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Abstract

We address the problem of “fail-slow” fault, a fault where

a hardware or software component can still function (does

not fail-stop) but in much lower performance than expected.

To address this, we built IASO, a peer-based, non-intrusive

fail-slow detection framework that has been deployed for

more than 1.5 years across 39,000 nodes in our customer

sites and helped our customers reduce major outages due to

fail-slow incidents. IASO primarily works based on timeout

signals (a negligible overhead of monitoring) and converts

them into a stable and accurate fail-slow metric. IASO can

quickly and accurately isolate a slow node within minutes.

Within a 7-month period, IASO managed to catch 232 fail-

slow incidents in our large deployment field. In this paper,

we have also assembled a large dataset of 232 fail-slow in-

cidents along with our analysis. We found that the fail-slow

annual failure rate in our field is 1.02%.

1 Introduction

Maintaining high availability of distributed storage services

in real deployment fields is challenging due to the various

types of faults that can occur. In the last few years, there

has been an emphasis on “fail-slow” fault mode [28, 32].

This means that a hardware or software component can still

function (does not fail-stop) but in much lower performance

than expected. Such faults have been studied under differ-

ent names such “gray failure” [32], “limping” [24, 37], and

“partial failures” [29]. We chose the term “fail-slow” for

simplicity and reflecting a recent term [28].

The urgency here is that many distributed systems are still

designed based on a binary model of no failure and fail-stop

failures. Recent works shows that many distributed systems

cannot gracefully tolerate fail-slow mode, i.e. the system

cannot isolate and hide a fail-slow component, causing la-

tency spikes or throughput degradation to users [24, 28, 31,

32, 56]. Worse, it has been reported that a fail-slow com-

ponent can cause cascade of performance failures across the

cluster, bringing down services for hours [24, 28]. This calls

for the importance of designing systems that tolerate not just

absolute failure of sub-components but can also gracefully

handle the occurrence of performance faults.

In this context, our work in this paper makes the two fol-

lowing contributions:

(1) Design and implementation of a fail-slow mitigation

framework. The first contribution of the paper is IASO, our

peer-based, non-intrusive fail-slow detection framework that

has been deployed for more than 1.5 years across 39,000

nodes in our customer sites. Before the integration with

IASO we had more than 25 full outages (IOPS went to zero)

due to cascading impacts of fail-slow incidents, not to men-

tion many other occurrences of partial slowdowns. Since the

integration with IASO, we had only 2 major outages (false

negative cases) caused by fail slow.

Motivation: IASO is motivated by the following reasons.

First, we found that fail-slow faults can be caused by many

root causes. Sole dependence on low-level detection tools

[38, 40, 15, 4] at various levels of the software and hardware

stack might not be sufficient. Thus, we need a fail-slow de-

tection system that works at the service (distributed system)

level. Most existing work focuses on hardware level outlier

detection or software performance bugs but they might not

cover all of the detailed root causes occurring in the field

(§4.2.3).

Second, most existing efforts focus only on detection but

not mitigation. We are only aware of a handful of works that

perform mitigation in real deployments (more in §5). Yet,

our findings suggest that if fail-slow incidents are not quickly

and automatically isolated, it can cascade and directly affect

users for hours or days. For this reason, it is paramount that

deployed systems are equipped with fail-slow mitigation.

Third, although some computing frameworks such as

MapReduce [1, 23] are equipped with fail-slow mitigation

(e.g., via speculative execution [58] or cloning [10]), the tail

tolerance is built in their abstractions (e.g., “jobs”, “tasks”)

and not directly generalizable to many other distributed sys-

tems. Recent works revealed that many other distributed sys-

tems are still not fail-slow tolerant [24, Figure 1][56, Figure

12]. Hence, we need a more general way of addressing fail-

slow faults in many distributed storage services.
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Challenges and solutions: A fail-slow detection frame-

work must be non-intrusive (negligible overhead), stable and

accurate, and not accidentally make wrong decisions (e.g.,

quarantine healthy nodes). To achieve this, we make IASO

peer-based, i.e., a slow service instance should be compared

against its peers of the same service (e.g., the performance of

Cassandra instance should not be compared to ZooKeeper’s).

We also make IASO load aware, i.e., the relative performance

of a service instance must not be improved or worsen just be-

cause the load on the node on which the instance is running

on is different.

To achieve all of these, we created an algorithm (§2.2)

that can work solely based on timeout signals. Our algo-

rithm can convert timeout and successful-response statistics

into a stable and accurate fail-slow detector. Our framework

does not need to monitor every request latency, hence achiev-

ing a neglibible overhead. IASO can quickly and accurately

isolate a slow node within minutes. Within a 7-month pe-

riod, IASO managed to catch 232 fail-slow incidents in our

large deployment field. IASO also automatically quarantined

the slow nodes and restored the clusters back to a healthier

performance. We only encountered 9 confirmed false posi-

tives. Other false positives are because the fail-slowness dis-

appeared when our engineers started diagnosing them (e.g.,

perhaps caused by unknown external conditions).

(2) A dataset and analysis of fail-slow incidents With IASO

integration, we were able to capture many fail-slow incidents

in the field. We have assembled a large dataset of fail-slow

incidents along with our analysis [7]. To the best of our

knowledge, this is the largest dataset of fail-slow cases pub-

licly reported from within a company. Furthermore, existing

accounts of fail-slow accidents are anecdotal [12, 28, 32],

while our contribution includes some quantitative analysis

(e.g., AFR, age correlation).

