bugs [12,51]) by using a customized kernel address sanitizer
(KASan). We further apply FuZZan to MSan and MOpt-AFL.

FuZZan improves fuzzing throughput over ASan by 52%
when starting with empty seeds and 48% when starting with

2Compared to ASan, our min-shadow memory mode reduces the time that
startup/teardown functions spend in the kernel by 62% on the first 500,000
tests across the full Google fuzzer test suite.

ASan’s ASan’s Memory
Modes init time logging time mgmt. time | # page faults
ms (%) ms (%) ms (%)
Native 0.00 (0.00%) | 0.00(0.00%) | 0.05(11.49%) 2,569
ASan | 0.17(10.58%) | 0.30(18.86%) | 0.63 (40.16%) 11,967

Table 1: Comparison between native and ASan executions
with a breakdown of time spent in memory management,
and time spent for ASan’s initialization and logging. Results
are aggregated over 500,000 executions of the full Google
fuzzer test suite [11]. Times are shown in milliseconds, and
% denotes the ratio to total execution time.

Google’s seed corpus, averaged across all applications in the
Google fuzzer test suite [11] as part of our input record/replay
fuzzing experiment. Due to this improved throughput, FuZZan
discovers 13% more unique paths (with an improvement in
throughput of 61% compared to ASan) given the standard 24
hour fuzz testing with widely used real-world software and a
provided corpus of starting seeds.

Crucially, FuZZan achieves this without any reduction in
bug-finding ability. Therefore, FuZZan strictly increases the
performance of ASan-enabled fuzzing, resulting in finding the
same bugs in less time than using ASan with the same fuzzer.

Our contributions are:

1. Identifying and analyzing the primary source of overhead
when sanitizers are used with fuzzing, and pinpointing
the sanitizer design decisions that cause the overhead;

2. Designing and implementing a sanitizer optimization
(FuZZan) and applying it to ASan; that is, we design
several new metadata structures along with a dynamic
metadata structure switching to choose the optimal
structure at runtime. We also validate the generality of our
design by further applying it to MSan and MOpt-AFL,;

3. Evaluating FuZZan on the Google fuzzer test suite and
other widely used real-world software and showing that
FuZZan effectively improves fuzzing throughput (and
therefore discovers more unique bugs or paths given the
same amount of time).

2 Background and Analysis

We present an overview of fuzzing overhead and ASan
(our target sanitizer). Further, we detail the design conflicts
between ASan and fuzzing when used in combination.

2.1 Fuzzing overhead

Given the same input generation capabilities, a fuzzer’s
throughput (executions per second) is critical to its effective-
ness in finding bugs. Greater throughput results in more code

250 2020 USENIX Annual Technical Conference

USENIX Association

and data paths being explored, and thus potentially triggers
more bugs. Running a fuzzer imposes some overhead on the
program, a major component of which is the repeated execution
of the target program’s initialization routines. These routines—
including program loading, execve, and initialization—do
not change across test cases, and hence result in repeated and
unnecessary startup costs. To reduce this overhead, many
fuzzers leverage a fork server. A fork server loads and executes
the target program to a fully-initialized state, and then clones
this process to execute each test case. This ensures that the
execution of each test case begins from an initialized state,
and removes the overhead associated with the initial startup.

Another technique for reducing process initialization costs
is in-process fuzzing, such as AFL’s persistent mode and
libFuzzer. In-process fuzzing wraps each test in one iteration
of aloop in one process, thus avoiding starting a new process
for each test. However, in-process fuzzing generally requires
manual analysis and code changes [13, 58]. Additionally,
in-process fuzzing requires the target code to be stateless
across executions as all tests share one process environment,
otherwise the execution of one test may affect subsequent
ones, potentially leading to false positives. Consequently,
testers should avoid in-process fuzzing for library code using
global variables. Bugs found from in-process fuzzing may
not be reproducible as it is not always possible to construct
a valid calling context to trigger detected bugs in the target
function, and side-effects across multiple function calls may
not be captured [32]. Because of these limitations, in-process
fuzzing is used on stateless functions in libraries, while the
fork server model (i.e., out-of-process fuzzing) remains the
most general fuzzing mode for fuzzing programs.

2.2 Address Sanitizer

All sanitizers leverage a customized metadata structure [47].
Out of many different metadata schemes, shadow memory
(both direct-mapped or multi-level shadow) is the most widely
used [4, 14-16,29,30,42,45,48,49,56]. ASan enforces mem-
ory safety by encoding the accessibility of each byte in shadow
memory. Allocated (and therefore accessible) areas are marked
and padded with inaccessible red zones. In particular, direct-
mapped shadow memory encodes the validity of the entire
virtual memory space, with every 8-bytes of memory mapping
to 1-byte in shadow memory. Shadow memory encodes the
state of application memory. The 8-bit value k encodes that
the 8-k bytes of the mapped memory are accessible. The corre-
sponding shadow memory address for a byte of memory is at:

addrspadow = (addr >> 3) ~+offset

where addr is the accessed address. Generally, ASan only
inserts redzones to the high address side of each object as the
preceding object’s redzone suffices for the low address side.
ASan also instruments each runtime memory access to check
if the accessed memory is in a red zone, and if so faults. ASan’s

effectiveness in detecting hard-to-catch memory bugs has led
to its widespread adoption. It has become best practice [47] to
use ASan (or KASan [20], the kernel equivalent) with a fuzzer
to improve the bug detection capability.

2.3 Overhead Analysis of Fuzzing with ASan

To understand ASan’s overhead with fuzzing, we analyze
the Linux kernel functions used during fuzzing campaigns.
Table 1 shows the overhead added by ASan, broken out
across ASan’s logging, ASan’s initialization, and memory
management. Our experiments measure the ratio of the time
spent in the kernel functions compared to the total execution
time for a number of target programs.

Note that memory management makes up 40.16% of
ASan’s total execution time, as opposed to 11.49% for the
base case, and that memory management is more than double
the overhead of ASan’s logging and initialization combined.
ASan’s heavy use of the virtual address space results in
4.66x page faults compared to native execution. Our memory
management overhead numbers reflect the time spent by the
kernel in the four core page table management functions:
(i) unmap_vmas (24.6%), (ii) free_pgtable (4.7%), (iii)
do_wp_page (8.2%), and (iv) sys_mmap (2.6%).

Notably, unmap_vmas and free_pgtable correspond to
73% of ASan’s measured memory management overhead
across the four core page table management functions. The
execution time for these two functions (unmap_vmas and
free_pgtable) is 10x higher than when executing without
ASan. To break this overhead down, when executing a test
under the fork server mode, a fuzzer needs to create a new
process for each test. During initialization, ASan reserves
memory space (20TB total, including 16TB of shadow
memory, and a separate 4TB for the heap on 64-bit platforms)
and then poisons the shadow memory for globals and the
heap. Accessing these pages incurs additional page faults, and
thus page table management overhead in the kernel. Note that
the large heap area causes sparse page table entries (PTEs),
which increase the number of pages used for the page table
and memory management overhead.

Existing techniques to deal efficiently with large allocations
do not help here. Lazy page allocation of the large virtual mem-
ory area used by ASan does not mitigate memory management
overhead in this case, as many of the pages are accessed when
shadow memory is poisoned. Poisoning forces a copy even for
copy-on-write pages, and thus increases page table manage-
ment cost. During execution, memory allocations and accesses
cause additional shadow memory pages to be used, again with
page faults and page table management. When the process ex-
its, the kernel clears all page table entries through unmap_vmas
and releases memory for the page table (via free_pgtables).
The cost of these two functions are correlated with the number
of physical pages used by the process. As fuzzing leads to
repeated, short executions, such bookkeeping introduces

USENIX Association

2020 USENIX Annual Technical Conference 251

considerable memory management overhead. In contrast to
these active memory management functions, sys_mmap only
accounts for 7% memory management overhead of ASan.
This is the expense for reserving all virtual memory areas.
However, large areas that are actively accessed by ASan incur
considerable additional expenses as detailed above.

