
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Adaptive Placement for In-memory
Storage Functions

Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman, University of Utah
https://www.usenix.org/conference/atc20/presentation/bhardwaj

Adaptive Placement for In-memory Storage Functions

Ankit Bhardwaj Chinmay Kulkarni Ryan Stutsman
University of Utah

Abstract
Fast networks and the desire for high resource utilization in
data centers and the cloud have driven disaggregation. Ap-
plication compute is separated from storage, but this leads to
high overheads when data must move over the network for
simple operations on it. Alternatively, systems could allow
applications to run application logic within storage via user-
defined functions. Unfortunately, this ties provisioning and
utilization of storage and compute resources together again.

We present a new approach to executing storage-level func-
tions in an in-memory key-value store that avoids this prob-
lem by dynamically deciding where to execute functions over
data. Users write storage functions that are logically decou-
pled from storage, but storage servers choose where to run
invocations of these functions physically. By using a server-
internal cost model and observing function execution, servers
choose to directly run inexpensive functions, while preferring
to execute functions with high CPU-cost at client machines.

We show that with this approach storage servers can reduce
network request processing costs, avoid server compute bot-
tlenecks, and improve aggregate storage system throughput.
We realize our approach on an in-memory key-value store
that executes 3.2 million strict serializable user-defined stor-
age functions per second with 100 µs response times. When
running a mix of logic from different applications, it provides
throughput better than running that logic purely at storage
servers (85% more) or purely at clients (10% more). For our
workloads, it also reduces latency (up to 2×) and transactional
aborts (up to 33%) over pure client-side execution.

1 Introduction
Today, in data centers and the cloud, compute is disaggre-
gated from storage. Separating compute and storage eases
provisioning and keeps utilization high by decoupling their al-
location. Fast networks have made this practical, but moving
all data to compute comes at a cost.

Beyond conventional, higher-level approaches like SQL,
many systems have evolved to embed more functionality
within storage servers to make storage operations more expres-
sive and to reduce inefficient data movement. For example,
some databases allow compile-time extensions [38, 47], user-
defined functions [34], and stored-procedures [19, 22, 33, 38,
48]. Among key-value and object stores, some stores offer a
fixed set of extra operators [2,43], while others allow runtime
extension with just-in-time [14, 26, 45] or ahead-of-time com-
piled user-supplied operations [26]. All of these approaches
move user operations closer to the data that they operate on.

The downside is that these approaches fix the ratio of com-
pute to storage, so compute at storage servers can quickly
become a bottleneck. The result is that the state-of-practice is
to prefer easy provisioning and high utilization while keeping
a hard network boundary between compute and storage.

However, the steady decrease in the granularity of compute
allocation and scheduling in the cloud (from virtual machines,
to containers, to serverless functions) has raised a possibility:
application compute need not be statically embedded within
storage; nor must it be the case that it is always run separately.
Storage servers that support running granular user-supplied
functions at low cost create the opportunity to dynamically
adapt where functions on stored data are executed. By shift-
ing processing of storage functions back to storage client ma-
chines, a storage server can avoid CPU-intensive operations
when under load to avoid becoming bottlenecked, choosing
instead to send data back to clients for processing. By shifting
processing onto itself, a server can eliminate data movement,
lend its spare CPU capacity to clients, and reduce its own
request processing load. Since moving user-logic into the
server reduces the number of requests clients make for data,
counter-intuitively, a server can improve its own throughput
by taking on more of client applications’ compute work.

To show the benefits of such an approach, we developed a
new scheme for executing storage functions on top of Splin-
ter [26], which is an extensible in-memory key-value store.
Beyond fast get()/put() key-value operations, applications
can push compiled, binary-code extensions containing storage
functions to Splinter. These functions can be invoked over the
network by clients with low overhead such that even opera-
tions that only perform a few microseconds of compute are
practical and efficient. Our new approach builds on Splinter to
imbue it with a profiler that tracks storage function execution.
Clients attempt to invoke their functions at servers. Servers
use an internal cost model that weighs the CPU cost to the
server if the function were to continue to run at the server
against the CPU cost to the server if the function were to
run at the client (which would result in extra remote requests
to the server for data). Functions invocations that compute
over large amounts of data are deemed beneficial and are run
at the server, since running them at the client would require
transferring large amounts of data. Functions invocations that
are compute-intensive but access little data are pushed back
to the client, where the client must perform the computation.

Beyond the server side, the framework includes a smart
storage client library that makes “pushback” cases transpar-
ent to applications. The server and the storage client library

USENIX Association 2020 USENIX Annual Technical Conference 127

both provide a binary compatible runtime, so functions are un-
aware of whether they are run at a storage server (where data
access is local) or at a client (where data access is remote).
Applications attempt to invoke their storage functions, and
the client library transparently executes any client function
invocation requests that are pushed back by the storage server
before returning the result to the application.

In our model, invocations may execute on the server, at
the client, or partially on both, so ensuring consistency is a
challenge. Our approach adapts techniques from distributed
optimistic concurrency control protocols (OCC) [3, 27, 51] to
solve this. All storage functions run within strict serializable
transactions, which ensure that clients observe the same strong
consistency regardless of where functions execute. These
transactions play a key role in the function execution model
itself; when a function’s execution is transferred from a server
to a client, its transaction’s read/write set is shipped along
with it, avoiding extra requests back to the server for data.

We demonstrate adaptive storage function placement (or
ASFP) with functions drawn from different domains includ-
ing aggregation, graph traversal, machine learning classifiers,
and authentication. We show these workloads have hetero-
geneous compute demands, often with compute-to-storage-
access ratios varying within one application’s functions. Even
so, ASFP provides throughput better than running functions
purely at storage servers (85% more) or purely at clients (10%
more), and it automatically adjusts, optimizing throughput as
workloads and server network costs vary and change.

2 Background and Motivation
Today, cloud and data center applications keep data in one set
of servers and compute over it on another. This “client-side”
function execution model serves as a baseline. Our question
is, can a system consistently beat the performance of this
client-side approach without creating server bottlenecks?

To do this, one needs a way to embed application logic
within storage to compute on data. Our approach relies on the
Splinter multi-tenant in-memory key-value store (KVS) [26].
Similar to other low-latency in-memory stores like RAM-
Cloud [40] and FaRM [12], remote clients issue get(), put(),
multiget(), and multiput() operations to a Splinter server.
Unlike most other systems, clients also send compiled exten-
sions with custom storage functions to it at runtime, which
they invoke remotely to perform operations over their data. In-
voking a storage function only incurs 1,400 cycles of overhead
and adds no other no runtime overheads. Splinter achieves
low-latency and high-throughput via kernel-bypass network-
ing; one server handles 6.5 million get() or 13.5 million
no-op invoke() requests per second over the network with
tens of microseconds of delay. It supports thousands of inter-
isolated tenants per server; each application and its storage
functions can only access and modify data that it owns.

Extensions reduce requests to storage. With them, a sin-
gle request could fetch a “user profile” object along with the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
s
 o

f
in

v
o

c
a

ti
o

n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Client Determined Onload-Offload
Server Determined Onload-Offload

Figure 1: Server-side vs client-side throughput when CPU cost
varies. Throughput is inversely related to the compute applied to two
accessed values per invocation when run server-side. When the logic
is run client-side, the server must process more requests (2 get() vs
1 invoke() request), but computation is offloaded to clients.

profiles of friends listed within that profile. Another applica-
tion could make recursive k-hop queries by traversing edge
lists stored in values or make classification requests to stored
models. Storage functions access multiple values, reducing
server request processing costs, but they are most effective
for inter-dependent data accesses since these accesses would
otherwise require multiple requests separated by a round-trip.

