
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Optimizing CNN Model Inference on CPUs
Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang, Amazon

https://www.usenix.org/conference/atc19/presentation/liu-yizhi

Optimizing CNN Model Inference on CPUs

Yizhi Liu*, Yao Wang*, Ruofei Yu, Mu Li, Vin Sharma, Yida Wang
Amazon Web Services

{yizhiliu, wayao, yuruofei, mli, vinarm, wangyida}@amazon.com

Abstract
The popularity of Convolutional Neural Network (CNN) mod-
els and the ubiquity of CPUs imply that better performance of
CNN model inference on CPUs can deliver significant gain
to a large number of users. To improve the performance of
CNN inference on CPUs, current approaches like MXNet
and Intel OpenVINO usually treat the model as a graph and
use the high-performance libraries such as Intel MKL-DNN
to implement the operations of the graph. While achieving
reasonable performance on individual operations from the off-
the-shelf libraries, this solution makes it inflexible to conduct
optimizations at the graph level, as the local operation-level
optimizations are predefined. Therefore, it is restrictive and
misses the opportunity to optimize the end-to-end inference
pipeline as a whole. This paper presents NeoCPU, a com-
prehensive approach of CNN model inference on CPUs that
employs a full-stack and systematic scheme of optimizations.
NeoCPU optimizes the operations as templates without rely-
ing on third-parties libraries, which enables further improve-
ment of the performance via operation- and graph-level joint
optimization. Experiments show that NeoCPU achieves up
to 3.45× lower latency for CNN model inference than the
current state-of-the-art implementations on various kinds of
popular CPUs.

1 Introduction

The growing use of Convolutional Neural Network (CNN)
models in computer vision applications makes this model
architecture a natural focus for performance optimization
efforts. Similarly, the widespread deployment of CPUs in
servers, clients, and edge devices makes this hardware plat-
form an attractive target. Therefore, performing CNN model
inference efficiently on CPUs is of critical interest to many
users.

The performance of CNN model inference on CPUs leaves
significant room for improvement. Performing a CNN model

*Equal contribution

inference is essentially executing a computation graph con-
sisting of operations. In practice, people normally use high-
performance kernel libraries (e.g. Intel MKL-DNN [27] and
OpenBlas [51]) to obtain high performance for CNN opera-
tions. While these libraries tune very carefully for common
operations with normal input data shapes (e.g. 2D convolu-
tions), they only focus on the (mostly, convolution) operations
but miss the opportunities to further optimize the end-to-end
model inference at the graph level. The graph-level optimiza-
tion is often handled by the deep learning frameworks, e.g.
TensorFlow [5] and MXNet [8].

However, the graph-level optimization such as operation fu-
sion and data layout planing that a framework can do is limited
because the operation implementation is already predefined
in the third-party libraries. Therefore, the optimizations in the
frameworks do not work in concert with the optimizations
in the kernel library, which leaves significant performance
gains unrealized in practice. Furthermore, different CPU ar-
chitectures rely on different high-performance libraries and
integrating a library into a deep learning framework requires
error-prone and time-consuming engineering effort. Lastly,
although those libraries are highly optimized, they present
as third-party plug-ins, which may introduce contention is-
sues with other libraries in the framework. As an example,
TensorFlow originally used the Eigen library [4] to handle
computation on CPUs. Later on, MKL-DNN was also in-
troduced. As a consequence, at runtime MKL-DNN threads
coexist with Eigen threads, resulting in resource contention.
In summary, this kind of framework-specific approach for
CNN model inference on CPUs is inflexible, cumbersome,
and sub-optimal.

Because of the constraint imposed by the framework, opti-
mizing the performance of CNN model inference end-to-end
without involving a framework (i.e. a framework-agnostic
method) is of obvious interest to many deep learning prac-
titioners. Recently, Intel launched a universal CNN model
inference engine called OpenVINO Toolkit [16]. This toolkit
optimizes CNN models in the computer vision domain on In-
tel processors (mostly x86 CPUs) and claims to achieve better

USENIX Association 2019 USENIX Annual Technical Conference 1025

performance than the deep learning frameworks alone. Yet,
OpenVINO could only provide limited graph-level optimiza-
tion (e.g. operation fusion as implemented in ngraph [15]) as
it still relies upon MKL-DNN to deliver performance gains
for the carefully-tuned operations. Therefore, the optimiza-
tion done by OpenVINO is still not sufficient for most of the
CNN models.

Based on the previous observation, we argue that in order
to further improve the CNN model inference performance on
CPUs, being able to do the flexible end-to-end optimization is
the key. In this paper, we propose NeoCPU, a comprehensive
approach to optimize CNN models for efficient inference on
CPUs. NeoCPU is full-stack and systematic, which includes
operation- and graph-level joint optimizations and does not
rely on any third-party high-performance libraries. At the
operation level, we follow the well-studied techniques to op-
timize the most computationally-intensive operations like
convolution (CONV) in a template, which is applicable to dif-
ferent workloads on multiple CPU architectures and enables
us for flexible graph-level optimization. At the graph level, in
addition to the common techniques such as operation fusion
and inference simplification, we coordinate the individual op-
eration optimizations by manipulating the data layout flowing
through the entire model for the best end-to-end performance.
In summary, NeoCPU does the end-to-end optimization in a
flexible and automatic fashion, while the existing works rely
on third-party libraries and lack comprehensive performance
tuning.

NeoCPU is built upon a deep learning compiler stack
named TVM [9] with a number of enhancements. TVM
enables the possibility of using own operation-level opti-
mizations instead of third-party high-performance libraries,
which make it flexible to apply our operation- and graph-level
joint optimization. However, there was only one customized
operation-level optimization on ARM CPUs for convolutions
with specific data shapes and no operation- and graph-level
joint optimization in the original TVM stack before our work.
In addition, there exist other deep learning compilers such as
Tensor Comprehensions [46] and Glow [40]. Unfortunately,
they either do not target on CPUs or not optimize the CPU
performance well, e.g. based on the paper description and our
own experiments, Glow only optimizes the single-core per-
formance for CPUs. Therefore we do not incorporate those
works as the baseline. Table 1 summarizes the features of
NeoCPU compared to others. To the best of our knowledge,
NeoCPU achieves competitive performance for CNN model
inference on various kinds of popular CPUs.

Specifically, this paper makes the following contributions:

• Provides an operation- and graph-level joint optimiza-
tion scheme to obtain high CNN model inference perfor-
mance on different popular CPUs including Intel, AMD
and ARM, which outperforms the current state-of-the-art
implementations;

Op-level opt Graph-level opt Joint opt Open-source
NeoCPU 3 3 3 3

MXNet [8]/TensorFlow [5] 3rd party limited 7 3
OpenVINO [16] 3rd party limited ? 7

Original TVM [9] incomplete 3 7 3
Glow [40] single core 3 7 3

Table 1: Side-by-side comparison between NeoCPU and ex-
isting works on CNN model inference

• Constructs a template to achieve good performance of
convolutions, which is flexible to apply to various con-
volution workloads on multiple CPU architectures (x86
and ARM) without relying on high-performance kernel
libraries;

• Designs a global scheme to look for the best layout
combination in different operations of a CNN model,
which minimizes the data layout transformation over-
head between operations while maintaining the high
performance of individual operations.

It is worth noting that, this paper primarily deals with direct
convolution computation, while NeoCPU is compatible to
other optimziation works on the computationally-intensive
kernels, e.g. CONVs via Winograd [7, 29] or FFT [52].

We evaluated NeoCPU on CPUs with both x86 and ARM
architectures. In general, NeoCPU delivers the best perfor-
mance for 13 out of 15 popular networks on Intel Skylake
CPUs, 14 out of 15 on AMD EYPC CPUs, and all 15 models
on ARM Cortex A72 CPUs. It is worthwhile noting that the
baselines on x86 CPUs were more carefully tuned by the chip
vendor (Intel MKL-DNN) but the ARM CPUs were less opti-
mized. While the selected framework-specific (MXNet and
TensorFlow) and framework-agnostic (OpenVINO) solutions
may perform well on one case and less favorably on the other
case, NeoCPU runs efficiently across models on different
architectures.

