
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Reexamining Direct Cache Access to
Optimize I/O Intensive Applications for

Multi-hundred-gigabit Networks
Alireza Farshin, KTH Royal Institute of Technology; Amir Roozbeh,

KTH Royal Institute of Technology and Ericsson Research; Gerald Q. Maguire Jr.
and Dejan Kostić, KTH Royal Institute of Technology

https://www.usenix.org/conference/atc20/presentation/farshin

Reexamining Direct Cache Access to Optimize
I/O Intensive Applications for Multi-hundred-gigabit Networks

Alireza Farshin∗†

KTH Royal Institute of Technology
Amir Roozbeh∗

KTH Royal Institute of Technology
Ericsson Research

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

Dejan Kostić
KTH Royal Institute of Technology

Abstract
Memory access is the major bottleneck in realizing multi-

hundred-gigabit networks with commodity hardware, hence it
is essential to make good use of cache memory that is a faster,
but smaller memory closer to the processor. Our goal is to
study the impact of cache management on the performance
of I/O intensive applications. Specifically, this paper looks
at one of the bottlenecks in packet processing, i.e., direct
cache access (DCA). We systematically studied the current
implementation of DCA in Intel® processors, particularly
Data Direct I/O technology (DDIO), which directly transfers
data between I/O devices and the processor’s cache. Our
empirical study enables system designers/developers
to optimize DDIO-enabled systems for I/O intensive
applications. We demonstrate that optimizing DDIO could
reduce the latency of I/O intensive network functions running
at 100 Gbps by up to ~30%. Moreover, we show that DDIO
causes a 30% increase in tail latencies when processing
packets at 200 Gbps, hence it is crucial to selectively inject
data into the cache or to explicitly bypass it.

1 Introduction

While the computer architecture community continues to
focus on hardware specialization, the networking community
tries to achieve greater flexibility with Software-defined
Networking (SDN) together with Network Function Virtu-
alization (NFV) by moving from specialized hardware toward
commodity hardware. However, greater flexibility comes
at the price of lower performance compared to specialized
hardware. This approach has become more complex due to the
end of Moore’s law and Dennard scaling [14]. Furthermore,
commercially available 100-Gbps networking interfaces
have revealed many challenges for commodity hardware
to support packet processing at multi-hundred-gigabit rates.
More specifically, the interarrival time of small packets is

∗Both authors contributed equally to the paper.
†This author has made all open-source contributions.

shrinking to a few nanoseconds (i.e., less than Last Level
Cache (LLC) latency). Consequently, any costly computation
prevents commodity hardware from processing packets at
these rates, thereby causing a tremendous amount of buffering
and/or packet loss. As accessing main memory is impossible
at these line rates, it is essential to take greater advantage
of the processor’s cache [81]. Processor vendors (e.g.,
Intel®) introduced new monitoring/controlling capabilities
in the processor’s cache, e.g., Cache Allocation Technology
(CAT) [59]. In alignment with the desire for better cache
management, this paper studies the current implementation
of Direct Cache Access (DCA) in Intel processors, i.e., Data
Direct I/O technology (DDIO), which facilitates the direct
communication between the network interface card (NIC) and
the processor’s cache while avoiding transferring packets to
main memory. Our goal is to complete the recent set of studies
focusing on understanding the leading technologies for fast
networking, i.e., Peripheral Component Interconnect express
(PCIe) [58] and Remote Direct Memory Access (RDMA) [37].
We believe that understanding & optimizing DDIO is the
missing piece of the puzzle to realize high-performance
I/O intensive applications. In this regard, we empirically
reverse-engineer DDIO’s implementation details, evaluate
its effectiveness at 100/200 Gbps, discuss its shortcomings,
and propose a set of optimization guidelines to realize
performance isolation & achieve better performance for multi-
hundred-gigabit rates. Moreover, we exploit a little-discussed
feature of Xeon® processors to demonstrate that fine-tuning
DDIO could improve the performance of I/O intensive
applications by up to ~30%. To the best of our knowledge,
we are the first to: (i) systematically study and reveal details
of DDIO and (ii) take advantage of this knowledge to process
packets more efficiently at 200 Gbps.

Why DCA matters? Meeting strict Service Level Objectives
(SLO) and offering bounded latency for Internet services is
becoming one of the critical challenges of data centers while
operating on commodity hardware [54]. Consequently, it is
essential to identify the sources of performance variability
in commodity hardware and tame them [51]. In computer

USENIX Association 2020 USENIX Annual Technical Conference 673

systems, one of these sources of variability is the cache
hierarchy, which can introduce uncertainty in service times,
especially in tail latencies. Additionally, the advent of
modern network equipment [82] enables applications to push
costly calculations closer to the network while keeping &
performing only stateful functions at the processors [36, 38],
thereby making modern network applications ever more I/O
intensive. Hence, taming the performance variability imposed
by the cache, especially for I/O, is now more crucial than
before. Moreover, as CPU core count goes up, it is important
to be able to deliver appropriate I/O bandwidth to them.
Therefore, we go one level deeper [61] to investigate the
impact of I/O cache management, done by DCA, on the
performance of multi-hundred-gigabit networks.
Contributions. In this paper, we:
1 Design a set of micro-benchmarks to reveal little-known

details of DDIO’s implementation* (§4),
2 Extensively study the characteristics of DDIO in different

scenarios and identify its shortcomings* (§5),
3 Show the importance of balancing load among cores and

tuning DDIO capacity when scaling up (§6),
4 Measure the sensitivity of multiple applications (i.e.,

Memcached, NVMe benchmarks, NFV service chains)
to DDIO (§7),

5 Demonstrate the necessity and benefits of bypassing
cache while receiving packets at 200 Gbps (§8),

6 Discuss the lessons learned from our study that are
essential for optimizing DDIO-enabled systems receiving
traffic at multi-hundred-gigabit rates (§9).

2 Direct Cache Access (DCA)
A standard method to transfer data from an I/O device
to a processor is Direct Memory Access (DMA). In this
mechanism, a processor, typically instructed by software,
provides a set of memory addresses, aka receive (RX)
descriptors, to the I/O device. Later, the I/O device directly
reads/writes data from/to main memory without involving the
processor. For inbound traffic, the processor can be informed
about newly DMA-ed data either by receiving an interrupt
or polling the I/O device. Next, the processor fetches the
I/O data from main memory to its cache in order to process
the data. For outbound traffic, the processor informs the I/O
device (via transmit (TX) descriptors) of data that is ready
to be DMA-ed from main memory to the device. The main
source or destination of traditional DMA transfers is main
memory, see Fig. 1a. However, the data actually needs to be
loaded into the processor’s cache for processing. Therefore,
this method is inefficient and costly in terms of (i) number
of accesses to main memory [43] (i.e., 2n+ 5 for n cache
lines [43]), (ii) access latency to the I/O data, and (iii) memory
bandwidth usage. Moreover, the negative impact of these
inefficiencies becomes increasingly severe with higher link

*The source code is available at: https://github.com/aliireza/
ddio-bench

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(a) Trad. DMA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(b) DCA.

CPU Socket

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

DRAM

(c) DDIO.

Figure 1: Different approaches of DMA for transferring data
from an I/O device (e.g., NIC). Red arrows show the path that
a packet traverses before reaching the processing core.

speeds. For instance, a server has 6.72 ns to process small
packets at 100 Gbps, whereas every access to main memory
takes ~100 ns, 15× more expensive. Therefore, placing the
I/O data directly in the processor’s cache rather than in main
memory is desirable. The advent of faster I/O technologies
motivated researchers to introduce Direct Cache Access
(DCA) [25, 42, 43]. DCA exploits PCIe Transaction Layer
Packet Processing Hint [30], making it possible to prefetch
portions of I/O data to the processor’s cache, see Fig. 1b.
Potentially, this overcomes the drawbacks of traditional DMA,
thereby achieving maximal I/O bandwidth and reducing
processor stall time. Although this way of realizing DCA
can effectively prefetch the desired portions of I/O data (e.g.,
descriptors and packet header), it is still inefficient in terms
of memory bandwidth usage since the whole packet is DMA-
ed into main memory. Additionally, this requires operating
system (OS) intervention and support from the I/O device,
system chipset, and processor [1]. To address these limitations
and avoid ping-ponging data between main memory & the
processor’s cache, Intel rearchitected the prefetch hint-based
DCA, introducing Data Direct I/O technology (DDIO) [28].

3 Data Direct I/O Technology (DDIO)

Intel introduced DDIO technology with the Xeon E5 family.
With DDIO, I/O devices perform DMA directly to/from
Last Level Cache (LLC) rather than system memory, see
Fig. 1c. DDIO is also known as write-allocate-write-update-
capable DCA (wauDCA) [45], as it uses this policy to update
cache lines in an n-way set associative LLC, where n cache
lines form one set. For packet processing applications, NICs
can send/receive both RX/TX descriptors and the packets
themselves via the LLC, thereby improving applications’
response time & throughput†. DDIO works as follows [41]:
Writing packets. When a NIC writes a cache line to LLC
via PCIe, DDIO overwrites the cache line if it is already
present in any LLC way (aka a PCIe write hit or write update).
Otherwise, the cache line is allocated in the LLC and DDIO
writes the data into the newly allocated cache line (aka a
PCIe write miss or write allocate). In the latter case, DDIO is
restricted to use only a limited portion of LLC when allocating

†We will use the terms I/O device and NIC interchangeably.

674 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/aliireza/ddio-bench
https://github.com/aliireza/ddio-bench

cache lines. It is possible to artificially increase this portion
by warming up the cache with processor writes to the address
of these buffers, then DDIO performs write-updates [16].
Reading packets. A NIC can read a cache line from LLC if
the cache line is present in any LLC way (aka a PCIe read
hit). Otherwise, the NIC reads a cache-line-sized chunk from
system memory (aka a PCIe read miss).

To monitor DDIO and its interaction with I/O devices, Intel
added uncore performance counters to its processors [29].
The Intel Performance Counter Monitor (PCM) tool (e.g.,
pcm-pcie.x*) [86] can count the number of PCIe write
hits/misses (represented as an ItoM event) and PCIe read
hits/misses (represented as a PCIeRdCur event). Next, we
discuss the inherent problem of DDIO, which makes it hard
to achieve low-latency for multi-hundred-gigabit NICs.