2.1 Understanding the Impact of Placement
Storage functions can lower server overhead, but if functions
perform too much computation, then the benefits of eliminat-
ing requests are offset as the server CPU becomes a bottleneck.
Figure 1 shows this effect. When functions are run server-side
(circles), a server performs 3.2 million invocations/second
if the functions perform no computation, but its throughput
is inversely proportional to the CPU cycles spent comput-
ing on the values (x-axis). When run client-side (squares),
the server only processes the two get() operations for each
function; the extra computation is run at clients, which have
sufficient idle CPU to perform the work. (Later, we show
that if clients do not have idle CPU capacity, our approach
shifts work to the server still so long as it is not overloaded. In
either case, a global bottleneck is avoided.) When functions
perform no computation on values, the two get() requests
incur higher server-side overhead than sending one invoke()

request, so server CPU becomes a bottleneck when servicing
the equivalent of 2.5 million invocations/second.

Sometimes pure server-side execution provides better sys-
tem throughput and other times pure client-side execution
does. The key insight of this paper is that with lightweight
performance tracking, the server can determine this cross-over
point, and it can separate invocations into those that should
be kept at the server from those that are better run at clients.

2.2 Challenges in Execution Placement
Ideally, a server could get the best of both worlds if it
could perfectly determine where to execute an invocation.
We simulate this by manually controlling where invoca-
tions run based on how much computation they do on data

128 2020 USENIX Annual Technical Conference USENIX Association

(Client Determined Onload-Offload, dashed line). Here,
clients never issue compute-heavy invocations to the server
– so, performance matches pure server-side execution for
data-intensive invocations and pure client-side execution for
compute-intensive invocations.

However, real clients (and real servers) do not know how
much computation an invocation will use a priori; different
functions vary, and even invocations of the same function
could access values and use the CPU in different ratios. Stat-
ically determining how much data or how much computa-
tion an invocation will use is undecidable in general. Static
analysis or modeling might help make good guesses, but the
analysis could be fragile and have pathologies.

Our approach is to measure rather than guess; rather than
using history, another option is to optimistically assume in-
vocations should run at the server and then try to minimize
the cost of correcting mistakes. Figure 1 shows the cost of
this conservative, “black box” approach (Server Determined

Onload-Offload, triangles). Here, clients always invoke func-
tions at the server, but the server quickly sheds invocations
that consume CPU without accessing many values. This adds
overhead for compute-intensive functions, since the server
wastes a small amount of compute before realizing the mis-
take, but these results show this only hurts throughput 3% for
compute-intensive invocations (all other invocations benefit).

Simple enhancements to this scheme are likely to work
in practice. Tracking the history of the costs of a particular
function’s last few invocations can help. If a function’s invo-
cations are determined better to be run client-side a few times
in a row, then running the next several invocations client-side
makes sense. This would work for many applications, but we
intentionally avoided such tweaks in this paper. Our approach
never relies on the history of invocations (neither across nor
within a function); optimizations that make better predictions
are likely limited to only recovering that 3% of performance.

In summary, ASFP based on optimistic onloading of appli-
cation compute to storage with pushback to clients achieves
the best of both worlds. For storage functions that access a
great deal of data, ASFP avoids data movement costs; for
functions that are compute-costly it avoids server bottlenecks.

3 ASFP Design
Applications vary in how they work with data they hold in re-
mote storage. Compute-bound applications may access little
data, so moving data to computation is efficient; for data-
intensive applications moving computation is more efficient.
Multi-tenant stores take this to an extreme: they see a diverse
set of applications with a wide variety of compute and data
needs. The key idea of ASFP is to exploit this diversity by op-
timistically colocating functions with the data they access and
then profiling storage function execution costs to dynamically
relocate invocations that would create a bottleneck.

ASFP relies on mechanisms for running storage functions
at servers, at clients, or split between both and policies to

DPDK

Queues

Task

Queue

NIC

Task

Scheduling

1

2

3

Data Tables
Rx TxRx Tx

Compute Gets/Puts

Figure 2: Splinter Request Execution. Each server core has a dedi-
cated network receive queue where clients steer requests. Each core
polls this queue and creates a task for each incoming request. Tasks
are run round-robin; storage functions can access key-value pairs
and perform custom computation on them within the server.

control the mechanisms and decide placement. The four main
mechanisms are needed for ASFP are:

Server-side Storage Functions (§3.1.1). Tenant-provided
storage functions reduce data movement. They are key for
improving server performance for data-intensive functions.
This functionality already pre-exists in Splinter.

Server-to-client Pushback (§3.1.2). ASFP uses a pushback
scheme that relocates costly function invocations back to
clients to avoid server-side bottlenecks.

Concurrency Control (§3.1.3). Since a single function in-
vocation could run partly server-side and partly client-side,
consistency becomes an issue. ASFP ensures that this does
not cause repeated effects or inconsistencies. It uses OCC
to ensure strict serializability of invocation operations, and
it integrates with OCC read/write set tracking to preserve
work for invocations that are pushed back to clients.

Client-side Runtime (§3.1.4). Clients locally execute invo-
cations that are pushed back from the server, and the ASFP
client library makes this transparent. Applications wait for
invocations to complete; the client library runs pushed back
invocations, fetching data from the server as needed.

The server’s primary objective in ASFP is to minimize
the CPU usage per function invocation and to optimize its
own throughput, which, indirectly optimizes the through-
put of the entire system. The ASFP policy relies on three
key components to do this:

Invocation Profiling. Each server tracks each function invo-
cation as it runs to account for its CPU time.

Request/Response Cost Modeling (§3.2.1). Similarly,
each server dynamically profiles networking CPU costs
to determine a CPU cost model for data movement. This
projects how much server CPU is being saved by running
each invocation at the server. If an invocation has consumed
substantially more CPU cycles at the server than the
request/response cost model projects have been saved by
running it at the server, then it is pushed back to the client.

USENIX Association 2020 USENIX Annual Technical Conference 129

Overload Trigger (§3.2.2). Even compute-bound functions
run more efficiently at the server than they do at clients since
they can avoid data movement. All invocations run at the
server if there is spare CPU capacity available, so long as
they don’t create a bottleneck at the server. Hence, pushback
is only triggered when our server deems itself overloaded.
First, we describe ASFP’s mechanisms to show how stor-

age functions, pushback, and concurrency control work; then,
we explain how its measurements and policies drive its mech-
anisms. Overall, ASFP constitutes about 7,500 lines of code
split across additions to the Splinter server and a the new
client library, which shares much of its code with the server
(available at https://github.com/utah-scs/splinter/).

3.1 ASFP Mechanisms
3.1.1 Server-side Storage Functions

ASFP is built on top of the Splinter in-memory KVS. Splinter
supports typical KVS remote get() and put() operations. It
is a good starting point because it also supports installation of
client-supplied native-code extensions. These extensions add
storage functions to the server that can be called remotely via
invoke() requests. ASFP uses invoke() requests to move
computation to data, and it extends Splinter with new profiling,
policy, and function invocation relocation functionality.

Internally, Splinter multitasks between get(), put(), and
(possibly longer-running) invoke() requests, so each incom-
ing request is converted into a task. The server runs these co-
operative tasks round-robin until they complete or yield; this
prevents head-of-line blocking when functions take awhile to
execute. Tasks handling invoke() operations maintain state
for the running storage function as a coroutine stored in the
task. Figure 2 illustrates request processing. Each server core
polls a CPU-core-specific network receive queue and creates
a task for each incoming request (1©), each of which is added
to a per-core task queue. Each queued task is run once (2©),
then the core polls its receive queue again. The core transmits
a response (3©) when a task completes and then destroys it.

Invocations run interleaved due to cooperative scheduling,
but they can also run in parallel too. Clients steer requests to
specific CPU cores to reduce overhead, but server cores steal
work from each others’ receive queues to keep throughput
high under load imbalance. Hence, pipelined invocations from
a client can run in parallel at the server.

3.1.2 Pushing invoke()s Back to Clients

ASFP lets Splinter servers selectively shed load. When a stor-
age server’s cores are overloaded, it may perform a pushback
on tasks. These tasks are terminated at the server and restarted
client-side. Figure 4 shows the state transition diagram of the
lifecycle of an invoke() request at a server. ASFP adds a new
Offload state to server-side tasks to support pushback.

