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Abstract
Reconfiguring NoSQL databases under changing work-

load patterns is crucial for maximizing database throughput.
This is challenging because of the large configuration param-
eter search space with complex interdependencies among
the parameters. While state-of-the-art systems can auto-
matically identify close-to-optimal configurations for static
workloads, they suffer for dynamic workloads as they over-
look three fundamental challenges: (1) Estimating perfor-
mance degradation during the reconfiguration process (such
as due to database restart). (2) Predicting how transient the
new workload pattern will be. (3) Respecting the applica-
tion’s availability requirements during reconfiguration. Our
solution, SOPHIA, addresses all these shortcomings using
an optimization technique that combines workload predic-
tion with a cost-benefit analyzer. SOPHIA computes the rel-
ative cost and benefit of each reconfiguration step, and de-
termines an optimal reconfiguration for a future time win-
dow. This plan specifies when to change configurations and
to what, to achieve the best performance without degrading
data availability. We demonstrate its effectiveness for three
different workloads: a multi-tenant, global-scale metage-
nomics repository (MG-RAST), a bus-tracking application
(Tiramisu), and an HPC data-analytics system, all with vary-
ing levels of workload complexity and demonstrating dy-
namic workload changes. We compare SOPHIA’s perfor-
mance in throughput and tail-latency over various baselines
for two popular NoSQL databases, Cassandra and Redis.

1 Introduction
Automatically tuning database management systems

(DBMS) is challenging due to their plethora of performance-
related parameters and the complex interdependencies
among subsets of these parameters [45, 64, 17]. For ex-
ample, Cassandra has 56 performance tuning parameters
and Redis has 46 such parameters. Several prior works
like Rafiki [45], OtterTune [64], BestConfig [69], and oth-
ers [17, 62, 61], have solved the problem of optimizing a
DBMS when workload characteristics relevant to the data

operations are relatively static. We call these “static config-
uration tuners”. However, these solutions cannot decide on
a set of configurations over a window of time in which the
workloads are changing, i.e., what configuration to change
to and when. Further, existing solutions cannot perform the
reconfiguration of a cluster of database instances without de-
grading data availability.

Workload changes lead to new optimal configurations.
However, it is not always desirable to switch to new con-
figurations because the new workload pattern may be short-
lived. Each reconfiguration action in clustered databases
incurs costs because the server instance often needs to be
restarted for the new configuration to take effect, causing a
transient hit to performance during the reconfiguration pe-
riod. In the case of dynamic workloads, the new workload
may not last long enough for the reconfiguration cost to be
recouped over a time window of interest to the system owner.
Therefore, a proactive technique is required to estimate when
executing a reconfiguration is going to be globally beneficial.

Fundamentally, this is where the drawback of all prior ap-
proaches to automatic performance tuning of DBMS lies—in
the face of dynamic changes to the workload, they are either
silent on when to reconfigure or perform a naı̈ve reconfig-
uration whenever the workload changes. We show that a
naı̈ve reconfiguration, which is oblivious to the reconfigu-
ration cost, actually degrades the performance for dynamic
workloads relative to the default configurations and also rel-
ative to the best static configuration achieved using a static
tuner with historical data from the system (Figure 3). For
example, during periods of high dynamism in the read-write
switches in a metagenomics workload in the largest metage-
nomics portal called MG-RAST [50], naı̈ve reconfiguration
degrades throughput by a substantial 61.8% over default.
Our Solution: We develop an online reconfiguration
system—SOPHIA—for a NoSQL cluster comprising of mul-
tiple server instances, which is applicable to dynamic work-
loads with various rates of workload shifts. SOPHIA uses
historical traces of the workload to train a workload pre-
dictor, which is used at runtime to predict future workload
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Figure 1: Workflow of SOPHIA with offline model building and the on-
line operation, plus the new components of our system. It also shows
the interactions with the NoSQL cluster and a static configuration
tuner, which comes from prior work.

Figure 2: The effect of reconfiguration on the performance of the sys-
tem. SOPHIA uses the workload duration information to estimate the
cost and benefit of each reconfiguration step and generates plans that
are globally beneficial.

patterns. Workload prediction is a challenging problem and
has been studied in many prior works [43, 19, 51]. How-
ever, the workload predictor itself is not a contribution of
SOPHIA, and it can operate with any workload predictor with
sufficiently accurate and long-horizon predictions. SOPHIA
searches the vast space of all possible reconfiguration plans,
and hence determines the best plan through a novel Cost-
Benefit-Analysis (CBA) scheme. For each shift in the pre-
dicted workload trace, SOPHIA interacts with any existing
static configuration tuner (we use RAFIKI in our work be-
cause it is already engineered for NoSQL databases and is
publicly available [15]), to quickly provide the optimal point
configurations for the new workload and the estimated ben-
efit from this new configuration. SOPHIA performs the CBA
analysis, taking into account the predicted duration of the
new workload and the estimated benefit from each recon-
figuration step. Finally, for each reconfiguration step in the
selected plan, SOPHIA initiates a distributed protocol to re-
configure the cluster without degrading data availability and
maintaining the required data consistency requirement.
During its reconfiguration, SOPHIA can deal with different
replication factors (RF) and consistency level (CL) require-
ments specified by the user. It ensures that the data remains
continuously available through the reconfiguration process,
with the required CL. This is done by controlling the num-
ber of server instances that are concurrently reconfigured.
However, this is only possible when RF>CL. In cases where
RF=CL, reconfiguring any node in the cluster will degrade
data availability as every request will require a response
from every replica before it is returned to the user. There-
fore, we also implement an aggressive variant of our system
(SOPHIA-AGGRESSIVE), which relaxes the data availability
requirement in exchange for faster reconfiguration and hence
better performance.
Evaluation Cases
We evaluate SOPHIA on two NoSQL databases, Cassan-
dra [39] and Redis [7]. The first use case is based on real
workload traces from the metagenomics analysis pipeline,
MG-RAST [9, 49]. It is a global-scale metagenomics por-

tal, the largest of its kind, which allows users to simultane-
ously upload their metagenomic data and use its computa-
tional pipeline. The workload does not have any discernible
daily or weekly pattern, as the requests come from all across
the globe and we find that the workload can change drasti-
cally over a few minutes. This presents a challenging use
case as only 5 minutes or less of accurate lookahead is possi-
ble. The second use case is a bus-tracking application where
read, scan, insert, and update operations are submitted to a
backend database. The data has strong daily and weekly pat-
terns to it. The third use case is a queue of data analytics jobs
such as would be submitted to an HPC computing cluster.
Here the workload can be predicted over long time horizons
(order of an hour) by observing the jobs in the queue and
leveraging the fact that a significant fraction of the job pat-
terns are recurring. Thus, our three cases span the range of
patterns and corresponding predictability of the workloads.
We compare our approach to existing solutions and show that
SOPHIA increases throughput (and decreases tail-latency)
under all dynamic workload patterns and for all types of
queries, with no downtime. For example, SOPHIA achieves
24.5% higher throughput over default configurations and
21.5% higher throughput over a statically determined ide-
alized optimal configuration in the bus-tracking workload.
SOPHIA achieves 38% and 30% higher aggregate through-
put over these two baselines in the HPC cluster workload.
With SOPHIA’s auto-tuning capability, Redis is able to oper-
ate through the entire range of workload sizes and read/write
intensities, while the vanilla Redis fails with large work-
loads. The main contributions of SOPHIA are:
1. We show that state-of-the-art static tuners when applied
to dynamic workloads degrade throughput below the state-
of-practice of using the default parameter values and also
degrade data availability.
2. SOPHIA performs cost-benefit analysis to achieve long-
horizon optimized performance for clustered NoSQL in-
stances in the face of dynamic workload changes, including
unpredictable and fast changes to the workload.
3. SOPHIA executes a decentralized protocol to gracefully
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switch over the cluster to the new configuration while re-
specting the data consistency guarantees and keeping data
continuously available to users.
First, we show the improvement of using SOPHIA to tune a
Cassandra cluster. Afterwards, we show how SOPHIA can
be used to tune Redis and improve its performance. The rest
of the paper is organized as follows. Section 2 provides an
overview of our solution SOPHIA. We provide a background
on Cassandra and its sensitivity to configuration parameters
and on static configuration tuners in Section 3. We describe
our solution in Section 4. We provide details of the work-
loads and our implementation in Section 5. We give the eval-
uation results in Section 6 and finally conclude.

