
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Unleashing the Power of Learning:
An Enhanced Learning-Based Approach

for Dynamic Binary Translation
Changheng Song, Fudan University; Wenwen Wang, Pen-Chung Yew, and Antonia Zhai,

University of Minnesota; Weihua Zhang, Fudan University

https://www.usenix.org/conference/atc19/presentation/song

Unleashing the Power of Learning: An Enhanced Learning-Based Approach for
Dynamic Binary Translation

Changheng Song†, Wenwen Wang‡, Pen-Chung Yew‡, Antonia Zhai‡, and Weihua Zhang†

†Software School, Fudan University
†Shanghai Key Laboratory of Data Science, Fudan University

‡Department of Computer Science and Engineering, University of Minnesota, Twin Cities
†{17212010032, zhangweihua}@fudan.edu.cn, ‡{wang6495, yew, zhai}@umn.edu

Abstract
Dynamic binary translation (DBT) is a key system tech-

nology that enables many important system applications such
as system virtualization and emulation. To achieve good per-
formance, it is important for a DBT system to be equipped
with high-quality translation rules. However, most translation
rules in existing DBT systems are created manually with high
engineering efforts and poor quality. To solve this problem, a
learning-based approach was recently proposed to automati-
cally learn semantically-equivalent translation rules, and sym-
bolic verification is used to prove the semantic equivalence
of such rules. But, they still suffer from some shortcomings.

In this paper, we first give an in-depth analysis on the con-
straints of prior learning-based methods and observe that the
equivalence requirements are often unduly restrictive. It ex-
cludes many potentially high-quality rule candidates from
being included and applied. Based on this observation, we
propose an enhanced learning-based approach that relaxes
such equivalence requirements but supplements them with
constraining conditions to make them semantically equivalent
when such rules are applied. Experimental results on SPEC
CINT2006 show that the proposed approach can improve the
dynamic coverage of the translation from 55.7% to 69.1%
and the static coverage from 52.2% to 61.8%, compared to
the original approach. Moreover, up to 1.65X performance
speedup with an average of 1.19X are observed.

1 Introduction

Dynamic binary translation (DBT) is a key enabling tech-
nology for many critical system applications such as system
virtualization and emulation [20, 28], whole program/system
analysis [6,13], software development and debugging [14], se-
curity vulnerability detection and defense [15, 17], computer
architecture simulation [22, 27, 29], and mobile computation
offloading [26]. There have been many widely-used DBT
systems, such as Pin [18], Valgrind [21] and QEMU [2].

In general, a DBT system takes an executable binary code
in one instruction set architecture (called guest ISA) and

dynamically translates it into the binary code in another in-
struction set architecture (called host ISA). The translation
process is mostly driven by translation rules that translate
guest instructions into a sequence of semantically-equivalent
host instructions [23].

For a DBT system, its performance is dominated by the
quality of the translated host binary code [25]. Therefore,
it is very important for a DBT system to be equipped with
high-quality translation rules. However, due to the complex-
ity and opacity of modern ISAs, it is difficult to manually
construct such high-quality translation rules as it poses a
significant engineering challenge. Even worse, to support re-
targetable DBTs (from multiple guest ISAs into multiple host
ISAs) in the same framework, a set of pseudo-instructions
are commonly used as their internal representations [2]. As
the execution time is directly proportionate to the number
of host instructions executed, such a multiplying effect has a
significant impact on the overall DBT performance.

To improve the quality of translation rules and reduce en-
gineering efforts, a learning-based approach [23] is recently
proposed to learn automatically binary translation rules. Since
the translation rules are learned from the optimized binary
codes generated by the compiler, this approach is capable of
yielding higher quality translation rules than existing manual
schemes. Moreover, the whole learning process can be fully
automated without manual intervention. Although the above
approach is attractive, it still suffers from some fundamental
limitations. That is, a translation rule can be harvested (i.e.,
learned) only if the guest and the host binary code that cor-
respond to the same program source statement(s) are strictly
semantically equivalent. This is enforced through a symbolic
verification process.

On the surface, this equivalence verification process is nec-
essary and appropriate because it guarantees the correctness
of the learned rules. However, further investigation reveals
that this equivalence requirement is often unduly restrictive. It
excludes many potentially high-quality rule candidates from
being harvested and applied. In particular, such restrictions
usually keep architecture-specific instructions in guest and/or

USENIX Association 2019 USENIX Annual Technical Conference 77

host ISAs from being included for more efficient translation
as they are mostly architecturally specific, and thus inherently
different and more challenging to prove semantic equivalence.

To overcome this limitation, this paper presents an en-
hanced learning-based approach that relaxes such restrictions
and allows more translation rules to be harvested and ap-
plied. More specifically, it purposely relaxes the requirements
of semantic equivalence and allows semantic discrepancies
between the guest and host instructions to exist in the trans-
lation rules, e.g., different condition codes or the different
number of operands in matching guest and host instructions.
Symbolic verification process is no longer just to check the
strict semantic equivalence between the matching guest and
host instructions, but also to identify the specific semantic
discrepancies between them that can be used during the rule
application phase to verify whether such discrepancies either
will not cause ill effect, or are satisfied in the context of the
rules being applied (for more details see Section 4). We call
such semantic equivalence in the translation rules constrained
semantic equivalence as the specific semantic discrepancies
of the translation rules become the constraining conditions
for such rules to be safely applied. This requires some run-
time program analysis (mostly in a very limited scope) during
the rule application phase, which usually incurs very small
overhead. Those with very complicated constraining condi-
tions that require extensive runtime program analysis will be
discarded.

To demonstrate the feasibility and the benefit of such
constrained-equivalent translation rules, we have imple-
mented a prototype based on the proposed approach. The
prototype includes an enhanced learning framework and a
DBT system that applies the constrained-equivalent trans-
lation rules to generate host binary code. We evaluate the
implemented prototype using SPEC CINT2006. Experimen-
tal result shows that the proposed approach can significantly
improve the harvest rate of the learning process from 20.3%
to 25.1% and dynamic coverage from 55.7% to 69.1% while
static coverage from 52.2% to 61.8%, compared to the orig-
inal learning approach in [23]. Moreover, no degradation is
observed for the learning efficiency, i.e., around 2 seconds to
yield a translation rule, which is the same as the original learn-
ing process. After applying the enhanced translation rules, we
achieve up to 1.65X performance speedup with an average of
1.19X compared to the original approach.

In summary, this paper makes the following contributions:

• We propose an enhanced learning-based approach that
can harvest and apply constrained-equivalent translation
rules discarded by the original approach, and allows DBT
systems to generate more efficient host binary code.

• We implement the proposed learning-based approach in
a prototype, which includes a learning framework based
on LLVM and a DBT system extended from QEMU to
accept the constrained-equivalent translation rules.