For each incoming invoke() request, a server creates a task
and tries to run it to completion, sending a Result response
(top of Figure 3). However, if a server is past an overload trig-

G
e
t

C
o
m

p
u
te

V
a
lid

a
te

Server

Client

G
e
t

C
o
m

p
u
te

G
e
t

Server

Client

G
e
t

C
o
m

p
u
te

P
u
s
h
b
a
c
k G

e
t

C
o
m

p
u
te

V
a
lid

a
te

V
a
lid

a
te

G
e
t

Server-side Storage Function Execution

Pushed-back Storage Function Execution

Figure 3: Timeline of a function invocation request when run server-
side (top) and when pushed back to the client side (bottom). In this
case, offloading this relatively long-running function to the client
gives the server extra CPU resources to service other requests.

ger point (§3.2.2), then it chooses some Ready invoke() tasks
that are good candidates for client-side execution based on a
threshold function (§3.2.1), and it moves them to Offload.

When tasks in the Offload state are scheduled, a Pushback

response is generated that informs the client that it should run
the function client-side. The client runs the function, falling
back to making get() requests to the server to fetch needed
values (put()s are cached locally and installed atomically
when the invocation completes, §3.1.3). Figure 5 shows this.
If the client receives a Result response, the work of the re-
quested invocation has been done, and there is nothing left to
do. If the client receives a Pushback response, the client be-
gins to execute the function logic itself in a fashion similar to
the server. The bottom of Figure 3 shows the interactions be-
tween the server and the client when an invocation is pushed
back to the client; as shown, this avoids a bottleneck in this
case, freeing the server to process other requests at the server.

3.1.3 Consistency and Concurrency Control

Storage functions and pushback create interrelated challenges,
especially for consistency. First, invoke() tasks run concur-
rently at the server; this can happen because tasks run inter-
leaved at the server and because server cores perform work
stealing. Pushed back requests also create concurrency, since
those functions run at the client in parallel with server tasks.
Second, when tasks are pushed back, the client restarts execu-
tion of that function from the beginning – pushback has no
means to preserve the running state of a function to resume
it at the client. This means that without care, clients might
repeat operations, which would affect the concurrent behavior
of functions and make it hard to reason about consistency.

To solve these consistency issues, invocations are run as
strict serializable transactions. This makes it easy to reason
about consistency regardless of where an invocation is run.
ASFP adds OCC transactions to Splinter. When a server re-
ceives an invoke(), it creates an empty read/write set. The
server tracks the version of each value that a task sees and the
values that the tasks wishes to install in storage. If the task

130 2020 USENIX Annual Technical Conference USENIX Association

https://github.com/utah-scs/splinter/

Pushback

Running

Ready

Committed/

Aborted

Offload

Result

Invoke

Get (Local)

Yield

Schedule

Validation

Server

Overload

State Change Request Response

Figure 4: Server-side task states for an invoke().

ReadyCreate

Awaiting

Validation

Awaiting

Data

Running

Get

(in local Read Set)

Yield

Schedule

Get (Remote)

Install

RW Set

Get

Get

ValidationResult

Pushback

State Change Request Response

Completed

Validate
Committed/

Aborted

Figure 5: Client-side task states for a pushed-back invoke().

completes on the server, validation is performed by latching
the invocation’s read/write set. For each key in the read set,
if the associated value versions remain unchanged, then its
write set is installed and the client is informed of commitment;
otherwise, the server indicates abort.

The server’s read/write set has a second purpose: by track-
ing what values an invocation has read, the server can save
work by returning those values immediately on pushback. The
client installs this read/write set locally before restarting the
function. This way, the server will never have to repeat any
work for a pushed back task: all of the values the task needs
have already been delivered to it up to the point that it was ter-
minated at the server. This is key: pushed back requests never
generate extra work for the server. This bears similarities to
reconnaissance queries in deterministic databases [50].

On completion of a pushed back task, the client sends the
write set and version metadata for the values it read to the
server where validation is performed the same as if the task
has completed server-side. This is another advantage of OCC:
the server need not keep any state about an invocation once it
is pushed back. For example, the server retains no metadata
or locks on behalf of a pushed back task. This makes any
recovery or state reclamation unnecessary on client failures.

3.1.4 Client Runtime for invoke()s

Splinter client requests consist of basic get()/put() requests
and invoke() requests that attempt to invoke a storage func-
tion within the store. Clients register extensions at the server
before invoking the functions they contain. ASFP requires
that the same extensions are registered at the client library as
well, so that they can handle pushed back invoke() requests.

On each invoke() response from the server, the client
checks a Pushback response flag. If it is set, the client per-
forms logic similar to request dispatching on the server: it
creates a task and coroutine similar to the ones used on the
server, and it places the task in a client-local task queue (Fig-
ure 5). The main difference is that the read/write set returned
from the server is used to pre-populate the read/write set of
the invocation before it starts at the client side.

Clients put Ready tasks in their task queue and run tasks
round-robin, just like the server. This lets clients make

progress on invocations while continuing to issue new op-
erations to the server.

The ASFP client library provides a binary-compatible inter-
face with the server, so identical versions of storage functions
work whether they run at the client or at the server. Splinter
extensions have a restricted get()/put() interface for inter-
acting with storage, and they have a restricted set of white-
listed library functions they can run beyond that. Extensions
on the client-side have the same restrictions, so that pushed
back invocations will run the same way in both places.

Client-side execution does run different from server-side
in one important regard: the client must access key-value
pairs remotely. This is solved by passing in handles into stor-
age functions through which they request access to data. On
the server-side the handles call get()/put() functions to
access data directly; on the client-side the handles issue re-
mote get()/put() requests. Requests to the store take about
10 µs to service, and task context switch time is just 24 cy-
cles, so tasks waiting for responses from the server enter an
Awaiting Data state. Each invocation has a unique client-
side id; whenever the client library receives a response to a
particular extension invocation, it adds the record to the local
read/write set for that invocation. Clients read through their
read set; after a “hit” in their read set or upon the completion
of a remote access, the task is returned to the Ready state.

3.2 ASFP Policies
3.2.1 invoke()s Profiling and Classification

Splinter is both multi-tenant and extensible. Together, these
mean that it must deal with different access patterns and func-
tions with varying compute-to-storage-access ratios. This also
means a server will be able to find many suitable functions
to run that can reduce its load. When overloaded, it must de-
termine which Ready tasks should be pushed back; however,
pushing back the wrong tasks can hurt its throughput.

Whether a task is beneficial to server throughput when run
server-side is determined by two things: the amount of CPU
time it uses computing on the values it accesses (which hurts
throughput) and the number of values it interacts with (which
benefits throughput, since each access run at the server elimi-

USENIX Association 2020 USENIX Annual Technical Conference 131

nates a network request that it otherwise would have had to
process). Effectively, each time a task accesses a stored value
it should be credited for the amount of server CPU it saved
by having run that operation locally. Likewise, whenever it
performs other computation that does not save server CPU
work it should be debited, since this slows request processing.

This results in a natural threshold for when tasks would be
pushed back to clients, which we call the pushback threshold.
It is defined by

c < nD− (D+ I)

where c is the amount of computation done by an invocation
so far, n is the number of values accessed by the invocation
so far, D is the request processing CPU cost, I represents
the cost to perform an invocation (beyond request processing
cost). Effectively, nD is the work the server would have done
if the client issued n get() requests. (D+ I) represents CPU
cost at the server of an invoke() request. Hence, so long as
c < nD− (D+ I), server-side work is saved by letting the
invocation remain at the server.

This inequality divides all tasks into two classes, S and C .
Tasks in S are beneficial to run at the server, and tasks in C
improve server throughput when run at clients. The inequality
does not hold when an invocation accesses zero or one values;
these invocations save the server less work than the cost of
an invoke() request. It never makes sense to run them at the
server, and it would also be unusual for a client to try to do
so. The model is simple and linear, so the server can calibrate
it inexpensively at runtime. Just by profiling the cost of an
invoke() operation and a get() operation, it can accurately
assess which invocations should be pushed back.