3.1 How can DDIO become a Bottleneck?
Researchers have shown some scenarios in which DDIO
cannot provide the expected benefits [11, 41, 50, 83]. Two
typical cases occur when new incoming packets repeatedly
evict the previously DMA-ed packets (i.e., not-yet-processed
and already-processed packets) in the LLC. Consequently, the
processor has to load not-yet-processed packets from main
memory rather than LLC and the NIC needs to DMA the
already-processed packets from the main memory, thereby
missing the benefits of DDIO. Tootoonchian et al. referred
to this problem as the leaky DMA problem [83]. To mitigate
this problem, they proposed reducing the number of “in-flight”
buffers (i.e., descriptors) such that all incoming packets fit in
the limited portion of LLC used for I/O. Thus, performance
isolation can be done using only CAT (i.e., cache partitioning).
Unfortunately, reducing the number of RX descriptors is only
a temporary solution due to increasing link speeds. Multi-
hundred-gigabit NICs introduce new challenges, specifically:
1 Packet loss. At sub-hundred-gigabit link speeds reducing

the number of RX descriptors may not result in a high packet
loss rate, but at ≥100 Gbps packet loss increases due to
the tight processing time budget before buffering/queuing
happens. For instance, every extra ~7 ns spent stalling or
processing/accessing a packet causes another packet to be
buffered when receiving 64-B packets at 100 Gbps. When
there are insufficient resources for immediate processing,
increasing the number of RX descriptors permits packets to
be buffered rather than dropped. Delays in processing might
occur because of interrupt handling, prolonged processing, or
a sudden increase in the packet arrival rate [17]; therefore,
multi-hundred-gigabit networks cannot avoid packet loss
without having a sufficiently large number of descriptors.
Increasing the number of processing cores can reduce the
packet loss rate, but applications that are compute- or memory-
intensive require many cores to operate at the speed of the
underlying hardware, e.g., Thomas et al. [81] mention that

*The description of events can be found in [27] and pp. 63-66 of [41].

a server performing one DRAM access per packet needs 79
cores to process packets at 400 Gbps.
2 TX buffering. One of the scenarios that makes DDIO

inefficient is the eviction of already-processed packets. Re-
ducing the number of RX descriptors may solve this problem
for systems that require a small number of TX descriptors,
but this is not the case for 100-Gbps NICs. Unfortunately,
the de facto medium for DMA-ing packets (i.e., PCIe 3.0)
induces some transmission limitations [58]. Consequently,
packets often need to be buffered in the computer system for
some time before being DMA-ed to the NIC. This buffering
can be realized by either a software queue or increasing
the number of TX descriptors [35]. Unfortunately, either
of these alternatives increases the probability of eviction of
already-processed packets. Therefore, completely solving the
leaky DMA problem requires fine-tuning both the size of the
software queue and the number of RX & TX descriptors.
3 PAUSE frames. To alleviate packet loss, one can use

Ethernet flow control mechanisms (e.g., PAUSE frames)
that cause packets to be buffered earlier in the network,
i.e., PAUSE frames stop the previous network node from
transmitting packets for a short period. However, these
mechanisms are costly in terms of latency, making them
less desirable than packet loss for time-critical applications.
The minimum and maximum pause duration of a 100-Gbps
interface are 5.12 ns and 335.5 µs [56]. Our measurements
show that a core that is simply forwarding packets at 100 Gbps
with 1024 RX & TX descriptors causes the NIC to send
~179 k PAUSE frames while receiving ~80 M packets.
Dynamic reduction. As reducing the number of RX buffers
cannot fully solve the problem and it shifts the problem to
another part of the network, most probably the previous node;
therefore, an alternative is to dynamically reduce the pressure
on the LLC when the number of I/O caused cache evictions
starts to increase†. These cache evictions can be tracked by
monitoring either PCIe events or the length of the software
queue. After detecting a problem, the processor should fetch
a smaller number of packets from the NIC (i.e., reducing
the RX burst size). Thus, the processor passes fewer free
buffers to the NIC, reducing the number of DMA transactions.
Unfortunately, this approach does not perform well, hence we
need a proactive solution, not a reactive one.
Is it sufficient to scale up? Due to the demise of the Dennard
scaling [14], processors are now shipped with more cores
rather than higher clock frequencies. Moreover, the per-core
cache quota (i.e., LLC slices) has decreased in recent Xeon
processors, i.e., the size of LLC slices reduced from 2.5 MiB
to 1.375 MiB in the Xeon scalable family (i.e., Skylake) [55].
This reduction in per-core cache size directly affects the
optimal number of descriptors as these are proportional to the
limited space for DDIO. For instance, using 18 cores, each
having 256 RX descriptors, requires ~6.5 MiB, which is equal

†Our implementation is available at: https://github.com/
tbarbette/fastclick/tree/DMAdynamic

USENIX Association 2020 USENIX Annual Technical Conference 675

https://github.com/tbarbette/fastclick/tree/DMAdynamic
https://github.com/tbarbette/fastclick/tree/DMAdynamic

to ~26.6% of the LLC in this processor and greater than the
available DDIO capacity (see §4.1).
Our approach. To overcome these challenges, it is necessary
to study and analyze DDIO empirically in order to make the
best use of it. A better understanding of DDIO and its imple-
mentation can help us optimize current computer systems and
enables us to propose a better DCA design for future computer
systems that could accommodate the ever-increasing NIC link
speeds. For instance, Fig. 2 demonstrates that tuning DDIO’s
capacity makes it possible to achieve a suitable performance
while using a large number of descriptors (our approach), as
opposed to using a limited number of descriptors (ResQ’s
approach proposed by Tootoonchian et al. [83]).

 0
 300
 600
 900

 1200
 1500
 1800

512 1024 2048 4096

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Number of RX Descriptors

2W 4W 6W 8W

Figure 2: Using more DDIO ways (“W”) enables 2 cores to
forward 1500-B packets at 100 Gbps with a larger number of
descriptors while achieving better or similar tail latency.

4 Understanding Details of DDIO

This section discusses four questions: 1 What part of
LLC is used for I/O? 2 How does I/O interact with other
applications? 3 Does DMA via remote sockets pollute LLC?
and 4 Is it possible to disable/tune DDIO?
Testbed. We use a testbed with the configuration shown in
Table 1 running Ubuntu 18.04.2 (Linux kernel-4.15.0-54). We
use the Skylake server unless stated otherwise. FastClick [9]
is used to generate & process packets. Additionally, we use a
campus trace as a real workload (with mixed-size packets) and
generate synthetic traces (with fixed-size packets). For our
multicore experiment, we use RSS [24] to distribute packets
among different queues (one queue per core), unless stated
otherwise. Furthermore, we isolate the one CPU socket on
which we run the experiment to increase the accuracy of the
measurements. PAUSE frames are disabled to avoid taking
into account pause duration in the end-to-end latency. In all
experiments, the NIC driver sets the appropriate number of TX

descriptors based on the number of TX queues, and to avoid
extra looping at the transmitting side FastClick buffers up to
1024 packets. We use the Network Performance Framework
(NPF) tool [57] to run the experiments.

4.1 Occupancy
Initially, Intel announced that DDIO only uses 10% of
LLC [28] and did not mention what part of the LLC is used
(i.e., ways, sets, or slices [15]). Recent Intel technical reports
mention that DDIO only uses a subset of LLC ways, by default
two ways [41, 72]. However, it is still unclear whether this
“subset” is fixed or whether it can be dynamically selected
using a variant of Least Recently Used (LRU) policies [33,
34, 65, 87]. Knowledge of these details could avoid I/O
contention and optimize performance isolation [83] by
performing precise cache management/partitioning [13, 62]
(e.g., way partitioning with CAT [59]). This issue becomes
increasingly critical for newer generations of Xeon processors
that have lower LLC set-associativity (e.g., 11 ways in some
Skylake processors, as opposed to 20 ways in Haswell
processors), thereby using a larger portion (2

11 ≈ 18%) of
the LLC for I/O. Lower set-associativity makes the cache less
flexible when the LLC is divided into multiple partitions, each
of which could be used to accommodate different applications’
code & data. To clarify this, we assumed that the ways that
are used for DDIO are fixed and then try to confirm this
with an experiment in which we co-run an I/O and a cache-
sensitive application. To increase the pressure on the LLC
by DMA-ing more cache lines, we used an L2 forwarding
DPDK-based application as the I/O intensive application.
Specifically, it receives large packets (1024-B) at a high
rate (~82 Gbps) using a large number of RX descriptors
(4096 RX descriptors). For the cache-sensitive application,
we chose water_nsquared from the Splash-3 benchmark
suite [62, 66, 69] since it performs a large number of LLC
accesses; hence, it interferes with the I/O application.

Each application is run on a different core and CAT is used
to allocate different cache ways to each core. We allocate two
fixed ways to the I/O application and two variable ways to
the cache-sensitive application. To avoid memory bandwidth
contention, we also used Memory Bandwidth Allocation
(MBA) technology [21] to limit the memory bandwidth of
each core to 40%. Fig. 3a shows the CAT configuration
used in the experiment. We start by allocating the two
leftmost ways (i.e., bitmask of 0x600) to the cache-sensitive
application and then we keep shifting the allocated ways one

Table 1: Details of our testbed. In each case, the NIC is a Mellanox ConnectX-5 VPI.