The dataset: The dataset contains 232 validated cases col-

lected from the deployment of 39,000 nodes throughout a

period of 7 months.1 This data pertains to a type of fully

hyperconverged system [9] that we deploy in customer sites.

Findings: Our rich dataset allows us to make some sta-

tistical findings. First, given 232 independent cases across

39,000 nodes over 7 months, we can derive that the annual

failure rate is 1.02% (232 × 12 / 7 / 39,000), which is rel-

atively significant compared to rates of other types of faults

(§4.2.1). Second, we uncovered a wide range of root causes

(and the low-level sub-causes), which again accentuates the

need for detection at the service level, not just at the individ-

ual hardware level. Third, we also observed the “infant mor-

tality” pattern where younger machines exhibit more fail-

slow incidents. Fourth, we show that if not mitigated prop-

erly, fail-slow cases can take hours or days to fully resolve,

which again highlights the importance of automatically quar-

1For this publication we only have analyzed the dataset for a 7 month

period in 2017. Data from 2018 is still being perused and cleaned.

antining slow nodes.

The following sections present the design and implemen-

tation of IASO (§2), experimental results (§3), our dataset and

findings (§4), related work and conclusion.

2 IASO

This section presents IASO, our framework for detecting the

presence of an unhealthy node and enabling self healing of

the cluster. We name our system after “Iaso”, the Greek god-

dess of recuperation from illness [8]. IASO is comprised of

three stages:

1. Detection (§2.1-2.2): This step reduces the time to de-

tect fail-slow incidents from hours to minutes while

keeping false positives low.

2. Mitigation (§2.3): This step quarantines the faulty node

and brings the cluster back to operation.

3. Resolution (§2.4): IASO automatically pages site relia-

bility engineers (SREs) to identify the failed component

and help support to do breakfix and assimilate the fixed

component back into operation.

When building IASO, we adhere to the following design

principles.

• Non intrusive: We attempt to reach a near 0% overhead,

hence we use raw metrics that the deployed services al-

ready collect (e.g., number of timeouts and successful

responses).

• Peer based: A slow service instance should be com-

pared against its peers of the same service, e.g., the

performance of Cassandra instance should be compared

to other Cassandra instances, not ZooKeeper instances,

as different types of services observe different types of

workload. For this reason, we monitor at service-level

requests, not at OS or hardware level.

• Load aware: The slowdown detection system must be

aware of the service load. The relative performance of

a peer must not be improved or worsen just because the

load on the node the peer is running on is different. This

means that the performance of a node must be normal-

ized based on the capacity of the node; in our deploy-

ment, a cluster can have different machine capacities

with different loads.

• Stable and accurate: As a degraded node will be quar-

antined, it is important to have a stable and accurate

algorithm that does not accidentally make wrong deci-

sions (false positives).
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Figure 1: IASO components. The figure is described in the

last paragraph of page 2 and also in Section 2.1. “Scr” denotes the

hook that sends score table to ScoreDB.

The following are the terms we use in this paper. As

shown in Figure 1, our system S is a cluster of high-end

machines (gray shades) running VMs wherein services are

running (boxes). For example, S comprises a ZooKeeper

(ZK) service for cluster configuration manager, a Cassandra

service (CS) for storing metadata, and our own blob-store

service for storing data. Each VM runs an instance of each

of the services (e.g., a VM runs three service instances, Cas-

sandra, ZooKeeper and blob-store instances). These VMs

are also known as controller VMs.

2.1 Detection

Our first goal is to detect which service instance is experienc-

ing a slowdown. Currently we only address persistent fault,

i.e., the instance is not being slowed down due to an intermit-

tent condition such as a one-off high GC time. This section

describes the main components of IASO as shown in Figure

1. The next section (§2.2) presents the detailed algorithm.

RAW METRICS (LATENCY VS. TIMEOUTS): One naive

method to measure degradation is to measure the latency of

every request. However, with today’s high-throughput ser-

vices it is not amenable (e.g., per-node Cassandra throughput

can reach 20,000 IOPS [5]). Sampling can be a solution, but

we explored a different method.

In this work, we try a much cheaper method to detect

degradation: counting timeouts. Many services such as Cas-

sandra already have a built-in metric that collects how many

responses were successful as well as the failed ones due to

timeouts. Another advantage of using timeouts is that our

monitoring system is not intrusive to the performance of the

service itself (a nearly 0% overhead as counting timeouts and

successful responses is a simple increment operation).

SCORES: We found that using raw timeout counts as a

direct metric to measure outlier is not a stable and accurate

way. Thus, we need to introduce the concept of “score”.

Given a cluster of N nodes with N instances of a service,

every instance can observe the performance of its N−1 peers

and maintain a “score table” (as shown in Figure 1).

STABLE SCORES: The primary challenge we address in

this work is how to convert timeout and success statistics into

a stable and accurate degradation detector. Noisy scores

can lead to more false positives where healthy nodes might

be accidentally removed and vice versa. Later, the exper-

iment section shows other unsuccessful algorithms that we

tried (§3) which then led us to the current algorithm (§2.2).

One key to prevent scores from fluctuating along with the

number of timeouts is by incorporating additive increase and

multiplicative decrease (AIMD) [18] such as used in TCP

congestion avoidance. Thus, our custom algorithm employs

a technique similar to AIMD.

SCOREDB SERVER: The scores collected from the ser-

vice instances are stored in a database server called ScoreDB

(Figure 1). For every peer, every instance keeps a score,

hence in total ScoreDB maintains N×(N−1) score vari-

ables (per every service monitored) including their histor-

ical values. Given these scores, ScoreDB runs an outlier

detection part of our algorithm and quarantines the outlier.