As discussed in Section 2.2, it is undecidable in general to
determine the class of an invocation. The input parameters to
an invoke(), the data its accesses, the server hardware, and
its cache policies/pollution all influence performance. Our
approach simply assumes all invocations should be initially
attempted server-side. Exploiting history or domain knowl-
edge would improve performance in cases where functions
are pushed back. However, we explicitly avoid relying on such
information since its effectiveness is workload dependent, and
it can only provide a few percent performance improvement
for invocations in C (and would only hurt functions in S).

3.2.2 Server Overload

The final piece of ASFP is overload detection. Functions
should always run at the server when it has idle CPU; this
still eliminates data movement costs, and it frees client CPUs
to do other work. However, when overloaded, the server must
shed load to improve throughput and control response times.

Algorithm 1 shows how the server detects overload (others
use similar approaches [39]). The server is under high load
when it receives new tasks and the requests from previous
scheduling passes have not completed. At the beginning of
a server’s round-robin pass through its set of tasks, it polls
its receive queues and creates up to B tasks, one for each

Algorithm 1: Server Overload Detection
1 Function Scheduler()

2 totalTime← 0;
3 while true do
4 t← taskQueue.Dequeue();
5 if t = DispatchTask then
6 newTasks, dispatchTime← PollRecvQueue();
7 if totalTime� dispatchTime then
8 if taskQueue.length ≥ B/k and

newTasks.length ≥ B/k then
9 taskQueue.ClassifyAndPushback();

10 taskQueue.Enqueue(newTasks);
11 end
12 taskQueue.Enqueue(t);
13 totalTime← 0;
14 end
15 else if t = RequestTask then
16 t.getPutTime, t.computeTime, t.state = t.Run();
17 totalTime += (t.getPutTime + t.computeTime);
18 if t.state /∈ {Committed, Aborted} then
19 taskQueue.Enqueue(t);
20 end
21 end
22 end

incoming request (where B is the maximum receive batch size,
which we fix at 32). Then, it compares the amount of time
spent dispatching requests in that round of scheduling (time
spent polling network queues and creating tasks) with the
time spent executing invocation tasks in that scheduling pass.
If invocation task execution time is the dominating factor,
the scheduler checks the task queue length. If it contains
at least B/k tasks and processing incoming requests would
create at least another B/k tasks, then the scheduler sets a flag
indicating the server is overloaded. Higher values of k trigger
overload more easily; k = 2 works well, and we keep it fixed
in our experiments. This guarantees that the scheduler:

1. only pushes back work if load is mainly from invoke()s;
2. keeps at least B/k tasks in the queue after pushback; and
3. only pushes back when ≥ 2B/k requests await service.

On overload, the server tests the threshold inequality (§3.2.1)
on all old Ready tasks, triggering pushback on some of them.

4 Evaluation
We compare three models for storage functions. Client-side
runs them on clients and issues get() requests to the server.
This is state-of-practice and the baseline. Server-side runs
functions on the server and represents Splinter’s approach.
Pushback is our approach, which runs functions on the server,
pushing some back to clients. We focused on these questions:
Does ASFP improve storage server throughput? For an

application mix consisting of machine learning classification
and graph-based storage functions, ASFP can improve
throughput by 10% (§4.5.3). For functions with dependent
data accesses, ASFP improves throughput by 42% (§4.2).

132 2020 USENIX Annual Technical Conference USENIX Association

(a) d = 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

(b) d = 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

(c) d = 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

Figure 6: A function with 2, 3, or 4 dependent get()s followed by varied computation lengths. ASFP improves throughput by 42% over
client-side execution. For compute-intensive invocations, ASFP throughput is within 15% of pure client-side in the worst case.

What is the cost of using ASFP? For invocations that im-
prove server throughput (those in class S), ASFP gives
the full performance benefit of server-side execution with
no measurable overhead. For compute-intensive invoca-
tions that access little data, classification and client-side
re-execution delivers performance within 15% (§4.2) of pure
client-side execution in the worst case.

How effective is the ASFP classifier? For a mix of predom-
inantly C -class invocations with significant compute vari-
ance, 87% of all C -class invocations are offloaded to
clients (§4.3). The remaining are accurately classified but
retained by the server because it has idle compute to execute
them, improving overall system throughput.

How does ASFP impact latency? For invocations in class
S , ASFP saves on round trips to the server, which reduces
latency by as much as 2× (§4.4). For invocations in class C ,
ASFP’s read/write set and server overload-based optimiza-
tions can help reduce latency by 15% compared to executing
client-side. For extremely compute-intensive invocations,
ASFP matches client-side execution.

How do ASFP and OCC interact? Beyond providing con-
sistency, OCC lets the server send back read/write sets on
pushback, improving throughput by 33% (§4.6). ASFP also
exploits idle compute at both servers and clients speeding
up transactions and reducing abort rates (§4.6.1).

4.1 Experimental Setup
Evaluation is on five machines; four as clients and one server
(unless otherwise noted) on CloudLab [13] (Table 1). All use
DPDK [11] over Ethernet. Eight of ten server cores process
requests; Splinter uses two cores for task management. Clients
also use eight cores; each core pipelines invoke() requests
up to a depth of 32 and receives responses in a closed-loop.

Using a closed-loop is helpful. ASFP demands complex,
heterogeneous workloads; an open-loop load requires careful
manual pacing of the request rate for each storage function
type. To ensure we always measure the server at saturation
(unless otherwise noted), we control client thread count in-
stead of manually tuning per-storage-function request rates.

The server held 15 GB as 120 M records (30 B keys, 100 B
values) unless otherwise noted. On pushback, clients trans-
parently ran functions locally, issuing remote record requests.

CPU Ten-core Intel E5-2640v4 at 2.4 GHz

RAM 64GB Memory (4x 16 GB DDR4-2400 DIMMs)

NIC Mellanox CX-4, 25 Gbps Ethernet

Switch Mellanox SN2410 48-port, 25 Gbps per port

OS Ubuntu 16.04, Linux 4.4.0-138, DPDK 17.08
Rust 1.29.0-nightly, 16×1 GB Hugepages

Table 1: Experimental setup. Evaluation used one machine as a
server and four as clients. All experiments were run on CloudLab.

4.2 ASFP Throughput Benefits & Costs
Benefits. ASFP combines the benefits of server- and client-
side execution; invocations with low compute-to-data access
ratios run on overloaded servers, otherwise they are offloaded
to clients. To show this, we run a microbenchmark that varies
the number of records accessed and the amount of compute
performed within an invocation.

Clients issue invoke()s that do d data-dependent get()s
followed by x cycles of compute. Figure 6 shows server
throughput when the function is run purely client-side, purely
server-side, and with adaptive pushback for d from 2 to 4.
With a small x, server-side execution prevents clients from
stalling on remote get()s. With a large x, client-side execu-
tion with remote value access avoids a server CPU bottleneck.

Here, ASFP’s simple model works well. In Figure 6 (a),
invocations that perform little compute over values stay at
the server, improving throughput over client-side execution
by 27%. Invocations using more CPU are pushed back, and
throughput tracks the client-side approach. For increasingly
CPU-intensive invocations (x > 6,000), the throughput of
pure server-side execution tends toward zero, so the benefits
of pushback over server-side execution grow (until all client
CPUs saturate, but realistic servers will service many clients).

These results show that the more data an invocation ac-
cesses, the more savings pushback provides; increasing d to
3 and 4 gives savings of up to 33% and 42%, respectively
(Figure 6 (b), (c)). The area between pushback and client-
side can be large for CPU-inexpensive functions (left side of
graphs), but the area between pushback and server-side for
CPU-expensive functions (right side) is also large since real
functions will vary even more in how much CPU they use.