• We conduct some experiments to evaluate the proposed
learning-based approach. Experimental results on SPEC
CINT2006 shows that our approach can achieve up to
1.65X speedup with an average of 1.19X compared to
the original learning approach.

The rest of this paper is organized as follows. Section 2
presents some background of the original non-constrained
semantically-equivalent learning-based approach. In Sec-
tion 3, we identify some technical challenges in learning and
applying constrained-equivalent translation rules. Section 4
presents the design issues of our enhanced learning-based
approach. In Section 5, we describe some implementation
details of the prototype and evaluate the proposed approach
and show some experimental results. Section 6 presents some
related work and Section 7 concludes the paper.

2 Background

In this section, we introduce some background information
on how a DBT and a learning-based approach such as the one
proposed in [23] work.

2.1 Dynamic Binary Translation (DBT)
Typically, a DBT system adopts a guest basic block (or block
for short) as the translation unit to translate guest binary code
into host binary code. A basic block comprises a sequence of
instructions with only one entry and one exit, and thus when-
ever the first instruction of a basic block is executed, the rest
of the instructions in this block will be executed exactly once
in order. It is worth noting that, due to the semantic differ-
ences between the guest and host ISAs, one guest block may
be translated into multiple host blocks by the DBT system.

To translate a guest basic block, the DBT system firstly
disassembles the guest binaries to obtain guest assembly in-
structions. Then, it tries to match the guest instructions with
available translation rules. After a matched translation rule
is found, the corresponding guest instructions are translated
into host instructions as specified in the translation rule. This
process could be iterated multiple times until all instructions
in the guest block are translated. Finally, the generated host
instructions are assembled into host binaries and executed
directly on host machines. Figure 1 shows an example of such
a translation process, where ARM is the guest ISA, and x86 is
the host ISA. In this example, two translation rules are applied
to translate two ARM instructions into two x86 instructions,
respectively.

To mitigate the performance overhead incurred during the
translation process, especially for short-running guest applica-
tions, the translated host binary code is stored into a memory
region called code cache, and reused in the later execution.
After all instructions in a guest block are translated, the execu-
tion flow of the DBT system is transferred to the code cache.

78 2019 USENIX Annual Technical Conference USENIX Association

Translation Rule

1

Guest (ARM)

add reg0, reg0, reg1

Host (x86)

addl reg1, reg0

2

Guest (ARM)

sub reg0, reg0, #imm0

Host (x86)

subl $imm0, reg0

... ...

e0811000

e2411001

...

add r1, r1, r0

sub r1, r1, #1

...

addl %eax, %edx

subl $1, %edx

...

ARM

instructions

ARM

binaries

x86

instructions

Disasm

Translation

01 c2

83 ea 01

...

x86

binaries

Asm

Figure 1: Dynamic binary translation from ARM to x86
driven by manually-constructed translation rules. Here, for
simplicity, we assume the guest registers r0 and r1 are emu-
lated using the host registers eax and edx, respectively.

A hash table is employed to establish the mapping between
the guest binary code and the corresponding translated host
binary code in the code cache. Each time a guest block is
encountered, the hash table is looked up to find out whether
there exists a host code in the code cache that corresponds to
this guest block. If yes, the translation process will be skipped,
and the stored host binary code will be executed. Otherwise,
the guest block is translated, and the hash table is updated
with the added translated host binary.

2.2 Learning Translation Rules

As mentioned earlier, the translation process in a DBT system
is mainly directed by translation rules, which also determine
the quality (i.e., performance) of the translated host binary
code. Therefore, it is vital for a DBT system to have high-
quality translation rules for better performance. However, in
practice, it is a significant engineering challenge to develop
high-quality translation rules as most translation rules in ex-
isting DBT systems are constructed manually by developers.
Moreover, modern ISAs are often documented in obscure
and tediously long manuals. For example, Intel’s manual has
around 1500 pages for the x86 ISA. It requires substantial
engineering efforts to understand both the guest and the host
ISAs to construct high-quality translation rules.

To solve this problem, a recent approach proposes to auto-
matically learn binary translation rules [23]. More specifically,
this approach uses the same compiler for different ISAs, i.e.,
LLVM-ARM and LLVM-x86, to compile the same source
program. During the compilation process, it extracts binary
translation rules from ARM and x86 binary code that cor-
respond to the same program source statement(s). This is
inspired by the observation that the binary code compiled

Source code

char *e = s + (n - 1);

ARM instruction

add r1, r1, r0

sub r1, r1, #1

x86 instruction

leal -0x1(%edx, %eax), %edx

Guest (ARM)

add reg0, reg0, reg1

sub reg0, reg0, #imm0

Host (x86)

leal -imm0(reg0, reg1), reg0

LLVM-ARM LLVM-x86

A learned

translation

rule

Learning

Figure 2: Automatically learning binary translation rules
during the compilation process of program source code. Com-
pared to the translation rules used in Figure 1, the learned
translation rule can generate more efficient host binary code.

by the same compiler for different ISAs from the same pro-
gram source code should be equivalent in program semantics.
To further enforce such equivalence requirement, a symbolic
verification engine is developed to filter out rule candidates
in which guest and host binary code are not semantically
equivalent.

Figure 2 illustrates an example of the above learning pro-
cess, In this example, the program source statement is com-
piled into two ARM instructions and one x86 instruction by
LLVM-ARM and LLVM-x86, respectively. Using symbolic
execution, we can verify that the guest ARM register r1 and
the host x86 register edx should have the same value assum-
ing the same initial condition. We can thus prove that the
sequence of the two ARM instructions is semantically equiva-
lent to the single x86 instruction in the example. A translation
rule that maps the sequence of the two ARM instructions into
one x86 instruction can then be harvested. Recall the example
in Figure 1. If we use this learned rule to translate the guest
binaries, we only need one host instruction instead of two as
shown in the example, i.e. more efficient host binary code can
be generated.

3 Issues and Challenges

The significance of the above learning approach is two folds.
Firstly, it can automatically learn binary translation rules for
DBT systems with less burden on developers. Secondly, given
that the translation rules are learned directly from binary
code generated by the native compilers, it is more likely that
the harvested translation rules are more optimized than the
translation rules naïvely constructed by hand, as shown in
Figure 2 and Figure 1.

Theoretically, if we keep training such a learning-based

USENIX Association 2019 USENIX Annual Technical Conference 79

Source code

x++;

ARM instruction

ldr r0, [r1, #120]

add r0, r0, #1

str r0, [r1, #120]

x86 instruction

incl 0x78(%eax)

LLVM-ARM LLVM-x86

Discarded

Source code

if (node->pos)

ARM instruction

ldr r1, [r1, #216]

cmp r1, #0

beq #L1

x86 instruction

cmpl $0x0, 0xd8(%eax)

je $L1

LLVM-ARM LLVM-x86

Discarded

(a) (b)

Figure 3: Two examples to demonstrate the limitation of
the learning approach in [23]. These two rule candidates are
discarded because the guest registers r0 in (a) and r1 in (b)
have no equivalent host register.

system with a large number of source programs, we should be
able to harvest a large number of translation rules and apply
them to guest binaries with good coverage. Unfortunately,
after a more thorough study of this approach, we found it
suffers from a fundamental limitation that prohibits it from
harvesting many high-quality translation rules. In this section,
we explain in more details such limitations and identify some
technical challenges if we want to overcome them.