In addition, NeoCPU produces a standalone module with
minimal size that does not depend on either the frameworks
or the high-performance kernel libraries, which enables easy
deployment to multiple platforms. NeoCPU is used in Ama-
zon SageMaker Neo Service 1, enabling model developers
to optimize for inference on CPU-based servers in the cloud
and devices at the edge. Using this service, a number of ap-
plication developers have deployed CNN models optimized
for inference in production on several types of platforms.
All source code has been released to the open source TVM
project2.

The rest of this paper is organized as follows: Section 2
reviews the background of modern CPUs as well as the typical
CNN models; Section 3 elaborates the optimization ideas
that we propose and how we implement them, followed by
evaluations in Section 4. We list the related works in Section 5
and summarize the paper in Section 6.

1https://aws.amazon.com/sagemaker/neo/
2https://github.com/dmlc/tvm

1026 2019 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/sagemaker/neo/
https://github.com/dmlc/tvm

2 Background

2.1 Modern CPUs
Although accelerators like GPUs and TPUs demonstrate their
outstanding performance on the deep learning workloads, in
practice, there is still a significant number of deep learning
computation, especially model inference, taking place on the
general-purpose CPUs due to the high availability. Currently,
most of the CPUs equipped on PCs and servers are manu-
factured by Intel or AMD with x86 architecture [1], while
ARM CPUs with ARM architecture occupy the majority of
embedded/mobile device market [2].

Modern CPUs use thread-level parallelism via multi-
core [21] to improve the overall processor performance given
the diminishing increasing of transistor budgets to build larger
and more complex uniprocessor. It is critical to avoid the in-
terference among threads running on the same processor and
minimize their synchronization cost in order to have good
scalability on multi-core processors. Within the processor, a
single physical core achieves the peak performance via the
SIMD (single-instruction-multiple-data) technique. SIMD
loads multiple values into wide vector registers to process
together. For example, Intel introduced the 512-bit Advanced
Vector Extension instruction set (AVX-512), which handles
up to 16 32-bit single precision floating point numbers (totally
512 bits) per CPU cycle. And the less advanced AVX2 pro-
cesses data in 256-bit registers. In addition, these instruction
sets utilize the Fused-Multiply-Add (FMA) technique which
executes one vectorized multiplication and then accumulates
the results to another vector register in the same CPU cy-
cle. The similar SIMD technique is embodied in ARM CPUs
as NEON [3]. As shown in the experiments, our proposed
solution works on both x86 and ARM architectures.

In addition, it is worth noting that modern server-side CPUs
normally supports hyper-threading [37] via the simultaneous
multithreading (SMT) technique, in which the system could
assign two virtual cores (i.e. two threads) to one physical core,
aiming at improving the system throughput. However, the
performance improvement of hyper-threading is application-
dependent [35]. In our case, we do not use hyper-threading
since one thread has fully utilized its physical core resource
and adding one more thread to the same physical core will nor-
mally decrease the performance due to the additional context
switch. We also restrict our optimization within processors
using the shared-memory programming model as this is the
typical system setting for CNN model inference. The Non-
Uniformed Memory Access (NUMA) pattern occurred in the
context of multiple processors on the same motherboard is
beyond the scope of this paper.

2.2 Convolutional neural networks
Convolutional neural networks (CNNs) are commonly used
in computer vision workloads [23, 26, 33, 36, 41–43]. A CNN

model is normally abstracted as a computation graph, essen-
tially, Directed Acyclic Graph (DAG), in which a node rep-
resents an operation and a directed edge pointing from node
X to Y represents that the output of operation X serves as (a
part of) the inputs of operation Y (i.e. Y cannot be executed
before X). Executing a model inference is actually to flow
the input data through the graph to get the output. Doing the
optimization on the graph (e.g. prune unnecessary nodes and
edges, pre-compute values independent to input data) could
potentially boost the model inference performance.

Most of the computation in the CNN model inference at-
tributes to convolutions (CONVs). These operations are essen-
tially a series of multiplication and accumulation, which by
design can fully utilize the parallelization, vectorization and
FMA features of modern CPUs. Existing works [19, 24, 27]
have demonstrated that it is possible to achieve high per-
formance of convolution operations on CPUs by arranging
the data layout and consequently, the computation, in an
architecture-friendly way. The remaining challenge is how
to manage the data layout flowing through these operations
efficiently to get the high performance out of the end-to-end
CNN model inference.

The rest of the CNN workloads are mostly memory-bound
operations associated to CONVs (e.g. batch normalization,
pooling, activation, element-wise addition, etc.). The common
practice [9] is fusing them to CONVs so as to increase the
overall arithmetic intensity of the workload and consequently
boost the performance.

The computation graph of CNN model training has no es-
sential difference with inference, just being larger (adding in
backwards operations) and with some more computationally-
trivial operations (e.g. loss function). Therefore, the optimiza-
tion work done for CNN model inference is applicable to
training as well.

3 Optimizations

This section describes our optimization ideas and implemen-
tations in detail. The solution presented in this paper is end-
to-end for doing the CNN model inference. Our proposed
solution is generic enough to work for a wide range of com-
mon CNN models as we will show in the evaluation. The
basic idea of our approach is to view the optimization as an
end-to-end problem and search for a globally best optimiza-
tion. That is, we are not biased towards a local performance
optimal of a single operation as many previous works. In
order to achieve this, we first present how we optimized the
computationally intensive convolution operations at low-level
using a configurable template (Section 3.1). This makes it
flexible to search for the best implementation of a specific
convolution workload on a particular CPU architecture, and
to optimize the entire computation graph by choosing proper
data layouts between operations to eliminate unnecessary
data layout transformation overhead (presented in Section 3.2

USENIX Association 2019 USENIX Annual Technical Conference 1027

and 3.3).
We implemented the optimization based on the TVM

stack [9] by adding a number of new features to the com-
piling pass, operation scheduling and runtime components.
The original TVM stack has done a couple of generic graph-
level optimizations including operation fusion, pre-computing,
simplifying inference for batch-norm and dropout [9], which
are also inherited to this work but will not be covered in this
paper.

3.1 Operation optimization

Optimizing convolution operations is critical to the overall
performance of a CNN workload as it takes the majority of
computation. This is a well-studied problem but the previous
works normally go deep to the assembly code level for high
performance [24,27]. In this subsection, we show how to take
advantage of the latest CPU features (SIMD, FMA, paral-
lelization, etc.) to optimize a single CONV without going into
the tedious assembly code or C++ intrinsics. By managing
the implementation in high-level instead, it is then easy to
extend our optimization from a single operation to the entire
computation graph.

3.1.1 Single thread optimization

We started from optimizing CONV within one thread. CONV
is computationally-intensive which traverses its operands mul-
tiple times for computation. Therefore, it is critical to man-
age the layout of the data fed to the CONV to reduce the
memory access overhead. We first revisit the computation
of CONV to illustrate our memory management scheme. A
2D CONV in CNN takes a 3D feature map (height × width
× channels) and a number of 3D convolution kernels (nor-
mally smaller height and width but the same number of chan-
nels) to convolve to output another 3D tensor. The calculation
is illustrated in Figure 1, which implies loops of 6 dimen-
sions: in_channel, kernel_height, kernel_width, out_channel,
out_height and out_width. Each kernel slides over the input
feature map along the height and width dimensions, does
element-wise product and accumulates the values to produce
the corresponding element in the output feature map, which
can naturally leverage FMA. The number of kernels forms
out_channel. Note that three of the dimensions (in_channel,
kernel_height and kernel_width) are reduction axes that can-
not be embarrassingly parallelized.

We use the conventional notation NCHW to describe the
default data layout, which means the input and output are 4-D
tensors with batch size N, number of channels C, feature map
height H, feature map width W, where N is the outermost and
W is the innermost dimension of the data. The related layout
of kernel is KCRS, in which K, C, R, S stand for the output
channel, input channel, kernel height and kernel width.