USENIX Association 2020 USENIX Annual Technical Conference 133

(a) High Load (87% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

(b) Medium Load (31% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

(c) Low Load (3% Pushed-back)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u
e
n
c
y

Invocation Computation (cycles/operation)

Requests
Pushback

Figure 7: Distribution of invocations generated overlaid with those pushed back to one client under different loads. ASFP can use idle server
compute to run some of the invocations classified as C . This is why the distributions do not completely overlap.

Costs. These graphs also show ASFP’s costs. On a push-
back, there are two costs: the first is the cost of having the
server process an extra request for invoke() and validation;
the second is the computation the invocation did before it was
terminated. Most of the first cost is eliminated by shipping all
accessed values back to the client on pushback. An invoke()

only costs 9% more than a get(), and all practical functions
receive some values when they are pushed back. Hence, the
cost of the invoke() is offset by the fact that it eliminates the
need for the client to issue at least one get().

The second cost explains the gap between the client-side
and the pushback approach. This experiment is a pessimistic
case: the function first accesses all of its values, then it per-
forms compute over those values. For compute-intensive func-
tions, this means the server runs them longer before it pushes
them back; for functions where data access and computation
are intermingled, pushback would achieve performance closer
to the client-side case. Even so, in all cases where client-side
execution would outperform server-side, pushback is only
13 to 15% slower than running everything at clients.

Cost Breakdown. This 15% overhead for ASFP for C -class
functions in Figure 6 (a) has two components. The first is the
cost of suspending an invocation and sending its read/write
set back to the client, but this only accounts for 3% of the
15%. Figure 1 shows this; in it, the performance difference
between (omniscient) client-determined placement and server-
determined placement that observes each invocation is only
3% even when invocations are in C . The second component
of the overhead (12%) comes from an interplay between over-
load detection and C -class invocations. In Figure 1, the server
never executes an invocation in C to completion, even if the
server is idle, but ASFP completes invocations server-side,
regardless of class, if the server is underloaded. However,
a server’s load can shift rapidly at fine timescales. Leaving
C -class invocations onloaded is a form of speculation about
whether invocations will arrive in the near-term that will over-
load the server. This 12% is due to cases where the server
performed some C work, and it became overloaded during
that work. This effect can be seen in §4.3 Figure 7 (a) as well;
even at high load some C -class functions are run at the server.
This can be controlled; making overload detection more ag-

gressive reduces this overhead (down to 3%, if desired); the
trade-off is that the server may sit idle in more cases to ensure
it has capacity when S -class tasks arrive.

4.3 Invocation Heterogeneity
Real invocations are likely to be heterogeneous in two ways:
first, the total compute performed might vary across invoca-
tions (inter-invocation heterogeneity), and second, compute
might be clustered at points of execution instead of being
evenly distributed across data accesses (intra-invocation het-
erogeneity). To be effective, ASFP must be able to accurately
classify invocations (as S or C), as well as efficiently use both
server and client CPU under such forms of heterogeneity.

Inter-Invocation Heterogeneity. To demonstrate ASFP’s
efficiency under inter-invocation heterogeneity, we configured
one client to generate invoke()s where the number of cycles
of extra compute performed (after two dependent get()s) is
drawn from a normal distribution, N (1500,500). Figure 7 (a)
plots the distribution of the generated requests overlaid with
the distribution of those that were pushed back and completed
on the client. This figure shows two things; first, no requests
that perform less than 600 cycles of work are pushed back,
so inexpensive functions are executed at the server; second,
the two distributions do not completely overlap, so many
compute-intensive invocations still complete at the server.
With just one client, the server has some idle CPU capacity;
as a result, many of invocations in C run server-side. As the
load on the server decreases, this spare capacity increases,
allowing more C invocations to run server-side (Figure 7
(b), (c)). This shows that ASFP can be efficiently split work
between the server and client(s); any idle compute at storage
can accelerate clients and improve throughput.

Intra-invocation Heterogeneity. Figure 6 presented the
benefits and costs of ASFP when compute is performed after
all records are accessed by an invocation. Under this sce-
nario, pushed back invocations benefit from the shipped back
read/write set. However, real function invocations are likely
to perform compute at different points of execution (between
record accesses for example). Figure 8 explores such sce-
narios. ‘Pushback-y’ represents a run where invocations per-
form compute after issuing y get()s (out of a total of 4 per

134 2020 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side
Pushback-0

Pushback-2
Pushback-4

Figure 8: Throughput when the position of compute within an invo-
cation varies. ‘Pushback-y’ is when invocations perform compute
after issuing y get()s. ASFP is never worse than pure client-side.

0.0

100

200

300

400

500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e
d
ia

n
 L

a
te

n
c
y
 (

 µ
s
)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback

Figure 9: Effect of ASFP on median latency. ASFP improves latency
between 15% to 2× compared to pure client-side.

invoke()). ASFP throughput is always better than or equal
to pure client-side execution; for cases where compute is per-
formed early on (Pushback-0), compute inexpensive invoca-
tions (left side of the graph) get pushed back earlier, resulting
in lower gains over pure client-side execution.

4.4 ASFP Impact on Latency

Figure 9 shows median latency for an experimental setup
similar to Figure 6 (a). When compute is less than 600 cy-
cles, ASFP reduces round trips by running invocations on the
server, improving latency over pure client-side execution by
as much as 2×. As compute increases, invocations get pushed
back; ASFP’s latency is still better (15%) because these in-
vocations receive their read/write set, resulting in one less
RPC compared to client-side execution. The pure server-side
approach bottlenecks, causing its response times to spike. As
compute increases beyond 6,000 cycles, pushed-back invo-
cations cause clients to saturate, reducing server load. This
makes ASFP’s overload detection loop retain more invoca-
tions on the server, increasing median latency to track that of
pure client-side execution. Since, ASFP restarts pushed-back
invocations at clients, it can increase the latency by up to 2×
in the worst case. However, the only invocations that could
experience this worst case are ones that never access values,
since invocations that access values always execute more
quickly on the client-side after pushback due to read/write set
shipping. These functions should be rare and should not be
attempted at storage servers; clients have little reason to send
them to the server since they never access data.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LR D-Tree R-Forest

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

e
c
o
n
d
) Server-side

Client-side
Pushback

Figure 10: Machine learning classifiers. LR and D-Tree are within
2% of pure client-side. For R-Forest, ASFP leverages idle server
compute, improving performance by 22% over pure client-side.

4.5 Realistic Applications
Beyond microbenchmarks, we applied ASFP to more realistic
functions. We use three types of functions from different do-
mains that we believe would be a possible fit for low-latency
in-memory storage services. The first is an application barely
in class S that accesses little data and performs little compute
per invocation: Facebook’s TAO social graph database [5].
The second is an application barely in class C that accesses
little data with compute requirements slightly higher than the
S /C threshold: a machine-learning based disk failure predic-
tion. The last is an application well in class C that accesses
little data and uses significant CPU: authentication [42]. To
be effective, ASFP must classify (as S or C) and place in-
vocations (on the server or the client) and improve overall
throughput. We show ASFP can do so for these functions and
for mixes of both S and C invocations.

4.5.1 Machine Learning

We use disk failure prediction [17, 28, 41, 44] for our first
application. This application consults a classifier to predict
whether a disk in a data center is about to fail. We chose
classifiers because they benefit from Splinter’s model that
supports complex but native functions; they are a realistic and
expected use; and their compute requirements vary.

We evaluated three classifiers: logistic regression (LR), a
decision tree (D-Tree) and a random forest (R-Forest) (an
ensemble of decision trees). Classifiers are trained offline
from a data set with 25 features [37]. The server holds data
points to be classified (loaded/streamed in a priori). Two
clients generate invoke()s that classify two data points each.

Figure 10 shows how the classifiers perform. All three
are in C , so client-side execution outperforms server-side. R-
Forest is the most CPU-intensive. ASFP outperforms both
pure client-side (22%) and pure server-side (2.3×) execution
because invocations are placed on both the server and the
client. LR and D-Tree are harder cases; they are nearer to
the S /C split; the extra overhead of initially running them
server-side before pushing them to the client cuts into ASFP’s
benefits. As a result, for these two classifiers, pure client-side
execution marginally outperforms ASFP (by < 2%) even con-
sidering the extra compute capacity that the server provides.