Machine
Configuration Intel Xeon Processor Memory Last Level Cache (LLC)

Model Frequency #Cores Size Associativity
Packet generator (Skylake) Gold 6134 3.2 GHz 8 512 GiB 18×1.375 MiB 11
Server (Skylake) Gold 6140 2.3 GHz 18 256 GiB 18×1.375 MiB 11
Server (Haswell) E5-2667 v3 3.2 GHz 8 128 GiB 8×2.5 MiB 20

676 2020 USENIX Annual Technical Conference USENIX Association

to the right until we cover all the LLC ways while measuring
the LLC misses of the I/O application. Fig. 3b shows the
results of this experiment. These results demonstrate that the
cache-sensitive application interferes with the I/O application
in two regions. The first (see 0x0C0 in Fig. 3b) occurs
when the cache-sensitive application uses the same ways
as the I/O application, due to the code/data interference
of the two applications. However, the second (see 0x003
in Fig. 3b) cannot be explained with this same argument
since the I/O application is limited to using other ways (i.e.,
0x0C0). Furthermore, since the CPU socket is isolated, no
other application can cause cache misses. CAT only mitigates
the contention induced by code/data not DDIO. Therefore, we
conclude that the second interference is most probably due
to I/O, which means DDIO uses the two rightmost ways in
LLC (i.e., bitmask of 0x003). The interference is proportional
to the number of received packets per second × average
packet size. We expected to see roughly the same amount
of cache misses for bitmasks of 0x180 and 0x060, as they are
completely symmetrical in terms of way occupancy. However,
the undocumented LRU policy of the CPU may affect how
the application uses the cache ways.

Ways used for cache-sensitive application

Ways used for I/O application

Ways used for both applications

Unoccupied ways

0x600

0x300

0x180

0x0C0

0x060

0x030

0x018

0x00C

0x006

0x003

0 0 0 0 1 1 0 0 0 0 0

The bitmask used by CAT
to allocate LLC ways to the
cache-sensitive application

(a) CAT configuration.

 0

 2

 4

 6

 8

 10

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

Su
m

 o
f C

ac
he

 M
is

se
s

(M
illi

on
)

Ways Allocated by CAT to the Cache-sensitive Application

No Contention
Contention with I/O App. (Code/Data)
Contention with DDIO

(b) Sum of cache misses for the I/O application.

Figure 3: Interference of an I/O and a cache-sensitive
application using the parsec_native configuration (to cause
a high rate of cache misses) when the cache-sensitive
application uses different LLC ways. The rise in the rightmost
side shows the contention with DDIO ways.

4.2 I/O Contention

One of the established mechanisms to ensure performance
isolation and mitigate cache contention is CAT, which limits
different applications to a subset of LLC ways. However,
§4.1 showed that DDIO uses two fixed LLC ways. Therefore,
isolating applications using CAT may not fully ensure
performance isolation, due to cache contention caused by
I/O. Such contention may occur in two common scenarios:

1 I/O vs. Code/Data. When an application is limited
to using those ways which are also used by DDIO, then
cache lines allocated in LLC for DDIO may evict the
code/data of any application (i.e., either I/O or non-I/O
application). This issue was discussed by Tootoonchian et
al. [83]. Their proposed framework, ResQ, uses only 90% of
LLC to avoid interfering with DDIO’s reserved space, but
does not mention which part of LLC is isolated. §4.1 showed
the destructive (i.e., ~2.5×) impact on the cache misses
of the I/O application due to a cache-hungry application
overlapping with DDIO, see the rise in cache misses at the
right side of Fig. 3b. However, it did not show the impact
of contention on the cache-hungry application; therefore, we
repeated the experiment and measured the cache misses of the
cache-sensitive application while using a lighter configuration.
Fig. 4 illustrates that the cache misses of the cache-sensitive
application were similarly adversely affected. Therefore,
overlapping any application with DDIO ways in LLC can
reduce the performance of both applications. To tackle this,
one can isolate the I/O portion of LLC (e.g., the two ways
used for DDIO) by using CAT so that applications share
the LLC without overlapping with I/O. Comparing Fig. 3b
and 4, we see that an unexpected rise (almost 3×) in cache
misses occurs in a different region (i.e., bitmask of 0x600 in
Fig. 4 as opposed to bitmask of 0x003 in Fig. 3b) when I/O
is evicting code/data. Hence, we speculate that CAT does not
use a bijective function to map I/O & code/data to ways, thus
f : code/data→Ways is not equivalent to g : I/O→Ways .

Specifically, I/O evicts code/data when the latter is located
in the two leftmost ways whereas code/data evicts I/O when
the latter is using the two rightmost ways. Such information
is useful to know, as it will give us an understanding of the
eviction policy and the default priority of code/data and I/O.

2 I/O vs. I/O. When multiple I/O applications are isolated
from each other with CAT, they could still unintentionally
compete for the fixed ways allocated to DDIO. §8.1 elaborates
the negative impact of this type of contention.

Security implication. Since DDIO uses two fixed ways in
LLC, it is possible to extend microarchitectural attacks to
extract useful information from I/O data (e.g., NetCAT [44]
and Packet Chasing [76, 77]). Furthermore, I/O applications
can be vulnerable to performance attacks.

USENIX Association 2020 USENIX Annual Technical Conference 677

 0

 50

 100

 150

 200

 250

 300

 350

 400

0x600 0x300 0x180 0x0C0 0x060 0x030 0x018 0x00C 0x006 0x003

Su
m

 o
f C

ac
he

 M
is

se
s

(k
)

Ways Allocated by CAT to the LLC-sensitive Application

Contention
No Contention

Figure 4: Interference of the cache-sensitive and the I/O
applications. Y axis shows the sum of cache misses of the
cache-sensitive application. The cache-sensitive application
uses a lighter configuration (i.e., ddio_sim), which causes
fewer cache misses than the I/O application.

4.3 DMA via Remote Socket
According to Intel [16, 32], the current implementation of
DDIO only affects the local socket. Consequently, if a core
accesses I/O data from an I/O device connected to a remote
socket, the data has to traverse the inter-core interconnect,
i.e., Intel QuickPath Interconnect (QPI) or Intel Ultra path
Interconnect (UPI). It was uncertain whether data traversing
the inter-core interconnect is loaded into the LLC of the
remote socket or not. We clarified this by running the same
experiment discussed in §4.2 while the NIC is connected to a
remote socket. The result (removed for brevity) showed that
cache misses of neither application were affected by the I/O
cache lines, hence packets coming through the UPI links do
not end up in the local LLC. Additionally, the cache misses
of the I/O application dramatically increased to 20× greater
than when receiving packets via the local socket without any
contention. Thus, DDIO is ineffective for the remote socket
and it pollutes the LLC on the socket connected to the NIC.

4.4 Tuning Occupancy and Disabling DDIO
Although [20, 72] mention that DDIO uses two ways by
default, there is no mention of whether it is possible to
increase or decrease the number of ways used by DDIO. A
little-discussed Model Specific Register (MSR) called “IIO
LLC WAYS” with the address of 0xC8B* is discussed in a
few online resources [64, 79] and server manuals [73, 74].
For Skylake, the default value of this register is equal to
0x600 (i.e., two bits set). While these bits cannot be unset,
it is possible to set additional bits and the maximum value
for this register on our CPU is 0x7FF (i.e., 11 bits set:
the same as the number of LLC ways). New values for
this register follow the same format as CAT bitmasks. On

*One can read/write this register via msr-tools (e.g., rdmsr and wrmsr).

a processor with the Skylake microarchitecture, these new
values should contain consecutive ones, while the Haswell
microarchitecture does not require this (i.e., allowing any
value in [0x60000, 0xFFFFF]).

To see whether this MSR register has an effect on
performance, we measured the PCIe read/write hit rates (i.e.,
ItoM and PCIeRdCur events) while using different values
for IIO LLC WAYS. We calculate the hit rate based on the
number of hits and misses during an experiment where an I/O
application processes packets of 1024 B at 100 Gbps while
using 4096 RX descriptors. Fig. 5 shows that increasing the
value of this MSR register leads to a higher PCIe read/write
hit rate. This suggests that increasing the value of this register
could improve the ability of the system to handle packets
at high rates. We believe that the value of this register is
positively correlated with the fraction of LLC used by DDIO.
Using the technique in §4.1, we could not detect the newly
added I/O ways, thus we speculate that the newly added ways
follow a different policy (e.g., LRU) than the first two ways
used for I/O. Therefore, we assume that the number of bits
set specifies the number of ways used by DDIO.

 0

 20

 40

 60

 80

 100

0x600 0x700 0x780 0x7C0 0x7E0 0x7F0 0x7F8 0x7FC 0x7FE 0x7FF

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Value of IIO LLC WAYS register

Read Write

Figure 5: Tuning IIO LLC WAYS register increases PCIe
read/write hit rates. The achieved throughput is 82-86 Gbps
in this experiment.

Disabling DDIO. DDIO is bundled as a part of Intel
Virtualization Technology (Intel VT), hence it is possible
to enable/disable it in BIOS for some vendors [16, 23, 88].
According to [44, 72], DDIO can be disabled globally
(i.e., by setting the Disable_All_Allocating_Flows
bit in “iiomiscctrl” register) or per-root PCIe port
(i.e., setting bit NoSnoopOpWrEn and unsetting bit
Use_Allocating_Flow_Wr in “perfctrlsts_0” register).
Some brief discussions of the benefits of disabling DDIO
exist [11, 78], but we elaborate this more thoroughly in §7.
We implemented an element for FastClick, called DDIOTune,
which can enable/disable/tune DDIO†.

†The element is available at: https://github.com/tbarbette/
fastclick/wiki/DDIOTune

678 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/tbarbette/fastclick/wiki/DDIOTune
https://github.com/tbarbette/fastclick/wiki/DDIOTune

5 Characterization of DDIO
This section scrutinizes the performance of DDIO in different
scenarios while exploiting the tuning capability of DDIO.
The goal is to show where DDIO becomes a bottleneck
and when tuning DDIO matters. Therefore, we examined
the impact of both system parameters (i.e., #RX descriptors,
#cores, and processing time) and workload characteristics
(i.e., packet size and rate) on DDIO performance. All of
these measurements were done 20 times for both Skylake and
Haswell microarchitectures. We observed the same behavior
in both cases, but only discuss the Skylake results for the
sake of brevity. We initially focus on the performance of
an L2 forwarding network function, as an example of an
I/O intensive application. Later, we discuss the impact of
applications requiring more processing time per packet.