For completeness, we note that our analysis finds that ASan
performs excessive “always-on” logging (18.86%) by default,
and that ASan’s initial poisoning of global variables (10.58%)
is inefficient. Combined, these additional sources of overhead
account for 29.44% overhead. We address these engineering
shortcomings in our evaluation, but they are neither our core
contributions nor the choke point in fuzzing with ASan.

3 FuZZan design

FuZZan has two design goals: (1) define new light-weight
metadata structures, and (2) automatically switch between
metadata structures depending on the runtime execution pro-
file. In this section, we present how we design each component
of FuZZan to achieve both goals, as illustrated in Figure 1.

3.1 FuZZan Metadata Structures

To minimize startup/teardown costs while maintaining
reasonable access costs, FuZZan introduces two new metadata
structures: (i) a Red Black tree (RB-tree) metadata structure,
which has low startup and teardown costs, but has high
per-access costs; and (ii) min-shadow memory, which has
medium startup/teardown costs and low per-access costs (on
par with ASan). Table 2 shows a qualitative comparison of
the different metadata schemes that we propose in this section,
see Table 4 for quantitative results. The RB-tree is optimal for
short executions with few metadata accesses as it emphasizes
low startup and teardown costs, while min-shadow memory
is best suited for executions with a mid-to-high number
of metadata accesses as it has lower per metadata access

Fuzzer Target
Dynamic feedback
) FuZZan
; Measure target program samplin
l;;fgé:ﬁg Behavior (§ 3.2.1) pling
ASan
(2) Calculate .| shadow memory
the best —_—
metadata \)
structure (3) Switch to FuZZan
(§3.2.2) selected RB-tree
metadata
Metadata structure \ .
structure (83.2) FuZZan Min-
selector Shadow memory
| —

Figure 1: Overview of FuZZan’s architecture and workflow.

Startup/

Teardown Cost Access Cost

Metadata Structures

ASan shadow memory High Low
Customized RB-tree Low High
FuzZan Min-shadow memory Medium Low

Table 2: Comparison of metadata structures.

costs while still avoiding the full startup/teardown overhead
imposed by ASan’s shadow memory.

3.1.1 Customized RB-Tree

To optimize ASan’s metadata structure for test cases where a
fuzz testing application only executes for a very short time with
few metadata accesses, we introduce a customized RB-tree,
shown in Figure 2. Nodes in the RB-tree store the redzone for
each object. Although each metadata access operation (insert,
delete, and search) in the RB-tree is slower than its counterpart
in the shadow memory metadata structure, our RB-tree has the
following benefits: (i) low total memory overhead (leading to
low startup/teardown overhead); (ii) removal of poisoning/un-
poisoning page faults (as each RB-tree node compactly stores
the redzone addresses and these nodes are grouped together in
memory); and (iii) a faster range search than shadow memory
for operations such as memcpy. For example, in order to check
memcpy, ASan must validate each byte individually using
shadow memory. However, in our approach, we can verify
such operations through only two range queries for memcpy’s
source and destination memory address range.

In our RB-tree design, when an object is allocated (e.g.,
through malloc), the range of the object’s high address
redzone is stored in a node of the RB-tree. During a query, if
the address range of the target is lower than the start address
of the node, we search the left subtree (and vice versa). If the
address is not found in the tree, it is a safe memory access.
During redzone removal, the requested address range may
only be a subset of an existing node’s range (and not the full
range of a target node in the RB-tree). In this case, the RB-tree

HashMap (optional)

Insert/ # | Address area One time
Delete Hash function 0x10007 Insert/ °
[— — X e
(address) | 1| oxtoo0, | TR ¢0
5 [0x10008..~ | | [
0x10009.. o0
Cache (optional)
| Address | Status One time
Search I .
€A 1 0x100.. | Normal| Search Range
Fail 0x02008..~ | | Search _@
2 | 0x200..| Normal| — |- |ox02009. |'T @ @
3 | 0x300..| Normal N | Oxfffe..~ e
OXFFEE.. I o0

Figure 2: Design of FuZZan’s customized RB-tree.

252 2020 USENIX Annual Technical Conference

USENIX Association

deletes the existing RB-tree node, creates new RB-tree nodes
which have non-overlapping address ranges (e.g., the left
and right side of an overlapped area), and inserts these nodes
into the RB-tree. Since we reuse ASan’s memory allocator
and memory layout (e.g., redzones between objects and a
quarantine zone for freed objects), FuZZan provides the same
detection capability as ASan.

3.1.2 Min-shadow memory

The idea behind Min-shadow memory (for executions with
a mid-to-high number of metadata accesses) is to limit the
accessible virtual address space, effectively shrinking the
size of the required shadow memory. As the size of shadow
memory is a key driver of overhead in the fuzzing environment,
this enhances performance.

Figure 3 illustrates how min-shadow memory converts a
64-bit program running in a 48-bit address space to run in a
32-bit address space window (1GB for the stack, 1GB for the
heap, and 2GB for the BSS, data, and text sections combined).
Note that pointers remain 64 bits wide and the code remains
unchanged: the mapped address space is simply restricted, al-
lowing min-shadow memory to have a partial shadow memory
map. To shrink a program’s memory space, we move the heap
(by modifying ASan’s heap allocator) and remap the stack to a
new address space. Min-shadow memory remaps parts of the
address space but programs remain 64-bit programs. To accom-
modate larger heap sizes, we create additional min-shadow

Address sanitizer memory mapping

Stack Stack
Heap (4TB) x‘ Heap (4TB)
Shadow Shadow
ey + | RN
(Heap + 16TB
Shadow) Shadow Shadow (Shadow
BSS & Data / BSS & Data memory)
& Text & Text
FuZZan min-shadow memory mapping
Shadow Shadow } 512MB
Stack (1GB) Stack (1GB) | (Shadow
Heap (1GB) Heap (1GB) | ™emow)
4GB p p
BSS & Data BSS & Data
& Text (2GB) & Text (2GB)

Figure 3: ASan and min-shadow memory modes’ memory
mapping on 64-bit platforms. ASan (top) reserves 20TB
memory space for heap and shadow memory, conversely, min-
shadow memory mode (bottom) reserves 4512MB memory
space for heap and shadow memory. Each application’s stack,
heap, and other sections (BSS, data, and text) map to the
corresponding shadow regions. Further, the shadow memory
region is mapped inaccessible.

memory binaries with heap sizes of 4GB, 8GB, and 16GB.

Our approach allows testing 64-bit code with 64-bit
pointers without having to map shadow tables for the entire
address space. We disagree with the recommendation of the
ASan developers to compile programs as 32-bit executables,
as changing the target architecture, pointer length, and
data type sizes will hide bugs. Furthermore, min-shadow
memory provides greater flexibility compared to using the
x32 ABI [53] mode (i.e., running the processor in 64-bit mode
but using 32-bit pointers and arithmetic, limiting the program
to a virtual address space of 4GB), as min-shadow memory
can provide various heap size options.

3.2 Dynamic metadata structure switching

Dynamic metadata structure switching automatically selects
the optimal metadata scheme based on observed behavior.
At the beginning of a fuzzing campaign, dynamic metadata
structure switching assesses the initial behavior and then pe-
riodically samples behavior, adjusting the metadata structure
if necessary. Our intuition for dynamic metadata structure
switching is that, during fuzzing, metadata access patterns
and memory usage remain similar across runs and change
in phases. While the fuzzer is mutating a specific input, the
executions of the newly created inputs are similar regarding
their control flow and memory access patterns compared to
the source input. However, new coverage may lead to different
execution behaviors. We therefore design a dynamic metadata
structure switching technique that periodically and condition-
ally samples the execution and adjusts the underlying metadata
structure according to the observed execution behavior.