USENIX Association 2020 USENIX Annual Technical Conference 135

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Authentication extension

T
h
ro

u
g
h
p
u
t

(t
h
o
s
a
n
d
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

e
c
o
n
d
)

Server-side Client-side Pushback

Figure 11: Authentication application. Compared to running server-
side or client-side, ASFP can exploit idle cycles anywhere among
the machines, improving throughput by nearly 2×.

Figure 12: TAO/D-Tree/R-Forest Mix. ASFP correctly places invo-
cations, improving overall throughput by 10%. Solid-colored regions
of the bars show throughput due to invocations that ran server-side;
hashed regions show throughput due to those that ran client-side.

4.5.2 Authentication

Authentication is another application; it uses bcrypt [42] to
verify user identity. It uses few values, and it is computation-
ally costly (well in class C). Even so, it can still benefit from
ASFP. We ran an experiment over 128,000 records, each con-
taining a 30 B username and a 40 B salted hash (16 B salt,
24 B hash). One client issues invoke()s with a username and
a 72 B AES-encrypted password. The salted hash is applied to
the password. If the result matches the stored salted hash, then
the invocation returns success, otherwise it returns failure.

Figure 11 shows throughput. Purely server- and client-side
execution perform about 40,000 authentications/s. Both are
CPU bottlenecked; bcrypt takes about 450,000 cycles per
request. With pushback, throughput is nearly doubled over
both approaches, as expected; with ASFP, CPUs on both the
server and the client can be used to perform authentication.

4.5.3 Application Mix

Splinter is expected to run multi-tenant workloads, and push-
back is primarily beneficial in a setting where there are a wide
and heterogeneous set of invoke() requests. To create such a
scenario, we ran a mixed workload comprised of an R-Forest
classifier (class C), a D-Tree classifier (class C by a small
margin), and an implementation of Facebook’s TAO [5, 26]
data model which consists of dependent data accesses (class
S). Three client machines generated requests to the server.

Figure 12 shows how ASFP improves throughput for this
mix. The solid-colored regions of the bars show throughput

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f
in

v
o
c
a
ti
o
n
s
/s

)

Invocation Computation (cycles/invocation)

Client-side
Server-side

Pushback
Pushback-wo-rwset

Figure 13: Impact of read/write set shipping on ASFP. When turned
off, throughput suffers by 33% since pushed-back invocations load
the server by reissuing remote get() requests.

achieved from running invocations server-side. The hashed
regions of bars show throughput achieved from running in-
vocations client-side. The final bar in each group shows the
aggregate throughput of the three applications (both at clients
and the server). R-Forest requests are CPU-intensive; so, they
are bottlenecked by server CPU in pure server-side execution,
and they hurt the throughput of the other applications sharing
the server. Running functions client-side avoids this bottle-
neck and interference, raising the throughput of the other
applications. However, this runs TAO at clients as well, which
creates extra server load since it is in class S . Hence, ASFP
provides the best results. R-Forest and D-Tree are classified as
C and run (almost completely) at clients. TAO is classified as
S and runs at the server improving server throughput. Hence,
ASFP provides 10% better throughput than a conventional,
disaggregated approach. Interestingly, onloading TAO creates
CPU headroom at the server that R-Forest is able to exploit.

This workload is a challenging one for ASFP; a majority
of the TAO requests only access one data item per invocation
(60%); hence, all of the applications perform fairly well when
executed client-side. As a result, the system only experiences
modest gains when TAO is run at the server.

4.6 Concurrency Control and ASFP
Beyond providing consistency, OCC improves ASFP’s
throughput; instead of reissuing get() requests to the server
and increasing its request processing load, pushed-back re-
quests reuse their read/write set. We explore this optimization
with a setup similar to Figure 6 (a). Figure 13 shows that
disabling read/write set shipping for pushed back invocations
hurts throughput by 33% (Pushback-wo-rwset). Note, this
workload only accesses two records per invocation; invoca-
tions that access more records would benefit more.

4.6.1 ASFP Impact on Abort Rate

Moving execution between servers and clients affects transac-
tion commit latency and abort rates. To study this, we used
YCSB+T’s Closed Economy Workload [9] with four clients
generating a request distribution where 50% of the requests
are read-only and the remaining are read-modify-writes. We
added a parameter to the read-modify-write transactions to
control how much compute each one performs.

136 2020 USENIX Annual Technical Conference USENIX Association

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
T

h
ro

u
g
h
p
u
t
(M

O
P

S
) Client-side

Server-side
Pushback

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

A
b
o
rt

 R
a
te

 (
P

e
rc

e
n
ta

g
e
)

Invocation Computation (cycles/invocation)

Figure 14: Impact on abort rate. ASFP leverages idle compute to
speed up transactions, reducing read/write conflicts and abort rates.

Figure 14 shows trends similar to §4.2. ASFP speeds trans-
actions/invocations in S by placing them on the server, re-
ducing read/write conflicts and aborts. Server-side execution
would bottleneck and slow transactions/invocations in C , in-
creasing conflicts. Here, ASFP uses clients to speed invoca-
tions, reducing aborts. The conflict window of each transac-
tion is mainly determined by its latency. This relationship
can be clearly seen when comparing these results to those
in Figure 9. ASFP avoids bottlenecks, controls latency, and
reduces aborts regardless of how much compute invocations
use. We omitted results for a 90-10 read/write ratio; aborts
are always negligible (0.02%), even for invocations in C .

5 Discussion
Security. ASFP builds on Splinter’s unique function isola-
tion model that uses Rust’s type system. This software-based
scheme has a broad attack surface including Splinter’s code;
Rust (its type system, compiler, and standard library com-
prising millions of lines of code); and underlying libraries
including libc and DPDK. This model is also complicated
by micro-architectural side channels and speculative execu-
tion attacks, which continue to surface. For example, Splinter
does not include the micro-architectural state flushes needed
on protection domain switches to protect against information
leaking via Spectre v2 and other similar vulnerabilities [6,23].

ASFP is independent of Splinter’s isolation and trust model,
but there two ways that its isolation costs affect ASFP’s appli-
cability to other systems. First, its software-based isolation
has extremely low protection domain/context switch costs.
Tenant function invocations cause neither page table nor stack
switches; hence, invoke()s are only 9% more expensive than
get()s. With stronger isolation schemes, like conventional
page table switching, each invoke() would need to make
up for these costs, which can add up to several microsec-
onds of CPU. With Splinter, some functions that only access
two records improve efficiency when run server-side; if a
page table switch were needed per invocation, invocations
that accessed less than tens of records would be inefficient

server-side. The second impact of Splinter’s model is that it
supports thousands of tenants per machine with low overhead,
increasing the heterogeneity of operations it would be offered
by tenants. Overall, this means using stronger isolation primi-
tives would result in providers dedicating at least one server
core to each tenant to avoid protection domain switch costs;
this would limit the diversity of functions each server handles.
Larger-than-DRAM data & distribution. ASFP targets
low-latency in-memory storage where only small, hot records
are economical to store, which simplifies its cost model.
Records are so small that the CPU cost of copying them
(in/out of network buffers) is negligible, and neither I/O CPU
cost nor storage throughput limits need to be considered. Ad-
dressing more complex systems is an interesting problem.