A Fundamental Limitation. To guarantee the correctness
of the learned translation rules, it employs a symbolic veri-
fication engine to check the exact semantic equivalence be-
tween the guest and host binary code sequences. More specif-
ically, the semantic equivalence is verified in three aspects
that include matching register operands, memory operands
and branch conditions. More details can be found in [23].

If the verification results show that the guest and host binary
code sequences are not strictly equivalent, the rule candidate
is discarded and no translation rule is harvested. Undoubtedly,
such a verification process is necessary and appropriate. How-
ever, by a more detailed study on the discarded rule candidates,
we found that the requirement of exact semantic equivalence
is too restrictive. Many high-quality rule candidates are forced
to be discarded, especially those guest and host binary code
sequences that are more architecturally specific and their ISAs
are significantly different, such as ARM (a reduced instruction
set computer (RISC)) and Intel x86 (a complex instruction
set computer (CISC)) in our example.

Figure 3 shows two examples of this limitation. Here, simi-
lar to the previous examples, the guest ISA is ARM and the
host ISA is Intel x86. In Figure 3(a), the value of the vari-
able x is increased by one through the increment operator as
shown in the source code. With its RISC ISA, the ARM com-
piler generates three instructions for this source statement:
loading the original value of x, performing the addition, and
then storing the result back to x. In contrast, the Intel x86
compiler needs only one instruction, incl, with its CISC ISA.

Source code

if (--x == 0)

ARM instruction

ldr r0, [r1, #56]

subs r0, r0, #1

str r0, [r1, #56]

x86 instruction

decl 0x38(%eax)

LLVM-ARM LLVM-x86

Discarded

Source code

while (iters-- > 0)

ARM instruction

subs r2, r2, #1

x86 instruction

leal -0x1(%ecx), %ecx

LLVM-ARM LLVM-x86

Discarded

(a) (b)

Figure 4: Another two rule candidates discarded by the learn-
ing approach in [23] because of the different condition codes
in guest and host ISAs.

Similarly, in Figure 3(b), the x86 instruction cmpl can have
a memory operand, but an ARM ldr instruction is required
before the cmp instruction. In these two cases, the verifica-
tion will fail because there is a mismatch of register operands
between the guest and the host code sequences, i.e. there is
no host register that matches and holds the same value as the
guest register r0.

However, if we examine these two examples more care-
fully, we will find that the root cause of the failed verification
stems from the inherent differences between the guest and
the host ISAs. In practice, such architectural differences are
quite common and pervasive in different ISAs, even if they are
both RISCs or CISCs. For instance, a post-indexed memory
load instruction in ARM will modify the address register after
the loading operation, while there is no similar instruction in
MIPS, which is another representative RISC ISA.

In fact, these differences represent the essence of the ar-
chitectural design unique to each ISAs. It is indeed a huge
loss for a learning-based approach to discard such rule can-
didates simply because of their ISA differences. As they are
architecturally specific, they are often the most efficient code
sequences selected by the native compilers for specific pro-
gram contexts and thus have a high potential to turn into
high-quality translation rules.

Another shortcoming resulted from the aforementioned
limitation is that it also excludes many rule candidates that
contain instructions associated with architecture-specific hard-
ware support. For instance, many architectures have condi-
tion codes (also known as eflags in x86 machines). They are
single-bit registers used to store the execution summary of
an instruction and can influence the control flow of the later
instructions. In particular, ARM has four condition codes: neg-
ative (NF), zero (ZF), carry (CF), and overflow (VF), while
x86 has seven condition codes: carry (CF), parity (PF), adjust
(AF), zero (ZF), sign (SF), direction (DF), and overflow (OF).

Figure 4 shows two examples with instructions related to
condition codes. In Figure 4(a), the source code decreases the

80 2019 USENIX Annual Technical Conference USENIX Association

value of x by one and then checks the result to see whether
it is zero or not. An ARM instruction subs is generated to
perform the subtraction and update the condition codes. Here,
subs updates all four ARM condition codes, including CF.
Similarly, an x86 instruction decl is used to decrease the
value stored in the memory operand by one and update the
condition codes. However, decl updates all x86 condition
codes, except CF. As a result, the verification process in the
original learning-based approach will consider the ARM and
x86 code are not semantically equivalent and discard this rule
candidate. Similarly, the rule candidate in Figure 4(b) is also
discarded because the x86 instruction leal does not update
any condition code. In fact, the source code in Figure 4(a)
only needs to check whether the result is zero or not, which
only requires the condition code ZF. Thus, it is unnecessary to
update the condition code CF, as it is never used in this context.
That means, it is still possible to harvest this translation rule
and apply it, if the ARM condition code CF is not used (i.e.
dead) in the later code before it is updated. Similarly, the rule
candidate in Figure 4(b) can also be harvested.

Technical Challenges. Although such limitations could
exclude many high-quality translation rules during the learn-
ing process, it faces several technical challenges if we want
to harvest them and apply them in a DBT system for a better
performance and higher coverage.

First, we have to relax the original verification objectives
as they are designed to verify the exact equivalence between
the guest and host code sequences.

Second, given that most of those translation rules are not
strictly equivalent, it is imperative that we have a mechanism
to enforce their correctness when we apply them. Equally
important is that the performance overhead incurred by such
enforcement should be less than the performance gain they
can provide.

Last but not least, in the original learning approach, a
learned translation rule only needs to include two parts, i.e.,
the guest and host instructions, and this is typically sufficient
for a DBT system. However, for the constrained-equivalent
translation rules, whether we can apply these rules at runtime
or not depends on the context they are being applied. As a
result, we need to extend the structure of translation rules to
include such constraining requirements.

4 An Enhanced Learning-Based Approach

In this section, we present the design of the proposed en-
hanced learning-based scheme, starting with an overview of
the system framework.

4.1 Overview
The major goal of our enhanced learning-based approach is to
learn and apply high-quality translation rules excluded by the
original learning approach. These translation rules contain

constrained-equivalent guest and host instructions, and thus
cannot be harvested using the original learning approach. To
this end, we redesign the learning process, reorganize the
structure of the learned translation rules, and make necessary
extensions to the DBT system to allow the application of the
constrained-equivalent translation rules.