Following the common practice [27, 45], we organized the

in_height

in_width

kernel_width

kernel_heigh
t

out_width

out_heig
ht

out_channel

(# of kernel)

in_channel

ow_inner

inputs kernels

ZMM_0

ZMM_1 -
ZMM_{ow_inner}

+ ×

DRAM

outputs

vectorized FMA

Figure 1: The illustration of CONV and the efficient imple-
mentation in AVX-512 instructions as an example. There
are three kernels depicted in dark blue, green and light pink.
To do efficient FMA, multiple kernel values are packed into
one ZMM register and reused to multiply with different input
values and accumulate to output values in different ZMM
registers.

feature map layout as NCHW[x]c for better memory access
patterns i.e. better cache locality, in which c is a split sub-
dimension of channel C in super-dimension, and the number x
indicates the split size of the sub-dimension (i.e. #channels =
sizeo f (C)× sizeo f (c), where sizeo f (c) = x). The output has
the same layout NCHW[y]c as the input, while the split factor
can be different. Correspondingly, the convolution kernel is
organized in KCRS[x]c[y]k, in which c with split size x and
k with split size y are the sub-dimensions of input channel C
and output channel K, respectively. It is worth noting that a
significant amount of data transformation overhead needs to
be paid to get the desired layout.

In addition to the dimension reordering, for better uti-
lizing the latest vectorization instructions (e.g. AVX-512,
AVX2, NEON, etc.), we split out_width to ow_outer and
ow_inner using a factor reg_n and move the loop of ow_inner
inside for register blocking. For example, on a CPU fea-
tured AVX-512, we can utilize its 32 512-bit width registers
ZMM0−ZMM31 [28] as follows. We maintain the loop hier-
archy to use one ZMM register to store the kernel data while
others storing the feature map. The kernel values stored in
one ZMM register (up to 512 bits, a.k.a, 16 output channels
in float32) are used to multiply with a number of input feature
map values continuously stored in the DRAM via AVX-512F
instructions [28], whose results are then accumulated to other
ZMM registers storing the output values. Figure 1 illustrates
this idea. For other vectorized instructions, the same idea ap-
plies but the split factor of out_width (i.e. reg_n) may change.

1028 2019 USENIX Annual Technical Conference USENIX Association

Algorithm 1 summarizes our optimization of CONV in sin-
gle thread, which essentially is about 1) dimension ordering
for friendly memory locality and 2) register blocking for good
vectorization instruction utilization, as in previous works.
However, unlike others, we made it a template in high-level
language , in which the block size (x, y), the number of utilized
registers (reg_n), and the loop-unroll strategy (unroll_ker) are
easily configurable. Consequently, the computing logic can
be adjusted according to different CPU architectures (cache
size, registered vector width, etc.) as well as different work-
loads (feature map size, convolution kernel size, etc.). This is
flexible and enables graph-level optimization we will discuss
later.

Algorithm 1 CONV operation algorithm via FMA

1: PARAM: x > 0 s.t. in_channel mod x = 0
2: PARAM: y > 0 s.t. out_channel mod y = 0
3: PARAM: reg_n > 0 s.t. out_width mod reg_n = 0
4: PARAM: unroll_ker ∈ {True,False}
5: INPUT: IFMAP in NCHW[x]c
6: INPUT: KERNEL in KCRS[x]c[y]k
7: OUTPUT: OFMAP in NCHW[y]c
8: for each disjoint chunk of OFMAP do . parallel
9: for ow.outer:= 0→ out_width/reg_n do

10: Initialize V _REG1 to V _REGreg_n by~0
11: for ic.outer:= 0→ in_channel/x do
12: for each entry of KERNEL do . (opt) unroll
13: for ic.inner:= 0→ x do
14: vload(KERNEL,V _REG0) . y floats
15: for i:= 1→ reg_n+1 do . unroll
16: v f madd(IFMAP,V _REG0,V _REGi)
17: end for
18: end for
19: end for
20: end for
21: for i:= 1→ reg_n+1 do
22: vstore(V _REGi,OFMAP)
23: end for
24: end for
25: end for

3.1.2 Thread-level parallelization

It is a common practice to partition CONV into disjoint pieces
to parallelize among multiple cores of a modern CPU. Kernel
libraries like Intel MKL-DNN usually uses off-the-shelf multi-
threading solution such as OpenMP. However, we observe
that the resulting scalability of the off-the-shelf parallelization
solution is not desirable (Section 4.2.4).

Therefore, we implemented a customized thread pool to
efficiently process this kind of embarrassing parallelization.
Basically, in a system of N physical cores, we evenly divided
the outermost loop of the operation into N pieces to assign to
N threads. Then we used C++11 atomics to coordinate threads

during fork-join and an single-producer-single-consumer lock-
free queue between the scheduler and every working thread to
assign tasks. Active threads are guaranteed to run on disjoint
physical cores via thread binding to minimize the hardware
contention, and no hyper-threading is used as discussed in
Section 2.1. For the global data structure accessed by multiple
threads such as the lock-free queues, we inserted cache line
padding as needed to avoid false sharing between threads.
In summary, this customized thread pool employs deliber-
ate mechanism to prevent resource contention and reduce
the thread launching overhead, which makes it outperform
OpenMP according to our evaluation.

3.2 Layout transformation elimination
In this subsection, we extend the optimization scope from a
single operation to the entire computation graph of the CNN
model. The main idea here is to come up with a generic solu-
tion at the graph level to minimize the data layout transforma-
tion introduced by the optimization in Section 3.1. Previous
works [19, 24, 27] which focus on individual operation op-
timization normally do not consider about the data layout
transformation overhead between highly optimized opera-
tions.

Since NCHW[x]c is efficient for CONVs which takes the
majority of the CNN model computation, we should make
sure that every CONV is executed in this layout. However,
other operations between CONVs may only be compatible
with the default layout, which makes each CONV transform
the input data layout from default (NCHW or NHWC) to
NCHW[x]c before the computation and transform it back at
the end. This transformation introduces significant overhead.

Fortunately, from the perspective of the graph level, we
can take the layout transformation out of CONV to be an
independent node, and insert it only when necessary. That is,
we eliminate the transformation taking place in the CONV
operation and maintain the transformed layout flow through
the graph as far as possible.

In order to determine if a data transformation is necessary,
we first classify operations into three categories according to
how they interact with the data layout as follows:

1. Layout-oblivious operations. These operations process
the data without the knowledge of its layout, i.e. it can
handle data in any layout. Unary operations like ReLU,
Softmax, etc., fall in this category.

2. Layout-tolerant operations. These operations need to
know the data layout for processing, but can handle a
number of layout options. For example, CONV, in our
case, can deal with NCHW, NHWC and NCHW[x]c lay-
outs. Other operations like Batch_Norm, Pooling, etc.,
fall in this category as well.

3. Layout-dependent operations. These operations process
the data only in one specific layout, that is, they do not

USENIX Association 2019 USENIX Annual Technical Conference 1029

Data

CONV

CONV

FLATTEN

NCHW

NCHW

NCHW

NCHW

Kernel

Kernel

Data

CONV_NCHW16c

CONV_NCHW16c

FLATTEN

NCHW16c

NCHW16c

Pre-transformed
Kernel

NCHW
LayoutTransform

NCHW16c

OIHW16i16o

KCRS

LayoutTransform

NCHW16c

NCHW

OIHW16i16o

optimized
layout

AlterOpLayout

Layout-
tolerant

operators,
e.g., pooling,

relu,
broadcast

operators, etc.

Pre-transformed
Kernel

Layout-tolerant
operators, e.g.,
pooling, relu,

broadcast
operators, etc.

The optimized layout
(NCHW16c) passes through

the operators without any
layout-transform overhead.

KCRS

Figure 2: Layout optimization of a simple CNN model. The notation on an edge represents the layout of the data passing through
this edge. The left side depicts the network with default data layout. Each CONV node in pink needs to pay additional overhead
to transform the data into a favorable layout to achieve good performance and then transform back to default. The network in the
right side is optimized at the graph level to minimize the data layout transformation during the runtime. The CONV nodes in
green do not need to transform any data before and after computation.

tolerate any data transformation. Therefore, the layout
has to be transformed to a certain format before passing
to a layout-dependent operation. Transformation opera-
tions like Flatten, Reshape, etc, fall in this category.