2 Overview of SOPHIA

Here we give an overview of the workflow and the main
components of SOPHIA. A schematic of the system is shown
in Fig. 1. Details of each component are in Sec. 4.

SOPHIA runs as a separate entity outside the Cassandra
cluster. It measures the workload by intercepting and ob-
serving received queries at the entry point(s) to Cassandra.
Periodically, SOPHIA queries the Workload Predictor (box
1 in figure) to determine if any future workload changes ex-
ist that may merit a reconfiguration—no change also con-
tributes information for the SOPHIA algorithm. Also, an
event-driven trigger occurs when the predictor identifies a
workload change. The prediction model is initially trained
from representative workload traces from prior runs of the
application and incrementally updated with additional data
as SOPHIA operates. With the predicted workload, SOPHIA
queries a static configuration tuner that provides the optimal
configuration for a single point in time in the predicted work-
load. The static configuration tuner is initially trained on the
same traces from the system as the workload predictor. Sim-
ilarly, the static configuration tuner is also trained incremen-
tally like the workload predictor.
The Dynamic Configuration Optimizer (box 2) generates
a time-varying reconfiguration plan for a given look-ahead
window using cost-benefit analysis (CBA). This plan gives
both the time points when reconfiguration should be initi-
ated and the new configuration parameters at each such time
point. The CBA considers both the static, point solution
information and the estimated, time-varying workload in-
formation. It is run every look-ahead time window apart
or when the workload characteristics have changed signifi-
cantly enough. The Controller (box 3) initiates a distributed
protocol to gracefully switch the cluster to new configura-
tions in the reconfiguration plan (Sec.4.5). This controller
is conceptually centralized but replicated and distributed
in implementation using off-the-shelf tools like ZooKeeper.
SOPHIA decides how many instances to switch concurrently
such that the cluster always satisfies the user’s availability
and consistency requirements. The Workload Predictor is lo-
cated at a point where it can observe the aggregate workload

such as at a gateway to the database cluster or by querying
each database instance for its near past workload profile. The
Dynamic Configuration Optimizer runs at a dedicated node
close to the workload monitor. A distributed component runs
on each node to apply the new reconfiguration plan.
Cost-Benefit Analysis in the Reconfiguration Plan
Each reconfiguration has a cost, due to changing parameters
that require restarting or otherwise degrading the database
services, e.g., by flushing the cache. The CBA in SOPHIA
calculates the costs of implementing a reconfiguration plan
by determining the number, duration, and magnitude of
degradations. If a reconfiguration plan is found globally ben-
eficial, the controller initiates the plan, else it is rejected.
This insight, and the resulting protocol design to decide
whether and when to reconfigure, are the fundamental con-
tributions of SOPHIA.
Now we give a specific example of this cost-benefit trade-off
from real MG-RAST workload traces. Consider the exam-
ple in Fig. 2 where we apply SOPHIA’s reconfiguration plan
to a cluster of 2 servers with an availability requirement that
at least 1 of 2 be online (i.e. CL=1). The Cassandra cluster
starts with a read-heavy workload but with a configuration
C1 (Cassandra’s default), which favors a write-heavy work-
load and is therefore suboptimal. With this configuration,
the cluster provides a throughput of ∼40,000 ops/s and a tail
latency of 102 ms (P99), but a better read-optimized con-
figuration C2 exists, providing ∼50,000 ops/s and a tail la-
tency of 83 ms. The Cassandra cluster is reconfigured to the
new C2 configuration setting, using SOPHIA’s controller, re-
sulting in a temporary throughput loss due to the transient
unavailability of the server instances as they undergo the
reconfiguration, one instance at a time given the specified
availability requirement. Also during the reconfiguration pe-
riod, the tail latency increases to 122.5 ms on average. The
two dips in throughput at 200 and 270 seconds correspond
to the two server instances being reconfigured serially, in
which two spikes in tail latency of 180 ms are observed.
We plot, using the dashed line, the gain (benefit minus cost)
over time in terms of the total # operations served relative
to the default configuration. We see that there is a crossover
point (the red X point) with the duration of the new work-
load pattern. If the predicted workload pattern lasts longer
than this threshold (190 seconds from the beginning of re-
configuration in our example), then there is a gain from this
step and SOPHIA would include it in the plan. Otherwise, the
cost will outweigh the benefit, and any solution implemented
without the CBA risks degrading the overall system perfor-
mance. Thus, a naı̈ve solution (a simple extension of all ex-
isting static configuration tuners) that always reconfigures
to the best configuration for the current workload will actu-
ally degrade performance for any reasonably fast-changing
workload. Therefore, a workload predictor and a cost-benefit
analysis model are needed to develop a reconfiguration plan
that achieves globally optimal performance over time.
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3 Background

Overview of Apache Cassandra: Cassandra is one of the
most popular NoSQL databases that is being used by many
companies such as Apple, eBay, Netflix and many others
[8]. This is because of its durability, scalability, and fault-
tolerance, which are essential features for production deploy-
ments with large volumes of data. To be able to support
a wide range of applications and access patterns, Cassan-
dra (like many other DBMS) exposes many configuration
parameters that control its internal behavior and affect its
performance. This is intended to customize the DBMS for
widely different applications. According to the Cassandra ar-
chitecture, it caches writes in an in-memory Log-structured
merge tree [58] called Memtable for a certain period of time.
Afterwards, all Memtables get flushed to their corresponding
persistent representation on disk called SSTables. The same
flushing process can be triggered if the size of the Memtable
exceeds a specific threshold. A Memtable is always flushed
to a new SSTable, which is never updated after construction.
Consequently, a single key can be stored accross many SSTa-
bles with different timestamps, and therefore a read request
to that key will require Cassandra to scan through all exist-
ing SSTables and retrieve the one with the latest timestamp.
To keep the number of SSTables manageable, Cassandra ap-
plies a compaction strategy, which combines a number of
old SSTables into one while removing obsolete records. This
achieves better performance for reads, but is also a heavy op-
eration that consumes CPU and memory and can negatively
impact the performance for writes during compaction.
Dynamic Workloads in Cassandra: Optimal values of
these performance-sensitive parameters are dependent on
the workload. For example, we find empirically that size-
tiered compaction strategy achieves 44% better performance
for write-heavy workloads than leveled compaction strategy,
while leveled compaction strategy achieves 90% better per-
formance for read-heavy workloads (Figure 3). When the
workload changes, the optimal parameters for the new work-
load will likely change as well. An incremental approach is
desired, rather than restarting all servers concurrently, which
renders all the data unavailable during reconfiguration.
Workloads in our pipeline have shifts in the number of re-
quests/s and also the relative ratio of the different opera-
tions on the database (i.e., transaction mixture). Therefore,
SOPHIA needs to react in an agile manner to such shifts. For
example, MG-RAST traces show 443 sharp (more than 80%
change) shift/day on average, mostly from read-heavy to
write-heavy workloads and vice-versa. For the bus-tracking
application, a smaller, but still significant, value of 63 shift/-
day is observed. The static tuners cannot handle such dy-
namism and cannot even pick a single parameter set that will
on an average give the highest throughput aggregated over a
window of time because of the lack of lookahead and also
the lack of the Cost-Benefit analysis model.