Dynamic metadata structure switching compiles the
program in four different ways in preparation for fuzzing:
ASan, RB-tree, min-shadow memory, and sampling mode. The
sampling mode repeatedly samples the runtime parameters
and then selects the optimal metadata structure. The selection
of the optimal metadata structure is governed by FuZZan’s
metadata structure switching policy.

3.2.1 Sampling mode

The sampling mode measures the behavior of the target
program using the min-shadow memory-1GB metadata mode
and, based on the behavior, reports the currently optimal
metadata structure. The sampling mode profiles the following
parameters: (i) the number of metadata accesses during insert,
delete, and search; and (ii) memory consumption. Note that
this information can be collected by simple counters: profiling
is therefore light-weight.

Dynamic metadata structure switching starts in sampling
mode and selects the optimal mode based on the observed
behavior. Dynamic metadata structure switching then
periodically (e.g., every 1,000 executions) and conditionally
(e.g., when the fuzzer starts mutating a new test case) samples

USENIX Association

2020 USENIX Annual Technical Conference 253

executions to select the optimal metadata structure based
on the current behavior. To reduce the cost of periodic
sampling, dynamic metadata structure switching implements
a continuous back-off strategy that gradually increases the
sampling interval as long as the metadata structure does not
change (similar to TCP’s slow-start [17]). Note that bugs may
be triggered during sampling mode. As such, we maintain
ASan’s error detection capabilities while sampling to ensure
that we do not miss any bugs.

3.2.2 Metadata structure switching policies

Our metadata structure switching policy is based on a mapping
of metadata access frequency to the corresponding metadata
structure. This heuristic is relatively simple in order to achieve
alow sampling overhead. To determine the best cutoff points,
we compile all 26 applications in Google’s fuzzer test suite

in two different ways: RB-tree and min-shadow memory.

We then test these different configurations against 50,000
recorded inputs and determine the best metadata structure
depending on the observed parameters, measuring execution
time. Profiling reveals that the frequency of metadata access
(insert, delete, and search) is the primary factor that influences
metadata structure overhead, which confirms our original
assumption. In this policy, depending on the metadata access
frequency, we select different metadata structures (based
on statistics from profiling): RB-tree if there are fewer than
1,000 accesses; and min-shadow memory if there are more
than 1,000 accesses. Additionally, if the selected heap size
goes beyond a threshold, we sequentially switch to other
modes (min-shadow memory-4G, 8G, 16G, and ASan), thus
increasing heap memory for continuous fuzzing.

4 Implementation

We implement FuZZan’s two metadata structures and
dynamic metadata structure switching mode on top of ASan
in LLVM [28] (version 7.0.0). We support and interact with
AFL [57] (version 2.52b). To address the other sources of
overhead in ASan (shown in Table 1), we also implement
two additional optimizations: (i) removal of unnecessary
initialization; and (ii) removal of unnecessary logging. Our
implementation consists of 3.5k LOC in total (mostly in
LLVM, with minor extensions to AFL).

RB-tree. The RB-tree requires modifications to ASan’s
memory access instrumentation, as our RB-tree is not based
on a shadow memory metadata structure. Thus, we modify
all memory access checks, including interceptors, to use
the appropriate RB-tree operations instead of the equivalent
shadow memory operations. As an optimization, and for
compatibility with min-shadow memory mode, the RB-tree
mode also reserves 1GB for the heap memory allocator. A
compact heap reduces memory management overhead. The
RB-tree mode is used when fuzz tests only execute for a very

short time with few metadata accesses (i.e., they allocate
relatively a small amount of memory).

Min-shadow memory. Unlike the RB-tree, we are able to
repurpose ASan’s existing memory access checks, as the
min-shadow memory metadata structure is based on a shadow
memory scheme. To shrink a 64-bit program’s address space,
we modify ASan’s internal heap setup and remap the stack
using Kroes et al.’s linker/loader tricks [22]. More specif-
ically, based on this script, we hook __libc_start_main
using “LD_PRELOAD” and then remap the stack to a new
address, update rbp and rsp, and then call the original
__libc_start_main. This allows us to reduce ASan’s
shadow map requirements from 16TB of mapped (but not
necessarily allocated) virtual memory to 512MB (1 bit of
shadow for each byte in our 4GB address space window).
We also create an additional 192MB shadow memory for
ASan’s secondary allocator and dynamic libraries (which
are remapped above the stack). Finally, we implement four
different min-shadow memory modes with increasing heap
sizes (1GB, 4GB, 8GB, and 16GB) to handle the different
memory requirements of a variety of programs.

Heap size triggers. As previously stated, min-shadow
memory is configured for different heap sizes. We therefore
use out of memory (OOM) errors to trigger callbacks that
notify FuZZan to increase the heap size.

AFL modifications. The target program is compiled once
per FuZZan mode. By default, AFL uses a random number
generator (RNG) to assign an ID to each basic block within
the target program. Unfortunately, this would result in the
same input producing different coverage maps across the set
of compiled targets, breaking AFL’s code coverage analysis.
We therefore modify AFL to use the same RNG seed across
the set of compiled targets. This ensures that the same input
produces the same coverage map across all compiled variants.

Removing unnecessary initialization. ASan makes a num-
ber of global constructor calls on program startup, performing
several do_wp_page calls for copy-on-write. These construc-
tor calls are unnecessarily repeated each time AFL executes a
new test input, leading to redundant operations. Unfortunately,
the AFL fork server is unaware of ASan’s initialization
routines. Therefore, to remove unnecessary (re-)initialization
across fuzzing runs, we modify ASan’s LLVM pass so that
global variable initialization occurs before AFL’s fork server
starts. This is achieved by adjusting the priority of global
constructors which contain ASan’s initialization function.

Removing unnecessary logging. ASan provides logging
functionality for error reporting (e.g., saving allocation sizes
and thread IDs during object allocation). Unfortunately, this
logging functionality introduces additional page faults and
performance overhead. However, this logging is unnecessary
because fuzzing inherently enables replay by storing test
inputs that trigger new behavior. Complete logging infor-
mation can be recovered by replaying a given input with a

254 2020 USENIX Annual Technical Conference

USENIX Association

fully-instrumented program. We therefore identify and disable
ASan’s logging functionality (e.g., StackDepot) for fuzzing
runs, allowing it to be reenabled for reportable runs.

5 Evaluation

We provide a security and performance evaluation of FuZZan.

First, we verify that FuZZan and ASan have the same
error-detection capabilities. Second, we evaluate the efficiency
of FuZZan’s new metadata structures and dynamic metadata
structure switching mode using deterministic input from

a record/replay infrastructure to ensure fair comparisons.

Next, to consider the random nature of fuzzing and to show
FuZZan’s real-world impact, we evaluate FuZZan’s efficiency
without deterministic input. Here we evaluate the number
of code paths found by FuZZan in a 24 hour time period,

demonstrating the impact of FuZZan’s increased performance.

We also measure FuZZan’s bug finding speed by using known
bugs in Google’s fuzzer test suite to verify that FuZZan
maximizes fuzzing execution speed while providing the
exact same bug detection capabilities as ASan. Finally, we
port FuZZan to another sanitizer (MSan) [48] and another
AFL-based fuzzer (MOpt-AFL) [31] to verify its flexibility.

Evaluation setup. All of our experiments are performed on
a desktop running Ubuntu 18.04.3 LTS with a 32-core AMD
Ryzen Threadripper 2990WX, 64GB of RAM, 1TB SSD, and
Simultaneous MultiThreading (SMT) disabled (to guarantee

a single fuzzing instance is assigned to each physical core).

Across all experiments, we apply FuZZan to AFL’s fork
server mode, which is a widely-used and highly optimized
out-of-process fuzzing mode. We evaluate FuZZan on all
applications in the Google fuzzer test suite [11] and other
widely used real-world software.