ScoreDB is also a replicated system (to anticipate degrada-

tion within itself).

2.2 Detection Algorithm

We now describe how IASO calculates the score metric and

detects an outlier. The challenge is to convert timeout and

success statistics into a stable and accurate degradation de-

tector. For every equation listed below, the explanation is in

the paragraph preceding the equation. Symbols † and ‡ are

used for backward references.

2.2.1 Peer Scores

Given a cluster of N instances within a service (e.g., Cas-

sandra), every instance observes the performance of its peers

and puts the corresponding scores in a score table contain-

ing N−1 peer scores. In our scoring system below, a score

ranges from 1 to 100 where a higher value implies more se-

vere degradation. For example, in the score table in Figure 1,

Cassandra instance on Node2 believes that Cassandra instane

on Node1 is slow (a score of 98).

As score continues to change, below we use prev and

score to represent the scores in the last and current epoch

respectively. An epoch is the interval at which every ser-

vice instance runs the equations below (i.e., calculates a new

score). The epoch is set to be 5 seconds and prev to 1 in the

beginning.

Next, we introduce ToRespRatio, the ratio of the number

of timeouts and total responses between two peers within an

epoch. This is essential to the load-awareness part of our

algorithm, that timeout counts should be relative to the num-
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ber of total responses as the number of responses will vary

across peers.

ToRespRatio = #timeouts / #responses

We then set ratioThresh, a timeout-response ratio thresh-

old, with a constant value of 0.1 (e.g., 10 timeouts for every

100 responses). In our experience, 10% timeouts from a peer

can cause a whole-cluster degradation. A higher value may

make IASO react too late, while a lower may lead to more

false positives (i.e., too sensitive). If ToRespRatio is larger

than the ratioThresh, it is likely a heavy degradation. Other-

wise, it is likely caused by a temporary high load or a benign

cause.

ratioThresh = 0.1

Next, we introduce minTTR as the minimum time to ob-

serve zero timeout from a peer before the score assigned to

it decreases from 100 to 1 (slow to healthy). We set the time

to be 2 minutes. The idea is that when a peer exhibits a zero

timeout, it might mean that this peer is temporarily healthy

but might suffer degradation again soon. The 2-minute mark

is the time window in which a peer must “prove” itself that

it is really healthy. A smaller window increases the risk that

we may start assigning good scores to a temporarily good

peer and thereby creating an unstable score pattern. A larger

window has the disadvantage that we may mark a peer as

fail-slow even if it has just completely recovered but the 2-

minute window hasn’t passed. However, the latter scenario

should be infrequent.

minTTR = 2 mins

With all of the values above, now we can stitch them into

the score calculation. In every epoch, if ToRespRatio is 0 (no

timeout), then the score will be calculated as shown below.

This is the “additive decrease” part of our algorithm – the

score will be slowly decreasing back to zero to show that the

peer is really healthy.

[ if ToRespRatio is 0 ]

score = prev − ( 100 × epoch / minTTR )

Now, we discuss the case where some timeouts are ob-

served (ToRespRatio is not zero). First, we introduce

minRatio as a higher bound of the timeout-response ratio

and threshold values. The idea here is that ToRespRatio can

be very high (e.g., 90%, when a peer is highly unrespon-

sive). This high value will make our algorithm below unsta-

ble. Thus, we cap it to the ratioThresh value (0.1), i.e., 10%

already represents enough degradation.

minRatio = min ( ToRespRatio , ratioThresh )†

Finally, the last variable we introduce is nearThresh to

measure how far the timeout-response ratio to the threshold

(how far from the 10% timeouts). This threshold nearness

ranges from 0 to 1.0.

nearThresh = minRatio / ratioThresh ‡

With all the new variables above, we now can calculate the

score when timeout-response ratio is higher than zero. The

equation below represents the “multiplicative increase” part

of our algorithm where the score is increased by the thresh-

old nearness. We put more examples below.

[ if ToRespRatio is not 0 ]

score = prev + ( prev × nearThresh )

Let’s use an example where an instance gave a score of

32 for a peer instance in the last epoch. Now, the current

epoch sees too many timeouts beyond the threshold such that

nearThresh is 1.0. Thus, the current score will jump from 32
to 32+32 (i.e., the score increases multiplicatively).2

score = 32 + ( 32 × 1.0 ) = 64

Let’s imagine another scenario where the ToRespRatio is

as small as 0.01 (1% timeouts) . Here, the minRatio will

be 0.01 (see equation †) and the nearThresh be 0.1 (see ‡).

Thus, the next score will only increment fractionally:

score = 32 + ( 32 × 0.1 ) = 35.2

To sum up, our algorithm prevents scores from fluctuat-

ing along with the number of timeouts. That is, we linearly

decrement the score when we do not observe any timeouts

from a peer, but multiplicatively increase the score when we

observe timeouts from the peer.

2.2.2 Scores Set

Every instance X then sends the scores of its peers (A, B, ...)

to the ScoreDB server, which will then maintain a history of

the scores. For example for a given peer A, there are N−1
scores for A collected in every 5-second epoch.

For every peer, all the scores given for that peer are col-

lected within a 10-minute sliding window, where ScoreDB

then picks the 30th-percentile value to be the representa-

tive score for that peer, such as for instance A. The 30th-

percentile value implies that the peer instance must have

70% high score values within a 10-minute interval such that

we do not inadvertently quarantine instances with mere tran-

sient faults. In our deployments, we have observed that a

10-minute window is wide enough to detect persistent faults.