Operations between CONVs in typical CNN models are
either layout-oblivious (e.g. ReLU, SoftMax, Concat, and El-
emwiseAdd) or layout-tolerant (e.g. Batch_Norm, Pooling),
making it possible to keep the data layout being NCHW[x]c
across convolution layers. Layout transformation from NCHW
to NCHW[x]c happens before the first CONV. Data layout
between CONVs can be maintained the same (i.e. NCHW[x]c
sharing the same x value) without transformation. Only if
getting to a layout-dependent operation, e.g. Flatten, the data
layout is transformed back from NCHW[x]c to NCHW.

In practice, we first traverse the computation graph to infer
the data layout of each node as illustrated in the left side of
Figure 2, then we alter the layout of CONVs from default
to NCHW[x]c for better performance. Note that in order to
prevent further transformation, we make x a constant number
(e.g. 16) across all CONVs. However, this value may vary
across different CONVs in order to get the optimal perfor-
mance, which requires layout transformation. We will explain
more about this in Section 3.3. Finally, the LayoutTransform
nodes are inserted to the graph accordingly. Thus, we still
have NCHW input and output for the network, but the internal
layouts between CONV layers are in optimized NCHW[x]c,
as shown in the right part of Figure 2. It is worth noting that,
the layout of the model parameters such as convolution ker-
nel weights and the mean and variance of Batch_Norm are
invariant so can be pre-transformed during the compilation.

We also illustrate this in the right part of Figure 2.
We implemented the ideas by introducing multiple graph-

level optimization passes to the TVM stack. By keeping trans-
formed data layout invariant between CONV layers as much
as possible and pre-transforming the layout of convolution
kernel weights at compilation time, we further improve the
end-to-end performance of CNN model inference.

3.3 Optimization scheme search

We came up with the aforementioned optimization schemes,
especially, how to layout the data, based on our understand-
ing of the hardware, e.g. cache size, vectorization unit width,
memory access pattern, etc. However, it is tedious and im-
practical to exhaust all possible optimal cases by hand. As
a trade-off, Section 3.2 assumes that the split factor of the
channel, i.e. x in NCHW[x]c, stays the same during the entire
network, while having various x values in different CONVs
may lead to a better performance. In addition, the split fac-
tor of the output width, i.e. reg_n, also needs to adjust for
different vectorization instruction sets.

Therefore, an automatic search for the best scheme is in
demand to further improve the performance. Basically, we
should build a system to allow the domain experts to con-
struct the search space for the machine to explore for the best
scheme resulting in the shortest execution time. The search
is two-stage, first local to find optimization scheme candi-
dates for the individual computationally-intensive operations,
then global to select and combine the individual schemes for
the optimal end-to-end results. It is feasible to conduct this

1030 2019 USENIX Annual Technical Conference USENIX Association

kind of search given the optimization template described in
Section 3.1.

3.3.1 Local search

The first step is to find the optimal schedules for each
computationally-intensive operations, i.e. CONVs in a CNN
model. We used a tuple (ic_bn, oc_bn, reg_n, unroll_ker) to
represent a convolution schedule, whose items are chosen
to cover different CPU architectures and generations for dif-
ferent convolution workloads. The first two terms ic_bn and
oc_bn stand for the split factors of input and output channels
(i.e. x in the NCHW[x]c notation), which are relevant to the
cache sizes of a specific CPU. The third term reg_n is the
number of SIMD registers to be used at the inner loop, which
varies among different CPU architectures and generations.
Also, we observed that utilizing all SIMD registers in a single
thread does not always return the best performance. The last
term unroll_ker is a boolean deciding whether to unroll the
for loop involving convolution kernel computation (line 12 of
Algorithm 1), as in some scenarios unrolling this loop may
increase the performance by reducing branch penalties and
such. The local search uses the template discussed in 3.1.1
to find the best combination of these values to minimize the
CONV execution time, similar to the kernel optimization step
in [31].

Specifically, the local search works as follows:

1. Define the candidate lists of ic_bn and oc_bn. To exhaust
the possible cases, we include all factors of the number
of channels. For example, if the number of channels is
64, [32, 16, 8, 4, 2, 1] are listed as the candidates.

2. Define the candidate list of reg_n. In practice, we choose
the reg_n value from [32, 16, 8, 4, 2].

3. Define the candidate list of unroll_ker to be [True, False].

4. Walk through the defined space to measure the execu-
tion time of all combinations, each of which will be run
multiple times for averaging to cancel out the possible
variance rooted from the unexpected interference from
the operating system and/or other processes. This eventu-
ally generates a list of combinations ascendingly ordered
by their execution time.

It is worth noting that we designed the above tuple in a con-
figurable way, which means that we can always revise the
tuple (e.g. adding or removing items, modifying the candidate
values of an item) as needed.

Empirically, the local search of a CNN model takes a few
hours using one machine, which is acceptable as it is one-time
work. For example, it took about 6 hours to search for the 20
different CONV workloads of ResNet-50 on an 18-core Intel
Skylake processor. In addition, we can maintain a database to
store the results for every convolution workload (defined by
the feature map and convolution kernel sizes) on every CPU

type to prevent repeating search for the same convolution in
different models.

Local search works well for each individual operation and
indeed finds better optimization scheme than our manual work.
However, greedily adopting the local optimal of every oper-
ation may not lead to the global optimal. Consider two con-
secutive CONV operations conv_0 and conv_1, if the output
split factor (oc_bn) of conv_0 is different from the input split
factor (ic_bn) of conv_1, a LayoutTransform node needs to be
inserted to the graph as discussed in Section 3.2. This trans-
formation overhead can be too expensive to take advantage
of the benefit brought by the local optimal, especially when
the data size of the network is large. On the other hand, if we
maintain the same split factor throughout the entire network
(as we did in Section 3.2), we may miss the opportunity to
optimize some CONVs. Therefore, a trade-off should be made
using a global search.

3.3.2 Global search

In this subsection, we extend the optimization search to the
entire computation graph. The idea is to allow each CONV
freely choosing the split factor x (i.e. ic_bn and oc_bn), and
take the corresponding data layout transformation time into
consideration. According to Section 3.2, the operations be-
tween CONVs are either layout-oblivious or layout-tolerant,
so they can use whatever x decided by the CONV operation.

We extract a snippet of a typical CNN model in Figure 3 to
illustrate the idea. From the figure we see that each CONV has
a number of candidate schemes specified by different (ic_bn
and oc_bn) pairs. The shortest execution time achieved by
each pair can be obtained in the local search step. The number
of pairs is bound to 100 since both ic_bn and oc_bn usually
have choices less than 10. Choosing different schemes will
introduce different data transformation overheads (denoted in
dashed boxes between CONVs) or no transformation (if the
oc_bn of the CONV equals the ic_bn of its successor). For
simplicity, in the figure we omit the operations which do not
impact the global search decision such as ReLU, Batch_Norm
between two CONVs. However, operations like Element-
wise_Add could not be omitted since it requires the layout of
its two input operands (outputs of CONVj and CONVk in the
figure) to be the same.

Naively speaking, if a CNN model consists of n CONVs,
each of which has ki candidate schemes, the total number of
options of the global scheme will be ∏

n
i=1 ki, very easy to

become intractable as the number of layers n grows. Fortu-
nately, in practice, we can use a dynamic programming (DP)
algorithm to efficiently solve this problem. Note that when
choosing the scheme for a CONV, we only need to consider
the data layout of it and its direct predecessor(s) but not any
other ancestor CONVs as long as the so-far globally optimal
schemes up to the predecessor(s) are memorized.

Therefore, a straightforward algorithm is constructed in

USENIX Association 2019 USENIX Annual Technical Conference 1031

CONVi
LayoutTransform CONVj

LayoutTransform CONVk
LayoutTransform

CONVl

ELEWISE_ADD

LayoutTransform

CONV

LayoutTransform ?1 2 3

N-2 N-1 N

Yes

No

CONV schemes

CONV computing time: varies along
with different CONV schemes

Layout Transform time: varies
along with different CONV schemes

Figure 3: Global search for CNN model inference. LayoutTransform may or may not be in invoked according to the global
decision. If invoked, an additional overhead of data transformation denoted in yellow needs to be paid.