Figure 5 illustrates the workflow of our enhanced learning-
based approach. To learn translation rules, we also compile the
same program source code using the same compiler for guest
and host ISAs to generate two versions of the binary code. We
then extract guest and host code sequences that correspond to
the same learning scope and consider them as the candidates
for the translation rules. The learning scope is defined at the
program source code level. In the original learning system,
the default learning scope is set to be one source statement.
The extracted guest and host code sequences then form a rule
candidate. For each rule candidate, the next step is to verify
whether the corresponding guest and host code sequences are
constrained equivalents or not. If yes, a translation rule can
be harvested. Otherwise, the rule candidate is discarded.

As an example to demonstrate our approach and by study-
ing the rule candidates discarded by the original learning
scheme, we consider the guest and host code sequences in
a rule candidate as constrained equivalent if every modified
guest storage operand contains the same value as a modified
host storage location at the end of the code sequences and
vice versa. Here the storage operand is broadly defined, as
it can be either a register, a memory location, or a condition
code (i.e., eflag). Furthermore, it is allowed that there is no
corresponding modified storage location in the host code se-
quences, e.g., a corresponding condition code as mentioned
earlier.

Using this relaxed and constrained equivalence definition,
the guest and host code sequences can be semantically equiv-
alent only if all modified guest storage operands without the
corresponding host storage operands (e.g., condition codes)
are not used in the following guest binaries before they are
modified again. These modified guest storage operands with-
out the corresponding host storage operands can be considered
as the constraining condition of this constrained-equivalent
translation rule.

In our framework, the semantic equivalence can be relaxed
in other ways as long as the discrepancies can be identified
and shown either having no ill effect in the context they are
applied or can be compensated to make them semantically
equivalent when they are applied. In other words, their con-
straining conditions can be identified and satisfied when these
rules are applied. To simplify our prototype design, we only
consider relaxing the requirement of exact mapping of the
storage operands as defined earlier. The identified constrain-
ing conditions are integrated into the learned translation rules
to determine whether it is safe to apply them or not. It is
worth noting that for strictly equivalent translation rules the
constraining condition is null.

USENIX Association 2019 USENIX Annual Technical Conference 81

Guest:

...

Host:

...

Constraining

condition:

...

Guest:

...

Host:

...

Constraining

condition:

...

Source

Code
Rule

Candidates

Guest

Binary

Host

Binary

CC-Guest

CC-Host

Flexible

Preprocessing

Relaxed

Verification

Guest:

...

Host:

...

Constraining

condition:

...

Translation

Rules

DBT

System

Guest Binary

Host

Binary

Online

Analysis

Learning translation rules Applying translation rules

Figure 5: The work flow of the proposed enhanced learning-based approach.

To determine whether the constraining condition is met or
not, a lightweight runtime analysis is employed to determine
the program context in which the guest instructions is to
be translated. In our case, the program context includes the
information about which guest storage operand is modified
by the guest instructions and used in the later code before it
is modified again. The program context is then used to verify
whether the constraining condition is satisfied or not. If yes,
the translation rule can be applied, otherwise, it is discarded.

4.2 Varying Learning Scopes
In the original learning scheme, the learning scope is limited
to one source statement. Although it appears to be reasonable,
it may miss potential rule candidates as it is very common
for compilers to perform optimization across multiple source
statements. Therefore, our enhanced learning approach varies
the learning scope from one to n source statements, and apply
each learning scope over the source program.

More specifically, a sliding window is employed. The slid-
ing window of size n covers n contiguous source statements,
i.e. the sliding window covers the learning scope of n state-
ments. Guest and host instructions that correspond to the n
statements in this window are extracted as a rule candidate.
The sliding window moves from the first line of the source
code toward the end of the code. The window size is initially
set to 1, and incremented by one after each pass through the
sources code. When the window of size i is moved through
all the source code, the number of rules learned from current
window size will be compared to the number of rules learned
from window sizes 1 to i−1. If new rules learned from win-
dow size i are less than 10% of all learned rules from window
sizes 1 to i−1, the learning process will be stopped.

4.3 Learning Constrained-Equivalent Rules
To verify the constrained equivalence of the guest and host
instructions in a rule candidate, we use the same symbolic
verification engine, but relax the requirements for semantic
equivalence.

First, we establish an initial mapping between guest and
host live-in operands the same way as the original learning
approach, i.e., guest registers 7→ host registers, guest memo-

ries 7→ host memories, and guest immediate values 7→ host
immediate values (i.e. constants). Then, we initialize the
mapped guest and host operands with the same symbol values
and symbolically execute the guest and host code sequences,
respectively. After the symbolic execution, we extract the
symbol results of the modified guest and host registers, mem-
ories, and condition codes. These results are then fed into
a SMT solver to figure out, for each modified guest regis-
ter/memory/condition code, whether there exists a modified
host register/memory/condition code corresponding to it or
not. If each modified guest operand is mapped to a modified
host operand, an original rule is generated.

If the SMT solver indicates that there exists a modified
guest memory operand that does not have a matching host
memory operand, we discard this rule candidate. If a modified
guest register/condition code has no matching modified host
register/condition code, we can harvest this rule candidate as
the guest and host instructions can still be constrained equiv-
alent. Moreover, such unmatched guest registers/condition
codes are recorded as constraining conditions of the learned
rules and will be checked when the rules are applied. The rea-
son for discarding candidate rules with unmatched memory
operands is that the resulting constraining conditions will re-
quire time-consuming data dependence analysis to determine
whether the constrained equivalence is satisfied or not when
such rules are applied.

Otherwise, all other rules are considered as a non-
equivalent rule and be discarded.

4.4 Lightweight Online Analysis

For each constrained-equivalent rule to be applied, an online
analysis is invoked to analyze the program context of the
guest code sequence. The context information includes the
data flow of the guest registers and condition codes, which
can be obtained by statically analyzing the guest instructions.
The context information is then used to determine whether the
constraining condition of the matched constrained-equivalent
rule is satisfied. For instance, if the analysis shows that a mod-
ified guest register is not mapped to any modified host register
in the rule, and this modified guest register is not used in the
following guest code, we can determine that the constraining
condition has been satisfied in the program context, and the

82 2019 USENIX Annual Technical Conference USENIX Association

translation rule can be applied.
In general, to collect the context information, the online

analysis examines guest instructions that are executed after
the matched guest instruction sequence. Each instruction is
examined to see whether it defines or uses the register(s) or
condition code(s) specified in the constraining condition of
the matched translation rule. If a definition can be found
before usage on all paths following the matched guest code
sequence, the matched rule can be applied safely. Otherwise,
if usage is found, the matched rule should not be applied
as the modified guest register/condition code is used but the
matched rule does not update it.

For indirect branch instructions, it is quite difficult to iden-
tify all possible branch targets statically. For simplicity, we
stop the online analysis when an indirect branch is encoun-
tered and the translation rule will not be applied for safety
consideration.