ASFP is focused on one server and its clients. As-is it can
work in a sharded store where data is partitioned (e.g. by key).
In the future, we plan to extend its OCC model for distributed
transactions while factoring in data movement costs and abort
rates in deciding placement of operations.
Idle client-side CPU assumptions. ASFP assumes clients
have sufficient idle CPU to run pushed back invocations. This
relies on provisioning client capacity according to state-of-
practice: as if all invocations run client-side. When invoca-
tions are shifted server-side, this can only produce extra idle
capacity at clients and servers.
State migration. A full system would need sharding, load
balancing (similar to Slicer [4]), state migration to consolidate
load [25], and a means to deprovision idle CPUs. ASFP is
complementary; load and state must be rebalanced in any clus-
ter with or without ASFP. For the heterogeneous invocations
offered to servers, ASFP optimizes server CPU regardless of
how state is sharded across the cluster.
Restart vs. resume. Process/function migration [10, 32, 35]
is costly and complex. Resumed functions would need to
send intermediate state to clients; that additional state cap-
ture, transmission, and restoration would need to be incorpo-
rated into ASFP’s cost model. Further, restarted, pushed back
functions take no more client-side CPU than they would in
today’s client-side approaches. Worst case, a function could
be (nearly) computed at the server and repeated at a client.
In the cases we have looked at redundant work is small, so it
would be hard to offset function shipping/resuming costs.
Predicting placement. Speculatively onloading a function
only adds 3% server load even when it is always pushed back
(Figure 1). Pathological cases could access many records after
pushback. These would perform nearly the same as today’s
pure client-side approach, but history/prediction could help.
Simple approaches that track recent invocation misclassifi-
cations could be used to bias a function’s future invocations
to stay server-side. Pushback only happens on overload, so
some misclassification has little impact; the server need only
classify enough tasks correctly to mitigate overload.
Other key-value stores. ASFP can work in any extensible
store, like Redis [43]. Splinter’s kernel-bypass networking

USENIX Association 2020 USENIX Annual Technical Conference 137

simplifies cost modeling; modeling kernel TCP costs would
add complexity but would increase potential savings over our
implementation. ASFP is also targeted toward diverse, multi-
tenant workloads with heterogeneous operations that it can
place. Single-application functions added to a single-tenant
store could likely be statically classified as server- or client-
side, eliminating some benefits of dynamic profiling.
Network congestion. Congestion isn’t a problem in our high-
bandwidth setup. However, exposing transport layer informa-
tion (window sizes) to ASFP could let it choose placement to
minimize network traffic under congestion. If an invocation
accesses little data and enqueues many bytes for transmission
while the network is congested, the server could return the
data instead, forcing the client to compute the result.

6 Related Work
Adaptive pushback for Splinter builds on many ideas.
Storage Procedures, UDFs, and Database Extensions.
There are several common approaches for pushing computa-
tion to databases and data stores. SQL is ubiquitous, though
it is a poor fit for specialized computation, especially for
microsecond timescales. SQL stored procedures [34] and
UDFs [19, 22, 33, 38, 48] allow more specialized, procedu-
ral logic to be added to stores, and they can often be com-
piled for performance. Some databases also allow dynamic
libraries to be loaded as well for specialized operations [49].
Some key-value stores and object stores support similar user-
provided functions or extensions provided either at server-
start time [43] or at runtime [14, 26, 45, 53], some relying on
just-in-time compilation and some ahead-of-time compiled.

All of these approaches can ship computation to storage,
but they do not address the question of whether doing so
is beneficial for storage servers or its clients. Our approach
could be applied to stored procedures and UDFs.
Thread and Process Migration. In the 1990s, both process
and thread migration were pursued as ways to move com-
putation at a fine-grain, often to place computation near
data [10, 32, 35]. These approaches are often complex and
highly runtime-specific, since moving in-progress computa-
tion requires precise reasoning about the state it closes over.
We take a much simpler approach; rather than moving run-
ning functions, we preserve some of the work they have done
through their read/write sets and restart functions from the
beginning at clients. This assumes that invocations tend to be
short, which is true for the small timescales that we target.
Fast, Disaggregated Storage. Fast networks have led to
disaggregated storage and even disaggregated memory
[16, 30, 31]. Many works focus on building scalable in-
memory stores that move data efficiently [29], and many more
have used techniques like kernel-bypass and RDMA (both
one-sided and two-sided) to minimize the CPU cost of request
processing for fast storage [20, 21, 29, 52]. These approaches
reduce server-side CPU consumption and improve throughput
for the simple operations that these stores provide, but they

provide no way to move computation into storage when it
would improve server efficiency. FaRM [12] is an exception.
Clients can do this manually since each node in FaRM is
both a client and a server; functions can be compiled into the
storage server for custom request handlers. However, FaRM
lacks an adaptive mechanism to move invocations of these
functions between clients and remote servers.

Cell [36] is a distributed in-memory B-tree that uses
RDMA. Cell uses a similar idea to pushback. In Cell, when
clients lookup keys in the B-tree they can use one-sided
RDMA reads to fetch nodes from the B-tree and perform
the tree traversal client-side, or clients can send a request to
a server to have it do the traversal. Clients track round-trip
times to estimate queuing delay to determine whether the
server network card or server CPU is under pressure. This
lets them intelligently choose between the two approaches
to improve server throughput. Our approach is similar, but
ASFP is black box; it assumes no visibility into the functions
that clients want to run. As a result, it must track and predict
the relative client-side versus server-side cost of operations.

Offloading and migrating code has also been pursued in
other contexts like edge computing and mobile devices where
there is a large imbalance between the capabilities of devices
and where moving data over edge links incurs high cost [8,15,
18,24,46]. Our approach and Splinter are also similar to Active
Disks [1, 7] that allow application code to be downloaded to
and executed on disk- and flash-based storage devices.

7 Conclusion
Today, data center and cloud storage systems disaggregate
compute; clients must fetch data to compute on it, resulting
in wasted work. When clients can send computation to stor-
age, both clients and storage servers can benefit; however, to
be practical, storage servers need a means to avoid becom-
ing a bottleneck. ASFP does this by keeping client functions
logically decoupled from storage and deciding physical place-
ment of their invocations at runtime. By profiling invocations
and observing both the CPU costs and savings they create at
the server, storage servers can dynamically determine when
invocations should be forced back for client-side execution.

We show ASFP’s promise; servers and smart clients adapt
function placement at microsecond timescales, improving
throughput even when storage function CPU cost varies. We
show it works when running a mix of different applications’
logic, providing better throughput than running that logic
purely at storage servers (85% more) or clients (10% more).

Acknowledgments. Thanks to Mazhar Naqvi and Jacob Barzee for
contributing to ASFP, to the reviewers for their comments, and to
our shepherd, Changwoo Min. This material is based upon work
supported by the National Science Foundation under Grant No. CNS-
1750558. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
This work was also supported in part by Facebook and VMware.

138 2020 USENIX Annual Technical Conference USENIX Association

References
[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active

disks: Programming model, algorithms and evaluation.
In Proceedings of the Eighth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS VIII, pages 81–91,
New York, NY, USA, 1998. ACM.

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry
Qin. Fast Key-value Stores: An Idea Whose Time Has
Come and Gone. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 113–119. ACM,
2019.

[3] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks. In Proceedings of
the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, USA, May
22-25, 1995, pages 23–34, 1995.

[4] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-sharding for datacenter applications. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 739–753, 2016.

[5] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s Distributed Data
Store for the Social Graph. In Presented as part of the
2013 USENIX Annual Technical Conference (USENIX
ATC 13), pages 49–60, San Jose, CA, 2013. USENIX.

[6] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin Von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and
Defenses. In Proceedings of the 28th USENIX Confer-
ence on Security Symposium, SEC’19, page 249–266,
USA, 2019. USENIX Association.

[7] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan
Kim, Youngmin Yi, and Gregory R. Ganger. Active
Disk Meets Flash: A Case for Intelligent SSDs. In
Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS
’13, pages 91–102, New York, NY, USA, 2013. ACM.

[8] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,
Alec Wolman, Stefan Saroiu, Ranveer Chandra, and
Paramvir Bahl. MAUI: Making Smartphones Last
Longer with Code Offload. In Proceedings of the 8th

International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’10, pages 49–62, New
York, NY, USA, 2010. ACM.

[9] Akon Dey, Alan Fekete, Raghunath Nambiar, and Uwe
Röhm. YCSB+ T: Benchmarking Web-scale Trans-
actional Databases. In 2014 IEEE 30th International
Conference on Data Engineering Workshops, pages 223–
230. IEEE, 2014.