It may not be the absolute minimum but it does put an upper

bound on the time to isolate a fail-slow peer.

At this point, ScoreDB has N representative scores for

all the instances in the cluster and it submits these scores

to the DBSCAN algorithm [6]. ScoreDB performs this every

minute, but using the data from the past 10 minutes (a sliding

window). DBSCAN [6] is an algorithm that takes a set of

2To make the score multiplication increases faster/slower (i.e., more con-

figurable), we can introduce a score multiplier with a usage such as: e.g., 32

+ scoreMultiplier × 32. We use scoreMultiplier =1.
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points and groups them such that points that are spatially

close are grouped together while points which do not have

enough close neighbors are classified as outliers. Thus, we

configure DBSCAN to output a binary decision (whether an

instance is “fast” or “slow”). We also only mark at most one

outlier at a time to make sure we do not remove too many

service instances (explained later in §2.3).

Finally, we emphasize that we only compare instances

(scores) of the same service. We do not compare instance

scores of Cassandra with those of ZooKeeper, thus the algo-

rithm above runs for every service deployed. For example in

Figure 1, the ScoreDB server maintains history of Cassandra

and ZooKeeper peer scores separately.

2.3 Mitigation

After a service instance is marked as an outlier, IASO starts

the mitigation process. Below are the three options that our

customers can set in IASO configuration. The first one (ser-

vice instance reboot) is the default configuration. The phi-

losophy of our mitigation is that it is better to remove a

highly degraded instance than allowing it to induce a cas-

cading problem to the entire cluster. Other works [24, 56]

already show how running with one less instance (N−1) can

give a better performance than running a full cluster (N ) with

a degraded instance. IASO only quarantines at most one in-

stance to prevent the cluster drops below its fault-tolerant

level.

(1) SERVICE INSTANCE REBOOT AND LEADERSHIP

REMOVAL: Here, IASO will restart the slow instance and

remove leadership leases (if any) from the service instance

running on that node. We emphasize here that we only re-

move the service instance (e.g., Cassandra/ZooKeeper slow

instance), but not the underlying VM or the machine. As

a reason, imagine a machine where an instance of service X
uses the underlying slow disk, but another instance of service

Y only utilizes the memory (still fast). Here, we want X to

be rebooted and its leadership removed, but let Y continue

to run normally as it is not affected by the slow disk.

Regarding the removal of leadership, in ZooKeeper, if the

instance is a leader, rebooting the instance will automatically

make ZooKeeper choose a new leader. This way the old slow

leader is no longer the single point of performance failure.

The only cost associated with this action is the rebuilding of

leader state on some other healthy peer.

In Cassandra, every instance is responsible for a key range

(our deployment does not use Cassandra’s virtual node fea-

ture). Here, we have two opposing options for mitigation.

The expensive option is to remove the instance from the ring

and trigger a whole-cluster key-range rebalancing, which

might be a premature action as the instance perhaps can be

fixed soon. The cheaper option is to let the slow instance be

in the ring but not allow it to be part of the data transfer.

We chose the latter option and modified Cassandra slightly

to achieve this. In this mode, the slow instance is no longer

the primary owner of its key range, but rather one of the other

replicas becomes the primary owner. The upside is that we

postpone the need for whole-cluster key-range rebalancing.

The downside is that the fault tolerance of newly added data

will be down by one (e.g., we can only write to two replica

nodes as the instance on the slow node is being isolated) and

read throughput may be degraded due to the loss of one in-

stance. We note that the fault tolerance of old data does not

go down as the data is still there in the slow instance.

Regardless of the limitations of this default option, cus-

tomers who have smaller clusters tend to choose this option

as they do not have options to migrate the instance or VMs

to another healthy machine. Below we discuss other options

for customers with larger clusters.

(2) VM SHUTDOWN: This is a more severe action than the

default option above. In this mode, the controller VM of the

slow service instance is shut down and no services are started

on the VM. The difference between this action and the de-

fault one above is that when VM is shut down, the services

above will automatically run their recovery protocols (e.g.,

whole ring rebalancing). Thus, the fault tolerance of the data

stays the same (e.g., 3-way replication is still maintained).

The similarity is that there may also be a performance drop

to the loss of a VM. When the problem is fixed, the VM is

added backed and full performance can be restored.

(3) HOST MACHINE SHUTDOWN: This option is similar

to VM shutdown. The difference is that our system will au-

tomatically migrate the entire VM from this host to another,

which is a process transparent to the services running on the

VM. There may be a potential VM rebalancing issue (e.g.,

a machine has too many VMs). For VM balancing, we em-

ploy our own proprietary VM rebalancing that is outside the

scope of the paper. We also emphasize that in our deploy-

ment, these machines are running the services that we de-

ploy. The machines are not shared with other tenants, hence

we have a full control of when to shut down the machine.

2.4 Resolution

The last stage, resolution, is the manual part of the whole

IASO operational procedure, which we describe here for

completeness.

When detecting a fail-slow node, IASO generates a user

alert on the customer monitoring UI. IASO also pages our

site-reliability engineers (SREs) such that they can work

with the affected customer to fix the problem. If there had

been a cluster outage (i.e., cluster IOPS went to almost zero)

before the mitigation, IASO helps the customer and our SREs

in identifying the faulty node and service.

It is also possible that before the SREs perform the full
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Components LOC

Cassandra modification 585

ZooKeeper modification 199

IASO node-level library 547

ScoreDB server 3377

Table 1: Implementation complexity (§2.5). The table

shows our IASO integration effort.

diagnosis, the problem already went away by itself from re-

booting the slow node. We see this happens in cases such

as CPU locks-ups or high heap usage levels. In such cases,

IASO will no longer mark the node as a degraded node. In

overall, when the problem is fixed, IASO immediately rolls

back the fail-slow node actions executed before, and service

instances on the newly recovered node regain their leader-

ship responsibilities.