Evaluation strategy. Evaluating fuzzing effectiveness is
challenging. In a recent study of how to evaluate fuzzing by
Klees et. al. [21], the authors find that the inherent randomness
of the fuzzer’s input generation can lead to seemingly large but
spurious differences in fuzzing effectiveness. However, we are
at an advantage as we do not need to compare different fuzzers
nor do we change the input generation. We therefore record the
fuzzer-generated inputs during a regular run of AFL, and then
replay these recorded inputs to compare our different ASan
optimizations to the same baseline, effectively controlling for
randomness in input generation by using the same input for all
experiments. For our experiments we record the first 500,000
executions for replay, yielding a large enough test corpus
for reasonable performance comparisons. We also undertake
a real-world fuzzing campaign (i.e., without inhibiting
fuzzing randomness by record/replay) to measure FuZZan’s
real-world impact on code path exploration. Finally, Klees
et. al. demonstrate the importance of the initial seed(s) when
evaluating fuzz testing, as performance can vary substantially
depending on what seed is used. We therefore compare two

Good tests Bad tests
CWD (ID) (Pass/Total) | (Pass/Total)
Stack-based Buffer Overflow (121) | 2,432/2,432 | 2,314/2,432
Heap-based Buffer Overflow (122) 1,594/1,594 | 1,328/1,594
Buffer Under-write (124) 682 /682 641/682
Buffer Over-read (126) 5247524 359/524
Buffer Under-read (127) 682 /682 641/682
Total 5914/5914 | 5,283/5914

Table 3: Three different metadata structure modes’ detection
capability based on the Juliet Test Suite for memory corruption
CWE:s. FuZZan and ASan have identical results. Good tests
have no memory corruption to check for false positives. Bad
tests are intentionally buggy to check for false negatives.

scenarios: (i) starting with the empty seed; and (ii) starting
with a set of valid seeds (we use Google’s provided seeds for
the input record/replay experiment and randomly selected
seeds of the right file type for our real-world fuzz testing).

5.1 Detection capability

We verify that FuZZan and ASan detect the same set of
bugs in three different ways. First, we use the NIST Juliet
test suite [35], which is a collection of test cases containing
common vulnerabilities based on Common Weakness
Enumeration (CWE). We use the full Juliet test suite for
memory corruption CWE:s to verify FuZZan’s capability to
detect the same classes of bugs as ASan, without introducing
false positives or negatives. Second, to verify that FuZZan
and ASan also have the same detection capability under fuzz
testing, we use the Google fuzzer test suite and our recorded
input corpus. Finally, we leverage the complete set of ASan’s
public unit tests as a further sanity check.

For the Juliet test suite (Table 3), we select CWEs related to
memory corruption bugs and obtain the same detection results
from the three different modes (ASan’s shadow memory,
RB-tree, and min-shadow memory). To validate FuZZan
against ASan on the Google fuzzer test suite, we compare
AFL crash reports across the full set of target programs in
the Google fuzzer test suite with our recorded inputs (to
identify both false positives and false negatives). Note that
we force ASan to crash (the default setting under fuzz testing)
when a memory error happens as fuzzers depend on program
crashes to detect bugs. As expected, FuZZan’s different
modes all obtain the same crash results as ASan. However, we
encounter minor differences between FuZZan and ASan when
sanity-checking on the ASan unit tests. These differences are
due to internal changes we made when developing FuZZan,
such as min-shadow memory’s changed memory layout (failed
test cases include features such as fixed memory addresses).

USENIX Association

2020 USENIX Annual Technical Conference 255

Modes Empty seed Provided seed

time vs'. vs. time vs'. vs.
©) Native | ASan ©) Native | ASan

(%) (%) (%) (%)
Native 199 - - 274 - -
ASan 809 306 - | 1,105 303 -
RB-tree 1,541 673 90 | 3,308 1,106 199
Min-1G 443 122 -45 632 131 -43
Min-4G 465 133 -43 666 143 -40
Min-8G 467 134 -42 685 150 -38
Min-16G 4717 139 -41 710 159 -36

Table 4: Comparison between four min-shadow memory
modes, RB-tree, Native, and ASan execution overhead
during input record and replay fuzz testing with empty and
provided seed sets. The time (s) indicates the average of
all 26 applications’ execution time during testing. Positive
percentage (e.g., 20%) denotes overhead while negative
percentage indicates a speedup.

5.2 Efficiency of new metadata structures

We perform input record/replay fuzz testing to evaluate the
effectiveness of FuZZan’s new metadata structures. Doing
so isolates the effects of our metadata structures by removing
most of the randomness/variation from a typical fuzzing run.
Over the full Google fuzzer test suite, the RB-tree, without
any other optimization, shows shorter execution times than
ASan if the target application has less than 1,000 metadata
accesses; conversely, the RB-tree is slower than ASan when
the target application has more than 1,000 metadata accesses.
On average, as shown in Table 4, several applications in the
Google fuzzer test suite have more than 1,000 metadata ac-
cesses, and so RB-tree is overall slower than ASan on average.
Despite being slower on average, the RB-tree can be faster
on individual applications and inputs. For instance, FuZZan in
RB-tree mode demonstrates a 19% performance improvement
(up to 45% faster) for 15 applications (the remaining 11
applications show higher overhead compared to ASan) when
benchmarked using the inputs generated from an empty seed.
On the subset of applications for which seeds are provided, RB-
tree shows less performance improvement (17% and up to 39%
faster) for 14 applications (the remaining 12 applications show
higher overhead than ASan) when benchmarked using inputs
generated from those seeds as provided seeds help to create
valid input, lengthening execution times and thus metadata ac-
cesses. Note that RB-tree shows the best fuzzing performance
when the target application (e.g., c-ares) has less 1,000 meta-
data access. Additionally, even for applications where RB-tree
is slower across all inputs, it is still faster on inputs with few
metadata accesses. The variable performance of RB-tree,
which is highly dependent on the number of metadata accesses,
highlights the need for dynamic metadata structure switching
to automatically select the optimal metadata structure.
Min-shadow memory mode, without additional optimiza-
tion, outperforms ASan on all 26 programs (for both empty

Modes Empty seed Provided seed

o VS. VS. N VS. VS.
time Native | ASan time Native | ASan

Ol @ | @ | Y @ | @
Logging-Opt. 613 208 224 | 891 225 -19
Init-Opt. 686 244 -15 | 987 260 -1
Logging+Init 552 177 -32 | 826 201 -25
Min-Shadow 443 122 -45 632 131 -43
Min-Shadow-Opt. | 385 93 52| 574 109 -48
Dynamic 387 94 -52 | 578 111 -48

Table 5: Comparison between FuZZan’s three different
optimization modes, native min-shadow memory (1G) mode,
and min-shadow memory (1G) mode with FuZZan’s two
optimizations, and dynamic metadata structure switching (Dy-
namic) mode execution overhead during all 26 applications’
input record and replay fuzz testing.

ASan’s ASan’s Memory Page fault
Modes init time logging time manage time 4
ms (%) ms (%) ms (%)
Native 0.00 (0.00%) 0.00 (0.00%) | 0.05 (11.49%) 2,569
ASan 0.17 (10.58%) | 0.30(18.86%) | 0.63 (40.16%) 11,967
Min 0.10 (9.51%) 0.01 (1.33%) | 0.24 (24.77%) 7,386
Min-Opt. 0.00 (0.00%) 0.00 (0.00%) | 0.24 (24.71%) 6,139

Table 6: Comparison between native, ASan, min-shadow
memory (1G), two optimizations with min-shadow memory
executions with a breakdown of time spent in memory
management, and time spent for ASan’s initialization and
logging. Results are aggregated over 500,000 executions of the
full Google fuzzer test suite. Times are shown in milliseconds,
and % denotes the ratio between single execution time and
each section execution’s time.

and provided seeds), as shown in Table 4. More specifically,
the average improvement is 45% when starting with an empty
seed and 43% when starting with the provided seeds. While
different min-shadow memory heap configurations show
gradual increases in memory overhead (from 1GB to 16GB,
in line with the heap size), all of them outperform ASan (at
worst, min-shadow memory is still 36% faster than ASan with
a provided seed).