4 Design of SOPHIA

SOPHIA seeks to answer the following two broad ques-
tions: When should the cluster be reconfigured? How should
we apply the reconfiguration steps? The answer to the first
question leads to what we call a reconfiguration plan. The
answer to the second question is given by our distributed
protocol that reconfigures the various server instances in
rounds. Next, we describe SOPHIA’s components.

4.1 Workload Modeling and Forecasting: In a
generic sense, we can define the workload at a particular
point in time as a vector of various time-varying features:

WWW (t) = {p1(t), p2(t), p3(t), ..., pn(t)} (1)

where the workload at time t is WWW (t) and pi(t) is the time-
varying i-th feature. These features may be directly mea-
sured from the database, such as the load (i.e., requests/s) and
the occupancy level of the database, or they may come from
the computing environment, such as the number of users or
jobs in a batch queue. These features are application depen-
dent and are identified by analyzing the application’s histori-
cal traces. Details for time-varying features of each applica-
tion are described in Section 5. For workload forecasting, we
discretized time into sliced Td durations (= 30s in our model)
to bound the memory and compute cost. We then predicted
future workloads as:

WWW (tk+1) = fpred(WWW (tk),WWW (tk−1), ...,WWW (t0)) (2)

where k is the current time index into Td-wide steps.
For ease of exposition for the rest of the paper, we drop
the term Td , assuming implicitly that this is one time
unit. The function fpred is any function that can make
such a prediction, and in SOPHIA, we utilize a simple
Markov-Chain model for MG-RAST and Bus-Tracking,
while we use a deterministic, fully accurate output from a
batch scheduler for the HPC data analytics workload, i.e., a
perfect fpred. However, more sophisticated estimators, such
as neural networks [43, 31, 33], even with some degree of
interpretability [32], have been used in other contexts and
SOPHIA is modular enough to use any such predictor.

4.2 Adapting a Static Configuration Tuner
for SOPHIA: SOPHIA uses a static configuration tuner
(RAFIKI), designed to work with Cassandra, to output the
best configuration for the workload at any given point in
time. RAFIKI uses Analysis-of-variance (ANOVA) [55] in
order to estimate the importance of each parameter. It
selects the top-k parameters in its configuration optimiza-
tion method, which is in turn determined by a significant
drop-off in the importance score. The ability to adapt op-
timized “kernels” to build robust algorithms comes from
our vision to accelerate the pipeline of creating efficient al-
gorithms, conceptualized in Sarvavid [44]. The 7 highest
performance-sensitive parameters for all three of our work-
loads are: (1) Compaction method, (2) # Memtable flush
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writers, (3) Memory-table clean-up threshold, (4) Trickle
fsync, (5) Row cache size, (6) Number of concurrent writers,
and (7) Memory heap space. These parameters vary with re-
spect to the reconfiguration cost that they entail. The change
to the compaction method incurs the highest cost as it causes
every Cassandra instance to read all its SSTables and re-write
them to the disk in the new format. However, due to inter-
dependability between these parameters, the compaction fre-
quency is still being controlled by reconfiguring the second
and third parameters with the cost of a server restart. Sim-
ilarly, parameters 4, 6, 7 need a server restart for their new
values to take effect and these cause the next highest level of
cost. Finally, some parameters (parameter 5 in our set) can
be reconfigured without needing a server restart and there-
fore have the least level of cost.

In general, the database system has a set of performance-
impactful configuration parameters CCC = {c1,c2, · · · ,cn} and
the optimal configuration CCCopt depends on the particular
workload WWW (t) executing at that point in time. In order to
optimize performance across time, SOPHIA needs the static
tuner to provide an estimate of throughput for both the opti-
mal and the current configuration for any workload:

Hsys = fops(WWW (t),CCCsys) (3)

where Hsys is the throughput of the cluster of servers with a
configuration CCCsys and fops(WWW (t),CCCsys) provides the system-
level throughput estimate. CCCsys has Ns×|CCC| dimensions for
Ns servers and C different configurations. Cassandra by care-
ful design achieves efficient load balancing across multiple
instances whereby each contributes approximately equally
to the overall system throughput [39, 20]. Thus, we define
a single server average performance as Hi =

Hsys
Ns

.
From these models of throughput, optimal configurations

can be selected for a given workload:

Copt(WWW (t)) = argmax
CCCsys

Hsys = argmax
CCCsys

fops(WWW (t),CCCsys) (4)

In general, CCCopt can be unique for each server, but in
SOPHIA, it is the same across all servers and thus has a
dimension of |CCC| making the problem computationally
easier. This is due to the fact that SOPHIA makes a design
simplification—it performs the reconfiguration of the cluster
as an atomic operation. Thus, it does not abort a reconfigura-
tion action mid-stream and all servers must be reconfigured
in round i prior to beginning any reconfiguration of round
i + 1. We also speed up the prediction system fops by
constructing a cached version with the optimal configuration
CCCopt for a subset of WWW and using nearest-neighbor lookups
whenever a near enough neighbor is available.

4.3 Dynamic Configuration Optimization:
SOPHIA’s core goal is to maximize the total throughput for
a database system when faced with dynamic workloads.
This introduces time-domain components into the optimal
configuration strategy CCCT

opt = CCCopt(WWW (t)), for all points in

(discretized) time till a lookahead TL. Here, we describe
the mechanism that SOPHIA uses for CBA modeling to
construct the best reconfiguration plan (defined formally in
Eq. 5) for evolving workloads.

In general, finding solutions for CCCT
opt can become imprac-

tical since the possible parameter space for CCC is large and
the search space increases linearly with TL. To estimate the
size of the configuration space, consider that in our exper-
iments we assumed a lookahead TL = 30 minutes and used
7 different parameters, some of which are continuous, e.g.,
Memory-table clean-up threshold. If we take
an underestimate of each parameter being binary, then the
size of the search space becomes 27×30 = 1.6×1063 points,
an impossibly large number for exhaustive search. We de-
fine a compact representation of the reconfiguration points
(∆’s) to easily represent the configuration changes. The max-
imum number of switches within TL, say M, is bounded
since each switch takes a finite amount of time. The search
space for the dynamic configuration optimization is then
Combination(T L,M),M)× |CCC|. This comes from the fact
that we have to choose at most M points to switch out of all
the TL time points and at each point there are |CCC| possible
configurations. We define the reconfiguration plan as:

CCC∆
sys = [TTT = {t1, t2, ..., tM},CCC = {C1,C2, ...,CM}] (5)

where tk is a point in time and Ck is the configuration to use
at tk. Thus, the reconfiguration plan gives when to perform
a reconfiguration and at each such point, what configuration
to choose.