5.1 Packet Size and RX Descriptors

§3.1 discussed the negative consequence of a large number of
RX descriptors on DDIO performance. This section continues
this discussion by looking at the PCIe read/write hit rate
metrics for different numbers of RX descriptors and different
packet sizes. Fig. 6 shows the results of our experiments
for PCIe write hit rate. PCIe read hit rates (not included
for brevity) demonstrate similar behavior. When packets
are >512 B, the PCIe read/write hit rates monotonically
decrease with an increasing number of RX descriptors. More
specifically, sending 1500-B packets, even with a relatively
small number of RX descriptors (i.e., 128), causes 10% misses
for both PCIe read and PCIe write hit rates. Furthermore,
increasing the number of RX descriptors to 4096 makes DDIO
operate at ~40% hit rate, hence 60% of packets require cache
allocation and they had to be DMA-ed back to the NIC from
main memory rather than LLC. Note that the packet generator
is generating packets as fast as possible. Therefore, small
packets show the case when the arrival rate is maximal, while
large packets demonstrate maximal throughput, see Fig. 7.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

PC
Ie

 W
rit

e
- H

it
Ra

te
 (%

)

Number of RX Descriptors

256-B Packets
512-B Packets
1024-B Packets
1500-B Packets

Figure 6: Increasing the number of descriptors and/or packet
size adversely affects the performance of 2-way DDIO, while
one core is forwarding packets at the maximum possible rate.
We removed the results for 64-B and 128-B packets, as they
show a behavior similar to 256-B packets.

 0
 2
 4
 6
 8

 10
 12
 14
 16

128 256 512 1024 2048 4096

Ar
riv

al
 R

at
e

(M
illi

on
 P

PS
)

Number of RX Descriptors

64-B Packets
128-B Packets

256-B Packets
512-B Packets

1024-B Packets
1500-B Packets

(a) Arrival rate.

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

Th
ro

ug
hp

ut
 (G

bp
s)

Number of RX Descriptors

(b) Throughput.

Figure 7: Increasing the packet size reduces the arrival rate,
i.e., the number of received/processed packets per second,
due to NIC and PCIe limitations. Note that our testbed cannot
exceed 90 Gbps when only one core is forwarding packets.

Unexpected I/O evictions. In some cases (e.g., 1500-B
packets with 128 RX descriptors in Fig. 6), the size of
the injected data is smaller than the DDIO capacity (i.e.,
187.5 KiB � 4.5 MiB). Even taking into account the TX
descriptors and the FastClick’s software queue, the maximum
cache footprint of this workload is ~2 MiB. However, DDIO
still experiences ~10% misses. We believe that this behavior
may occur when an application cannot use the whole DDIO
capacity due to (i) the undocumented cache replacement
policy and/or (ii) the cache’s complex addressing [15], thus
multiple buffers may be loaded into the same cache set.

5.2 Packet Rate and Processing Time

§5.1 demonstrated that DDIO performs extremely poorly
when a core does minimal processing at 100 Gbps. Next, we
focus on the worst-case scenario of the previous experiment
(i.e., sending 1500-B packets with 4096 RX descriptors) while
changing the packet rate. To achieve 100 Gbps, we use two
cores. Fig. 8 shows the PCIe read and PCIe write hit rates. The
PCIe read metric results reveal that DDIO performs relatively
well until reaching 98 Gbps. However, the PCIe write results
indicate that DDIO has to continually allocate cache lines in
LLC for 25% of packets at most of these throughputs, due to
insufficient space for all of the buffers. Moreover, throughputs
above 75 Gbps exacerbate this problem.

USENIX Association 2020 USENIX Annual Technical Conference 679

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

PC
Ie

 M
et

ric
s

- H
it

Ra
te

 (%
)

Throughput (Gbps)

Read
Write

Figure 8: Increasing packet rates negatively impact the PCIe
metrics, when 2 cores forward 1500-B packets with 4096 RX
descriptors. The PCIe write metric is more degradation-prone.

So far, we analyzed DDIO performance when cores
performed minimal processing (i.e., swapping MAC
addresses). Now, we analyze DDIO performance for more
compute/memory-intensive I/O applications. Memory-
intensive applications access memory frequently and execute
few instructions per memory access. The time to accessing
memory differs depending upon the availability of a cache
line in a given part of the memory hierarchy. Therefore, we
focus on the number of CPU cycles of the computation;
noting that a memory access can be accounted for as given
number of cycles. Note that increasing the processing time
can change the memory access pattern, as packets continue
to be injected by the NIC while some packets are enqueued
in the LLC. To see the impact of different packet processing
times on the performance of DDIO, we vary the amount of
computation per packet by calling the std::mt1993 random
number generator multiple times. Ten such calls take ~70
cycles. Fig. 9 illustrates the effect of increasing per-packet
processing time on the PCIe metrics & achieved throughput.
These results demonstrate that increasing processing time
slightly improves PCIe read hits rates up to ~60 calls, i.e.,
400 cycles. This is expected, as increasing processing makes
the application less I/O intensive as the application provides
buffers to the NIC at a slower pace. However, increasing
processing causes the available processing power (i.e., #cores)
to become a bottleneck, substantially decreasing throughput.
Similarly, PCIe write hit rates increases after exceeding 60
calls, due to a decrease in throughput & amount of cache
injection. Therefore, DDIO performance matters most when
an application is I/O bound, rather than CPU/memory bound.

5.3 Numbers of Cores and DDIO Capacity

When processing power limits an application’s performance,
the system should scale up/out. However, this scaling can
affect DDIO’s performance. To see the effect of scaling up,
we measured the PCIe metrics while different numbers of
cores were forwarding large packets. Fig. 10 shows that
when an application is I/O intensive, increasing the number

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Th
ro

ug
hp

ut
 (G

bp
s)

Number of Calls

Write
Read
Throughput

Figure 9: Making an application more compute-intensive
results in better PCIe metrics, but lower throughput. In
addition to forwarding packets, two cores call a dummy
computation, while receiving 1500-B packets with a total
of 4096 RX descriptors at 100 Gbps.

of cores improves the PCIe read/write hit rate, as it enhances
the packet transmission rate because of more TX queues
and faster consumption of packets enqueued in the LLC.
To avoid synchronization problems, every queue is bound
to one core. However, beyond a certain point (i.e., four
cores in our testbed), increasing the number of cores causes
more contention in the cache, as every core loads packets
independently into the limited DDIO capacity. Furthermore,
since newer processors are shipped with more cores, scaling
up, even with a small number of RX descriptors, eventually
causes the leaky DMA problem–the same problem as having
a large number of descriptors (see §3.1).

Fig. 11 shows PCIe metrics for 1, 2, and 4 cores while
changing the number of DDIO ways. Comparing the DDIO
performance of different numbers of cores/DDIO ways, we
conclude that increasing DDIO capacity leads to similar
improvements for PCIe metrics. Therefore, increasing the
DDIO capacity rather than the number of cores is beneficial
when an application’s bottleneck is not processing power or
number of TX queues. Unless scaling up happens efficiently,
some cores may receive more packets than others, causing

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

PC
Ie

 M
et

ric
 -

H
it

Ra
te

 (%
)

Number of Cores

Write
Read

Figure 10: Increasing the number of cores does not always
improve PCIe metrics for an I/O intensive application.
Different numbers of cores are forwarding 1500-B packets at
100 Gbps with 256 RX descriptors per core.

680 2020 USENIX Annual Technical Conference USENIX Association

performance degradation. We discuss the impact of load
imbalance on DDIO performance in the next section.

 0

 20

 40

 60

 80

 100

2 4 6 8

PC
Ie

 W
rit

e
- H

it
Ra

te
 (%

)

Number of DDIO Ways

1 core
2 cores
4 cores

Figure 11: Increasing the number of DDIO ways can have a
similar positive effect as increasing the number of processing
cores, while forwarding 1500-B packets at 100 Gbps with a
total of 4096 RX descriptors. PCIe read hit rate shows the
same behavior as PCIe writes.

6 Application-level Performance Metrics

The previous section focused on the PCIe read/write hit rates
and showed that increasing link speed & packet size and the
number of descriptors & cores could degrade these metrics.
PCIe read/write hit rates represent the percentage of I/O
evictions (i.e., the performance of DDIO), but also indirectly
affect application performance. The correlation between PCIe
metrics and meaningful performance metrics (e.g., latency
and throughput) depends on an application’s characteristics.
For instance, a low PCIe write hit rate can severely affect an
application that requires the whole DMA-ed data. Conversely,
the impact is much less for an application that needs only a
subset of the DMA-ed packet. Fig. 2 showed one example
of this correlation for the latter case, where the application
only accessed the packet header. These results showed that
even when an application does not require the whole DMA-
ed data, increasing the number of descriptors (i.e., causing
a reduction in PCIe hit rate metrics) could negatively affect
the 99th percentile latency. Note that we observed the same
effect at median latency. This section further elaborates this
impact in two scenarios where a stateful network function is
processing a realistic workload* via 18 cores with a run-to-
completion model [38, 93]. The benefits of increasing cache
performance are not limited to this model and could be even
greater for a pipeline model where fewer cores handle the I/O.
Stateful service chain. To evaluate the effect of increasing
DDIO capacity, we chose a stateful service chain composed
of a router, a network address port translator (NAPT), and a
round-robin load balancer (LB) as a suitable chain to exploit
hardware offloading capabilities of modern NICs while still
keeping state at the processor. In this case, we offload the

*We replay the first 400 k packets of a 28-minute campus trace fifty
times. The full trace has ~800 M packets with an average size of 981 B.

routing table of the router to the NIC and only handle the
stateful tasks (i.e., NAPT + LB) and the basic functionality of
the router in software. We generated 2423 IP filter rules for
the campus trace using the GenerateIPFlowDirector element
in Metron [38] and use DPDK’s Flow API technology [31]
to offload them into a Mellanox NIC. To examine the impact
of load imbalance, we generate two different sets of rules
with different load imbalance factors. One distributes the
rules among 18 cores in a round-robin manner while the
other is load-aware and tries to reduce the flow imbalance
in terms of bytes received by every core. We calculated
the number of packets received by each core for both cases
and the maximum imbalance ratio of a core is 2.78× for
the load-aware technique, while the round-robin technique
causes 1.69× maximum load imbalance. The load-aware
method has a higher load imbalance because we generate
rules for the whole trace, but only replay a subset of it. Fig. 12
shows the 99th percentile latency of this chain for different
load balancing methods (with different load imbalance ratio),
specifically increasing DDIO capacity reduces the 99th

percentile latency by ~21% when the load imbalance is
higher. However, when the load imbalance is lower, these
improvements reduce to ~2%. A higher load imbalance factor
means that a core receives more packets than others, some of
which could be evicted while enqueued in the LLC. Hence,
it is crucial to realize a good balance to get the most out of
DDIO. Furthermore, load imbalance is the root cause of many
other performance degradations and is hard to prevent [8, 10].