Temporary fail-slow faults can be recurrent (e.g., high

heap usage level). To prevent such recurrent faults, the root

cause must be fixed. For example, we could apply some cus-

tom optimizations to our services to prevent it from entering

such a state again.

2.5 Other Implementation Details

INTEGRATION: So far we have integrated IASO with Cas-

sandra and ZooKeeper. The implementation complexity is

shown in Table 1. The changes to the target services are

non-intrusive (less than 600 LOC). The service instances use

IASO library to measure local scores and send them to the

ScoreDB server where the rest of the complexity lies. The

total score data size of ScoreDB server is only 0.27 MB per

day per cluster on average as it only needs to keep the score

history of the last 10 minutes. The CPU overhead is near 0%.

We envision that IASO can be easily integrated to other

master-worker systems where data flows across workers. For

example, in HDFS, write replication forms a pipeline of

datanodes where each datanode can sense the performance

of its peers. For systems like ZooKeeper, the integration in-

volves a different type of modification due to ZooKeeper’s

“pure” leader-follower architecture (i.e., followers do not in-

teract with each other). We describe these changes later be-

low. As mentioned before, we also run our own blob-store

service which can be integrated with IASO as well. This pro-

cess is still in progress, not because of integration difficulty,

but because so far our IASO integration in Cassandra and

Zookeper seems to be sufficient. One limitation of our de-

ployment is that a single blob-store instance can be miscon-

figured causing a fail-slow fault, but goes undetected (which

again so far never happened).

ZOOKEEPER MODIFICATION: In our deployment, the

Cassandra-side IASO so far has been very effective. But as

we deal with deployments of tens of thousands of nodes, we

can potentially cover a wider set of failure types if we can

integrate IASO with another service as well. Hence, we at-

tempted to integrate IASO to ZooKeeper, but ZooKeeper em-

ploys a pure leader-follower architecture where followers do

not transfer data with each other (i.e., 3-way writes flow from

the leader to three followers, unlike in HDFS or Cassandra).

The leader is a single point of performance failure [24]; if

the leader’s NIC is slow, the writes to all the followers will

slow down, hence no outlier.

For this, we add a simple, lightweight background ping-

pong thread between ZooKeeper peers (only <200 LOC).

Every 10 seconds, every instance picks a maximum of 7 ran-

dom peers and makes an RPC that includes a synchronous

disk write. Checking the disk latency this way is also bene-

ficial since most data operations in Cassandra hit the cache,

hence disk monitoring is a bit lacking. Besides these small

changes, we emphasize that the rest of the algorithm is the

same – the instances send the median latencies of their peers

(median of 1 minute window) to ScoreDB and the DBSCAN

algorithm will compute the outlier.

THRESHOLDS: We would like to emphasize that the

threshold values we use in our algorithms (§2.2) are based

on our specific deployment experiences. It is possible that

the values might not work in other cases.

3 Results

This section presents our experimental results, starting with

unsuccessful experiences (§3.1) and then the successful ones

(§3.2) and the false positive rates (§3.3).

3.1 Unsucessful Attempts

The first strawman approach we tried was to use the raw

timeout count as a metric to sense service instance level per-

formance degradation. Figure 2 shows the number of time-

outs observed in three samples of real degraded instances (in

different time periods and clusters). As shown, the timeouts

observed occur in bursts although the fault is severe through-

out the time interval. Thus, without saving the ratio of time-

outs and responses for every peer over a given period, there

is no way to detect whether these high scores were merely

transient or if they were truly persistent and possibly catas-

trophic faults.

For this reason, we next attempted to create a more stable

algorithm by defining a score to be the percentage of time-

outs over the total responses in every epoch. The first line

below is the same as the first equation in §2.2, and in the

second line, a peer score is essentially the ToRespRatio.

ToRespRatio = #timeouts / #responses

score = ToRespRatio
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Figure 2: Timeout fluctuations (§3.1). The figures show the

number of timeouts observed over time in three samples of degraded

nodes (different time period).

Figure 3a shows the result. Ideally the score should stay

high throughout the degraded period, but instead we see one

big spike and one small spike. We then modified the scoring

algorithm slightly by using the median of the last 3-minute

window:

score = median ( ToRespRatio in last 3 mins )

The result, as shown in Figure 3b, still shows the same be-

havior (a dip between the two spikes). We tried replacing the

median using average and weighted average and the result is

similar (Figures 3c-d).

3.2 Successful Results

The previous section provides the reason we invented our

custom outlier detection. Figure 4a shows the resulting

scores from our custom algorithm, as detailed in Section

2.2. We can see that the metadata service (Cassandra/MS)

instance on the degraded node has high scores assigned to it

from 11:30 to 13:15 hours. Note that this is the case where

we have not enabled the mitigation procedure, i.e., the cus-

tomer was experiencing degradation for almost 2 hours!

Correspondingly, to check that the scores are accurate, we

checked the standard network performance graphs and we

found that there had been a network issue at the exact time

interval. Figure 4b shows the TCP SEND Q size on the net-

work connection between another node with this unhealthy

node. Furthermore, Figure 4c shows the ping latencies to the

degraded machine.