The objective for SOPHIA is to select the best reconfigura-
tion plan (CCC∆

sys)
opt for the period of optimization, lookahead

time TL:

(CCC∆
sys)

opt = argmax
CCC∆

sys

B(CCC∆
sys,WWW )−L(CCC∆

sys,WWW ) (6)

where CCC∆
sys is the reconfiguration plan, B is the benefit func-

tion, and L is the cost (or loss) function, and WWW is the time-
varying workload description. Detailed derivation of func-
tions B and L is shown in Supplemental Material (Section
9.1). When SOPHIA will extend to allow scale out, we will
have to consider the data movement volume as another cost
to minimize. The L function captures the opportunity cost
of having each of Ns servers offline for Tr seconds for the
new workload versus if the servers remained online with the
old configuration. As the node downtime due to reconfig-
uration never exceeds Cassandra’s threshold for declaring a
node is dead (3 hours by default), data-placement tokens are
not re-assigned due to reconfiguration. Therefore, we do not
include cost of data movement in functions L. SOPHIA can
work with any reconfiguration cost, including different costs
for different parameters—these can be fed into the loss func-
tion L.

The objective is to maximize the time-integrated gain
(benefit – cost) of the reconfiguration from Eq. (6). The three
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unknowns in the optimal plan are M, TTT , and CCC, from Eq. (5).
If only R servers can be reconfigured at a time (explained
in Sec. 4.5 how R is calculated), at least Tr× Ns

R time must
elapse between two reconfigurations. This puts a limit on M,
the maximum number of reconfigurations that can occur in
the lookahead period TL.

A greedy solution for Eq. (6) that picks the first config-
uration change with a net-increase in benefit may produce
suboptimal CCC∆

sys over the horizon TL because it does not con-
sider the coupling between multiple successive workloads.
For example, considering a pairwise sequence of workloads,
the best configuration may not be optimal for either WWW (t1) or
WWW (t2) but is optimal for the paired sequence of the two work-
loads. This could happen if the same configuration gives
reasonable performance for WWW (t1) or WWW (t2) and has the ad-
vantage that it does not have to switch during this sequence
of workloads. This argument can be naturally extended to
longer sequences of workloads.

A TL value that is too long will cause SOPHIA to include
decision points with high prediction errors, and a value
that is too short will cause SOPHIA to make almost greedy
decisions. The appropriate lookahead period is selected by
benchmarking the non-monotonic but convex throughput
while varying the lookahead duration and selecting the
point with maximum end-to-end throughput. We give our
choices for our three applications when describing the first
experiment with each application (Section 6).

4.4 Finding Optimal Reconfiguration Plan
with Genetic Algorithms: We use a heuristic search
technique, Genetic Algorithms or GA, to find the optimal
reconfiguration plan. Although meta-heuristics like GA do
not guarantee finding global optima, they have two desirable
properties for SOPHIA. Our space is non-convex because
many of the parameters impact the same resources such as
CPU, RAM, and disk, and settings of one parameter impact
the others.Therefore, greedy or gradient descent-based
searches are prone to converge to a local optima. Also the
GA’s tunable completion is needed in our case for speedy
decisions, as the optimizer executes in the critical path.
The representation of the GA solution incorporates two
parts. First, the chromosome orientation, which is simply the
reconfiguration plan (Eq. 5). The second part is the fitness
function definition used to assess the quality of different
reconfiguration plans. For this, we use the cost-benefit
analysis as shown in Eq. 6 where fitness is the total number
of operations (normalized for bus-tracking traces to account
for different operations’ scales) for the TL window for the
tested reconfiguration plan and given workload. We build
a simulator to apply the individual solutions and to collect
the corresponding fitness values, which are used to select
the best solutions and to generate new solutions in the next
generation. We utilize a Python library, pyeasyga, with
0.8 crossover fraction and population size of 200. We run

10 concurrent searches and pick the best configuration from
those. The runtime of this algorithm is dependent on the
length of the lookahead period and the number of decision
points. For MG-RAST, the GA has 30 decision points in the
lookahead period and results in execution time of 30-40 sec.
For the HPC workload, the number of decision points is 180
as it has a longer lookahead period, resulting in a runtime of
60-70 sec. For the bus-tracking workload, the GA has 48 de-
cision points and a runtime of 20-25 sec. The GA is typically
re-run toward the end of the lookahead period to generate the
reconfiguration plan for the next lookahead time window.
Also, if the actual workload is different from the predicted
workload, the GA is re-invoked. This last case is rate limited
to prevent too frequent invocations of the GA during (tran-
sient) periods of non-deterministic behavior of the workload.

4.5 Distributed Protocol for Online Recon-
figuration: Cassandra and other distributed databases
maintain high availability through configurable redundancy
parameters, consistency level (CL) and replication factor
(RF). CL controls how many confirmations are necessary for
an operation to be considered successful. RF controls how
many replicas of a record exist throughout the cluster. Thus,
a natural constraint for each record is RF ≥ CL. SOPHIA
queries token assignment information (where a token
represents a range of hash values of the primary keys which
the node is responsible for) from the cluster, using tools that
ship with all popular NoSQL distributions (like nodetool
ring for Cassandra), and hence constructs what we call a
minimum availability subset (NminCL for short). We define
this subset as the minimum subset of nodes that covers at
least CL replicas of all keys. To meet CL requirements,
SOPHIA insures that NminCL nodes are operational at any
point of time. Therefore, SOPHIA makes the design
decision to configure up to R = Ns−NminCL servers at a time,
where NminCL depends on RF, CL, and token assignment.
If we assume a single token per node (Cassandra’s default
with vnodes disabled), then a subset of d Ns

RF e nodes covers
all keys at least once. Consequently, NminCL becomes
CL× d Ns

RF e to cover all keys at least CL times. Thus, the
number of reconfiguration steps = Ns

R = RF
RF−CL becomes

independent of the cluster size Ns.
In the case where RF = CL, NminCL becomes equivalent
to Ns and hence SOPHIA cannot reconfigure the sys-
tem, without harming data availability, hence we use the
SOPHIA-AGGRESSIVE variant in that case. However, we
expect most systems with high consistency requirements
to follow a read/write quorum with CL = dRF

2 e [23].
Note that SOPHIA reduces the number of available data
replicas during the transient reconfiguration periods, and
hence reduces the system’s resilience to additional failures.
However, one optional parameter in SOPHIA is how many
failures during reconfiguration the user will want to tolerate
(our experiments were run with zero). This is a high-level
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parameter that is intuitive to set by the database admin. Also
notice that data that existed on the offline servers prior to
reconfiguration is not lost due to the drain step, but data
written during the transient phase has lower redundancy
until the reconfigured servers get back online. In order
to reconfigure a Cassandra cluster, SOPHIA performs the
following steps, R server instances at a time:
51. Drain: Before shutting down a Cassandra instance,
we flush the entire Memtable to disk by using Cassandra’s
tool nodetool drain and this ensures that there are no
pending commit logs to replay upon a restart.

1. Drain: Before shutting down a Cassandra instance, we
flush the entire Memtable to disk by using Cassandra’s
tool nodetool drain and this ensures that there are
no pending commit logs to replay upon a restart.

2. Shutdown: The Cassandra process is killed on the
node.

3. Configuration file: Replace the configuration file with
new values for all parameters that need changing.

4. Restart: Restart the Cassandra process on the same
node.

5. Sync: SOPHIA waits for Cassandra’s instance to com-
pletely rejoin the cluster by letting a coordinator know
of where to locate the node and then synchronizing the
missed updates during the node’s downtime.

In Cassandra, writes for down nodes are cached by available
nodes for some period and re-sent to the nodes when they
rejoin the cluster. The time that it takes to complete all these
steps for one server is denoted by Tr, and TR for the whole
cluster, where TR = Tr × RF

RF−CL . During all steps 1-5, ad-
ditional load is placed on the non-reconfiguring servers as
they must handle the additional write and read traffic. Step 5
is the most expensive and typically takes 60-70% of the to-
tal reconfiguration time, depending on the amount of cached
writes. We minimize step 4 practically by installing binaries
from the RAM and relying on draining rather than commit-
log replaying in step 1, reducing pressure on the disk.