4.5 Handling Predicated Instructions

Predicated instructions are very common in many ISAs, e.g.,
ARM and MIPS. A predicated instruction executes only if its
predicate bit is "True". Otherwise, the instruction is a "nop".
For example, "add ne r0, r0, r1" in ARM will be executed
only when the condition code is not equal ("ne"). Some ISAs
like x86 do not support predication, and conditional branches
are used instead. It is worth noting that the original learning
approach cannot handle predicated instructions. So how to ef-
ficiently support predicated instructions is another important
design issue for a learning-based approach because the predi-
cate tag in predicated instructions and conditional branch are
not equivalent although the execution results are the same.

In translation, we use a lightweight analysis to divide pred-
icated instructions into multiple blocks and generate condi-
tional branches around those blocks according to their pred-
icate information to support the translation of predicate in-
structions. Before translating a basic block, we first check the
predicated condition of all instructions and divide the basic
block into multiple condition blocks. Each condition block
includes instructions with the same predicated condition. In
one condition block, the translation rules can be directly ap-
plied without considering the predicated condition. After a
condition block is translated, a branch instruction with the
opposite condition is added to the host basic block before
the translated condition block is added to the host block. The
branch target is the instruction following the end of the host
block. This analysis is very lightweight and each basic block
only needs to be checked once.

Note that an instruction with a predicated condition may
change the condition codes itself. For example, cmp ne r0,
0 will update the condition code if the last condition code is
not equal. So, instructions after these instructions that may
change condition codes should be divided into a new condi-
tion block even the predicated condition is the same.

4.6 Discussion
Our enhanced learning approach currently only supports user-
level applications. The translation for full-system level ap-
plications is not supported because full-system translation is
more complex with mechanisms such as system calls, inter-
rupts and device I/O. These mechanisms make the learning
and matching of rules more difficult. It is left in our future
work.

ABIs and many instructions such as indirect branches are
not supported either. For ABIs, the calling conventions, such
as how parameters are passed and how many parameters are
used, are difficult to be identified and translated by rules. For
example, ARM use registers to pass parameters but no specific
instructions are used. But in X86, the push instructions will
be used for passing parameters. For indirect branches, DBT
systems usually search the branch target address according to
a branch table maintained at runtime, which is not available
at compile time. It makes it impossible to translate by our
learned rules.

5 Experimental Results

In this section, we evaluate our prototype and address the
following research questions:

1. How much performance improvement can be obtained
by our enhance learning scheme in which we relax the
requirement of matching storage operands as described
in Section 4?

2. Where does the performance improvement come from
when we include the added constrained-equivalent trans-
lation rules?

3. What is the effect of relaxing the strict semantic equiva-
lence requirement?

4. How much overhead will the dynamic analysis incur?

5.1 Experimental Setup
Our enhanced learning-based DBT prototype is implemented
based on QEMU (version 2.6.0) which is the same as the
original learning scheme. The guest ISA is ARM, and the
host ISA is x86. The LLVM compiler (version 3.8.0) is used
to generate binary code for guest/host ISAs. All binary codes
are generated using the same optimization level -O2. The
same version of source code and guest/host binary code are
used for comparison. One machine with 3.33GHz Intel Core
i7-980x with six cores (12 threads) and 16GB memory is
set up exclusively for performance evaluation. The operating
system is the 32-bit Ubuntu 14.04 with Linux 3.13 for both
machines. We used an older version of the system because we
need to compare our new approach with the original approach,
which used the same older version of the system. Besides, our

USENIX Association 2019 USENIX Annual Technical Conference 83

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

G
EO

M
EA

N

P
er

fo
rm

an
ce

 S
p
ee

d
u
p origin

enhanced

Figure 6: Performance comparison of the original and en-
hanced learning-based approaches.

experimental results are valid regardless of the system version
used.

We use the 12 benchmarks in SPEC CPU INT 2006 with
the reference inputs in our studies. To be as close to the
real-world usage scenarios as possible, the performance of
each benchmark is evaluated by the rules learned from other
11 benchmarks excluding evaluated benchmark itself. Each
benchmark is run three times to reduce the random influence.
The enhanced learning scheme described earlier is imple-
mented in Python. The enhanced verification is implemented
based on FuzzBALL [19], a symbolic execution engine. The
tiny code generator (TCG) in QEMU is also enhanced to sup-
port the translation of predicated instructions as described
in the last subsection, As mentioned earlier, to apply the
constrained-equivalent translation rules, the dynamic anal-
ysis should be performed before such rules are applied.

5.2 Performance Results
Figure 6 shows the performance comparison of our enhanced
learning-based scheme (marked as enhanced) and the original
learning-based approach (marked as origin). The performance
of QEMU without using any of the learning schemes is used
as the baseline. Table 1 shows the MIPS of performance of
original and enhanced approaches.

Using the ref input for all SPEC benchmarks, the quality
of the translated host code is the major factor that impacts
the overall performance. As shown in Figure 6, our enhanced
learning scheme can achieve a performance improvement of
up to 2.55X with an average of 1.74X compared to QEMU,
which is a 1.19X improvement over the original learning
approach on average.

By studying the learned translation rules and how they are
applied using our enhanced learning approach, we have the
following observations on how they impact the overall per-
formance. First, constrained-equivalent translation rules can
usually be applied quite successful. The modified guest reg-
isters/condition codes that have no matching modified host
registers/condition codes will usually be modified quickly
again. This means they are only used to hold temporary value
as we expected. Hence, relaxing strict matching requirements

Table 1: MIPS of the original and enhanced learning-based
approaches

Benchmarks Original enhanced
perlbench 221.63 250.15

bzip2 1211.32 1388.92
gcc 521.78 575.09
mcf 603.99 739.93

gobmk 372.18 616.31
hmmer 1448.56 1632.93
sjeng 474.71 485.23

libquantum 1469.59 1532.97
h264ref 189.99 215.69
omnetpp 195.28 284.74

astar 396.10 562.51
xalan 283.19 290.52

GEOMEAN 475.15 567.29

for storage operands can yield more translation rules, albeit
constrained-equivalent rules, and can be applied quite effec-
tively.

Second, by relaxing the equivalence constraints to allow
constrained-equivalent translation rules that can include pred-
icated and condition instructions greatly improve the overall
performance. This is because typical DBTs such as QEMU
usually use memory locations to emulate the condition codes.
Such an approach will incur many additional memory opera-
tions to access and update those condition codes in memory
and incur very high overhead. But the constrained-equivalent
translation rules can take advantage of the host condition
codes to emulate guest condition codes, which can signifi-
cantly reduce such overheads.