Algorithm 2. In practice, a lot of CNN models has the struc-
ture as simple as a list, in which each CONV only has one
predecessor [33, 41]. In this case, after a CONV is done, the
intermediate states stored for its predecessor can be safely re-
moved. For networks with more complex structure like using
Elementwise_Add to add two CONV outputs to feed to the
next CONV [23], it is trickier since the schemes of a CONV
may need to be saved for a future use (e.g. in Figure 3 CONVl
needs the schemes of CONVj via Elementwise_Add).

Algorithm 2 Global search algorithm

1: Sort the nodes of the graph in topological order
2: Initialize the optimal schemes of the CONVs without

dependency using the execution time of their candidate
schemes

3: for CONVi in topological order do
4: for each candidate scheme CSI j of CONVi do . j is

the jth scheme of CONVi
5: t = execution_time(CSI j)
6: GSI j = MAX . initialize global optimal scheme

of CONVi under scheme j
7: for each so-far globally optimal scheme GSXk of

predecessor x do . k is the kth scheme of CONVx
8: cur_opt = t + trans f orm_time(k, j)+GSXk
9: if cur_opt < GSI j then

10: GSI j = cur_opt
11: end if
12: end for
13: end for
14: end for
15: return last node’s shortest scheme

However, if the model structure becomes too compli-
cated with many data dependency links between CONVs, the
straightforward DP algorithm could go intractable, too. For
example, in the object detection model SSD [36], the number
of states can reach the order of trillions due to the occurrence
of many concatenation blocks. In this case, we introduced an
approximate solution to accelerate the search. Particularly, we
reduced our global search problem to the register allocation

problem in the canonical compiler domain with minor modifi-
cation as follows. The register allocation problem is modeled
as graph representation in which each node (variable) has
a candidate list containing all possible register options, and
each edge is associated with a cost matrix indicating the avail-
ability of registers between two nodes [20]. Similarly in our
global search, each CONV has a list of candidate schemes
and each edge is associated with the layout transformation
cost matrix generated by the scheme lists of two CONVs. For
other non-CONV nodes like Elementwise_Add which require
all inputs in the same layout, we fixed the layout of one in-
put and convert all other input layouts to it. Therefore, we
defined the candidate list of a non-CONV node to be the same
as the first input CONV and the cost matrix on the edge be-
tween these two nodes as all diagonal elements being 0 and all
the other elements being infinite. For the edges between this
non-CONV node and other input nodes, cost matrices are gen-
erated from the first input node and other input nodes. After
such modification, all nodes and edges in our graph have the
valid properties which are required by the register allocation
modeling. This enables us to apply a heuristic solver based
on partitioned boolean quadratic programming (PBQP) to our
problem as it is done in register allocation [20].

In order to verify the result of this approximation algorithm,
we compared it with the result of DP (the guaranteed best)
on some simple networks where DP is tractable. It turns out
that the approximation algorithm gets at least 88% of the best
available result. Empirically, a typical DP search completes
in 1 minute for most CNN models. In practice, we switch to
the approximation algorithm if DP does not complete in 5
minutes. The approximation algorithm completes quickly, e.g.
in 10 seconds. For the 15 popular networks we evaluated in
Section 4, only SSD was done approximately.

4 Evaluation

This section evaluates the performance of our proposed solu-
tion, NeoCPU, by answering the following questions:

1. What is the overall performance of NeoCPU comparing

1032 2019 USENIX Annual Technical Conference USENIX Association

with the start-of-the-art alternatives on various kinds of
CPUs?

2. What is the individual contribution of each optimization
idea we proposed?

All experiments were done on Amazon EC2 instances. We
evaluated NeoCPU on three kinds of CPUs, Intel Skylake
(C5.9xlarge, 18 physical cores, featured with AVX-512),
AMD EPYC (M5a.12xlarge, 24 physical cores, featured with
AVX2) and ARM Cortex A72 (A1.4xlarge, 16 physical cores,
featured with NEON). Although testing on the cloud, our
results of ARM CPUs apply to the ones at the edge devices
such as Raspberry Pi and Amazon Echo Dot due to the same
architecture. All cores have uniformed memory access.

NeoCPU was built on top of the code base of the TVM
stack 0.4.0. For CPUs with x86 architecture, we chose two
framework-specific solutions and one framework-agnostic so-
lution as baselines for comparison. For the framework-specific
solution, we investigated a wide range of options and figured
out that MXNet 1.3.1 with Intel MKL-DNN v0.15 enabled
has the widest model coverage with the best inference perfor-
mance compared to others (e.g. Intel Caffe). In addition, we
chose TensorFlow 1.12.0 with ngraph v0.12.0-rc0 integration
(empirically proved to be better than TensorFlow XLA on
CPUs) due to its popularity. TensorFlow is known to have
better performance on CPUs than another popular deep learn-
ing framework PyTorch [14]. The latest Intel OpenVINO
Toolkit 2018 R5.445 served as the framework-agnostic solu-
tion. We used the official image-classification sample 3 and
object-detection-ssd sample 4 for benchmarking. For ARM
CPUs, we chose MXNet 1.3.1 with OpenBlas 0.2.18 and Ten-
sorFlow 1.12.0 with Eigen fd68453 5 as the baselines. No
framework-agnostic comparison was performed as on ARM
CPUs there is no counterpart of OpenVINO to x86 CPUs.
In addition, OpenMP 4.5 implemented in GCC 7.3 was used
in the comparison with our own thread pool for multi-thread
scalability. As a note, all implementations used direct convo-
lution. Incorporating the advanced convolution algorithms to
further improve the performance remains for future work.

We ran the model inference on a number of popular CNN
models, including ResNet [23], VGG [41], DenseNet [26],
Inception-v3 [43], and SSD [36] using ResNet-50 as the base
network. Models consumed by MXNet and OpenVINO were
from the Gluon Model Zoo 6. Models consumed by Tensor-
Flow were obtained mostly from TF-SLim 7 and for some

3https://docs.openvinotoolkit.org/latest/
_inference_engine_samples_classification_sample_README.html

4https://docs.openvinotoolkit.org/latest/
_inference_engine_samples_object_detection_sample_ssd_README.html

5https://github.com/tensorflow/tensorflow/blob/r1.12/
tensorflow/workspace.bzl#L128

6https://mxnet.incubator.apache.org/api/python/gluon/
model_zoo.html

7https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/contrib/slim

missing ones (e.g. ResNet-34, DenseNet-169) we manually
created them. The same model in different formats are seman-
tically identical. As inherited from the TVM stack, NeoCPU
is compatible to both Gluon and TF-slim formats, and in the
evaluation we used the former one. The input data of the
model inference are 224×224 images, except for the Incep-
tion Net (299×299) and SSD (512×512) by following the
popular convention. Since the most important performance
criterion of model inference is the latency, we did all experi-
ments with batch size 1, i.e. each time only one image was
fed to the model, to measure the inference time. Therefore,
we fix the value N in NCHW [x]c as 1. NeoCPU works for
larger batch sizes as well, in which cases we just need to add
the N value to our configuration tuple.

Since our optimization does not change the semantics of
the model, we do not expect any change of the model output.
As a sanity check, we compared the results generated by
NeoCPU with other baselines (prediction accuracy for image
classification models and mean accuracy prediction for object
detection models) to validate the correctness.

4.1 Overall Performance

We first report the overall performance we got for 15 popu-
lar CNN models comparing with the baselines on different
CPUs in Table 2. The results were obtained by averaging the
execution times of 1000 samples, doing inference for one at
a time. In general, NeoCPU is more efficient across differ-
ent models on different CPU architectures than any of the
baselines (up to 11× speedup without considering the sus-
picious OpenVINO outliers which will be explained later).
Compared to the best available baseline result for each model,
NeoCPU gets 0.94-1.15× performance on the Intel Skylake
CPU, 0.92-1.72× performance on the AMD EYPC CPU, and
2.05-3.45× performance on the ARM Cortex A72 CPU.