5 Datasets
MG-RAST Workload: We use real workload traces from
MG-RAST, the leading metagenomics portal operated by the
US Department of Energy. As the amount of data stored
by MG-RAST has increased beyond the limits of traditional
SQL stores (23 PB as of August 2018), it relies on a dis-
tributed NoSQL Cassandra database cluster. Users of MG-
RAST are allowed to upload “jobs” to its pipeline, with
metadata to annotate job descriptions. All jobs are submit-
ted to a computational queue of the US Department of En-
ergy private Magellan cloud. We analyzed 80 days of query
trace from the MG-RAST system from April 19, 2017 till

July 9, 2017. From this data, we make several observations:
(i) Workloads’ read ratio (RR) switches rapidly with over
26,000 switches in the analyzed period. (ii) A negative cor-
relation of -0.72 is observed between the Workloads’ read
ratio and number of requests/s (i.e., load). That is due to the
fact that most of the write operations are batched to improve
network utilization. (iii) Majority (i.e., more than 80%) of
the switches are abrupt, from RR=0 to RR=1 or vice versa.
(iv) KRD (key reuse distance) is very large. (v) No daily
or weekly workload pattern is discernible, as expected for a
globally used cyberinfrastructure.
Bus Tracking Application Workload: Secondly, we use
real workload traces from a bus-tracking mobile application
called Tiramisu [43]. The system provides live tracking of
the public transit bus system. It updates bus locations pe-
riodically and allows users to search for nearby bus stops.
There are four types of queries—read, update, insert, and
scan (retrieving all the records in the database that satisfy a
given predicate, which is much heavier than the other op-
erations). A sample of the traces is publicly available [42].
We trained our model using 40 days of query traces, while
18 days were used as testing data. We draw several obser-
vations from this data: (i) The traces show a daily pattern
of workload switches. For example, the workload switches
to scan-heavy in the night and switches to update-heavy in
the early morning. (ii) The Workload is a mixture of Up-
date, Scan, Insert, and Read operations in the ratio of 42.2%,
54.8%, 2.82%, and 0.18% respectively. (iii) KRD is very
small. From these observations, we notice that the workload
is very distinct from MG-RAST and thus provides a suitable
point for comparison.
Simulated Analytics Workload: For long-horizon recon-
figuration plans, we simulate synthetic workloads represen-
tative of batch data analytics jobs, submitted to a shared
HPC queue. We integrate SOPHIA with a job scheduler (like
PBS [27]), that examines jobs while they wait in a queue
prior to execution. Thus, the scheduler can profile the jobs
waiting in the queue, and hence forecast the aggregate work-
load over a lookahead horizon, which is equal to the length
of the queue. We model the jobs on data analytics jobs sub-
mitted to a Microsoft Cosmos cluster [21] and as in that pa-
per, we achieve high accuracy in predicting when a job will
start executing. Thus, SOPHIA is able to drive long-horizon
reconfiguration plans. Each job is divided into phases: a
write-heavy phase resembling an upload phase of new data, a
read-heavy phase resembling executing analytical queries to
the cluster, and a third, write-heavy phase akin to committing
the analysis results. However, some jobs can be recurring (as
shown in [1, 21]) and running against already uploaded data.
These jobs will execute the analysis phase directly, skipping
the first phase. The size of each phase is a random vari-
able with U(200,100K) operations, and whenever a job fin-
ishes, a new job is selected from the queue and executed. We
vary the level of concurrency and have an equal mix of the
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two types of jobs and monitor the aggregate workload. Fig-
ure 11 in Supplemental Material shows the synthetic traces
for three job sizes. With increase in concurrency, the aggre-
gate pattern becomes smoother and the latency of individual
jobs increases.

6 Experimental Results
Here we evaluate the performance of SOPHIA under dif-

ferent experimental conditions for the 3 applications. We
use a simple query model typical for NoSQL databases and
is in contrast to complex analytics queries supported by more
complex database engines. Hence, our throughput is defined
as the number of queries per second. In all experiments, we
collect both throughput and tail latency (p99) performance
metrics. However, since the two parameters have an almost
perfect inverse relationship in all experiments, we omit tail
latency (except in Figures 4 and 6). We evaluate SOPHIA
on Amazon EC2 using instances of size M4.xlarge with 4
vCPU’s, 16 GB of RAM, provisioned IOPS (SSD) EBS for
storage and network bandwidth of 0.74 Gbits/s for all Cas-
sandra servers and workload drivers. Each node is loaded
with 6 GB of data initially (SOPHIA’s performance is eval-
uated with greater data volumes in Experiment 4). We use
multiple concurrent clients to saturate the database servers
and aggregate the throughput and tail latency observed by
every client.
Baseline Comparisons
We compare the performance of SOPHIA to baseline config-
urations (1-5). We consider 3 variants of SOPHIA (6-8).
(1) Default: The default configuration that ships with
Cassandra. This configuration favors write-heavy workloads
by design [48].
(2) Static Optimized: This baseline resembles the static
tuner (RAFIKI) when queried to provide the one constant
configuration that optimizes for the entire future workload.
This is an impractically ideal solution since it is assumed
here that the future workload is known perfectly. However,
non-ideally no configuration changes are allowed dynami-
cally.
(3) Naı̈ve Reconfiguration: Here, when the workload
changes, RAFIKI’s provided reconfiguration is always
applied, instantiated by concurrently shutting down all
server instances, changing their configuration parameters,
and restarting all of them. Practically, this makes data
unavailable and may not be tolerable in many deployments
such as user-facing applications. The static configuration
tuners are silent about when the optimal configurations
determined by them must be applied and this baseline is a
logical instantiation of all of the prior work.
(4) ScyllaDB: The performance of NoSQL database Scyl-
laDB [57] in its vanilla form. ScyllaDB is touted to be a
much faster (10X or higher) drop-in replacement to Cassan-
dra [56]. This stands in for other self-tuning databases [30].
(5) Theoretical Best: This baseline resembles the theo-

retically best achievable performance over the predicted
workload period. This is simulated by assuming Cassandra
is running with the optimal configuration at any point of
time and not penalizing it for the cost of reconfiguration.
This serves as an upper bound for the performance.
(6) SOPHIA with Oracle: This is SOPHIA with a fully
accurate workload predictor.
(7) SOPHIA-AGGRESSIVE: A variant from SOPHIA that
prefers faster reconfiguration over data availability and is
used only when RF=CL. SOPHIA-AGGRESSIVE violates
the availability requirement by reconfiguring all servers at
the same time. Unlike Naı̈ve, it uses the CBA model to
decide when to reconfigure, and therefore it does not execute
reconfiguration every time the workload changes.
(8) SOPHIA: This is our complete system.
Major Insights
We draw some key insights from the experimental results.
First, globally shared infrastructures with black-box jobs
only allow for short-horizon workload predictions. This
causes SOPHIA to take single-step reconfiguration plans
and limits its benefit over a static optimized approach
(Figure 3). In contrast, when job characteristics can be
predicted well (bus tracking and data analytics applications),
SOPHIA achieves significant benefit over both default and
static optimized cases (Figures 4 and 5). This benefit stays
even when there is significant uncertainty in predicting the
exact job characteristics as shown in Figure 9. Second,
Cassandra can be used in preference to the recent popular
drop-in ScyllaDB, an auto-tuning database, with higher
throughput across the entire range of workload types, as
long as we overlay a dynamic tuner, such as SOPHIA, atop
Cassandra (Figures 3 and 5). Third, as the replication
factor increases while the number of server are fixed, the
reconfiguration time of SOPHIA decreases, thus improving
its benefit (Figure 7). Contrarily, as CL increases, the
benefit of SOPHIA shrinks (Figure 7).Finally, SOPHIA is
applied to a different NoSQL database, Redis, and solves
a long-standing configuration problem with it, one which
has caused Redis to narrow its scope to being an in-memory
database only (Figure 10).