From these graphs, we can see that bad network perfor-

mance on the slow machine correlated perfectly with the bad

scores assigned to the nodes running on it. As a side note, we

can see that the two metrics in Figures 4b-c cannot be used

as raw scores as they also fluctuate.
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Figure 3: Unstable scores (§3.1). Other attempts to create

stable scores using timeout-response ratio as explained in §3.1.

Next, Figure 5 shows what is happening in the ScoreDB

server side for a different fail-slow incident. The picture

shows the representative scores by instance X measured for

its N−1 peers on other nodes. For simplicity, the data here

is from a cluster of 4 nodes. Figure 5a shows that Node3

has a high score compared to other peers. But at this point

Node3 has not been marked as a definite outlier because its

30thpercentile score is not high yet. However, two minutes

later, as shown in Figure 5b, we have sufficient scores for

the 30thpercentile score to be high. When we plug this score

into the DBSCAN algorithm, Node3 was marked as a definite

outlier.

IASO automatically quarantines an outlier to prevent it

slowing down the entire cluster. Figure 6 shows another

case after we deploy IASO. Here, the figure shows that the

cluster-level IOPS drops to almost zero with the presence of

one degraded machine, essentially showing how a degraded

node can impact the entire cluster, as also shown by other

works [24, 56]. Packet losses and the cluster-level degra-

dation started occurring at around 09:15am but just after 10

minutes, IASO’s mitigatory actions kicked in and the perfor-

mance of the cluster was completely restored. Thus, with

IASO, the time taken to quarantine a degraded node has now

been brought down to the order of minutes. Note that the

IOPS returns to “normal” although we lost a node, which is

because in this scenario the 100K IOPS were far from the

maximum throughput of the cluster.

3.3 True and False Positives

Figures 7a and 7b show the number of true and false posi-

tives we encountered every month across the 7 months, re-
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Figure 4: Stable scores (§3.2). The figures show (a) the

score of a degraded peer over time, (b) the SEND Q size of the

network connection to the degraded node, and (c) ping latencies to

the degraded node monitored by our systat collector.

spectively. For Figure 7b, the figure combines the number

of “confirmed” and “probable” false positives as explained

below.

Over a 7-month period, we encountered 9 confirmed false

positives over the 232 true positives (confirmed fail-slow in-

cidents), which brings our false positive rate to 3.7%. One

major reason for our false positive is in our earlier versions

of IASO where the cluster still sends data to a dead service

instance and a healthy instance already becomes affected

and “looks” slow as well. Here IASO incorrectly marks the

healthy instance as an outlier. Due to space constraints, we

put more false positive stories in our anonymized supple-

mental material [7].

We also encountered 41 probable false positives. We la-

bel these cases as “probable” because they do not necessarily

suggest that IASO is imprecise. In these cases, by the time

our SREs started debugging, the issue was no longer present

and the service instances, VMs, and machines were healthy.

Existing works gave some hints on the reasons behind this,

for example, fail-slow incidents can be triggered by tempo-

rary environmental causes such as high temperature [28].
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Figure 5: Mitigation (§3.2). The top figure shows that Node3’s

score is high as observed by Node0 however it is not being marked

as an outlier yet as its 30thpercentile score is still low. In the bottom

figure, Node3 is marked as a definite outlier.
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Figure 6: Restored performance (§3.2). Within 10 min-

utes, IASO made the cluster-level IOPS return back to normal after

isolating the slow node.

While we managed to record the false positives, we were

not able to collect many false-negative reports (i.e., unde-

tected fail-slow incidents). This is because the reality of a

large company and our SREs have their own priorities and

might not contact us when they found cases that were not but

should have been detected by IASO. The false negatives we

were aware of came from two 2 outages that happened after

the deployment of IASO, which can be found in our supple-

mental material [7]. Other false negatives we noticed include

low workloads as fail-slow faults with low workloads might

not necessarily result in timeouts. We did not fix this prob-

lem as almost all our customers heavily utilize their clusters.

From our perspective, we prefer false positives over false

negatives as in our system IASO pages site-reliability en-

gineers whenever it detects a fail-slow failure. This gives
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Figure 7: True and false (confirmed+probable) positives

(§3.3). The figure shows the number of (a) true and (b) false

positives every month. The false positives include the “confirmed”

and “probable” false positives as described in §3.3.

us a way to easily track and investigate such issues and im-

prove our system over time. As for the worst case impact,

a false positive can cause a cluster to temporarily operate in

a reduced fault tolerance state as IASO’s extreme mitigation

strategy can bring down a node. However, in case of a false

negative, there can be an entire cluster outage which can stay

undetected for hours.

4 Fail-Slow Dataset and Analysis

The deployment of IASO allows us to analyze fail-slow inci-

dents in our vast field of clusters, which then enables us to

perform new statistical studies. This section first describes

our dataset (§4.1) followed with our findings (§4.2).

4.1 Dataset

We first describe our deployment settings. Our field consists

of 39,000 nodes spread across many clusters. A cluster size

ranges from 3 to 56 nodes. Our various cluster models and

configurations (RAM size, storage, etc.) can be found in our

supplemental material [7]. A cluster can contain heteroge-

neous nodes as we support heterogeneous applications and

a broken hardware can be replaced with a higher-end one.

Each node in a cluster runs a special VM called a controller

VM where our data and control path services run. Among

these services, Cassandra and Zookeeper run with IASO in-

tegration.

Failure AFR Notes

SSD error 5-15.7% ≥ one uncorrectable error [53]

SSD failure 1-2% Dead SSDs [16]

Disk error 1.7-8.6% ≥ one failure event [46, 52]

DRAM error 2.2-9.0% ≥ one memory error [33, 54]

fail-slow 1.02% Node-level fail-slow faults

Table 2: Fail-slow AFR (§4.2.1). Comparisons of annual

failure rates of different types of failures
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Figure 8: Fail-slow per day (§4.2.1). The figure shows the

number of fail-slow incidents per day in our field over 7 months.