As framework-specific solutions, MXNet and TensorFlow
were suboptimal for CNN inference on CPUs because it is
lacking of flexibility to perform sufficient graph level op-
timization (e.g. flexible data layout management). MXNet
has active MKL-DNN support from Intel so it performed
quite well on CPUs with the x86 architecture. MXNet per-
formed worse than TensorFlow on ARM due to the scalability
issue (demonstrated in Figure 4c). TensorFlow performs sig-
nificantly worse on SSD as it introduces branches to this
model, which requires dynamic decisions to be made during
the runtime. Comparatively, the framework-agnostic solution
provided by the OpenVINO tries to further boost the perfor-
mance by removing the framework limitation. However, the
performance of OpenVINO was unstable across models. Al-
though it gets appealing results on some cases, OpenVINO
sometimes performed extremely slowly on certain models
(e.g. 45× slower than us for ResNet-152 on AMD) for un-
known reasons. When summarizing the speedup results, we
do not include these outliers. It is also worth noting that the

USENIX Association 2019 USENIX Annual Technical Conference 1033

https://docs.openvinotoolkit.org/latest/_inference_engine_samples_classification_sample_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_classification_sample_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_sample_ssd_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_sample_ssd_README.html
https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/workspace.bzl#L128
https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/workspace.bzl#L128
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 2.77, .01 4.85, .02 6.60, .00 12.90, .04 18.58, .07 12.05, .00 15.16, .00 18.55, .00
TensorFlow 4.07, .00 6.95, .00 11.93, .01 20.36, .00 37.33, .02 18.78, .01 24.28, .00 27.64, .02
OpenVINO 3.54, .00 5.43, .00 7.95, .00 12.55, .00 17.32, .01 138.07, .12 137.51, .14 140.95, .33

NeoCPU 2.64, .00 5.14, .00 5.73, .00 11.15, .01 17.24, .01 11.91, .00 14.91, .00 18.21, .00
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 21.83, .00 14.72, .00 31.07, .01 19.73, .00 26.66, .00 10.43, .00 42.71, .00
TensorFlow 35.94, .00 18.65, .01 32.97, .00 23.03, .01 29.19, .01 16.39, .04 358.98, .13
OpenVINO 147.41, .12 9.03, .00 18.55, .01 11.80, .01 14.92, .01 10.65, .00 30.25*, .01

NeoCPU 21.77, .00 8.04, .01 17.45, .04 11.21, .01 13.97, .03 10.67, .01 31.48, .00

(a) Overall performance on a system with 18-core Intel Skylake CPU

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 7.84, .36 14.66, .14 22.48, .48 40.57, 2.54 58.92, 3.21 49.17, 1.75 59.19, 1.35 72.57, 2.74
TensorFlow 13.95, .24 25.02, .49 38.14, .35 74.41, .56 108.38, .24 60.30, .22 71.16, .33 96.33, .22
OpenVINO 8.56, 1.02 15.18, .60 21.95, .42 1711.42, 1.59 2515.08, 2.51 662.09, 1.73 709.58, 1.78 828.17, 2.09

NeoCPU 7.15, .49 14.10, .68 18.79, 1.01 39.32, .87 55.71, .54 28.58, .74 38.17, .29 57.63, .68
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 84.76, 1.91 35.00, 1.06 79.58, .63 47.82, 1.67 63.67, .15 30.12, .09 132.73, 2.59
TensorFlow 121.04, .38 45.87, .15 98.39, .93 57.49, .28 77.37, .24 48.78, .45 747.78, 2.24
OpenVINO 1113.17, 2.39 22.36, .24 818.86, 1.39 438.72, 1.27 453.12, 1.75 25.75, .83 93.65*, .81

NeoCPU 63.78, .18 24.30, .54 49.37, .09 31.70, .47 46.12, .51 26.37, .32 97.26, .54

(b) Overall performance on a system with 24-core AMD EYPC CPU

Unit: ms ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 VGG-11 VGG-13 VGG-16

MXNet 75.82, 1.31 135.24, 2.49 149.65, 2.37 252.76, 3.25 351.60, 3.49 385.50, 2.39 505.06, 3.28 575.80, 2.98
TensorFlow 50.50, .07 96.50, .11 107.50, .12 223.83, .17 336.56, .19 245.97, .18 336.05, .27 381.46, .21

NeoCPU 19.26, .08 37.20, .14 45.73, .02 86.77, .08 126.65, .13 87.66, .21 124.75, .05 162.49, .14
VGG-19 DenseNet-121 DenseNet-161 DenseNet-169 DenseNet-201 Inception-v3 SSD-ResNet-50

MXNet 642.27, 4.30 211.54, 3.22 389.33, 2.98 264.36, 3.82 315.10, 3.49 275.28, 3.27 657.22, 3.29
TensorFlow 459.91, .27 122.48, .07 301.51, .11 159.39, .08 204.79, .10 142.00, .07 1020.16, .47

NeoCPU 201.03, .49 44.00, .09 87.36, .15 58.93, .65 65.48, .54 84.00, .08 318.48, .11

(c) Overall performance on a system with 16-core ARM Cortex A72 CPU

Table 2: Overall performance of NeoCPU and the selected baselines. Each entry contains the mean value of 1000 runs and the
corresponding standard error. The best performance of each model is in bold. (*OpenVINO on Intel and AMD CPUs does not
measure the entire SSD execution time)

OpenVINO measures the execution time of SSD without tak-
ing into account a significant amount of operations including
multibox detection. Since OpenVINO is not open-sourced, we
were not able to modify it for apples-to-apples comparison on
the SSD model. OpenVINO does not work for ARM CPUs
as it relies on MKL-DNN which optimizes only for CPUs
with x86 architecture. NeoCPU outperforms the baselines
mostly because of the advanced optimization techniques we
presented in Section 3. In addition, all baselines largely rely
on the third-party libraries (MKL-DNN, OpenBlas, Eigen)
to achieve good performance. NeoCPU, on the other hand,
is independent from those high-performance libraries, which
gives us more room to optimize the model inference as a
whole.

4.2 Optimization Implications
This subsection breaks up the end-to-end performance gain
of NeoCPU by investigating the performance boost of each

individual optimization technique we described in Section 3.
For the sake of space, in each comparison we only pick one
network from a network family, respectively. Other networks
in the same family share the similar benefits. We only report
the performance results on Intel CPUs in Section 4.2.1-4.2.3.
The optimization effect applies to AMD and ARM CPUs, too.
Basically, Section 4.2.1 is the operation-level optimization,
and Section 4.2.2 and 4.2.3 cover the operation- and graph-
level joint optimization.

4.2.1 Layout optimization of CONV

Firstly, we compare the performance with and without orga-
nizing the data in a memory access and vectorized instruction
utilization friendly layout (NCHW{x}c) for the CONV opera-
tions at the second row of Table 3. This is the operation-level
optimization that is commonly applied by the compared base-
lines in Section 4.1. We replicate it as a template using TVM
scheduling schemes without touching the assembly code or

1034 2019 USENIX Annual Technical Conference USENIX Association

Speedup ResNet-50 VGG-19 DenseNet-201 Inception-v3 SSD-ResNet-50
Baseline 1 1 1 1 1
Layout Opt. 5.34 8.33 4.08 7.41 6.34
Transform Elim. 8.22 9.33 5.51 9.11 9.32
Global Search 12.25 10.54 6.89 11.85 12.49

Table 3: The individual speedup brought by our optimization
compared to the NCHW baseline. The speedup of row n was
achieved by applying the optimization techniques till this row.

intrinsics, which enables the subsequent optimization for var-
ious CNN models on different CPU architectures. From row
2 of Table 3 we see significant improvement compared to
the default data layout (NCHW), whose performance is nor-
malized to baseline 1. Both implementations are with proper
vectorization and thread-level parallelization, as well as basic
graph-level optimizations introduced by the original TVM
stack, e.g. operation fusion, pre-computing, inference simpli-
fication, etc.

4.2.2 Layout transformation elimination

Secondly, we evaluate the performance boost brought by elim-
inating the data layout transformation overhead as discussed
in Section 3.2. The results were summarized at the third row
of Table 3. Compared to the layout optimization of CONV
(second row of Table 3), layout transformation elimination fur-
ther accelerates the execution time by 1.1−1.5×. NeoCPU
uses a systematic way to eliminate the unnecessary data lay-
out transformation by inferring the data layout throughout the
computation graph and inserting the layout transformation
nodes only if needed, which is not seen in other works.