Experiment 1: MG-RAST Workload
We present our experimental evaluation with 20 test days of
MG-RAST data. To zoom into the effect of SOPHIA with
different levels of dynamism in the workload, we segment
the workload into 4 scenarios and present those results in
addition to the aggregated ones.
Workload Prediction Model: We created 16,512 training
samples composed of Td = 5min steps across the 60 days
MG-RAST workloads. We compare the performance of a
first-order and a second-order Markov Chain model. We
represent the states as the proportion of read operations
during the Td interval. We use a quantization level of 10%
in the read ratio between different states. We categorize
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the test days into 4: “Slow”, “Medium”, and “Fast”, by the
frequency of switching from the read- to the write-intensive
workloads and this maps to the average read ratios (RR)
shown in Table 1. “Write” represents days with long
write-heavy periods. Table 1 shows the prediction RMSE
for the four representative workload scenarios. Because of
the lack of application-level knowledge, in addition to the
well-known uncertainty in job execution times in genomics
pipelines [40], the Markov Chain model only provides
accurate predictions for short time intervals. Moreover,
increasing the order of the model has very little impact on
the prediction performance and also increases the number
of states (11 states in the First-order model vs. 120 states
in the Second-order model). We also tried to train a more
complex model (RNN) but its prediction quality was similar.
We notice that the best accuracy is for the “Slow” scenario,
whereas it drops below 50% for “Medium”, and it is always
below 50% for the “Fast” and “Write” scenarios. Because
the “Slow” scenario is the most common (observed 74% of
time in the training data), we use a value of TL = 5min.

Table 1: RMSE for predicting MG-RAST and Bus-Tracking workloads.
MG-RAST

MC-Order First Second RR
Frequency 5m 10m 5m 10m -
Slow 34.4% 56% 34% 55% 70%
Medium 59% 90% 59% 89% 50%
Fast 66% 93% 63% 89% 45%
Write 52.8% 76.1% 51.5% 75.5% 35%
Aggregate 43.7% 68.7% 43.4% 68.2% -

Bus-Tracking
Lookahead First Second

15m 6.9% 7.12%
1h 7.4% 7.4%
2h 7.9% 7.4%
5h 10% 7.5%

10h 13.7% 8%
#States 117 647

Performance Comparison:
Now we show the performance of SOPHIA with respect

to the four workload categories. We first present the result
with the smallest possible number of server instances, 4, run
with operational MG-RAST’s parameters RF=3 and CL=1
[35]. We show the result in terms of total operations for each
test workload as well as a weighted average “combined” rep-
resentation that models behavior for the entire MG-RAST
workload. Figure 3 shows the performance improvements
for our test cases.

From Figure 3, we see that SOPHIA always outperforms
naı̈ve in total ops/s (average of 31.4%) and individually in
read (31.1%) and write (33.5%) ops/s. SOPHIA also outper-
forms the default for the slow and the mid frequency cases,
while it slightly under performs in the fast frequency case.
The average improvement due to SOPHIA across the 4 cat-
egories is 20.4%. The underperformance for the fast case
is due to increased prediction error. Naı̈ve baseline has a
significant loss compared to default: 21.6%. The static op-
timized configuration (which for this workload favors read-
heavy pattern) has a slightly higher throughput over SOPHIA
by 6.3%. This is because the majority of the selected samples
are read periods (RR=1), which hides the gain that SOPHIA
achieves for write periods. However, we see that with respect
to write operations, SOPHIA achieves 17.6% higher through-
put than the static optimized configuration. Increased write

Figure 3: Improvement for four different 30-minute test windows from
MG-RAST real traces over the baseline solutions.

throughput is critical for MG-RAST to support the bursts of
intense writes. This avoids unacceptable queuing of writes,
which can create bottlenecks for subsequent jobs that rely
on the written shared dataset. Moreover, we observe that
SOPHIA performs within 2-3% to SOPHIA w/ Oracle in all
scenarios, which shows the minor impact of the workload
predictor accuracy. For instance, SOPHIA w/ Oracle shows
a 2% reduction in performance compared to SOPHIA in the
slow trace. This is because Oracle has perfectly accurate pre-
dictions for TL = 5min only. With this very short lookahead,
SOPHIA makes greedy reconfiguration decisions, and hence
does not achieve globally optimal performance over other
baselines.

ScyllaDB has an auto-tuning feature that is supposed to
continuously react to changes in workload characteristics
and the current state (such as, the amount of dirty memory
state). ScyllaDB is claimed by its developers to outperform
Cassandra in all workload mixes by an impressive 10X [56].
However, this claim is not borne out here and only in
the read-heavy case (the “Slow” scenario) does ScyllaDB
outperform. Even in this case, SOPHIA is able to reconfigure
Cassandra at runtime and turn out a performance benefit
over ScyllaDB. We conclude that based on this workload
and setup, a system owner can afford to use Cassandra with
SOPHIA for the entire range of workload mixes and not have
to transition to ScyllaDB.

Experiment 2: Tiramisu Workload
We evaluate the performance of SOPHIA using the bus-
tracking application traces. Figure 4 shows the gain of us-
ing SOPHIA over the various baselines. In this experiment,
we report the normalized average Ops/s instead of the abso-
lute average Ops/s metric. This means we normalize each
of the 4 operation’s throughputs by dividing by the maxi-
mum Ops/s seen under a wide variety of configurations and
then average the 4 normalized throughputs. The reason for
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tracking application. We use 8 Cassandra servers
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achieves improvements of 24.5% over default,
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Figure 6: Improvement with scale using HPC
workload with 5 jobs with RF=3 and CL=1.
SOPHIA provides consistent gains across scale be-
cause the cost of reconfiguration does not change
with scale (for the same RF and CL). The higher
gains for 16 and 32 servers is due to the use of
M5 instances, which can be exploited by SOPHIA
better than Static-Opt.

this is that for this workload, different operations have vastly
different throughput scales. For example, when the work-
load switches to a Scan-heavy phase, the performance of the
cluster varies from 34 Ops/s to 219 Ops/s depending on the
configuration of the cluster. For an Update-heavy phase, the
performance varies from 1,739 Ops/s to 5,131 Ops/s. This
is because Scan is a much heavier operation for the DBMS
compared to Update.