Figure 7(a) and Figure 7(b) show the static and dynamic
coverage of the guest binaries using the origin and our en-
hanced learning-based schemes, respectively. The "Coverage"
here is defined as the percentage of guest instructions that can
be translated by the learned rules. So the "static" coverage is
the percentage of static code translated by learned rules and
"dynamic" coverage here is the percentage of "executed" guest
instructions translated by learned rules. Compare to the origi-
nal learning-based scheme, our enhanced learning scheme can
improve the static coverage from 52.2% to 61.8%, and the dy-
namic coverage from 55.7% to 69.1% on average. It is worth
noting that gcc and libquantum have a much higher dynamic
coverage improvement than others, but do not get an expected
higher performance improvement. Conversely, gobmk attains
a high performance improvement but not as much coverage
improvement. The reason is that many high-quality rules are
applied when translating gobmk, but in gcc and libquantum,
the applied rules can only attain moderate improvement. This
seems to indicate that the coverage improvement does not
translate directly to the overall performance improvement,
but could be an important secondary effect.

84 2019 USENIX Annual Technical Conference USENIX Association

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geam
ean

P
er

ce
n
ta

g
es

 o
f

 S
ta

ti
c

G
u
es

t
In

st
ru

ct
io

n
s

 T
ra

n
sl

at
ed

 b
y
 R

u
le

s origin
enhanced

(a) Static coverage

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geam
ean

P
er

ce
n
ta

g
es

 o
f

 D
y
n
am

ic
 G

u
es

t
In

st
ru

ct
io

n
s

 T
ra

n
sl

at
ed

 b
y
 R

u
le

s origin
enhanced

(b) Dynamic coverage

Figure 7: Static and dynamic coverage of translation rules.

To address the question of "where does the performance im-
provement come from when we include the added constrained-
equivalent translation rules?", we analyze the coverage of the
added translation rules when they are applied in each pro-
gram. The results are shown in Figure 8. As described in
Section 4, there are three major components in our relaxed
equivalence constraints, i.e. we remove the strict requirement
of exact matching. They are (1) register operands (marked as
register), (2) condition-code operands (marked as condition),
and (3) predicated-related instructions (marked as predicate).
We did not include memory operands because they require
more complicated data dependence analysis when they are
applied.

A very interesting observation is that, among the added
constrained-equivalent translation rules (their increased cov-
erage is shown in Figure 7), the register-related constrained-
equivalent translation rules constitute 58.83% of the static in-
structions on average. However, they only constitute 13.58%
of added dynamic coverage. But the dynamic coverage of
condition-code related rules is increased to 54.02% on av-
erage, while their static coverage is only 18.52%. This is
because the condition codes are usually associated with the
bound check, such as at the end of a loop. So, these instruc-
tions will be executed more frequently than others in their
dynamic coverage.

To study the quality/efficiency of translated rules, Figure 9
shows the percentages of the reduced host instructions. On
average, our enhanced learning scheme can reduce 11.28% of
the total dynamic host instructions compared to the original
learning scheme. We observe that the reduction in the host

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

 I
n

cr
ea

se
d

 S
ta

ti
c

C
o

v
er

ag
e register condition predicate

(a) Distribution of increased static coverage

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

In
cr

ea
se

d

 D
y

n
am

ic
 C

o
v

er
ag

e

register condition predicate

(b) Distribution of increased dynamic coverage

Figure 8: Distribution of the improved rule coverage.

0 %

10 %

20 %

30 %

40 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

P
er

ce
n

ta
g

e
o

f
 R

ed
u

ce
d

 D
y

n
am

ic

 H
o

st
 I

n
st

ru
ct

io
n

s

Figure 9: Reduction in dynamic host instruction counts by
enhanced learning and translation.

instructions of gobmk is higher than 30%, and in omnetpp, it
is higher than 20%. However, in gcc and libquantum, the re-
duction is only about 10%. This also confirm our observation
that rules applied in gobmk and omentpp translation have a
higher quality, i.e. fewer host instructions in those translation
rules, than rules in gcc and libquantum. But, we also notice
that bzip2 and astar attain a high performance improvement
but only a moderate number of host instructions are reduced.
One probable explanation is that even though they may have
similar dynamic host instruction counts, more efficient and
architecture-specific host instructions may have been used.

5.3 Learning Results

We further study the effect of our proposed relaxed learn-
ing scheme in other related aspects. The first is about the
"yield" obtained during the learning phase, which shows how

USENIX Association 2019 USENIX Annual Technical Conference 85

0 %

10 %

20 %

30 %

40 %

50 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

P
er

ce
n
ta

g
es

 o
f

 I
n

st
rc

u
ti

o
n
s

G
en

er
at

in
g

 R
u
le

s

origin
enhanced

Figure 10: The yields of rule learning.

many translation rules can be harvested among the candidate
rules during the learning phase. The other aspects include
the effect of using the sliding window, and the distribution of
the constrained-equivalent rules learned based on our relaxed
equivalence constraints, i.e. relaxing the strict matching re-
quirement on three storage operand types described in Section
4.

Figure 10 shows the yield obtained during the learning
phase using the original learning scheme (marked as origin)
and our enhanced learning scheme (marked as enhanced).
The learning yield is increased from 20.3%to 25.1%. Even
though the improvement in learning yield is moderate as we
only made moderate relaxation on the semantic equivalence
requirements, but as the obtained performance results show
the quality of these rules is quite high. The moderate yield
improvement also shows that there is a high potential for
more high-quality rules to be learned and harvested. Another
interesting question is that if a significant number of more
source programs is used in the training phase, even with a low
yield, how much more rules can be learned, and how much
more performance improvement can be achieved by applying
those added rules. These questions are beyond the scope of
this paper.

Figure 11 shows the distribution of the translation rules
learned using a flexible sliding window. We only show the
data for a window size of up to three source statements be-
cause significantly fewer rules can be learned beyond 3 source
statements. As the result shows, 13.16% of new rules can be
learned from a window size of 2 and 3 source statements. The
rules learned from window size 3 and beyond are less than
3.31%. So, a larger learning window is not necessary.

Figure 12 shows the distribution of the rules we learned
using our enhanced learning scheme. On average, 16.84%
of the learned rules are register-related (marked as register),
while 8.16% are condition-code related (marked as condi-
tion) rules. We find that many constrained-equivalent rules
related to local registers are used to load values from the
memory before some computation, and are stored back to the
memory after the computation. This is because RISCs are
primarily "load/store" architectures, i.e. values in memory
must be loaded into registers before computation and stored
back to memory when the computation is completed. So many

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

 R
u

le
s

L
ea

rn
ed

 f
ro

m

S
li

d
in

g
 W

in
d

o
w

window size 1 window size 2 window size 3

Figure 11: Rules distribution of sliding windows.

0 %

20 %

40 %

60 %

80 %

100 %

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
is

tr
ib

u
ti

o
n

 o
f

L
ea

rn
ed

 R
u

le
s

origin register condition

Figure 12: Distribution of rules learned by enhanced learning.

temporary/local registers are used. Another observation is that
the amount of register reuse is minimal on RISCs, only 3.57%
in total. So, only in rare situations, the compiler will use mul-
tiple registers instead of only one register. Such behavior is
reflected in the use of the learned rules in the application
phase.