4.2.3 Optimization scheme search

Next, we compare the performance between the optimiza-
tion schemes produced by our search algorithm and the ones
carefully picked by us manually. By comparing the third and
fourth row of Table 3, our algorithm (described in Section 3.3)
is able to find the (approximately) best combination of data
layouts which outperforms the manually picked results by
1.1−1.5×. ResNet-50 (and its variants) gains more speedup
from global search because the network structure is more com-
plicated, hence leaving more optimization room. In contrast,
VGG-19 (and its variants) gains less since the structure of this
model is relatively simple. SSD utilizes the approximation
algorithm and gets significant speedup, too. The results also
verify that, with automatic search, we can get rid of the te-
dious manual picking of parameters by producing even better
results. To the best of our knowledge, NeoCPU is the only
one that does this level of optimization.

4.2.4 Multi-thread parallelization

Lastly, we did a strong scalability experiment using the multi-
threading implementations backed by our own thread pool

described at Section 3.1.2 and the commonly used OpenMP
API implemented in the GCC compiler. We also included
the result of MXNet, TensorFlow and OpenVINO using Intel
MKL-DNN, OpenBlas or Eigen (all realizing multi-threading
via OpenMP) for comparison. We configured OpenMP via
environment variables to make sure that the jobs are statically
partitioned and each thread runs on a disjoint core, which
resemble the behavior of our thread pool for apples-to-apples
comparison. Figure 4 summarizes the number of images a
model can inference one by one (i.e. batch size = 1) in a
second as a function of the number of threads the model infer-
ence uses. For the sake of space, we demonstrate one result
for one CPU type. The figure shows that our thread pool
achieves better scalability than OpenMP in NeoCPU as well
as in the baselines. Although the tasks are embarrassingly
parallelizable, each model inference consists of a number of
parallelization regions. The overhead of OpenMP to launch
and suppress threads before and after a region is larger than
our thread pool, which attributes to the less scalability of
OpenMP. Furthermore, sometimes we observed that the per-
formance obtained by OpenMP jitters, or even drops, while
adding threads. In addition, the performance of OpenMP may
differ across different implementations. In summary, our eval-
uation suggests that in our use cases, it is preferable to have a
self-customized thread pool with full control.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
threads

0
30
60
90

120
150
180

im

ag
es

/s
ec

MXNet
TensorFlow

OpenVINO
NeoCPU w/ OMP

NeoCPU w/ thread pool

(a) ResNet-50 on a system with 18-core Intel Skylake CPU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
threads

0

5

10

15

im

ag
es

/s
ec

(b) VGG-19 on a system with 24-core AMD EPYC CPU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
threads

0

5

10

15

im

ag
es

/s
ec

(c) Inception-v3 on a system with 16-core ARM Cortex A72 CPU

Figure 4: Scalability comparison between different multi-
threading implementations. The standard errors (< 0.4) are
too small to be visible in the diagrams.

USENIX Association 2019 USENIX Annual Technical Conference 1035

5 Related Works

As deep learning demonstrates more and more power in the
real-world applications, there is a significant amount of ef-
fort being made to accelerate the deep learning workloads
on all kinds of hardware ranging from CPUs [24, 27, 44, 53],
GPUs [11, 13], FPGAs [18, 22, 49], to special-purpose ac-
celerators [12, 32]. Modern deep learning frameworks nor-
mally leverage these optimized implementations to run deep
learning training and inference on the corresponding hard-
ware targets. There are also works tailored for inference to
address the inference-specific requirement such as low la-
tency and small binary size on different hardware targets (e.g.
GPUs [38], ASICs [22]). NeoCPU is more flexible and com-
bines the operation- and graph-level optimization intelligently.
Although this paper focuses on CPUs, the ideas are applicable
to other hardware targets.

NeoCPU is based on the TVM stack [9], an end-to-end
framework inspired by Halide [39], which expresses a deep
learning model into intermediate representations (IRs) and
compiles to the machine code. There are several other simi-
lar deep learning compilers such as TensorFlow XLA [34],
Tensor Comprehensions [46], Glow [40] and DLVM [47].
However, so far none of them has reported CPU inference
results on par with what we did (e.g. Glow only optimized
single-core performance on CPUs). We believe our proposed
solution could be an integral part to these frameworks.

We follow the well-studied ideas implemented in
other high-performance libraries [27, 51] to optimize the
computationally-intensive CONV operations. In addition to
the libraries, there are also highly customized optimization
works for convolutions and matrix multiplications on Intel
CPUs [19, 24]. These works are mostly about individual
operation-level optimizations, which do not consider main-
taining data layouts through the entire network. Specifically,
they carefully investigate the computation nature of convo-
lutions as well as the available CPU resources to fine tune
the operations. This kind of optimization is able to maximize
the convolution performance on the targeted CPUs but is
not very flexible to extend to other platforms and to do joint
optimization. Unlike others, we make the optimization as a
configurable template so that it is flexible to fit to different
CPU architectures and enable the opportunity to surpass man-
ually tuned performance via operation- and graph-level joint
optimization.

Our work utilizes auto search to look for optimal solu-
tions. Similar auto-tuning ideas were used in other works as
well [10, 46, 48]. However, they all focused on performance
tuning for single operations, while ours extends the scope to
the entire CNN model to search for optimal solutions glob-
ally. Recently, we also observed other work optimizing the
DNN workloads at the graph level [30]. This work attempts
to obtain better global performance using relaxed graph sub-
stitutions which may harm the local performance within a

few operations. Its non-greedy search idea is conceptually
similar to ours and potentially applicable to our solution. The
approximation algorithm we employed to deal with the global
search for the models with complicated structures (e.g. SSD)
is inspired by the application of PBQP in the register alloca-
tion problem [6, 17, 20]. This paper leverages the previous
idea and applies to a new domain by minor modification.

6 Conclusion

In this paper, we proposed an end-to-end solution to com-
pile and optimize convolutional neural networks for efficient
model inference on modern CPUs. The experiments show that
we are able to achieve up to 3.45× speedup on 15 popular
CNN models on the various kinds of CPUs (Intel Skylake,
AMD EPYC and ARM Cortex A72) compared to the per-
formance of the state-of-the-art solutions. The future work
includes extending to other convolution computation algo-
rithms such as Winograd and FFT, handling model inference
in quantized values (e.g. INT8) and extending our operation-
and graph-level joint optimization ideas to work on other
hardware platforms (e.g. NVidia GPUs compared with Ten-
sorRT). Supporting the optimized model inference in dynamic
shapes (e.g. RNNs [25, 50]) is another interesting direction to
explore.

Acknowledgments

We would like to thank our shepherd Peter Pietzuch and the
anonymous reviewers of the USENIX ATC program commit-
tee for their valuable comments which improved the paper a
lot. We are also grateful to Tianqi Chen and Animesh Jain for
helpful discussion and constructive suggestion.

References

[1] Amd vs intel market share. https://
www.cpubenchmark.net/market_share.html. [On-
line; accessed 13-May-2019].

[2] Arm holdings. https://en.wikipedia.org/wiki/
Arm_Holdings. [Online; accessed 13-May-2019].

[3] Neon. https://developer.arm.com/technologies/
neon. [Online; accessed 13-May-2019].

[4] Eigen: a C++ Linear Algebra Library. http://
eigen.tuxfamily.org/, 2017. [Online; accessed 13-
May-2019].

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

1036 2019 USENIX Annual Technical Conference USENIX Association

https://www.cpubenchmark.net/market_share.html
https://www.cpubenchmark.net/market_share.html
https://en.wikipedia.org/wiki/Arm_Holdings
https://en.wikipedia.org/wiki/Arm_Holdings
https://developer.arm.com/technologies/neon
https://developer.arm.com/technologies/neon
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In OSDI, volume 16, pages
265–283, 2016.

[6] Cooper K.D. Torczon L. Briggs, P. Improvements to
graph coloring register allocation. ACM Trans. Program.
Lang. Syst. 16(3) 428–455, 1994.