SOPHIA outperforms default configuration by 24.5%,
Static-Opt by 21.5%, and Naı̈ve by 28.5%. The gains are
higher because SOPHIA can afford longer lookahead times
with accurate workload prediction. We notice that Naı̈ve
is achieving a comparable performance to both Default
and Static-Opt configurations, unlike MG-RAST. This is
because the frequency of workload changes is lower here.
However, Naı̈ve still renders the data unavailable during the
reconfiguration period.
Workload Prediction Model: Unlike MG-RAST, the
bus-tracking application traces show a daily pattern which
allows our prediction model to provide longer lookahead
periods with high accuracy (Table 1). We use a Markov
Chain prediction model to capture the workload switching
behavior. We start by defining the state of the workload
as the proportion of each operation type in an aggregation
interval (15 minutes in our experiments). For example,
Update=40%, Read=20%, Scan=40%, Insert=0% represents
a state of the workload. We use a quantization level of
10% in any of the 4 dimensions to define the state. We
use the second-order Markov Chain with a lookahead
period of 5 hours as this is when our prediction error is ≤
8%. As expected theoretically, the second order model is
more accurate at all lookahead times, since there is enough
training data available for training the models. Seeing the
seeming regular diurnal and weekly pattern in the workload,
we create two simple predictor straw-men that uses only the
current time-stamp or the current time-stamp and day of the
week as input features to perform prediction. The predicted
workload is the average of the mixtures at the previous 10
points. These predictors have unacceptably high RMSE
of 31.4% and 24.0%. Therefore, although the workload
is showing a pattern, we cannot generate the optimal plan

once and use it for all subsequent days. Therefore, online
workload monitoring and prediction is needed to achieve the
best performance

Experiment 3: HPC Data Analytics
We evaluate the performance of SOPHIA using HPC data
analytics workload patterns described in Section 5. Here
our lookahead is the size of the job queue, which is con-
servatively taken as 1 hour. Figure 5 shows the result for
the three levels of concurrency (1, 5, and 10 jobs). We
see that SOPHIA outperforms the default for all the three
cases, with average improvement of 30%. In comparison
with Static-Opt (which is a different configuration in each
of the three cases), we note that SOPHIA outperforms for
the 1 job and 5 jobs cases by 18.9% and 25.7%, while it is
identical for the 10 jobs case. This is because in the 10 jobs
case, the majority of the workload lies between RR=0.55
and RR=0.85, and in this case, SOPHIA switches only once:
from the default configuration to the same configuration as
Static-Opt. We notice that SOPHIA achieves within 9.5% of
the theoretical best performance for all three cases. We no-
tice that SOPHIA achieves significantly better performance
over Naı̈ve by 27%, 13%, and 122% for the three cases.
Naı̈ve, in fact, degrades the performance by 32.9% (10
concurrent jobs). In comparison with ScyllaDB, SOPHIA
achieves a performance benefit of 17.4% on average, which
leads to a similar conclusion as in MG-RAST about the
continued use of Cassandra.

Experiment 4: Scale-Out & Greater Volume
Figure 6 shows the behavior of SOPHIA with increasing
scale using the data analytics workload. We show the
comparison between SOPHIA and Static-Opt (all other
baselines performed worse than Static-Opt). We use a weak
scaling pattern, i.e., keeping the amount of data per server
fixed while still operating close to saturation. We increase
the number of shooters as well to keep the request rate
per server fixed. By our design (Sec. 4.5), the number of
reconfiguration steps stays constant with scale. We notice
that the network bandwidth needed by Cassandra’s gossip
protocol increases with the scale of the cluster, causing the
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Figure 9: Effect of noise in workload prediction on the
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network to become the bottleneck in the case of 16 and
32 servers when M4.xlarge instances are used. Therefore,
we change the instance type to M5.xlarge in these cases
(network bandwidth of 10 Gbit/s compared to 0.74 Gbit/s).
The results show that SOPHIA’s optimal reconfiguration
policy has a higher performance over Static-Opt across all
scales. Moreover, we see a higher gain in the cases of 16
and 32 servers since M5 instances have higher CPU power
than M4 ones. This extra CPU capacity allows for faster
leveled compaction, which is used by SOPHIA’s plan (while
Static-Opt uses size-tiered compaction), and hence leads to
greater performance difference for reads.

We also evaluate SOPHIA with the same workload when
the data volume per node increases. We vary the amount of
data loaded initially into each node (in a cluster of 4 nodes)
and measure the gain over Static-Opt in Figure 8. For the
30GB case, the data volume grows beyond the RAM size
of the used instances (M4.xlrage with 16 GB RAM). We
notice that the gain from applying SOPHIA’s reconfiguration
plan is consistent with increasing the data volume from
3 GB to 30 GB. We also notice that the gain increases
for the case of 30 GB. This is also due to the different
compaction methods used by Static-Opt (size-tiered) and
SOPHIA (Leveled compaction), the later can provide better
read performance with increasing data volumes. However,
this benefit of Leveled compaction was not captured by
RAFIKI predictions, which was trained on a single node
with 6 GB of data. This can be addressed by either replacing
RAFIKI by a data volume-aware static tuner, or re-training
RAFIKI when a significant change in data volume per node
occurs.

Experiment 5: Varying RF and CL
We evaluate the impact of applying SOPHIA to clusters with
different RF and CL values. We use the HPC workload with
5 concurrent jobs. We fix the number of nodes to 8 and
vary RF and CL as shown in Figure 7 (CL quorum implies
CL = dRF/2e). We notice that SOPHIA continues to achieve
better performance than all 3 static baselines for all RF, CL
values. For RF=1, CL=1, we use SOPHIA-AGGRESSIVE
because when RF=CL, we cannot reconfigure the cluster

without degrading availability. The key observation is that
SOPHIA’s performance gets closer to the Theoretical best
as RF-CL becomes higher (compare the RF=3,CL=1 to the
RF=5,CL=1 case). This is because the number of steps
SOPHIA needs to perform the reconfiguration is inversely
proportional to RF-CL as discussed in Sec. 4.5). This allows
SOPHIA to react faster to changes in the applied workload
and thus achieve better performance. Moreover, we notice
that the performance of the cluster degrades with increasing
RF or CL. Increasing RF increases the data volume stored
by each node, which increases the number of SSTables
and hence reduces the read performance. Also increase
in CL requires more nodes to respond to each request
before acknowledgment to the client, which also reduces the
performance.

Experiment 6: Noisy Workload Predictions
We show how sensitive SOPHIA is to the level of noise in
the predicted workload pattern. We use the HPC workload
with 5 concurrent jobs. In HPC queues, there are two typical
sources of such noise—an impatient user removing a job
from the queue and the arrival of hitherto unseen jobs. We
add noise to the predicted workload pattern ∼ U(-R,R),
where R gives the level of noise. The resulting value is
bounded between 0 and 1.
From Figure 9, we see that adding noise to SOPHIA slightly
reduces its performance. However, such noise will not cause
significant changes to SOPHIA’s optimal reconfiguration
plan. This is because SOPHIA treats each entry in the
reconfiguration plan as a binary decision, i.e., reconfigure if
Benefit ≥ Cost. So even if the values of both Benefit and
Cost terms change, the same plan takes effect as long as
the inequality still holds. This allows SOPHIA to achieve
significant improvements for long-term predictions even
with high noise levels.

Experiment 7: Redis Case Study
We now show a case study with the popular NoSQL database
Redis, which has a long-standing pain point in setting a
performance-critical parameter against changing workloads.
Large-scale processing frameworks such as Spark can de-
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(a) (b)
Figure 10: Impact of tuning Redis’ VM configuration parameters with SOPHIA with the data analytics workload. The percentage improvement of SOPHIA
is shown on each bar and the right Y-axis is for the 2M jobs. A missing bar represents a failed job. We notice that the current Redis fails for large workloads
(2M), while SOPHIA achieves the best of both worlds