 0

 200

 400

 600

 800

 1000

Load-aware Round Robin99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Load Balance Method

2W 4W 6W 8W

Figure 12: DDIO should be carefully tuned when the load
imbalance factor is higher. The results shows 99th percentile
latency of a stateful network function while 18 cores are
processing mixed-size packets at 100 Gbps. The throughputs
were 94 & 97 Gbps for load-ware (higher imbalance) & round-
robin (lower imbalance) experiments, respectively.

7 Is DDIO Always Beneficial?
The previous section showed that performance could be
improved by tuning DDIO for I/O intensive network functions
operating at ~100 Gbps. However, these results cannot be
generalized, as the improvements are highly dependent on
the application’s characteristics. Moreover, there may be
some applications that do not benefit from DDIO tuning.
To investigate this, we measure the sensitivity of different
applications to DDIO by enabling/disabling it (see §4.4).
Table 2 shows the results for four applications/benchmarks:

USENIX Association 2020 USENIX Annual Technical Conference 681

Table 2: DDIO sensitivity changes for different applications.

Application
DDIO Enabled Disabled Sensitivity

Throughput Median (µs) Avg (µs) 99th (µs) Throughput Median (µs) Avg (µs) 99th (µs)
Memcached (TCP) 1003058 TPS N/A 477.62 N/A 994387 TPS N/A 481.62 N/A Low
Memcached (UDP) 638763 TPS N/A 750.12 N/A 631354 TPS N/A 758.75 N/A Low
NVMe (Full Write) 4427.2 MiB/s 44879.4 44437.6 46452.4 4434.2 MiB/s 44827 44374.68 46452.4 Low
NVMe (Random Read) 3372.4 MiB/s 582 589.67 765.7 3233.7 MiB/s 601.8 614.46 805.7 High
NVMe (Random Write) 1498.3 MiB/s 1307.8 1324.73 1991.2 1499.9 MiB/s 1309.5 1323.38 1971.4 Low
L2 Forwarding 98.01 Gbps 500.82 662 1055.98 87.02 Gbps 1058.15 862 1229.62 High
Stateful Service Chain 63.92 Gbps 665 657 923 63.25 Gbps 672 666 931 Low(without offloading)
Stateful Service Chain 97.35 Gbps 499 505 595 87.46 Gbps 531 924 1981 High(with round-robin offloading)

(i) DPDK-based implementation of Memcached developed
by Seastar [5], (ii) an NVMe benchmarking tool (i.e., fio [4]),
(iii) L2 forwarding application, (iv) a stateful service chain,
used in §6, which performs IP filtering in software rather than
offloading it to the NIC, and (v) the stateful service chain
with round-robin offloading used in §6. We define sensitivity
as “Low” if the maximum impact on the performance of an
application is ≤ 5%. For Memcached, we use the method
recommended by Seastar [2] with 8 instances of memaslap
clients running for 120 s and a Memcached instance with 4
cores. For NVMe benchmarks, we tested a Toshiba NVMe
(KXG50PNV1T02) with 4×1024-GB SSDs according to [3],
where we report the average of 10 runs. The L2 forwarding
application forwards mixed-size packets, while using 4
cores with a total of 4096 RX descriptors. The stateful
service chain without offloading uses RSS to distribute
packets among 18 cores (to increase the throughput) with
18 × 256 RX descriptors. The results demonstrate that
different applications have different levels of sensitivity
to DDIO, which can be exploited by system developers
to optimize their system in a multi-tenant environment,
where multiple I/O applications co-exist, see §8.1. The most
sensitive application is L2 forwarding, which is the most I/O
intensive application among these applications and can run
at line rate. Some applications (e.g., Memcached) experience
less benefit from DDIO, as their performance may be bounded
by other bottlenecks. A more detailed sensitivity analysis of
different applications remains as our future work.

8 Future Directions for DCA
Tuning DDIO occupancy was shown to substantially
improve the performance of some applications. However,
increasing the portion of the cache used for I/O is only a
temporary solution for two reasons: (i) I/O is only a part of
packet processing and (ii) to achieve suitable performance
many networking applications require a large amount of
cache memory for code/data. Moreover, many network
functions would benefit from performing in-cache flow
classification [92]; hence, there is a trade-off between
allocating cache to I/O vs. code/data and this trade-off
depends on the application’s characteristics & cache size.

Additionally, since DDIO is way-based, the granularity of
partitions is quite coarse in recent Intel processors, due to low
set-associativity. Therefore, it is harder to partition the cache
fairly between code/data & I/O. These reasons, together with
the recent trend in Intel processors of decreasing per-core
LLC, eventually make the current implementation of DCA
a major bottleneck to achieving low-latency service times.
Hence, DCA needs to deliver better performance even with
a small fraction of the cache. This makes it necessary to
rethink the current DCA designs with an eye toward realizing
network services running at multi-hundred gigabits per
second. Some possible directions/proposals for future DCA
are: 1 Fine-grained placement: adopting CacheDirector [15]
methodology (i.e., sending packets to the appropriate LLC
slices) and only sending the relevant parts of these packets to
the L2 cache, L1 cache, or potentially CPU registers [26];
2 Selective DMA/DCA: only DMA relevant parts of the

packet (as required by an application) to the cache and buffer
the rest in either main memory, the NIC, or Top-of-Rack
switch; and 3 I/O isolation: extend CAT to include I/O
prioritization in addition to Code and Data Prioritization
(CDP) technology [60] to alleviate I/O contention. These
ideas could be simulated in a cycle accurate simulator (e.g.,
gem5 [6, 12]), which remains as our future work. Next, we
examine one potential solution in the current systems to
better take advantage of DDIO.

8.1 Bypassing Cache

§3.1 explained that one way to prevent unnecessary memory
accesses and the leaky DMA problem is to reduce the number
of descriptors. However, this could increase packet loss and
generate more PAUSE frames at high link rates. Unfortunately,
both can have a severe impact on the service time as they
postpone the service time by at least a couple of microseconds.
Taking these consequences into account, we believe future
DCA technologies should perform cache injection more
effectively: DMA should not be directed to the cache if this
would cause I/O evictions; thus, buffering packets in local
memory (at a cost of only several hundreds of nanoseconds) is
preferable to dropping or enqueuing packets in previous nodes.
Additionally, bypassing cache would be beneficial in a multi-

682 2020 USENIX Annual Technical Conference USENIX Association

tenant scenario where performance isolation is desired. For
instance, low-priority and/or low-DDIO-sensitive applications
could bypass cache to make room for high-priority and/or
high-DDIO-sensitive applications. In addition, one could
prioritize [7] different traffic flows, thus only a subset of
received traffic (and hence cores) would use cache for I/O.
Implementing a system to prioritize DDIO for different
flows either in a programmable switch or modern NICs (e.g.,
Mellanox Socket Direct Adapters) remains as our future work.
Evaluation. To evaluate the benefits of bypassing the
cache, we use two methods: (i) disabling DDIO and (ii)
exploiting DMA via a remote socket (see §4.3). We set
up a 200-Gbps testbed, see Fig. 13. We first connect two
100-Gbps NICs to the same socket. Next, we connect one
of these NICs to a remote socket. We run two instances
of L2 forwarding application located on the first socket,
each of which uses 4 cores and one NIC to forward mixed-
size packets. We chose four cores per NIC because our
earlier experiments (see Fig. 10) showed that DDIO can
achieve an acceptable performance while receiving 1500-B
packets with four cores. To reduce the contention for cache
and memory bandwidth, we apply CAT & MBA to each
application (similar to ResQ [83]). We assume that one of the
applications has a higher priority, and we measure its latency
in five different scenarios: (i) without the presence of the low-
priority application, (ii) when the low-priority application
pollutes the cache via 2-way DDIO (see Fig. 13a), (iii) when
the low-priority application pollutes the cache via 4-way
DDIO, (iv) when the low-priority application bypasses the
cache by DMA-ing packets via a remote socket (see Fig. 13b),
(v) when the low-priority application bypasses the cache via
disabled DDIO. Fig. 14 shows the 99th percentile latency of
the high-priority application–other percentiles show a similar
trend with a smaller difference. These results demonstrate that
bypassing cache via a remote socket (i.e., case iv) achieves
the same latency as when there is no low-priority application
(i.e., case i). However, when both applications are receiving
traffic via DDIO (i.e., case ii), the 99th percentile latency
degrades ~30%. We observe that bypassing cache has the
same benefits as increasing DDIO capacity (i.e., case iii vs.
case iv). Furthermore, comparing cases (iv) and (v) indicates
that disabling DDIO slightly pollutes the cache (as opposed to
bypassing via a remote socket). We speculate that disabling
DDIO only affects the packets, not the descriptors. Therefore,
we conclude that bypassing cache can result in less variability
in performance and potentially better performance isolation.
Additionally, it is clearly necessary to tune DDIO capacity
when moving toward 200 Gbps.

9 Lessons Learned: Optimization Guidelines
This section summarizes our key findings, which could
help system designers/developers to optimize DDIO for
their applications. Furthermore, our study should inspire
computer architects to improve DCA’s performance by

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

NIC 1 NIC 2

Main
Memory U

PI

(a) Through local socket.

Socket 1

PCIe

Logical LLC

C C C C

C C C C

C C C C

C C C C

M
em

or
y

Co
nt

ro
lle

r

NIC 1 NIC 2

Main
Memory U

PI

(b) Through remote socket.

Figure 13: Receiver setup to achieve 200 Gbps. On the right
setup, the second NIC is connected to the remote socket. It
sends packets through UPI link directly to the main memory.