As mentioned before, every time IASO detects a fail-slow

fault, it raises an alert that triggers the opening of a support

ticket to investigate the issue. The support case is investi-

gated by a team of trained site reliability engineers (SREs),

who in turn coordinate with the customer and debug the is-

sue. Once the problem is identified, the SREs update the

support ticket with a category of the root cause found and

the steps to resolve the issue. Other information that is up-

dated as part of the case includes the time of the incident,

a cluster identification number, the software version on the

customer’s cluster, the model family of the node that was af-

fected and the number of months the node has been with the

customer at the time of the incident.

With 232 fail-slow related tickets, our dataset can be seen

as the largest fail-slow data from within a company. The pre-

vious largest dataset was 101 cases from 12 different institu-

tions (more in §5). The next section presents our findings

from studying the support tickets. The dataset that we will

make public and discuss here comes from a period of seven

months in 2017. The dataset for 2018 is still being perused

and cleaned, hence not part of this submission.

4.2 Findings

4.2.1 Frequency

With a large dataset, we are able to measure the annual fail-

ure rate (AFR) of fail-slow incidents. Given 232 independent

cases across 39,000 nodes over 7 months, we can derive that

fail-slow AFR is 1.02% (232 × 12 / 7 / 39,000).

Table 2 compares fail-slow AFR with the rates of other

types of failures. As shown, fail-slow fault frequency is rel-
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Figure 9: Fail-slow root causes (§4.2.2). The figure shows

the breakdown of fail-slow root causes (and the comparison to fail-

stop causes).

atively significant and cannot be ignored. Figure 8 breaks

down the number of fail-slow incidents observed per day

in our field over the 7 months. We see that barring a cou-

ple of days in between, there is at least one failure per day.

These statistics accentuate the importance of fail-slow detec-

tion and mitigation frameworks such as IASO.

4.2.2 Root Causes

Next, we analyze the root causes of fail-slow incidents. To

compare the frequencies of various different root causes of

fail-slow incidents with those of fail-stop failures [51], we

group the causes into six categories: Hardware, Software,

Network, Environment, Human and Unknown. For example, all

issues that had a tag of “memory” or “disk” in our support

tickets are grouped under Hardware.

Figure 9 shows the breakdown of fail-slow root causes

(and the comparison to fail-stop causes from a related work

[51, Figure 4a]). Hardware and Network failures turn out to

be the highest contributors of fail-slow incidents in our field.

Their total is roughly the same as in the fail-stop cases. In

the next section, we break down the sub-causes to understand

more about the root causes.

The Unknown count is quite significant because of a cou-

ple of reasons. One common reason is when a customer be-

comes unresponsive during the support case or does not want

the issue to be investigated further without providing a clear

reason. We believe this can be either because the customer

did not notice any issue around the time the fail-slow alert

was generated (thereby a false positive) or fixed the issue

themselves without our help. The other reason is when the

SREs could not find a specific root cause for the issue or did

not tag the support case with a clear cause.

4.2.3 Root Sub-Causes

Table 3 shows further the breakdown of the sub-causes

within each of the five root categories in the previous sec-

tion. The numbers in the parentheses are the count of tickets.

Root Sub-causes

Hardware Faulty dimm (15), ECC error (10), low mem-

ory (9), SATADOM (5), CRC error (1), RAID

controller (1), LSI controller (1), unknown (5)

Software Software upgrade (8), VM issue (6), GC (3),

BIOS (1), scheduler (1), unknown (6)

Network Faulty device (13), network outage (9), device

replace(7), unreachability (6), packet drop (5),

network contention (2), device reboot (1), un-

known (18)

Environment Incorrect setting (11), high load (1), energy is-

sue (1)

Human error Misconf (10), network migration (4), install

/deploy (3), unplugged cable (2), unknown (4)

Table 3: Root sub-causes (§4.2.3). The table shows the sub-

causes within each of the five categories of known root causes. The

dataset will be released publicly.
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Figure 10: Fail-slow vs. age (§4.2.4). The figure correlates

fail-slow incidents with machine ages.

For example, for hardware-induced slowdown, it can be be-

cause of faulty dimm, ECC/CRC errors, low memory, etc.,

while network-induced slowdown can be because of faulty

NICs/switches, bad cables, packet drops, and network con-

tention.

Our goal here is to show that fail-slow root causes vary

widely. We believe this is a strong motivation why fail-slow

detection and mitigation should be also deployed at the ser-

vice level (not just low-level hardware level). Our findings

are also consistent with those reported in a recent paper [28];

we observed in our field how fault conversions take place and

how different failure types such as fail-stop (e.g., disk/SSD

failure), fail-transient (e.g., GC), and fail-partial (ECC er-

rors) can transform into fail-slow failures at the service level

[28, §3.2].

4.2.4 Age and Model

As our ticketing system automatically collects machine age

data, we are able to correlate fail-slow failures with machine

ages, as shown in Figure 10, bucketed into months ranging
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Figure 11: Tickets TTR (§4.2.5). The figure shows the CDF

of time to resolve tickets across different root-cause categories.