liver much higher performance when combined with Redis
due to its shared distributed memory infrastructure [67, 38].
Redis is an in-memory data store (stores all keys and val-
ues in memory) while writing to persistent storage is only
supported for durability. However, in its earlier versions
(till V2.4), Redis used to offer a feature called Virtual Mem-
ory [36]. This feature allowed Redis to work on datasets
larger than the available memory by swapping rarely used
values to disk, while keeping all keys and hot values in mem-
ory. Since V2.4, this feature was removed as it caused se-
rious performance degradation in many Redis deployments
due to non-optimal setting as reflected in many posts in dis-
cussion forums [59, 25, 60]. We use SOPHIA to tune this
feature and compare the performance to three baselines: (1)
Redis V2.4 with VM-disabled (Default configuration), (2)
Redis V2.4 with VM-enabled, (3) Redis V4 with default con-
figuration (no VM support, most production-proven).
To tune Redis’ VM, we investigate the impact of two con-
figuration parameters: (1) vm-enable: a Boolean parameter
that enables or disables the feature. (2) vm-max-memory:
the memory limit after which Redis starts swapping least-
recently-used values to disk. These features cannot be re-
configured without a server restart.
We tune the performance of Redis for simulated data analyt-
ics workloads that vary with respect to job sizes and access
patterns. We use the popular YCSB (Yahoo! Cloud Serv-
ing Benchmark) tool [12] to simulate HPC workloads as in
[28, 24]. We collect 128 data points for jobs that vary with
respect to their sizes (0.5M, 1M, 2M), their access patterns
(i.e., read-heavy vs write-heavy) and also their request dis-
tribution (i.e., Uniform vs Zipfian). We use 75% of the data
points (selected uniformly) to train a linear regression model
and 25% for testing. The model provides accurate prediction
of throughput for any job and configuration (avg. R2=0.92).
Therefore, we use this simpler model in place of Rafiki.
Redis can operate in Stand-alone mode as well as a
Cluster mode [37]. In Cluster mode, data is automati-
cally sharded across multiple Redis nodes. We show the gain
of using our system with Redis for both modes of operation.
No replication is used for Stand-alone mode. Whereas
for Cluster mode, we use a replication factor of 1 (i.e.,
a single slave per master). We use AWS servers of type

C3.Large with 2 vCPUs and 3.75GB RAM each. Selecting
such a small RAM server demonstrates the advantage of us-
ing VM with jobs that cannot fit in memory—1.8M records
fit in the memory. We evaluate the performance SOPHIA on
a single server (Figure 10a) as well as a cluster of 6 servers
with 3 masters and 3 slaves (Figure 10b) and report the av-
erage throughput per server. From Figure 10 we see that for
all record sizes and request distributions, SOPHIA performs
the best or close to the best. If records fit in memory, then
the no VM configuration is better. For Uniform distribution,
VM performs worst, because records often have to be fetched
from disk. If records do not fit in memory, the no VM options
(including the latest Redis) will simply fail (hence the lack
of a bar for 2.0M records). Thus, SOPHIA, by automatically
selecting the right parameters for changing workloads, can
achieve the best of both worlds: fast in-memory database,
and leverage disk in case of spillover.

7 Related Work
Reconfiguration for dynamic workloads. A few systems
such as Rafiki [45], Outtertune [64], and SmartConf [65]
have been proposed to automatically find the optimal soft-
ware configurations for a given workload. All these sys-
tems assume that the workload change is a long-term, and for
which reconfiguring the system is always beneficial. How-
ever, we show that in many real-world workloads, both
long-term and short-term changes are observed and there-
fore SOPHIA decides when and how to apply the new con-
figurations to achieve globally optimal performance, while
respecting the user’s availability requirements.
Reconfiguration in databases. Several works proposed
online reconfiguration for databases where the goal is
not to update the configuration settings, but to control
how the data is distributed among multiple server in-
stances [14, 6, 22, 18, 66]. Among these, Morphus [22]
targets MongoDB but cannot handle Cassandra due to its
peer-to-peer topology and sharding. Tuba [5] reconfigures
geo-replicated key-value stores by changing locations of
primary and secondary replicas to improve overall utility of
the storage system. Rocksteady [34] is a data migration pro-
tocol for in-memory databases to keep tail latency low with
respect to workload changes. However, no parameter tuning
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or cost-benefit analysis is involved. A large body of work
focused on choosing the best logical or physical design for
static workloads in DBMS [13, 10, 70, 26, 11, 63, 2, 53, 54].
Another body of work improves performance for static
workloads by finding correct settings for DBMS perfor-
mance knobs [17, 16, 45, 69, 64]. SOPHIA performs online
reconfiguration of the performance tuning parameters of
distributed databases for dynamic workloads.
Reconfiguration in distributed systems and clouds.
Several works have addressed the problem in the context
of traditional distributed systems [29, 3] and cloud plat-
forms [41, 68, 47, 46]. Some solutions present a theoretical
approach, reasoning about correctness for example [3],
while some present a systems-driven approach such as
performance tuning for MapReduce clusters [41, 4].
BerkeleyDB [52] models probabilistic dependencies
between configuration parameters. A recent work, Smart-
Conf [65] provides a rigorous control-theoretic approach to
continuously tune a distributed application in an application-
agnostic manner. However, it cannot consider dependencies
among the performance-critical parameters and cannot
handle categorical parameters.

8 Conclusion
Current static tuners can provide close to optimal config-

uration for a static workload. However, they cannot deter-
mine whether and when to perform a configuration switch
to maximize benefit over a future time horizon with chang-
ing workloads. We design SOPHIA to perform such recon-
figuration while maintaining data availability and respecting
the consistency level requirement. Our fundamental techni-
cal contribution is a cost-benefit analysis that analyzes the
relative cost and the benefit of each reconfiguration action
and determines a reconfiguration plan for a future time win-
dow. It then develops a distributed protocol to gracefully
switch over the cluster from the old to the new configura-
tion. We find benefits of SOPHIA applied to three distinct
workloads (a metagenomics portal, a bus-tracking applica-
tion, and a data analytics workload) over the state-of-the-art
static tuners, for two NoSQL databases, Cassandra and Re-
dis. Our work uncovers two big open challenges. How to do
anticipatory configuration changes for future workload pat-
terns? How to handle heterogeneity in the cluster, i.e., one
where each server instance may have its own configuration
and may contribute differently to the overall performance?
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9 Supplemental Material
9.1 Cost-Benefit Analysis Derivation

Qualitatively, the benefit summed up over the time win-
dow is the increase in throughput due to the new optimal
configuration option relative to the current configuration op-
tion.

B = ∑
k∈[0,TL]

Hsys(WWW (k),CCCT
sys(k)) (7)

where WWW (k) is the k-th element in the time-varying workload
vector WWW and CCCT

sys is the time-varying system configuration
derived from CCC∆

sys. Likewise, the cost summed up over the
time window is the loss in throughput incurred during the
transient period of reconfiguration.

L = ∑
k∈[1,M]�

��
R
Ns
·Hsys(WWW (tk),CCCk) ·

�
��Ns

R
·Tr

= ∑
k∈[1,M]

Hsys(WWW (tk),CCCk) ·Tr

(8)

where CCCk the configuration specified by the k-th entry of the
reconfiguration plan CCC∆

sys, and Tr is the number of seconds a
single server is offline during reconfiguration.

9.2 Synthetic HPC Workloads
For long-horizon reconfiguration plans, we simulate

synthetic workloads representative of batch data analytics
jobs, submitted to a shared HPC queue. We integrate
SOPHIA with a job scheduler (like PBS [27]), that examines
jobs while they wait in a queue prior to execution. Thus,
the scheduler can profile the jobs waiting in the queue, and
hence forecast the aggregate workload over a lookahead
horizon, which is equal to the length of the queue. We model
the jobs on data analytics jobs submitted to a Microsoft
Cosmos cluster [21]

Figure 11 shows the simulated workload pattern for HPC
Analytics case. We vary the level of concurrency and collect
the aggregate workload observed by the NoSQL datastore.
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Figure 11: Simulated Workload patterns for 1, 5, and 10 concurrent jobs
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