Additionally, both metadata configurations can utilize our
two engineering optimizations; i.e., removing logging and
modifying ASan’s initialization (as described in § 4). Table 5
shows that the average improvement of removing unnecessary
logging is 24% when starting with an empty seed and 19%
when starting with the provided seeds. Similarly, modifying the
initialization sequence improves performance by 15% when
starting with an empty seed and by 11% when starting with the
provided seeds. Combining the two engineering optimizations
with min-shadow memory demonstrates synergistic effects:
the combined performance is 52% (7% better than native min-
shadow memory) faster for empty seeds, and 48% (5% better
than native min-shadow memory) faster for provided seeds.

Overall, FuZZan’s metadata structures show better perfor-

256 2020 USENIX Annual Technical Conference

USENIX Association

mance than ASan’s shadow memory for all 26 Google fuzzer
test suite applications. As shown in Table 6, the main reasons
for FuZZan’s improvement are: (i) the smaller memory space
reduces memory management overhead as page table manage-
ment is more lightweight and incurs fewer page faults, (ii) our
two engineering optimizations further reduce overhead and
number of page faults by removing unnecessary operations,
and (iii) the min-shadow memory mode has the same O(1)
time complexity for accessing target shadow memory as
accessing the original ASan metadata. However, we also
observe that the RB-tree is faster than min-shadow memory
for some configurations and programs (e.g., c-ares-CVE).
This motivates the need for dynamic metadata structure
switching, which observes program behavior and dynamically
selects the best metadata structure based on this behavior.

5.3 Efficiency of dynamic metadata structure

As described in § 3.2, the dynamic metadata structure
switching mode leverages runtime feedback to select the
optimal metadata structure, dynamically tuning fuzzing
performance according to runtime feedback. The intuition
behind the dynamic metadata structure switching mode is that
(i) no single metadata structure is best across all applications,
(ii) the best metadata structure is not known a priori, so the
analyst cannot pre-select the optimal metadata structure, and
(iii) fuzzing goes through phases, e.g., alternating between
longer running tests (e.g., exploring new coverage) and shorter
running tests (e.g., invalid input mutations searching for new
code paths). A consequence of the phases of fuzzing is that
the same metadata structure is not optimal for every input to
a given application. To verify the effectiveness of dynamic
metadata structure switching, which is implemented based on
these intuitions, we apply dynamic metadata structure switch-
ing mode to fuzz testing for seven widely used applications for
fuzzing and all 26 applications’ in Google’s fuzzer test suite.
Our evaluation of dynamic metadata structure switching
validates our intuitions, as shown in Figure 4. Observe that
different applications are dominated by different metadata
structures, e.g., c-ares for RB-tree and pngfix for min-
shadow memory. This is because dynamic metadata structure
switching automatically selects the optimal metadata structure
(which is unknown a priori). Because dynamic metadata
structure switching is automatic, it prevents users from
making errors such as selecting RB-tree for applications with
a large number of metadata accesses, and removes the need for
any user-driven profiling to make metadata decisions. Further,
dynamic metadata structure switching scales alongside with
the required memory of applications as it increases when the
fuzzer finds deeper test cases, as evidenced by size, pngfix,
or nm switching to different min-shadow memory modes
(4GB, 8GB, and 16GB heap sizes), without user intervention.
Without dynamic metadata structure switching, inefficient
min-shadow memory modes would be used at the beginning

27 350 682
100.00% 0 o0 9

80.00%

60.00%

40.00%

20.00% =
W =2
0.00% w

c-ares vorbis pngfix size nm

ASan shadow memory FuZZan RB-tree
® FuZZan Min-shadow-1G FuZZan Min-shadow-4G
® FuZZan Min-shadow-8G N\ FuZZan Min-shadow-16G

Figure 4: Evaluating the frequency of metadata structure
switching and each metadata structure selection over the first
500,000 tests each for c-ares and vorbis in Google’s fuzzer
test suite and pngfix, size, and nm. The number on each bar
indicates the total metadata switches.

of fuzzing campaigns, or users would have to pause and restart
fuzzing campaigns to change metadata modes.

As an extreme example highlighting the need for automatic
metadata switching, the nm benchmark changes metadata
structures 682 times, underscoring the infeasibility of having
a human analyst determine the single best metadata structure.

As a result of these factors, FuZZan’s dynamic metadata
structure switching mode improves performance over ASan by
52% when starting with empty seeds and 48% when starting
with non-empty seeds. Further, ASan has 306% and FuZZan
has 94% (212% less) overhead with empty seeds and ASan
has 303% and FuZZan has 111% (192% less) overhead with
non-empty seeds compared to native execution. Note that dy-
namic metadata structure switching has identical fuzzing per-
formance to using min-shadow memory with 1GB heap alone,
and improves performance over RB-tree up to 870%. Conse-
quently, automating metadata selection is not adding notice-
able overhead, while substantially improving user experience.
We recommend using dynamic metadata structure switching
mode for the following four reasons: (i) if the target application
exceeds FuZZan’s heap memory limit (1GB), dynamic meta-
data structure switching automatically increases the heap size
for the few executions that require it (a fixed heap size results in
false positive crashes due to heap memory exhaustion), (ii) pre-
venting users from selecting an incorrect metadata structure,
(iii) using only one metadata structure (e.g., min-shadow mem-
ory) may miss the opportunity to further improve throughput,
as, in some cases, RB-tree (or some future metadata structure)
may be faster than min-shadow memory; (iv) manually select-
ing a metadata structure requires extra effort (e.g., measuring
each metadata structure’s efficiency for the target application),
which dynamic metadata structure switching mode avoids by
automatically selecting the optimal metadata structure.

USENIX Association

2020 USENIX Annual Technical Conference 257

Native ASan FuZZan

Programs | exec path exec path exec path

#(%) #(%)
cxxfilt 86M 2,769 33M | 2,442 SIM (55%) 2,651 (9%)
file 29M 1,126 ™ 763 OM (29%) 845 (11%)
nm 51M 1,272 ™ 822 12M (71%) 872 (6%)
objdump 95M 883 15M 567 17M (13%) 595 (5%)
pngfix 36M 971 18M 912 33M (83%) 982 (8%)
size 52M 703 17M 626 32M (88%) 656 (5%)
tcpdump 70M 3,587 1IM | 1,540 20M (82%) | 2,032 (32%)
Total 419M | 11,311 | 108M | 7,672 | 174M (61%) | 8,633 (13%)

Table 7: Evaluating FuZZan’s total execution number and
unique discovered path for 24 hours fuzz testing with provided
seeds. The (M) denotes 1,000,000 (one million) and ratio (%)
is the ratio between ASan and FuZZan.

ASan FuZZan
Programs TTE TTE | rate Type (source)
(s) () | (%)

c-ares 45 25 46 | BO (ares_create_query.c:196)
json 29 11 61 | AF (fuzzer-parse_json.cpp:50)
libxmlI2 7,314 | 4,194 43 | BO(CVE-2015-8317)
openssl-1.0.1f 443 336 24 | BO (t1_lib.c:2586)
pere2 7,056 | 4,020 43 | BO (pcre2_match.c:5968)
Total 14,887 | 8,586 42 | -

Table 8: Evaluating FuZZan’s bug finding speed. The TTE
denotes the mean time-to-exposure. The AF is assertion error
and the BO denotes buffer overflow.

5.4 Real-world fuzz testing

Our experiments validating FuZZan use a record/replay
approach to avoid any impact of randomness, allowing
meaningful comparisons to a baseline. However, real-world
fuzzing is highly stochastic, and so we also evaluate FuZZan
in the context of several real-world end-to-end fuzzing
campaigns without deterministic input record/replay. For this
experiment, we select the following widely used programs:
cxxfilt, nm, objdump, size (all from binutil-2.31), file
(version 5.35), pngfix (from libpng 1.6.38) and tcpdump
(version 4.10.0). Klees et al. [21] select and test cxxfilt,
nm, and objdump in their fuzzing evaluation study. The
remaining four programs (size, file, pngfix, and tcpdump)

are widely tested by recent fuzzing works [1, 3, 6,26, 36, 46].