5.4 Performance Overhead of Online Analysis

As the lightweight dynamic analysis is needed in the applica-
tion of the constrained-equivalent translation rules, its runtime
overhead needs to be evaluated. Figure 13 shows such runtime
overhead with and without dynamic analysis. To measure such
overheads, we collected the performance data with original
approach and compare them with those with only the online
analysis but without applying the constrained-equivalent rules.
As Figure 13 shows, the dynamic analysis will introduce very
little overhead, which is less than 1% on average. The low
overhead is due to two main reasons. First, the dynamic analy-
sis typically only needs to check a few registers and condition
codes. And the percentage of the rules that requires dynamic
analysis is not very high. Second, the relaxed register and
condition-code operands are usually updated very quickly, so
only a very small number of instructions need to be analyzed
in practice. Both factors greatly reduce the analysis overhead.

86 2019 USENIX Annual Technical Conference USENIX Association

 1

 1.02

 1.04

 1.06

 1.08

 1.1

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar
xalan

geom
ean

D
y

n
am

ic
 A

n
al

y
si

s
O

v
er

h
ea

d

Figure 13: The performance overhead of dynamic analysis.

6 Related Work

To improve the efficiency of the translated host binaries,
many manual optimization techniques have been proposed.
For example, some try to efficiently translate guest single-
instruction-multiple-data (SIMD) instructions [7, 10, 16]. An-
other work proposes to leverage host hardware features to
apply post-optimization to host binary code after the trans-
lation [30]. Some recent work also proposes to optimize
dynamically-generated guest binary code [8]. Different from
those approaches, most of which rely on manually constructed
translation rules, our enhanced learning-based approach pro-
posed in this paper can automatically learn binary translation
rules.

Previous work in [1] also proposes to use peephole super-
optimizer to generate binary translation rules for static binary
translators. For each potential guest code sequence, an ex-
haustive search is employed to explore all possible sequences
of host instructions to examine their equivalence. However, it
takes a very long time to collect sufficient translation rules,
i.e., could be up to one week as mentioned in the paper. More-
over, due to the exponential increase in the number of possible
instruction sequences, this approach can only generate trans-
lation rules with a guest code sequence of up to 3 instructions.
This can significantly limit the quality of the generated trans-
lation rules because many high-quality translation rules have
more than 3 guest instructions.

Although the learning-based approach was originally pro-
posed in [23], our enhanced learning-based approach differs
from the original approach in a significant way. Our proposed
enhanced approach allows relaxation of semantic equivalence,
thus can learn constrained-equivalent translation rules while
the original approach simply discards them. These relaxed
translation rules can improve the total coverage of the guest
binaries and improve the yield of rule generation. More im-
portantly, these constrained-equivalent translation rules can
further improve the performance of the translated host binary
code.

Another DBT system, HQEMU [9], which is also based
on QEMU, translates guest binary code into LLVM interme-
diate representation (IR) and then leverages LLVM JIT to

generate more optimized binary code. However, the overhead
introduced by the LLVM optimization can offset the benefit
gained from the optimized host binary code, especially for
short-running guest binaries. Moreover, due to the lack of
source-level information in the LLVM IR translated from
the guest binary code, e.g., type information, it is quite chal-
lenging to take full advantage of the LLVM optimization. In
contrast, the translation overhead for applying the learned
translation rules are much smaller, and no additional informa-
tion is required to apply the learned rules.

There has been a lot of research to improve the performance
of the DBT system itself [3–5, 11, 12, 24, 25]. These methods
can typically be used in conjunction with our approach to
further improve their performance.

7 Conclusion

As one of the core enabling technologies, DBT has been ex-
tensively used in many important applications. To improve
the efficiency of DBT systems, this paper proposes an en-
hanced learning-based approach, which can automatically
learn optimized binary translation rules. The learned transla-
tion rules can then be applied to a DBT system to generate
more efficient host binary code. Compared to the original
learning approach, our enhanced learning-based approach re-
laxes the semantic equivalence requirements to allow more
efficient constrained-equivalent translation rules. We redesign
the original learning process and the verification engine to
accommodate such constrained equivalence. Moreover, to
preserve the correct semantics of the translated code when
such constrained-equivalent translation rules are applied, a
lightweight online analysis is employed in the enhanced DBT
system to check the constraining conditions. The constrained-
equivalent translation rules are applied only when the con-
straining conditions are satisfied. We have implemented the
proposed approach in a prototype and extended a widely-used
DBT system, i.e., QEMU, to accept such enhanced translation
rules through learning.

Experimental results on SPEC CINT2006 show that the
proposed approach can improve the dynamic coverage of
the translation from 55.7% to 69.1% and the static coverage
from 52.2% to 61.8%, compared to the original approach.
Moreover, up to 1.65X performance speedup with an average
of 1.19X are observed.

Acknowledgments

We are very grateful to our shepherd, Edouard Bugnion,
and the anonymous reviewers for their valuable feed-
back and comments. This work is supported in part by
the National Natural Science Foundation of China (No.
61672160), Shanghai Municipal Science and Technology Ma-
jor Project (No.2018SHZDZX01) and ZJLab, Shanghai Sci-

USENIX Association 2019 USENIX Annual Technical Conference 87

ence and Technology Development Funds (17511102200)
and the National Science Foundation under the grant number
CNS-1514444.

References

[1] Sorav Bansal and Alex Aiken. Binary translation us-
ing peephole superoptimizers. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 177–192, Berke-
ley, CA, USA, 2008. USENIX Association.

[2] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATC ’05, pages
41–46, Berkeley, CA, USA, 2005. USENIX Association.

[3] Chao-Jui Chang, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, and Pen-Chung Yew. Efficient memory
virtualization for cross-isa system mode emulation.
In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, VEE ’14, pages 117–128, New York, NY, USA,
2014. ACM.

[4] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P.
Carloni. Cross-isa machine emulation for multicores.
In Proceedings of the 2017 International Symposium
on Code Generation and Optimization, CGO ’17, pages
210–220, Piscataway, NJ, USA, 2017. IEEE Press.

[5] Amanieu D’Antras, Cosmin Gorgovan, Jim Garside, and
Mikel Luján. Low overhead dynamic binary translation
on arm. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2017, pages 333–346, New York,
NY, USA, 2017. ACM.

[6] Peter Feiner, Angela Demke Brown, and Ashvin Goel.
Comprehensive Kernel Instrumentation via Dynamic
Binary Translation. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS XVII, pages 135–146, New York, NY, USA, 2012.
ACM.