[7] David Budden, Alexander Matveev, Shibani Santurkar,
Shraman Ray Chaudhuri, and Nir Shavit. Deep
tensor convolution on multicores. arXiv preprint
arXiv:1611.06565, 2016.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen
Shen, Eddie Yan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: End-
to-end optimization stack for deep learning. arXiv
preprint arXiv:1802.04799, 2018.

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
arXiv preprint arXiv:1805.08166, 2018.

[11] Xie Chen, Yongqiang Wang, Xunying Liu, Mark JF
Gales, and Philip C Woodland. Efficient gpu-based train-
ing of recurrent neural network language models using
spliced sentence bunch. In Fifteenth Annual Conference
of the International Speech Communication Association,
2014.

[12] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
and Olivier Temam. Diannao family: energy-efficient
hardware accelerators for machine learning. Communi-
cations of the ACM, 59(11):105–112, 2016.

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cuDNN: Efficient Primitives for Deep Learn-
ing. arXiv preprint arXiv:1410.0759, 2014.

[14] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An
end-to-end deep learning benchmark and competition.
NIPS ML Systems Workshop, 2017.

[15] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandi-
walla, Jayaram Bobba, Matthew Brookhart, Avijit
Chakraborty, Will Constable, Christian Convey, Leona
Cook, Omar Kanawi, Robert Kimball, Jason Knight,

Nikolay Krovaiko, Varun Kumar, Yixing Lao, Christo-
pher R. Lishka, Jaikrishnan Menon, Jennifer Myers,
Sandeep Aswath Narayana, Adam Procter, and Tristan J.
Webb. Intel ngraph: An intermediate representation,
compiler, and executor for deep learning. arXiv preprint
arXiv:1801.08058, 2018.

[16] Deanne Deuermeyer and Andrey Z. Openvino toolkit re-
lease notes. https://software.intel.com/en-us/
articles/OpenVINO-RelNotes. [Online; accessed
13-May-2019].

[17] Erik Eckstein. Code optimizations for digital signal pro-
cessors. PhD thesis, Vienna University of Technology,
2003.

[18] Clément Farabet, Cyril Poulet, Jefferson Y Han, and
Yann LeCun. CNP: An FPGA-based Processor for Con-
volutional Networks. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference
on, pages 32–37. IEEE, 2009.

[19] Evangelos Georganas, Sasikanth Avancha, Kunal Baner-
jee, Dhiraj Kalamkar, Greg Henry, Hans Pabst, and
Alexander Heinecke. Anatomy of high-performance
deep learning convolutions on simd architectures. In
SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
830–841. IEEE, 2018.

[20] Lang Hames and Bernhard Scholz. Nearly optimal reg-
ister allocation with pbqp. JMLC 2006. LNCS, vol.4228,
pp. 346-361, 2016.

[21] Lance Hammond, Benedict A Hubbert, Michael Siu,
Manohar K Prabhu, Michael Chen, and K Olukolun. The
stanford hydra cmp. IEEE micro, 20(2):71–84, 2000.

[22] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. ESE: Efficient Speech Recognition
Engine with Sparse LSTM on FPGA. In FPGA, pages
75–84, 2017.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[24] Alexander Heinecke, Greg Henry, Maxwell Hutchinson,
and Hans Pabst. LIBXSMM: Accelerating Small Ma-
trix Multiplications by Runtime Code Generation. In
SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
981–991. IEEE, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 1037

https://software.intel.com/en-us/articles/OpenVINO-RelNotes
https://software.intel.com/en-us/articles/OpenVINO-RelNotes

[25] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng
Yan, and Bo Wu. Grnn: Low-latency and scalable rnn
inference on gpus. In Proceedings of the Fourteenth
EuroSys Conference 2019, page 41. ACM, 2019.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In CVPR, 2017.

[27] Intel. Intel math kernel library for deep neural net-
works (intel mkl-dnn). https://github.com/intel/
mkl-dnn, 2018. [Online; accessed 13-May-2019].

[28] James R. (Intel). Intel avx-512 instructions.
https://software.intel.com/en-us/blogs/
2013/avx-512-instructions, 2013. [Online;
accessed 13-May-2019].

[29] Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai
Li. Optimizing n-dimensional, winograd-based convo-
lution for manycore cpus. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’18, pages 109–123.
ACM, 2018.

[30] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu
Gao, Matei Zaharia, and Alex Aiken. Optimizing dnn
computation with relaxed graph substitutions. In SysML,
2019.

[31] Ziheng Jiang, Tianqi Chen, and Mu Li. Efficient deep
learning inference on edge devices. In SysML, 2018.

[32] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, pages 1–12. ACM, 2017.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[34] Chris Leary and Todd Wang. Xla: Tensorflow, compiled.
TensorFlow Dev Summit, 2017.

[35] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor
Mashayekhi, and Reza Rooholamini. An empiri-
cal study of hyper-threading in high performance
computing clusters. Linux HPC Revolution, 45, 2002.

[36] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer,
2016.

[37] Debbie Marr, Frank Binns, D Hill, Glenn Hinton,
D Koufaty, et al. Hyper-threading technology in the
netburst R© microarchitecture. 14th Hot Chips, 2002.

[38] NVIDIA. Nvidia tensorrt. https://
developer.nvidia.com/tensorrt, 2018. [Online;
accessed 13-May-2019].

[39] Jonathan Ragan-Kelley, Connelly Barnes, Andrew
Adams, Sylvain Paris, Frédo Durand, and Saman Ama-
rasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, pages 519–530.
ACM, 2013.

[40] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Sum-
mer Deng, Roman Dzhabarov, James Hegeman, Roman
Levenstein, Bert Maher, Satish Nadathur, Jakob Olesen,
Jongsoo Park, Artem Rakhov, and Misha Smelyanskiy.
Glow: Graph lowering compiler techniques for neural
networks. arXiv preprint arXiv:1805.00907, 2018.

[41] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[42] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–9, 2015.

1038 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2818–2826, 2016.

[44] Linpeng Tang, Yida Wang, Theodore Willke, and Kai
Li. Scheduling Computation Graphs of Deep Learning
Models on Manycore CPUs. ArXiv e-prints, July 2018.

[45] Tensorflow. Tensorflow performance guide.
https://www.tensorflow.org/performance/
performance_guide#data_formats, 2018. [Online;
accessed 13-May-2019].

[46] Nicolas Vasilache, Oleksandr Zinenko, Theodoros
Theodoridis, Priya Goyal, Zachary DeVito, William S
Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[47] Richard Wei, Lane Schwartz, and Vikram Adve. Dlvm:
A modern compiler framework for neural network dsls.
In Neural Information Processing Systems, Workshop
on Machine Learning Systems, 2017.

[48] R Clinton Whaley and Jack J Dongarra. Automatically
tuned linear algebra software. In Supercomputing, 1998.
SC98. IEEE/ACM Conference on, pages 38–38. IEEE,
1998.

[49] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,
Bingjun Xiao, and Jason Cong. Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neu-
ral Metworks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pages 161–170. ACM, 2015.

[50] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,
and Yuxiong He. Deepcpu: Serving rnn-based deep
learning models 10x faster. In 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), pages
951–965, 2018.

[51] Xianyi Zhang, Qian Wang, and Zaheer Chothia. Open-
blas. http://xianyi.github.io/OpenBLAS, 2014.
[Online; accessed 13-May-2019].

[52] Aleksandar Zlateski, Zhen Jia, Kai Li, and Fredo Durand.
Fft convolutions are faster than winograd on modern
cpus, here is why. arXiv preprint arXiv:1809.07851,
2018.

[53] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung.
ZNN–A Fast and Scalable Algorithm for Training 3D
Convolutional Networks on Multi-core and Many-Core
Shared Memory Machines. In 2016 IEEE International
Parallel and Distributed Processing Symposium, pages

801–811. IEEE, 2016.

USENIX Association 2019 USENIX Annual Technical Conference 1039

https://www.tensorflow.org/performance/performance_guide#data_formats
https://www.tensorflow.org/performance/performance_guide#data_formats
http://xianyi.github.io/OpenBLAS