For each binary, we run a fuzzing campaign. Each campaign
is conducted for 24 hours and repeated five times. We measure
the number of total executions and discovered unique paths
when fuzzing with seeds from the seed corpus of each program
with the right type file and three different configurations:
native, ASan, and FuZZan’s dynamic metadata structure

switching mode, and report the mean over the five campaigns.

As a result, FuZZan improves throughput over ASan by
61% (up to 88%). Interestingly, FuZZan discovers 13% more
unique paths given the same 24 hours time due to improved
throughput. Our evaluation also shows that improved
throughput increases the possibility of finding more bugs in
the same amount of time, as we discuss next.

Vvs.

. vs. Vvs.
Modes time Native | MSan MSan
(s) (%) (%) nolock
(%)

Native 146 -

MSan 14,074 9,575 -

MSan-nolock 386 165 -97 -

Min-16G 335 130 -98 -13

Table 9: Comparison between Native, MSan, MSan-nolock,
and min-shadow memory execution overhead during input
record and replay fuzz testing with provided seed sets. MSan-
nolock disables lock/unlock for MSan’s logging depots. Time
(s) indicates the average of execution time. Positive percent-
ages denote overhead, negative percentages denote speedup.

5.5 Bug finding effectiveness

FuZZan increases throughput while maintaining ASan’s bug
detection capability, potentially enabling it to find more bugs.
To demonstrate this, we evaluate FuZZan’s bug finding speed
and compare it to a fuzzing campaign with ASan. In this eval-
uation, we target five applications in Google’s fuzzer test suite.
These applications are chosen because we found bugs in them
(using ASan and dynamic metadata structure switching mode)
within a 24 hour fuzzing campaign. We use the seeds provided
by the test suite and repeated each campaign five times. Note
that we do not replay recorded inputs during these campaigns,
instead letting the fuzzer generate random inputs. Table 8
shows the mean time (over five campaigns) to find each bug.
Notably, FuZZan finds all bugs up to 61% (mean 42%) faster
than ASan, and is faster in all cases. This experiment empha-
sizes our belief that throughput is paramount when fuzzing
with sanitizers.

5.6 FuZZan Flexibility

Appling FuZZan to Memory Sanitizer. Like ASan, nu-
merous sanitizers use shadow memory for their metadata
structure [47]. For example, other popular sanitizers, such
as Memory Sanitizer (MSan) [48] and Thread Sanitizer
(TSan) [42], also rely on shadow memory for metadata.
FuZZan optimizes sanitizer usage of shadow memory without
modifying the stored shadow information or how the sanitizer
uses that information. Consequently, porting our shadow
metadata improvements in FuZZan from ASan to other
sanitizers is a simple engineering exercise. To demonstrate
this, we port FuZZan to MSan. In so doing, we shrink MSan’s
memory space to implement min-shadow memory 16G for
MSan (1GB for the stack, 16GB for the heap, and 2GB for the
BSS, data, and text sections combined). We only implement
one metadata mode for our MSan proof-of-concept to validate
our claim that applies FuZZan to other shadow memory based
sanitizers is an engineering exercise.

Table 9 summarizes MSan’s performance overhead on
different modes for all 26 evaluated applications. Initially,

258 2020 USENIX Annual Technical Conference

USENIX Association

min-shadow memory shows high overhead—around 96
times native. Analyzing this, we found that MSan’s fork ()
interceptor locks all logging depots before fork () and sim-
ilarly unlocks them afterwards to avoid deadlocks. However,
as explained in § 4, locking/unlocking logging depots is
unnecessary for fuzzing because these logging depots exist
for bug reporting and fuzzing inherently enables replay by
storing test inputs when the fuzzer finds bugs. We thus disable
these lock/unlock functions to create the MSan-nolock mode,
which has reasonable overhead (2.6 times that of native).

FuZZan’s MSan min-shadow memory 16G mode shows
13% performance improvement compared to MSan-nolock
mode, demonstrating FuZZan’s efficacy when applied to
MSan. We expect that additional optimization and the appli-
cation of the dynamic switch mode will lead to even higher
performance improvement. We leave this engineering as future
work.

Applying FuZZan to MOpt-AFL. FuZZan is not coupled
to a particular fuzzer or fuzzer version. Most modern
fuzzers [2, 3, 31, 31] extend AFL, so our approach applies
broadly. To demonstrate this, we apply FuZZan to MOpt-
AFL [31], which is an efficient mutation scheduling scheme
to achieve better fuzzing efficiency. We modify MOpt-AFL
to add FuZZan’s profiling feedback and dynamic metadata
switching functions. To measure FuZZan’s impact on
MOpt-AFL, we select seven real-world applications (the same
set as Table 7) and fuzz them for 24 hours each, repeating the
experiment five times to control for randomness in the results.
On average, ASan-MOpt-AFL mode discovers 85% more
unique paths given the same 24 hours time due to MOpt-AFL’s
effectiveness compared to ASan. Notably, FuZZan-MOpt-
AFL mode discovers 112% more unique paths (27% higher
than ASan-MOpt-AFL) due to the improved throughput.

6 Discussion

In this section, we summarize some potential areas for future
work, a possible security extension enabled by FuZZan, and
lessons learned in designing FuZZan.

Removing conflicts between sanitizers. ASan’s shadow
memory scheme conflicts with other sanitizers that are also
based on shadow memory, e.g., MSan and TSan. Each sani-
tizer interprets the shadow memory in a mutually exclusive
manner, prohibiting the use of multiple concurrent sanitizers.
For example, ASan uses shadow memory as a metadata store,
while MSan prohibits access to the same memory range. FuZ-
Zan’s new metadata structures can be adapted to avoid this
conflict, and enable true composition of sanitizers, since we
use lightweight, independent metadata structures. Each sani-
tizer can map its own instance of our metadata structure, and all
sanitizers may coexist in a single process. However, some engi-
neering effort is required to port sanitizers to our new metadata
structures. An alternate approach would be to have one meta-

data structure that stores information for all sanitizers. Whether
having a unified metadata structure or a metadata structure per
sanitizer is more efficient is an interesting research question.

Possible security extension. Unfortunately, ASan’s virtual
memory requirements directly conflict with fuzzers’ abilities
to detect certain out-of-memory (OOM) bugs. For example,
fuzzers typically limit memory usage to detect OOM errors
when parsing malformed input. However, ASan’s large
virtual memory requirement masks OOM bugs, leaving them
undetected because of the difficulty of setting precise memory
limits. Consequently, using a compact metadata structure with
ASan not only improves performance, but also can enable an
extension of ASan’s policy to cover OOM bugs.

Lessons Learned. Our initial metadata design leveraged a
two-layered shadow memory metadata structure that split
metadata lookups into two parts: a lookup into a top-level
metadata structure, followed by a lookup into a second-level
metadata structure a la page tables. While this design vastly
reduced memory consumption and management overhead, the
additional runtime cost per metadata access of the additional
indirection resulted in the two-layer structure being slower
than ASan in all cases.

For dynamic metadata structure switching, we evaluated
two additional policies: (i) utilizing more detailed metadata
access information such as each object type’s (e.g, stack)
metadata access (e.g., insert) count and each operation’s
microbenchmark results, and (ii) running each metadata mode,
measuring their execution time, and selecting the fastest
metadata mode. In our evaluation, the additional sampling
complexity of these policies outweighed any gains from more
precisely selecting a metadata structure.