 0
 200
 400
 600
 800

 1000
 1200
 1400

i ii iii iv v

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (µ

s)

Scenario

98.73 Gbps

187.19 Gbps

197.67 Gbps 197.09 Gbps
179.81 Gbps

Figure 14: Bypassing cache and tuning DDIO at 200 Gbps
mitigate I/O contention and improve the tail latency of the
high-priority application up to 30%. Scenarios: (i) 100 Gbps
with no contention; (ii) contention at 200 Gbps; (iii) tuning
DDIO at 200 Gbps; (iv) bypassing cache via a remote socket;
and (v) bypassing cache via disabled DDIO. The total
achieved throughput of the receiver is written on the bars.

offering increasing control. Although we focused on packet
processing, our work is not limited to network functions.
Our investigations could be equally useful in other contexts
(e.g., HPC) that require high-bandwidth I/O when transferring
data via RDMA and processing with GPUs. We showed that
current approaches to avoid DDIO becoming a bottleneck
are only temporary solutions and they are inapplicable to
multi-hundred-gigabit network applications. We proposed
a benchmarking method to understand the unknown &
little-discussed details of DDIO. Later, we characterized the
performance of DDIO in different scenarios and showed the
benefits of bypassing the cache. We concluded that there is no
one-size-fits-all approach to utilize DDIO. Our study reveals:
• The locations of LLC to which DDIO injects data (§4.1).
• Co-locating an application’s code/data with I/O in the cache

could adversely impact its performance (§4.2).
• The way that DDIO behavior changes for different system

parameters and workload characteristics (§5).
• If an application is I/O bound, adding excessive cores could

degrade its performance (Fig. 10).
• If an application is I/O bound, carefully sizing the DDIO

capacity can improve its performance and could lead to the

USENIX Association 2020 USENIX Annual Technical Conference 683

same improvements as adding more cores (Fig. 11).
• If an application starts to become CPU bound, adding more

cores can increase its throughput, but then it has to balance
load among cores to maximize DDIO benefits (Fig. 12).

• If an application is truly CPU/memory bound, DDIO tuning
is less efficient (Fig. 9). However, it can be beneficial to
buffer in DRAM incoming requests/packets which cannot
be processed in time, rather than having the NIC issue
PAUSE frames or drop packets.

• Going beyond ~75 Gbps can cause DDIO to become a
bottleneck (Fig. 8). Therefore, it is essential to bypass cache
to realize performance isolation. Bypassing cache could
be done for low-priority traffic or applications that do not
benefit from DDIO (§8.1).

• Different applications have different levels of sensitivity
to DDIO (§7). Identifying this level is essential to utilize
system resources more efficiently, provide performance
isolation, and improve performance.

10 Related Work
The most relevant work to our study is ResQ [83], which we
discussed thoroughly in §3.1 and §8.1. This section discusses
other efforts relevant to our work.
Injecting I/O into the cache. The idea of loading I/O data
directly to the processor’s cache was initially proposed using
cache injection techniques [52, 63]. Later, it was used to
enhance network performance on commodity servers and was
referred to as DCA [25]. Amit Kumar et al. [42] investigated
the role of coherency protocol in DCA. Their results indicated
that the benefit of DCA would be limited when the network
processing rate cannot match the I/O rate. In addition, [75]
showed that DCA could cause cache pollution; hence they
proposed an alternative cache injection mechanism to mitigate
the problem. A. Kumar et al. [43] characterized DCA for
10-Gbps Ethernet links. Other works have discussed that DCA
is insufficient due to architectural limitations [40, 46, 71]. For
example, the work in [46] proposed a new I/O architecture
that decouples and offloads I/O descriptor management from
the NIC to an on-chip network engine. Similarly, the work
in [40] proposed a flexible network DMA interface which can
support DCA. Last but not least, Wen Su et al. [71] proposed
an improvement to combine DCA with an integrated NIC to
reduce latency.
Efforts toward realizing 100 Gbps. Many have tried to
tackle challenges to achieve suitable performance for fast
networks, mostly in the context of NFV [49] and key-value
stores [19, 45]. Some research has exploited new features
in modern/smart/programmable NICs (e.g., [38, 47, 84, 94])
& switches (e.g., [36]) or proposed new features (e.g., [70])
to offload costly software processing. A number of works
investigate packet processing models (e.g., [9, 39, 93]).
CacheBuilder [80] and CacheDirector [15] have discussed
the importance of cache management in realizing 100-Gbps
networks. HALO [92] exploited the non-uniform cache

architecture (NUCA) characteristics of LLC to perform in-
cache flow classification. Last but not least, IOctopus [68]
proposed a new NIC design and wiring for servers to avoid
non-uniform DMA penalties. Our work is complementary to
these works.
Cache partitioning. Many have tried to overcome cache
contention by performing cache partitioning [53]. These
efforts can be split into two main categories: (i) software
techniques and (ii) hardware techniques. The former group
principally relies on physical addresses to partition cache
based on sets [22, 48, 67] or slices [15]. This way of cache
partitioning does not require any hardware support, but it is
not very commonly used, due to its drawbacks (e.g., OS/App
modification and costly re-partitioning). The latter group
mostly exploits way-partitioning (e.g., CAT) to partition the
cache among different applications [13, 18, 62, 89, 90, 91].
In addition to these techniques, Wang et al. [85] proposed
a hybrid approach that combines both techniques to achieve
finer granularity for partitioning. To the best of our knowledge,
there are only two works (ResQ [83] and CacheDirector [15])
that have specifically tried to exploit cache partitioning
techniques to improve packet processing. ResQ proposes
to isolate a percentage of LLC that is used for I/O and
CacheDirector exploits the NUCA used in Intel processors
to distribute I/O more efficiently among different LLC slices.
Our work is complementary to these works, as most of them
do not consider I/O when partitioning the cache.

11 Conclusion
DCA technologies were introduced to improve the perfor-
mance of networking applications. However, we system-
atically showed that the latest implementation of DCA in
Intel processors (i.e., DDIO) cannot perform as needed with
increasing link speeds. We demonstrated that better I/O man-
agement is required to meet the critical latency requirements
of future networks. Our main goal is to emphasize that
networking is, now more than before, tightly coupled with the
capability of the current hardware. Consequently, realizing
time-critical multi-hundred-gigabit networks is only possible
by (i) increasingly well-documented control over the hardware
and (ii) improved holistic system design optimizations.

Acknowledgments
We would like to thank our shepherd, Mark Silberstein, and
anonymous reviewers for their insightful comments. We are
grateful to Tom Barbette for helping us with his NPF tool.
This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. The work was
also funded by the Swedish Foundation for Strategic research
(SSF). This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 770889).

684 2020 USENIX Annual Technical Conference USENIX Association

References

[1] Direct Cache Access (DCA), Oct 2010.
ftp://supermicro.com/ISO_Extracted/CDR-X8-
Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/
v16.3/PROXGB/DOCS/SERVER/DCA.htm, accessed
2019-08-05.

[2] Memcached Benchmark, 2015. https://github.com/
scylladb/seastar/wiki/Memcached-Benchmark,
accessed 2019-12-30.

[3] Benchmarking - Benchmarking Linux with Sysbench,
FIO, Ioping, and UnixBench: Lots of Examples. https:
//wiki.mikejung.biz/Benchmarking, 2018.

[4] Flexible I/O Tester (fio). https://fio.readthedocs.
io/en/latest/fio_doc.html, 2019.

[5] Seastar. http://seastar.io/, 2019.

[6] Mohammad Alian, Yifan Yuan, Jie Zhang, Ren Wang,
Myoungsoo Jung, and Nam Sung Kim. Data
Direct I/O Characterization for Future I/O System
Exploration. In 2020 IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), 2020. https://yifanyuan3.github.io/
publication/ddio_gem5, accessed 2020-05-20.

[7] Philip C Arellano and James A Coleman. Method,
apparatus, and system for allocating cache using traffic
class, March 30 2017. US Patent App. 14/866,862.

[8] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire
Jr., and Dejan Kostić. RSS++: Load and State-Aware
Receive Side Scaling. In Proceedings of the 15th
International Conference on Emerging Networking
Experiments And Technologies, CoNEXT ’19, page
318–333, New York, NY, USA, 2019. Association for
Computing Machinery.

[9] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast
Userspace Packet Processing. In Proceedings of
the Eleventh ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS
’15, pages 5–16, Washington, DC, USA, 2015. IEEE
Computer Society.

[10] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić,
Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and
Marco Chiesa. A High-Speed Load-Balancer Design
with Guaranteed Per-Connection-Consistency . In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 667–683, Santa Clara,
CA, February 2020. USENIX Association.

[11] Harsha Basavaraj. A case for effective utilization of
Direct Cache Access for big data workloads. Master’s

thesis, UC San Diego, 2017. https://escholarship.
org/uc/item/0fr3735b, accessed 2019-07-24.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[13] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma,
and D. Sanchez. KPart: A Hybrid Cache Partitioning-
Sharing Technique for Commodity Multicores. In 2018
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 104–117, Feb
2018.

[14] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark silicon and the end of
multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA), pages
365–376, June 2011.

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire
Jr., and Dejan Kostić. Make the Most out of Last
Level Cache in Intel Processors. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 8:1–8:17, New York, NY, USA, 2019. ACM.

[16] Financial Services Industry (FSI) - Frequently Asked
Questions. https://software.intel.com/en-
us/articles/financial-services-industry-
fsi-frequently-asked-questions, accessed
2019-07-24.

[17] Intel Forum. Intel Ethernet X520 to XL710 -
Tuning the buffers: a practical guide to reduce or
avoid packet loss in DPDK applications. https:
//etherealmind.com/wp-content/uploads/2017/
01/X520_to_XL710_Tuning_The_Buffers.pdf,
accessed 2019-07-24.

[18] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf
Schuster. Ginseng: Market-Driven LLC Allocation. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 295–308, Denver, CO, June 2016.
USENIX Association.

[19] Vasilis Gavrielatos, Antonios Katsarakis, Arpit Joshi,
Nicolai Oswald, Boris Grot, and Vijay Nagarajan.
Scale-out ccNUMA: Exploiting Skew with Strongly
Consistent Caching. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 21:1–21:15,
New York, NY, USA, 2018. ACM.