Net Unk HW SW Human Env

Median 79 145 126 234 108 65

Mean 149 220 244 323 165 149

Max 721 1033 1705 1238 625 964

Table 4: TTR tickets (§4.2.5). The table shows the median,

mean, and maximum values of the data in Figure 11.

from 1 to 48. We can see the “infant mortality” trend where

younger machines exhibit more issues, but older (perhaps

more stable) machines exhibit fewer issues. This follows the

same failure trend in fail-stop failures [51, Figure 4]. This

also supports a continuous paradigm where when the rate of

fail-stop errors drops so does the fail-slow ones.

We also attempted to correlate fail-slow failures with the

node model family and found no significant correlation, that

every node model family suffers from faults across a major-

ity of component types (see [7] for more).

4.2.5 Tickets TTR

Finally, Figure 11 shows the distribution of time to resolve

the tickets (in hours) across different root causes. Table 4

shows the median, mean, and max values of the data in Fig-

ure 11. We emphasize that this metric does not represent the

time for IASO to mitigate the issues (which is in the order

of 10 minutes), but rather how long it takes to close a ticket.

When a ticket is closed, the customer’s cluster is guaranteed

to be back fully healthy.

The reason we show this data is to point out that a fail-

slow root cause can take days to be fully resolved. This is

consistent with anecdotal experiences shared by large-scale

operators from various institutions [28, §3.5]). Hence, it is

important to quickly quarantine the fail-slow component be-

fore the performance problem cascades to the entire cluster.

HW SW Service

Bug

finding

SymDrive[47],

DDT[39]

MacePC[38],

PCatch[40],

SPV[55]

Orca[15]

Detection IPMI[2],

SNMP[3],

SMART[4],

Ganglia[42]

UBL[20],

Toddler[43]

PeerReview[30],

AFD[45]

Diagnosis Roy[49],

PerfBlower[25]

Xray[13],

Hytrace[19],

PerfScope[21],

PerfCompass[22],

Deepview[59],

Stitch[60],

FaultLocalize[50]

Canopy[36],

PivotTracing[41],

Pip[48],

Panorama[31]

Mitigation Carburizer[35],

DisturbMLC[14],

VibrateSSD[17]

Mantri[11],

DeepDive[44],

PBSE[56]

PREPARE[57],

IASO

Table 5: Related work (IASO). The table categorizes works

that relate to fail-slow detection, diagnosis, and mitigation across

hardware-, software-, and service levels.

5 Related Work

We now discuss related work beyond the papers that we al-

ready cited earlier. In particular, we break the discussion

here to two categories: (1) works related to fail-slow detec-

tion and mitigation systems and (2) publications that release

information about fail-slow incidents.

Table 5 shows that there are many tools, frameworks, and

approaches that have been introduced or deployed for dif-

ferent levels of the hardware, software, and service stack.

First, there are many bug-finding tools such as MacePC [38],

PCatch [40], and Orca [15], but they are offline approaches.

Second, there are online fail-slow detection tools across the

hardware/software stack. For example, SMART [4] is a

monitoring tool that can be used to detect hardware degra-

dation but does not include diagnosis capability. Third, Pip

[48], PivotTracing [41] and many others provide diagnosis

approaches that work at the service level (not just one par-

ticular software) but they do not make quarantine decisions.

Finally, IASO is in a category that performs detection and au-

tomated mitigation. In this space, we are not aware of many

published works. The limitation of IASO is that it does not

come with diagnosis tools. Thus, the diagnosis approaches

in the 3rd row of Table 5 are orthogonal to our work.

Table 6 shows publications that release datasets on perfor-

mance problems. The table shows the year span (Y r), num-

ber of fail-slow failures/bugs reported (#F ), deployment

size/number of nodes (#N ), the number of systems/services

the data is collected from (#S) and the scope of the root-

cause analysis (A). The top part of the table represents inci-

dents that appear in live deployments while the bottom of the
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Related Work Yr #F #N #S A

IASO ’16-17 232 39k 1 ehmnsu

Fail-slow[28] ’00-17 101 ≥10k 12 hn

GrayFailure[32] - 4 - 1 -

Panorama[31] ’17-18 15 20 4 -

COS[27] ’09-15 126 - 32 ehmnsu

CBS[26] ’11-14 860 - 6 s

PerfBugs[34] ’00-11 109 - 5 s

Limplock[24] ’13 28 ≥30 5 s

Table 6: Related work (fail-slow dataset). For each

related work, the columns show the year span (Y r), number of

fail-slow failures/bugs reported (#F ), deployment size/number of

nodes (#N ), the number of systems/services the data is collected

from (#S) and the scope of the root-cause analysis (A). In the

last column (analysis), “h” represents hardware, “s” software, “n”

network, “e” environment, and “m” human. Papers with “s”-only

label implies bug-study papers.

paper represents works that study/test software bugs. In the

former category, our dataset can be considered as the largest

dataset of fail-slow cases publicly reported from within a

company. Our work strongly supplements existing anecdotes

that fail-slow faults at all levels, hardware and software, have

to be addressed.

6 Conclusion

We have described our successful 1.5-year deployment of

IASO. We found fail-slow detection and automated miti-

gation schemes are crucial in preventing fail-slow induced

outages in our large deployment field. We would like to em-

phasize again that automatic fail-slow mitigation/quarantine

schemes (beyond detection only) are relatively a new area

of research. We hope our paper can provide insights to the

development of better frameworks in the future.

As future work, we look forward to building a more ag-

gressive algorithm that can quarantine a slow node shorter

than our current 10-minute interval (and do so with low false

positives) as well as automatically marking fail-slow faults

that are resolved by themselves without depending on our

customers or SREs (more in [7]). Furthermore, as we con-

tinue to collect peer scores reported in the field, we hope to

learn more detailed characteristics.
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