[7] Sheng-Yu Fu, Ding-Yong Hong, Yu-Ping Liu, Jan-Jan
Wu, and Wei-Chung Hsu. Dynamic translation of struc-
tured loads/stores and register mapping for architectures
with simd extensions. In Proceedings of the 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems, LCTES 2017,
pages 31–40, New York, NY, USA, 2017. ACM.

[8] Byron Hawkins, Brian Demsky, Derek Bruening, and
Qin Zhao. Optimizing binary translation of dynami-
cally generated code. In Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’15, pages 68–78, Wash-
ington, DC, USA, 2015. IEEE Computer Society.

[9] Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew,
Jan-Jan Wu, Wei-Chung Hsu, Pangfeng Liu, Chien-Min
Wang, and Yeh-Ching Chung. Hqemu: a multi-threaded
and retargetable dynamic binary translator on multicores.
In Proceedings of the Tenth International Symposium
on Code Generation and Optimization, pages 104–113.
ACM, 2012.

[10] Ding-Yong Hong, Yu-Ping Liu, Sheng-Yu Fu, Jan-Jan
Wu, and Wei-Chung Hsu. Improving simd parallelism
via dynamic binary translation. ACM Trans. Embed.
Comput. Syst., 17(3):61:1–61:27, February 2018.

[11] Chun-Chen Hsu, Pangfeng Liu, Jan-Jan Wu, Pen-Chung
Yew, Ding-Yong Hong, Wei-Chung Hsu, and Chien-Min
Wang. Improving dynamic binary optimization through
early-exit guided code region formation. In Proceedings
of the 9th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’13,
pages 23–32, New York, NY, USA, 2013. ACM.

[12] Ning Jia, Chun Yang, Jing Wang, Dong Tong, and Keyi
Wang. Spire: Improving dynamic binary translation
through spc-indexed indirect branch redirecting. In Pro-
ceedings of the 9th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments,
VEE ’13, pages 1–12, New York, NY, USA, 2013. ACM.

[13] Piyus Kedia and Sorav Bansal. Fast Dynamic Binary
Translation for the Kernel. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pages 101–115, New York, NY, USA,
2013. ACM.

[14] Dohyeong Kim, William N. Sumner, Xiangyu Zhang,
Dongyan Xu, and Hira Agrawal. Reuse-oriented Re-
verse Engineering of Functional Components from x86
Binaries. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages
1128–1139, New York, NY, USA, 2014. ACM.

[15] Vladimir Kiriansky, Derek Bruening, and Saman P. Ama-
rasinghe. Secure Execution via Program Shepherding.
In Proceedings of the 11th USENIX Security Symposium,
pages 191–206, Berkeley, CA, USA, 2002. USENIX As-
sociation.

[16] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. Optimiz-
ing dynamic binary translation for simd instructions. In
Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’06, pages 269–280,
Washington, DC, USA, 2006. IEEE Computer Society.

88 2019 USENIX Annual Technical Conference USENIX Association

[17] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan
Zhang, and Dawu Gu. K-Hunt: Pinpointing Insecure
Cryptographic Keys from Execution Traces. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 412–425,
New York, NY, USA, 2018. ACM.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic In-
strumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pages 190–200, New
York, NY, USA, 2005. ACM.

[19] Lorenzo Martignoni, Stephen McCamant, Pongsin
Poosankam, Dawn Song, and Petros Maniatis. Path-
exploration lifting: Hi-fi tests for lo-fi emulators. In Pro-
ceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 337–348,
New York, NY, USA, 2012. ACM.

[20] Aashish Mittal, Dushyant Bansal, Sorav Bansal, and
Varun Sethi. Efficient Virtualization on Embedded
Power Architecture R©Platforms. In Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 445–458, New York, NY,
USA, 2013. ACM.

[21] Nicholas Nethercote and Julian Seward. Valgrind: A
Framework for Heavyweight Dynamic Binary Instru-
mentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI ’07, pages 89–100, New York, NY,
USA, 2007. ACM.

[22] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and
Accurate Microarchitectural Simulation of Thousand-
core Systems. In Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture, ISCA
’13, pages 475–486, New York, NY, USA, 2013. ACM.

[23] Wenwen Wang, Stephen McCamant, Antonia Zhai, and
Pen-Chung Yew. Enhancing Cross-ISA DBT Through
Automatically Learned Translation Rules. In Proceed-
ings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’18, pages 84–97, New
York, NY, USA, 2018. ACM.

[24] Wenwen Wang, Jiacheng Wu, Xiaoli Gong, Tao Li, and
Pen-Chung Yew. Improving dynamically-generated
code performance on dynamic binary translators. In
Proceedings of the 14th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environ-
ments, VEE ’18, pages 17–30, New York, NY, USA,
2018. ACM.

[25] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, and
Stephen McCamant. A General Persistent Code Caching
Framework for Dynamic Binary Translation (DBT). In
Proceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’16, pages
591–603, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[26] Wenwen Wang, Pen-Chung Yew, Antonia Zhai, Stephen
McCamant, Youfeng Wu, and Jayaram Bobba. Enabling
Cross-ISA Offloading for COTS Binaries. In Proceed-
ings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys
’17, pages 319–331, New York, NY, USA, 2017. ACM.

[27] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo
Chen, Weihua Zhang, and Binyu Zang. Coremu: A
scalable and portable parallel full-system emulator. In
Proceedings of the 16th ACM Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’11,
pages 213–222, New York, NY, USA, 2011. ACM.

[28] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuan-
chao Huang, Jiaming He, Tianyin Xu, and Ennan Zhai.
Mobile Gaming on Personal Computers with Direct An-
droid Emulation. In Proceedings of the 25th Annual
International Conference on Mobile Computing and
Networking, MobiCom ’19, New York, NY, USA, 2019.
ACM.

[29] W. Zhang, X. Ji, Y. Lu, H. Wang, H. Chen, and P. Yew.
Prophet: A parallel instruction-oriented many-core sim-
ulator. IEEE Transactions on Parallel and Distributed
Systems, 28(10):2939–2952, Oct 2017.

[30] Xiaochun Zhang, Qi Guo, Yunji Chen, Tianshi Chen,
and Weiwu Hu. Hermes: A fast cross-isa binary transla-
tor with post-optimization. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 246–256,

Washington, DC, USA, 2015. IEEE Computer Society.

USENIX Association 2019 USENIX Annual Technical Conference 89

	Introduction
	Background
	Dynamic Binary Translation (DBT)
	Learning Translation Rules

	Issues and Challenges
	An Enhanced Learning-Based Approach
	Overview
	Varying Learning Scopes
	Learning Constrained-Equivalent Rules
	Lightweight Online Analysis
	Handling Predicated Instructions
	Discussion

	Experimental Results
	Experimental Setup
	Performance Results
	Learning Results
	Performance Overhead of Online Analysis

	Related Work
	Conclusion