USENIX Association 2020 USENIX Annual Technical Conference 685

ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
ftp://supermicro.com/ISO_Extracted/CDR-X8-Q_1.02_for_Intel_X8_Q_platform/Intel/LAN/v16.3/PROXGB/DOCS/SERVER/DCA.htm
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://github.com/scylladb/seastar/wiki/Memcached-Benchmark
https://wiki.mikejung.biz/Benchmarking
https://wiki.mikejung.biz/Benchmarking
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
http://seastar.io/
https://yifanyuan3.github.io/publication/ddio_gem5
https://yifanyuan3.github.io/publication/ddio_gem5
https://escholarship.org/uc/item/0fr3735b
https://escholarship.org/uc/item/0fr3735b
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://software.intel.com/en-us/articles/financial-services-industry-fsi-frequently-asked-questions
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf
https://etherealmind.com/wp-content/uploads/2017/01/X520_to_XL710_Tuning_The_Buffers.pdf

[20] Jeff Gilbert and Mark Rowland. The Intel
Xeon Processor E5 Family: Architecture,
Power Efficiency, and Performance, August
2012. https://www.hotchips.org/wp-
content/uploads/hc_archives/hc24/HC24-8-
DataCenter/HC24.29.827-Xeon-Rowland-Xeon-
E5-2600-Disclaimer.pdf, accessed 2019-07-24.

[21] Andrew Herdrich, Khawar Abbasi, and Marcel Cornu.
Introduction to Memory Bandwidth Allocation,
March 2019. https://software.intel.com/en-
us/articles/introduction-to-memory-
bandwidth-allocation, accessed 2019-07-24.

[22] J. Herter, P. Backes, F. Haupenthal, and J. Reineke.
CAMA: A Predictable Cache-Aware Memory Allocator.
In 2011 23rd Euromicro Conference on Real-Time
Systems, pages 23–32, July 2011.

[23] How to disable Data Direct I/O (DDIO) on
Intel Xeon E5? https://forums.intel.com/
s/question/0D50P0000490NFhSAM/how-to-
disable-data-direct-io-ddio-on-intel-xeon-
e5?language=en_US, accessed 2019-07-24.

[24] Ted Hudek. Introduction to Receive Side Scaling,
04 2017. https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling,
accessed 2019-12-29.

[25] R. Huggahalli, R. Iyer, and S. Tetrick. Direct cache
access for high bandwidth network I/O. In 32nd
International Symposium on Computer Architecture
(ISCA’05), pages 50–59, June 2005.

[26] Stephen Ibanez, Muhammad Shahbaz, and Nick
McKeown. The Case for a Network Fast Path to the
CPU. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, page 52–59, New York,
NY, USA, 2019. Association for Computing Machinery.

[27] Information about PCM PCIe counters. https:
//software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-
monitoring/topic/543883, accessed 2019-07-24.

[28] Intel. Intel Data Direct I/O Technology Overview, 2012.
https://www.intel.com/content/www/us/en/
io/data-direct-i-o-technology-brief.html,
accessed 2019-07-26.

[29] Intel. Intel Xeon Processor Scalable Memory
Family Uncore Performance Monitoring, July 2017.
https://www.intel.com/content/www/us/en/
processors/xeon/scalable/xeon-scalable-
uncore-performance-monitoring-manual.html,
accessed 2019-07-26.

[30] Intel. Intel Arria 10 Avalon-ST Interface
with SR-IOV PCIe Solutions User Guide,
2019. https://www.intel.com/content/
www/us/en/programmable/documentation/
lbl1415123763821.html#lbl1453336559194,
accessed 2019-07-26.

[31] Intel Ethernet Flow Director and Memcached
Performance, 2014. https://www.intel.com/
content/dam/www/public/us/en/documents/
white-papers/intel-ethernet-flow-director.
pdf, accessed 2019-09-09.

[32] IO Issues: Remote Socket Accesses. https:
//software.intel.com/en-us/vtune-amplifier-
cookbook-io-issues-remote-socket-accesses,
accessed 2019-09-01.

[33] Sanjeev Jahagirdar, Varghese George, Inder Sodhi,
and Ryan Wells. Power Management of the Third
Generation Intel Core Micro Architecture formerly
codenamed Ivy Bridge, 2012. https://bit.ly/
2LKVfZr, accessed 2019-07-24.

[34] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely,
Jr., and Joel Emer. High Performance Cache
Replacement Using Re-reference Interval Prediction
(RRIP). In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pages
60–71, New York, NY, USA, 2010. ACM.

[35] Muthurajan Jayakumar. Data Plane Development
Kit: Performance Optimization Guidelines. https:
//software.intel.com/en-us/articles/dpdk-
performance-optimization-guidelines-white-
paper, accessed 2019-07-24.

[36] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 121–136, New York, NY, USA, 2017. ACM.

[37] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA
Systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, Denver, CO, June
2016. USENIX Association.

[38] Georgios P. Katsikas, Tom Barbette, Dejan Kostić,
Rebecca Steinert, and Gerald Q. Maguire Jr. Metron:
NFV Service Chains at the True Speed of the
Underlying Hardware. In 15th USENIX Conference
on Networked Systems Design and Implementation
(NSDI 18), NSDI’18, pages 171–186, Renton, WA, 2018.
USENIX Association.

686 2020 USENIX Annual Technical Conference USENIX Association

https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc24/HC24-8-DataCenter/HC24.29.827-Xeon-Rowland-Xeon-E5-2600-Disclaimer.pdf
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://forums.intel.com/s/question/0D50P0000490NFhSAM/how-to-disable-data-direct-io-ddio-on-intel-xeon-e5?language=en_US
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/543883
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/www/us/en/programmable/documentation/lbl1415123763821.html#lbl1453336559194
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-amplifier-cookbook-io-issues-remote-socket-accesses
https://bit.ly/2LKVfZr
https://bit.ly/2LKVfZr
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper
https://software.intel.com/en-us/articles/dpdk-performance-optimization-guidelines-white-paper

[39] Georgios P. Katsikas, Marcel Enguehard, Maciej
Kuźniar, Gerald Q. Maguire Jr., and Dejan Kostić. SNF:
synthesizing high performance NFV service chains.
PeerJ Computer Science, 2:e98, November 2016.

[40] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. SIG-
PLAN Not., 51(4):67–81, March 2016.

[41] Maciek Konstantynowicz, Patrick Lu, and Shrikant M.
Shah. Benchmarking and Analysis of Software Data
Planes. Technical report, Cisco, Intel Corporation, FD.io,
Dec 2017. https://fd.io/wp-content/uploads/
sites/34/2018/01/performance_analysis_sw_
data_planes_dec21_2017.pdf, accessed 2019-07-
24.

[42] A. Kumar and R. Huggahalli. Impact of Cache
Coherence Protocols on the Processing of Network
Traffic. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007), pages
161–171, Dec 2007.

[43] A. Kumar, R. Huggahalli, and S. Makineni. Character-
ization of Direct Cache Access on multi-core systems
and 10GbE. In 2009 IEEE 15th International Sym-
posium on High Performance Computer Architecture,
pages 341–352, Feb 2009.

[44] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In S&P,
May 2020. Intel Bounty Reward.

[45] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn,
Anuj Kalia, Michael Kaminsky, David G. Andersen,
Seongil O, Sukhan Lee, and Pradeep Dubey. Full-
Stack Architecting to Achieve a Billion-Requests-Per-
Second Throughput on a Single Key-Value Store Server
Platform. ACM Trans. Comput. Syst., 34(2):5:1–5:30,
April 2016.

[46] G. Liao, X. Znu, and L. Bnuyan. A new server I/O
architecture for high speed networks. In 2011 IEEE
17th International Symposium on High Performance
Computer Architecture, pages 255–265, Feb 2011.

[47] Hyeontaek Lim, Dongsu Han, David G. Andersen,
and Michael Kaminsky. MICA: A holistic approach
to fast in-memory key-value storage. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 429–444, Seattle, WA,
2014. USENIX Association.

[48] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,
Xiaodong Zhang, and P. Sadayappan. Gaining insights

into multicore cache partitioning: Bridging the gap
between simulation and real systems. In 2008 IEEE
14th International Symposium on High Performance
Computer Architecture, pages 367–378, Feb 2008.

[49] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári,
D. Rossi, T. Zinner, R. Bifulco, M. Jarschel, and
G. Bianchi. Survey of Performance Acceleration
Techniques for Network Function Virtualization.
Proceedings of the IEEE, 107(4):746–764, April 2019.

[50] Patrick Lu. Performance Considerations for
Packet Processing on Intel Architecture, May 2017.
https://fdio-vpp.readthedocs.io/en/latest/
events/Summits/FDioMiniSummit/OSS_2017/
2017_05_10_performanceconsideration.html,
accessed 2019-07-24.

[51] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,
Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.
Taming Performance Variability. In 13th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 409–425, Carlsbad,
CA, October 2018. USENIX Association.

[52] V. Milutinovic, A. Milenkovic, and G. Sheaffer. The
cache injection/cofetch architecture: initial performance
evaluation. In Proceedings Fifth International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 63–
64, Jan 1997.

[53] Sparsh Mittal. A Survey of Techniques for Cache
Partitioning in Multicore Processors. ACM Comput.
Surv., 50(2):27:1–27:39, May 2017.

[54] Jeffrey C. Mogul and John Wilkes. Nines are Not
Enough: Meaningful Metrics for Clouds. In Proc. 17th
Workshop on Hot Topics in Operating Systems (HoTOS),
2019.

[55] David Mulnix. Intel Xeon Processor Scalable
Family Technical Overview, Sep 2017. https:
//software.intel.com/en-us/articles/intel-
xeon-processor-scalable-family-technical-
overview, accessed 2019-07-24.

[56] NetApp. What is the potential impact of PAUSE frames
on a network connection?, Nov 2017. https://ntap.
com/2RpAx1Q, accessed 2019-07-24.

[57] Network Performance Framework. https://github.
com/tbarbette/npf, accessed 2019-07-24.