7 Related Work

7.1 Reducing Fuzzing Overhead

Several approaches reduce the overhead of fuzzing. One ap-
proach is to reduce the execution time of each iteration. AFL
supports a deferred fork server which requires a manual call to
the fork server. The analyst is encouraged to use the deferred
fork server, and manually initiate the fork server as late as pos-
sible to reduce, not only overhead from linking and libc initial-
izations, but also overhead from the initialization of the target
program. Deferred mode, however, cannot reduce the teardown
overhead of heavy metadata structures. AFL’s persistent mode
and libFuzzer eliminate the overhead from creating a new pro-
cess. However, these approaches require manual effort, and
users must know the target programs. Xu et al. [55] implement
several new OS primitives to improve the efficiency of fuzzing
on multicore platforms. Especially, by supporting a new sys-
tem call, snapshot instead of fork, they reduce the overhead
of creating a process. Moreover, they reduce the overhead
from file system contention through a dual file system service.

USENIX Association

2020 USENIX Annual Technical Conference 259

However, this approach requires kernel modifications for the
new primitives, and does not reduce the overhead of sanitizers.

Another approach is to improve fuzzing itself so that it
can find more crashes within the same amount of executions.
AFLFast [3] adopts a Markov chain model to select a seed. If in-
puts mutated from a seed explore more new paths, the seed has
higher probability to be selected. With given target source lo-
cations, AFLGo [2] selects a seed that has higher probabilities
to reach the source locations. Several approaches adopt hybrid
fuzzing, taint analysis, and machine learning to help fuzzers ex-
plore more paths. SAVIOR [8] uses hybrid fuzzing, combining
it with concolic execution to explore code blocks guarded by
complex branch conditions. RedQueen [1] uses taint analysis
and symbolic execution for the same purpose. VUzzer [40]
also uses dynamic taint analysis and mutates bytes which are
related to target branch conditions to efficiently explore paths.
TIFF [18] infers the type of the input bytes through dynamic
taint analysis and uses the type information to mutate the input.
Matryoshka [7] uses both data flow and control flow informa-
tion to explore nested branches. In addition to hybrid fuzzing
with traditional techniques such as symbolic and concolic exe-
cutions, NEUZZ [46] adapts neural network and sets the num-
ber of covered paths as an objective function to maximize cov-
ered paths. Angora [6] adapts both taint analysis and a gradient
descent algorithm to improve the number of covered paths.
These approaches do not reduce the execution time of each iter-
ation. They are therefore orthogonal to our work. Thus, we can
use these approaches to further increase fuzzing performance.

7.2 Optimizing Sanitizers

Since C/C++ programming languages are memory and type
unsafe languages, several sanitizers [47] target memory
safety violations [5, 23, 41, 48, 49] and type safety viola-
tions [14, 19,24, 29]. Despite their broad use, sanitizers have
several limitations such as high overhead, limited detection
abilities, and incompatibility with other sanitizers.

To reduce sanitizer overhead, ASAP [52] and PartiSan [25]
disable check instrumentation on the hot path according to
their policies. The intuition of both approaches is that most
of the sanitizer’s overhead comes from checks on a few hot
code paths that are frequently executed (e.g., instrumentation
in a loop). ASAP removes check instrumentation on the hot
path based on pre-calculated profiling results at compile time.
In PartiSan [25], Lettner et al., propose runtime partitioning
to more effectively remove check instrumentation based
on runtime information during execution. However, both
approaches miss a main source of overhead when reducing the
cost of ASan during fuzzing campaigns: the overhead is due to
memory management and not due to the low overhead safety
checks. As ASAP and PartiSan target the cost of checks, they
are complementary to FuZZan. To fuzz quickly, there is an
option to generate a corpus from a normal binary, and then
feed the corpus to an ASan binary. FuZZan can also adopt this

option for fast fuzzing.

Pina et al., [38] use multi-version execution to concurrently
run sanitizer-protected processes together with native
processes, synchronizing all versions at the system-call level.
To synchronize all versions, they use a system-call buffer and
a Domain-Specific Language [37] to resolve conflicts between
different program versions. Xu et al., [54] propose Bunshin
to reduce the overhead of sanitizers and conflicts based on the
N-version system through their check distribution, sanitizer
distribution, and cost distribution policies. Since these
approaches are based on N-version systems, they increase
hardware requirements such as several dedicated cores and
at least N times of memory. Also, these approaches do not
address the fundamental problem of ASan memory overhead.

8 Conclusion

Combining a fuzzer with sanitizers is a popular and effective
approach to maximize bug finding efficacy. However,
several design choices of current sanitizers hinder fuzzing
effectiveness, increasing the runtime cost and reducing the
benefit of combining fuzzing and sanitization.

We show that the root cause of this overhead is the heavy
metadata structure used by sanitizers, and propose FuZZan to
optimize sanitizer metadata structures for fuzzing. We imple-
ment and apply these ideas to ASan. We design new metadata
structures to replace ASan’s rigid shadow memory, reducing
the memory management overhead while maintaining the
same error detection capabilities. Our dynamic metadata struc-
ture adaptively selects the most efficient metadata structure for
the current fuzzing campaign without manual configuration.

Our evaluation shows that FuZZan improves performance
over ASan 52% when starting with empty seeds (48% with
Google’s seed corpus). Based on improved throughput, FuZ-
Zan discovers 13% more unique paths given the same 24 hours
and finds bugs 42% faster. The open-source version of FuZZan
is available at https://github.com/HexHive/FuZZan.

Acknowledgments

We thank the anonymous reviewers and our shepherd Julia
Lawall for their detailed feedback. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850868), NSF CNS-1801601,
and ONR award N0O00O14-18-1-2674. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of our sponsors.

260 2020 USENIX Annual Technical Conference

USENIX Association

https://github.com/HexHive/FuZZan

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. REDQUEEN:
Fuzzing with Input-to-State Correspondence. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2019.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as Markov chain.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

Derek Bruening and Qin Zhao. Practical memory
checking with Dr. Memory. In Proceedings of the
Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2011.

Nathan Burow, Derrick McKee, Scott A Carr, and
Mathias Payer. CUP: Comprehensive User-Space
Protection for C/C++. In Proceedings of the Asia

Conference on Computer and Communications Security
(ASIACCS), 2018.

Peng Chen and Hao Chen. Angora: Efficient fuzzing
by principled search. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2018.

Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
Fuzzing Deeply Nested Branches. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2019.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong
Zhou, Yulong Zhang, Long Lu, et al. SAVIOR: Towards
Bug-Driven Hybrid Testing. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2020.

Google. Address Sanitizer Found Bugs.
https://github.com/google/sanitizers/wiki/
AddressSanitizerFoundBugs.

Google. Clusterfuzz. https://google.github.io/
clusterfuzz/.

Google. Fuzzer test suite. https://github.com/
google/fuzzer-test-suite.

Google. Kernel Address Sanitizer (KASan), a
fast memory error detector for the Linux kernel.
https://github.com/google/kasan/wiki.

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

Google. Libfuzzer tutorial. https://github.
com/google/fuzzer-test-suite/blob/master/
tutorial/libFuzzerTutorial.md.

Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer,
Cristiano Giuffrida, Herbert Bos, and Erik van der
Kouwe. TypeSan: Practical type confusion detection.
In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

Niranjan Hasabnis, Ashish Misra, and R Sekar. Light-
weight bounds checking. In Proceedings of the
International Symposium on Code Generation and
Optimization (CGO), 2012.

Reed Hastings. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the USENIX
Security Symposium (SEC), 1992.

Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 1988.

Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and
Herbert Bos. TIFF: Using Input Type Inference To Im-
prove Fuzzing. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2018.

Yuseok Jeon, Priyam Biswas, Scott Carr, Byoungyoung
Lee, and Mathias Payer. HexType: Efficient Detection
of Type Confusion Errors for C++. In Proceedings of
the ACM Conference on Computer and Communications
Security (CCS), 2017.

Linux kernel document. The Kernel Address Sanitizer
(KASAN). https://www.kernel.org/doc/html/
v4.14/dev-tools/kasan.html.

George Klees, Andrew Ruef, Benji Cooper, Shiyi
Wei, and Michael Hicks. Evaluating fuzz testing. In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2018.