[10] Fred Douglis and John Ousterhout. Transparent Pro-
cess Migration: Design Alternatives and the Sprite
Implementation. Software: Practice and Experience,
21(8):757–785, 1991.

[11] DPDK Project. Data Plane Development Kit. http:

//dpdk.org/. Accessed: 2020-01-15.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of CloudLab. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1–14,
Renton, WA, July 2019. USENIX Association.

[14] Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno,
Arvind Krishnamurthy, and Henry M. Levy. Comet:
An Active Distributed Key-value Store. In 9th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, pages 323–336, 2010.

[15] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke,
Z. Morley Mao, and Xu Chen. COMET: Code Offload
by Migrating Execution Transparently. In Presented
as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages
93–106, Hollywood, CA, 2012. USENIX.

[16] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient Memory Dis-
aggregation with Infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[17] Greg Hamerly, Charles Elkan, et al. Bayesian Ap-
proaches to Failure Prediction for Disk Drives. In ICML,
volume 1, pages 202–209, 2001.

USENIX Association 2020 USENIX Annual Technical Conference 139

http://dpdk.org/
http://dpdk.org/

[18] Mor Harchol-Balter and Allen B. Downey. Exploit-
ing Process Lifetime Distributions for Dynamic Load
Balancing. ACM Trans. Comput. Syst., 15(3):253–285,
August 1997.

[19] Guy Harrison and Steven Feuerstein. MySQL stored
procedure programming. " O’Reilly Media, Inc.", 2006.

[20] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA Efficiently for Key-value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 295–306, New York,
NY, USA, 2014. ACM.

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 185–201, Savannah,
GA, 2016. USENIX Association.

[22] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: A
High-performance, Distributed Main Memory Trans-
action Processing System. Proceedings of the VLDB
Endowment, 1(2):1496–1499, August 2008.

[23] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[24] Michael Kozuch and Mahadev Satyanarayanan. Internet
suspend/resume. In WMCSA, volume 2, page 40, 2002.

[25] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert
Ricci, and Ryan Stutsman. Rocksteady: Fast Migration
for Low-latency In-memory Storage. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 390–405. ACM, 2017.

[26] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter: Bare-
Metal Extensions for Multi-Tenant Low-Latency Stor-
age. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 627–643,
Carlsbad, CA, 2018. USENIX Association.

[27] H. T. Kung and John T. Robinson. On Optimistic Meth-
ods for Concurrency Control. ACM Trans. Database
Syst., 6(2):213–226, 1981.

[28] Jing Li, Xinpu Ji, Yuhan Jia, Bingpeng Zhu, Gang Wang,
Zhongwei Li, and Xiaoguang Liu. Hard Drive Failure
Prediction Using Classification and Regression Trees. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 383–394.
IEEE, 2014.

[29] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, Seattle, WA, 2014. USENIX
Association.

[30] Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K Reinhardt,
and Thomas F Wenisch. Disaggregated Memory for
Expansion and Sharing in Blade Servers. In ACM
SIGARCH computer architecture news, volume 37,
pages 267–278. ACM, 2009.

[31] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level Implications of
Disaggregated Memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12. IEEE, 2012.

[32] Michael Litzkow, Todd Tannenbaum, Jim Basney, and
Miron Livny. Checkpoint and Migration of UNIX Pro-
cesses in the Condor Distributed Processing System.
Technical report, University of Wisconsin-Madison De-
partment of Computer Sciences, 1997.

[33] Microsoft, Inc. Stored Procedures (Database Engine)
- SQL Server. https://docs.microsoft.com/en-us/

sql/relational-databases/stored-procedures/

stored-procedures-database-engine?view=

sql-server-2017. Accessed: 2020-01-15.

[34] Microsoft, Inc. User-Defined Functions - SQL
Server. https://docs.microsoft.com/en-us/sql/

relational-databases/user-defined-functions/

user-defined-functions?view=sql-server-2017.
Accessed: 2020-01-15.

[35] Dejan S. Miloj́ičić, Fred Douglis, Yves Paindaveine,
Richard Wheeler, and Songnian Zhou. Process Migra-
tion. ACM Comput. Surv., 32(3):241–299, September
2000.

[36] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing CPU
and Network in the Cell Distributed B-Tree Store. In
2016 USENIX Annual Technical Conference (USENIX
ATC 16), pages 451–464, Denver, CO, 2016. USENIX
Association.

140 2020 USENIX Annual Technical Conference USENIX Association

https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/stored-procedures-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions?view=sql-server-2017

[37] JF Murray, GF Hughes, and K Kreutz-Delgado. Com-
parison of Machine Learning Methods for Predicting
Failures in Hard Drives. Journal of Machine Learning
Research, 6, 2005.

[38] Oracle, Inc. Oracle PL/SQL. http://www.oracle.

com/technetwork/database/features/plsql/index.

html. Accessed: 2020-01-15.

[39] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), Boston,
MA, 2019. USENIX Association.

[40] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Subha-
sish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. SIGOPS
Operating Systems Review, 43(4):92–105, December
2009.

[41] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure Trends in a Large Disk Drive Popu-
lation. In Proceedings of the 5th USENIX Conference
on File and Storage Technologies, FAST ’07, pages 2–2,
Berkeley, CA, USA, 2007. USENIX Association.

[42] Niels Provos and David Mazières. A Future-Adaptable
Password Scheme. In USENIX Annual Technical Con-
ference, FREENIX Track, pages 81–91, 1999.

[43] Redis. http://redis.io/. Accessed: 2020-01-15.

[44] Felix Salfner, Maren Lenk, and Miroslaw Malek. A
Survey of Online Failure Prediction Methods. ACM
Computing Surveys (CSUR), 42(3):10, 2010.

[45] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Pe-
ter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos
Maltzahn. Malacology: A Programmable Storage Sys-
tem. In Proceedings of the 12th European Conference on
Computer Systems, Eurosys ’17, pages 175–190. ACM,
2017.

[46] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and
Lanyu Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[47] Michael Stonebraker and Greg Kemnitz. The POST-
GRES Next Generation Database Management System.
Communications of the ACM, 34(10):78–92, October
1991.
.

[48] Michael Stonebraker and Ariel Weisberg. The VoltDB
Main Memory DBMS. IEEE Data Engineering Bulletin,
36(2):21–27, 2013.

[49] The PostgreSQL Global Development Group. Post-
greSQL: Documentation: 10: H.4. Extensions.
http://www.postgresql.org/docs/10/static/

external-extensions.html. Accessed: 2020-01-15.

[50] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, pages 1–12, New York, NY, USA,
2012. ACM.

[51] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy Transactions in
Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, pages 18–32, New York, NY,
USA, 2013. ACM.

[52] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast In-memory Transaction Processing
Using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
pages 87–104, New York, NY, USA, 2015. ACM.

[53] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the Gap Between Serverless and its State
with Storage Functions. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–12, 2019.

USENIX Association 2020 USENIX Annual Technical Conference 141

http://www.oracle.com/technetwork/database/features/plsql/index.html
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://www.oracle.com/technetwork/database/features/plsql/index.html
http://redis.io/
http://www.postgresql.org/docs/10/static/external-extensions.html
http://www.postgresql.org/docs/10/static/external-extensions.html

	Introduction
	Background and Motivation
	Understanding the Impact of Placement
	Challenges in Execution Placement

	ASFP Design
	ASFP Mechanisms
	Server-side Storage Functions
	Pushing invoke()s Back to Clients
	Consistency and Concurrency Control
	Client Runtime for invoke()s

	ASFP Policies
	invoke()s Profiling and Classification
	Server Overload

	Evaluation
	Experimental Setup
	ASFP Throughput Benefits & Costs
	Invocation Heterogeneity
	ASFP Impact on Latency
	Realistic Applications
	Machine Learning
	Authentication
	Application Mix

	Concurrency Control and ASFP
	ASFP Impact on Abort Rate

	Discussion
	Related Work
	Conclusion