[58] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W.
Moore. Understanding PCIe Performance for End
Host Networking. In Proceedings of the 2018

USENIX Association 2020 USENIX Annual Technical Conference 687

https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fd.io/wp-content/uploads/sites/34/2018/01/performance_analysis_sw_data_planes_dec21_2017.pdf
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://fdio-vpp.readthedocs.io/en/latest/events/Summits/FDioMiniSummit/OSS_2017/2017_05_10_performanceconsideration.html
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://ntap.com/2RpAx1Q
https://ntap.com/2RpAx1Q
https://github.com/tbarbette/npf
https://github.com/tbarbette/npf

Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, pages 327–341, New
York, NY, USA, 2018. ACM.

[59] Khang Nguyen. Introduction to Cache Allocation
Technology in the Intel Xeon Processor E5 v4 Family,
Feb 2016. https://software.intel.com/en-
us/articles/introduction-to-cache-
allocation-technology, accessed 2019-07-24.

[60] Khang T Nguyen. Code and Data Prioritization
- Introduction and Usage Models in the
Intel® Xeon® Processor E5 v4 Family,
2016. https://software.intel.com/en-
us/articles/introduction-to-code-and-data-
prioritization-with-usage-models, accessed
2019-07-26.

[61] John Ousterhout. Always Measure One Level Deeper.
Commun. ACM, 61(7):74–83, June 2018.

[62] Jinsu Park, Seongbeom Park, and Woongki Baek.
CoPart: Coordinated Partitioning of Last-Level Cache
and Memory Bandwidth for Fairness-Aware Workload
Consolidation on Commodity Servers. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys
’19, pages 10:1–10:16, New York, NY, USA, 2019.
ACM.

[63] Hazim Shafi Patrick Joseph Bohrer, Ramakrishnan Ra-
jamony. Method and apparatus for accelerating
input/output processing using cache injections , March
2004. US Patent No. US6711650B1.

[64] PCIe Bandwidth Drops on Skylake-SP. https:
//software.intel.com/en-us/forums/software-
tuning-performance-optimization-platform-
monitoring/topic/741386, accessed 2019-07-24.

[65] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt,
Simon C. Steely, and Joel Emer. Adaptive Insertion
Policies for High Performance Caching. In Proceedings
of the 34th Annual International Symposium on
Computer Architecture, ISCA ’07, pages 381–391, New
York, NY, USA, 2007. ACM.

[66] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros.
Splash-3: A Properly Synchronized Benchmark Suite
for Contemporary Research. In 2016 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 101–111, April 2016.

[67] Timothy Sherwood, Brad Calder, and Joel Emer.
Reducing Cache Misses Using Hardware and Software
Page Placement. In Proceedings of the 13th
International Conference on Supercomputing, ICS ’99,
pages 155–164, New York, NY, USA, 1999. ACM.

[68] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai
Eran, Gerd Zellweger, Austin Bolen, Liran Liss, Adam
Morrison, and Dan Tsafrir. IOctopus: Outsmarting
Nonuniform DMA. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’20, page 101–115, New York, NY, USA, 2020.
Association for Computing Machinery.

[69] Splash-3 Benchmark Suite. https://github.com/
SakalisC/Splash-3, accessed 2019-07-24.

[70] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and Efficient NIC Packet Scheduling. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 33–46, Boston,
MA, February 2019. USENIX Association.

[71] W. Su, L. Zhang, D. Tang, and X. Gao. Using
Direct Cache Access Combined with Integrated NIC
Architecture to Accelerate Network Processing. In
2012 IEEE 14th International Conference on High
Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded
Software and Systems, pages 509–515, June 2012.

[72] Roman Sudarikov and Patrick Lu. Hardware-Level
Performance Analysis of Platform I/O, June 2018.
https://dpdkprcsummit2018.sched.com/event/
EsPa/hardware-level-performance-analysis-
of-platform-io, accessed 2019-07-24.

[73] Supermicro. 1028UX-LL1-B8, 1028UX-LL2-B8,
and 1028-LL3-B8 User’s Manual. https://www.
supermicro.com/manuals/superserver/1U/MNL-
1886.pdf, accessed 2019-07-24.

[74] Supermicro. 6028UX-TR4 User’s Manual.
https://www.supermicro.com/manuals/
superserver/2U/MNL-1706.pdf, accessed 2019-07-
24.

[75] D. Tang, Y. Bao, W. Hu, and M. Chen. DMA cache:
Using on-chip storage to architecturally separate I/O
data from CPU data for improving I/O performance. In
HPCA - 16 2010 The Sixteenth International Symposium
on High-Performance Computer Architecture, pages 1–
12, Jan 2010.

[76] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Packet Chasing: Spying on Network Packets
over a Cache Side-Channel, 2019. https://arxiv.
org/pdf/1909.04841.pdf, accessed 2019-09-15.

[77] Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Packet Chasing: Observing Network Packets
over a Cache Side-Channel. In Proceedings of the 47th

688 2020 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/articles/introduction-to-code-and-data-prioritization-with-usage-models
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/741386
https://github.com/SakalisC/Splash-3
https://github.com/SakalisC/Splash-3
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://dpdkprcsummit2018.sched.com/event/EsPa/hardware-level-performance-analysis-of-platform-io
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/1U/MNL-1886.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://www.supermicro.com/manuals/superserver/2U/MNL-1706.pdf
https://arxiv.org/pdf/1909.04841.pdf
https://arxiv.org/pdf/1909.04841.pdf

International Symposium on Computer Architecture,
ISCA ’20, New York, NY, USA, 2020.

[78] Arash Tavakkol, Aasheesh Kolli, Stanko Novakovic,
Kaveh Razavi, Juan Gómez-Luna, Hasan Hassan,
Claude Barthels, Yaohua Wang, Mohammad Sadrosa-
dati, Saugata Ghose, Ankit Singla, Pratap Subrah-
manyam, and Onur Mutlu. Enabling Efficient RDMA-
based Synchronous Mirroring of Persistent Memory
Transactions. CoRR, abs/1810.09360, 2018.

[79] Temporary PCIe Bandwidth Drops on Haswell-v3.
https://software.intel.com/en-us/forums/
software-tuning-performance-optimization-
platform-monitoring/topic/600913, accessed
2019-07-24.

[80] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker,
and George Porter. Dark Packets and the End of Network
Scaling. In Proceedings of the 2018 Symposium
on Architectures for Networking and Communications
Systems, ANCS ’18, pages 1–14, New York, NY, USA,
2018. ACM.

[81] Shelby Thomas, Geoffrey M. Voelker, and George
Porter. CacheCloud: Towards Speed-of-light Datacenter
Communication. In 10th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 18), Boston, MA,
July 2018. USENIX Association.

[82] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone,
Robert Soulé, and Noa Zilberman. The Case For In-
Network Computing On Demand. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 21:1–21:16, New York, NY, USA, 2019. ACM.

[83] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in Network Function
Virtualization. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 283–297, Renton, WA, April 2018. USENIX
Association.

[84] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A SmartNIC-Driven Accelerator-Centric Architecture
for Network Servers. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’20, page 117–131, New York, NY, USA, 2020.
Association for Computing Machinery.

[85] X. Wang, S. Chen, J. Setter, and J. F. Martínez. SWAP:
Effective Fine-Grain Management of Shared Last-Level
Caches with Minimum Hardware Support. In 2017
IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 121–132, Feb
2017.

[86] Thomas Willhalm, Roman Dementiev, and Patrick
Fay. Intel Performance Counter Monitor - A
Better Way to Measure CPU Utilization, Jan 2017.
https://software.intel.com/en-us/articles/
intel-performance-counter-monitor, accessed
2019-07-24.

[87] Henry Wong. Intel Ivy Bridge Cache Replacement
Policy. http://blog.stuffedcow.net/2013/01/
ivb-cache-replacement/, accessed 2019-07-24.

[88] Xeon E5 disable DDIO in OS? https://forums.
intel.com/s/question/0D50P0000490VP0SAM/
xeon-e5-disable-ddio-in-os?language=en_US,
accessed 2019-07-24.

[89] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu
Wang, Yingwei Luo, and Zhenlin Wang. DCAPS:
Dynamic Cache Allocation with Partial Sharing. In
Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, pages 13:1–13:15, New York, NY, USA,
2018. ACM.

[90] Cong Xu, Karthick Rajamani, Alexandre Ferreira,
Wesley Felter, Juan Rubio, and Yang Li. dCat: Dynamic
Cache Management for Efficient, Performance-sensitive
Infrastructure-as-a-service. In Proceedings of the
Thirteenth EuroSys Conference, EuroSys ’18, pages
14:1–14:13, New York, NY, USA, 2018. ACM.

[91] M. Xu, L. Thi, X. Phan, H. Y. Choi, and I. Lee. vCAT:
Dynamic Cache Management Using CAT Virtualization.
In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 211–222, April
2017.

[92] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang.
HALO: Accelerating Flow Classification for Scalable
Packet Processing in NFV. In Proceedings of the 46th
International Symposium on Computer Architecture,
ISCA ’19, pages 601–614, New York, NY, USA, 2019.
ACM.

[93] Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. A
Closer Look at NFV Execution Models. In Proceedings
of the 3rd Asia-Pacific Workshop on Networking 2019,
APNet ’19, pages 85–91, New York, NY, USA, 2019.
ACM.

[94] N. Zilberman, Y. Audzevich, G. A. Covington, and
A. W. Moore. NetFPGA SUME: Toward 100 Gbps
as Research Commodity. IEEE Micro, 34(5):32–41,
Sep. 2014.

USENIX Association 2020 USENIX Annual Technical Conference 689

https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/600913
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US
https://forums.intel.com/s/question/0D50P0000490VP0SAM/xeon-e5-disable-ddio-in-os?language=en_US

	Introduction
	Direct Cache Access (DCA)
	Data Direct I/O Technology (DDIO)
	How can DDIO become a Bottleneck?

	Understanding Details of DDIO
	Occupancy
	I/O Contention
	DMA via Remote Socket
	Tuning Occupancy and Disabling DDIO

	Characterization of DDIO
	Packet Size and RX Descriptors
	Packet Rate and Processing Time
	Numbers of Cores and DDIO Capacity

	Application-level Performance Metrics
	Is DDIO Always Beneficial?
	Future Directions for DCA
	Bypassing Cache

	Lessons Learned: Optimization Guidelines
	Related Work
	Conclusion