Taddeus Kroes, Koen Koning, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. Fast and
generic metadata management with mid-fat pointers.
In Proceedings of the European Workshop on Systems
Security (EuroSec), 2017.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing Use-after-free with Dangling Pointers
Nullification. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2015.

Byoungyoung Lee, Chengyu Song, Taesoo Kim, and
Wenke Lee. Type Casting Verification: Stopping an
Emerging Attack Vector. In Proceedings of the USENIX
Security Symposium (SEC), 2015.

USENIX Association

2020 USENIX Annual Technical Conference 261

https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://github.com/google/kasan/wiki
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html

[25]

Julian Lettner, Dokyung Song, Taemin Park, Per Larsen,
Stijn Volckaert, and Michael Franz. PartiSan: fast and
flexible sanitization via run-time partitioning. In Pro-
ceedings of the International Symposium on Research
in Attacks, Intrusions, and Defenses (RAID), 2018.

(37]

(38]

Luis Pina, Daniel Grumberg, Anastasios Andronidis, and
Cristian Cadar. A DSL approach to reconcile equivalent
divergent program executions. In Proceedings of the
USENIX Annual Technical Conference (ATC), 2017.

Luis Pina, Anastasios Andronidis, and Cristian Cadar.

[26] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, FreeDA: Deploying Incompatible Stock Dynamic
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix: Analyses in Production via Multi-Version Execution. In
program-state based binary fuzzing. In Proceedings Proceedings of the ACM International Conference on
of the Joint Meeting on Foundations of Software Computing Frontiers (CF), 2018.

Engineering (FSE), 2017.
[39] The Chromium Project. Address Sanitizer

[27] LLVM. LibFuzzer — a library for coverage-guided fuzz (ASan). https://www.chromium.org/developers/
testing. https://1lvm.org/docs/LibFuzzer.html. testing/addresssanitizer.

[28] LLVM. The LLVM Compiler Infrastructure Project. [40] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian
http://1llvm.org/. Cojocar, Cristiano Giuffrida, and Herbert Bos. Vuzzer:

Application-aware evolutionary fuzzing. In Proceed-

[29] LLVM. TySan: A type sanitizer. https: ings of the Network and Distributed System Security
//reviews.llvm.org/D32199. Symposium (NDSS), 2017.

[30] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and [41] Konstantin Serebryany, Derek Bruening, Alexander
Thomas Reps. Debugging via run-time type checking. Potapenko, and Dmitriy Vyukov. AddressSanitizer:
In Processings of the International Conference on A fast address sanity checker. In Proceedings of the
Fundamental Approaches to Software Engineering USENIX Annual Technical Conference (ATC), 2012.
(FASE), 2001.

[42] Konstantin Serebryany and Timur Iskhodzhanov.

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, ThreadSanitizer: data race detection in practice. In
Wei-Han Lee, Yu Song, and Raheem Beyah. MOPT: Proceedings of the workshop on binary instrumentation
Optimized Mutation Scheduling for Fuzzers. In Proceed- and applications (WBIA), 2009.
ings of the USENIX Security Symposium (SEC), 2019.

[43] Kostya Serebryany. Hardware = Memory

[32] Valentin Jean Marie Manes, HyungSeok Han, Choong- Tagging to make C/C++ memory safe(r).
woo Han, Sang Kil Cha, Manuel Egele, Edward J https://github.com/google/sanitizers/
Schwartz, and Maverick Woo. The art, science, and blob/master/hwaddress—sanitizer/
engineering of fuzzing: A survey. IEEE Transactions HardwareMemoryTaggingtomakeC_C+
on Software Engineering, 2019. +memorysafe (r) -1SecCon2018.pdf.

[33] Barton P Miller, Louis Fredriksen, and Bryan So. An [44] Kostya Serebryany. Sanitize, Fuzz, and Harden Your
empirical study of the reliability of UNIX utilities. C++ Code. https://www.usenix.org/sites/
Communications of the ACM, 1990. default/files/conference/protected-files/

[34] Matt Miller. Trends, challenge, and shifts in soft- enigma_siides_serebryany.pdf.
ware vulnerability mitigation. https://github. [45] Julian Seward and Nicholas Nethercote. Using Valgrind
com/Microsoft/MSRC-Security-Research/blob/ to Detect Undefined Value Errors with Bit-Precision.
master/presentations/2019_02_BlueHatIL/ In Proceedings of the USENIX Annual Technical
2019_01%20-%20BlueHatIL%20-%20Trends% Conference (ATC), 2005.
2C%20challenge%2C%20and%20shifts%20in% . .)
20softwares20vulnerability320mitigation. [46] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang,
pdf. Baishakhi Ray, and Suman Jana. Neuzz: Efficient

fuzzing with neural program smoothing. In Proceedings

[35] NIST. Juliet test suite. https://samate.nist.gov/ of the IEEE Symposium on Security and Privacy (SP),
SARD/testsuite.php. 2019.

[36] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. [47] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
T-Fuzz: fuzzing by program transformation. In Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Proceedings of the IEEE Symposium on Security and Franz. SoK: sanitizing for security. In Proceedings of the
Privacy (SP), 2018. IEEE Symposium on Security and Privacy (SP), 2019.

262 2020 USENIX Annual Technical Conference USENIX Association

https://llvm.org/docs/LibFuzzer.html
http://llvm.org/
https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32199
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://www.chromium.org/developers/testing/addresssanitizer
https://www.chromium.org/developers/testing/addresssanitizer
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf

[48]

[49]

[50]

[51]

[52]

[53]

Evgeniy Stepanov and Konstantin Serebryany. Mem-
orySanitizer: fast detector of uninitialized memory
use in C++. In Proceedings of the Annual IEEE/ACM
International Symposium on Code Generation and

Optimization (CGO), 2015.

Erik Van Der Kouwe, Vinod Nigade, and Cristiano
Giuffrida. Dangsan: Scalable use-after-free detection. In
Proceedings of the European Conference on Computer
Systems (EUROSYS), 2017.

Dmitry Vyukov. Address/Thread/MemorySanitizer

Slaughtering C++ bugs. https://www.slideshare.

net/sermp/sanitizer-cppcon-russia.

Dmitry Vyukov. Syzbot.
appspot.com/upstream.

Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High system-code security with
low overhead. In Proceedings of the IEEE Symposium
on Security and Privacy (SP), 2015.

Wikipedia. x32 ABI. https://en.wikipedia.org/
wiki/X32_ABI.

https://syzkaller.

[54]

[55]

[56]

[57]

(58]

new-

Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee.
Bunshin: Compositing Security Mechanisms through
Diversification. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2017.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and
Taesoo Kim. Designing New Operating Primitives to
Improve Fuzzing Performance. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2017.

Yves Younan. FreeSentry: protecting against use-
after-free vulnerabilities due to dangling pointers. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2015.

Michal Zalewski. American
http://lcamtuf.coredump.cx/afl.

Fuzzy Lop.

Michal Zalewski. New in AFL: persistent mode.
https://lcamtuf.blogspot.com/2015/06/
in-afl-persistent-mode.html.

USENIX Association

2020 USENIX Annual Technical Conference 263

https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://en.wikipedia.org/wiki/X32_ABI
https://en.wikipedia.org/wiki/X32_ABI
http://lcamtuf.coredump.cx/afl
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

	Introduction
	Background and Analysis
	Fuzzing overhead
	Address Sanitizer
	Overhead Analysis of Fuzzing with ASan

	FuZZan design
	FuZZan Metadata Structures
	Customized RB-Tree
	Min-shadow memory

	Dynamic metadata structure switching
	Sampling mode
	Metadata structure switching policies

	Implementation
	Evaluation
	Detection capability
	Efficiency of new metadata structures
	Efficiency of dynamic metadata structure
	Real-world fuzz testing
	Bug finding effectiveness
	FuZZan Flexibility

	Discussion
	Related Work
	Reducing Fuzzing Overhead
	Optimizing Sanitizers

	Conclusion

