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Abstract

Many important graph algorithms are based on the
breadth first search (BFS) approach, which builds it-
self on recursive vertex traversal. We classify algorithms
that share this characteristic into what we call a BFS-like
algorithm. In this work, we first analyze and study the
I/O request patterns of BFS-like algorithms executed
on disk-based graph engines. Our analysis exposes two
shortcomings in executing BFS-like algorithms. First,
we find that the use of the cache is ineffective. To make
use of the cache more effectively, we propose an in-
memory static cache, which we call BFS-Aware Static
Cache or Basc, for short. Basc is static as its contents,
which are edge lists of vertices that are pre-selected
before algorithm execution, do not change throughout
the execution of the algorithm. Second, we find that the
state-of-the-art ordering method for graphs on disks is
ineffective with BFS-like algorithms. Thus, based on an
I/O cost model that estimates the performance based
on the ordering of graphs, we develop an efficient graph
ordering called Neighborhood Ordering or Norder. We
provide extensive evaluations of Basc and Norder on
two well-known graph engines using five real-world
graphs including Twitter that has 1.9 billion edges. Our
experimental results show that Basc and Norder, collec-
tively have substantial performance impact.

1 Introduction

Algorithms such as breadth first search (BFS) [26], short-
est paths (SP) [15], all pairs shortest path (APSP) [35],
diameter computation (DIAM) [1], finding weakly con-
nected components (WCC) [15], and betweenness cen-
trality (BC) [4] are popular graph algorithms widely
used in many domains including bioinformatics, social
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science, and economics. These algorithms share a com-
monality that they start from a given set of vertices
and then recursively traverse their neighboring vertices.
Together, we call algorithms with these characteristics
BFS-like algorithms.

In BFS-like algorithms, only a subset of vertices are
active at any given time. Furthermore, which of the
vertices are to be activated among all the vertices is
difficult to predict. Due to this reason, the locality of
memory access in BFS-like algorithms is generally worse
than that of other graph algorithms such as PageRank,
where all vertices are active and regularly accessed [27].

Due to their poor locality of memory access, it is diffi-
cult to optimize the performance of BFS-like algorithms,
particularly on disk-based graph engines that store the
input graph on external storage such as SSDs. Although
several optimization techniques have been suggested
for disk-based graph systems, their impact on BFS-like
algorithms is limited. Existing optimizations such as
overlapping I/O and CPU operations [12,19] or merging
small I/O requests into a single larger request [40] do
not consider the characteristics of BFS-like algorithms
hence, have substantial room for improvement [2, 27].

The focus of this paper is on BFS-like algorithms, and
our contribution can be summarized as follows. First,
we present a thorough analysis of BFS-like algorithms
running on disk-based graph engines. We observe and
report characteristics not previously revealed such as
the fact that the number of I/O requests for each vertex
is similar among the vertices, regardless of their degrees
or relative positions in graphs.

Second, based on our observations, we propose a new
form of a cache, which we call Basc (an acronym for
BFS-Aware Static Cache). Basc has three distinct char-
acteristics as a cache: 1) it is separate space set aside
from the typical page cache1, 2) it holds edge lists of

1Without loss of generality, we will use the term ‘page cache’ to
refer to typical caches that are deployed to improve I/O performance
in graph engines or within operating systems.
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certain pre-selected vertices, and 3) it is static, that is,
the contents of the cache do not change throughout the
execution of the algorithm. We show that by judiciously
making use of Basc, performance of BFS-like algorithms
can be substantially improved.

Finally, our observation shows that the performance
of BFS-like algorithms is highly sensitive to the layout
of the graphs. Based on this observation, we devise a
simple model that estimates the I/O costs of BFS-like
algorithms based on the layout of the graph on disk. We
experimentally validate that the model is fairly accurate
in estimating performance. Moreover, guided by the
cost model, we develop a simple, yet efficient graph
ordering scheme that we call Neighborhood Ordering
or Norder for short, which substantially improves the
performance of BFS-like algorithms, even while the time
to compute the ordering takes substantially less than
existing ordering schemes.

The methodologies that we propose are for disk-based
graph systems adopting the vertex-centric computation
model. As this model is widely adopted in large-scale
graph analytics, our work is applicable to many existing
graph processing systems [12, 21, 28, 34, 40]. For fair
comparison with previous schemes we implement our
methods in FlashGraph and Graphene, two recent graph
engines [21, 40]. Note that all discussions hereafter are
done in the context of disk-based graph systems.

The rest of the paper is organized as follows. Section 2
describes our analysis of BFS-like algorithms running
on disk-based graph systems. Section 3 introduces Basc,
our BFS-aware static cache, as well as the vertex selec-
tion algorithm that we propose. In Section 4, we develop
our I/O cost model based on graph orderings, then pro-
pose an optimized graph ordering that we call Neighbor-
hood Ordering. We evaluate our proposed techniques in
Section 5 and discuss related work in Section 6. Finally,
we end with conclusions in Section 7.

2 Characteristics of BFS-like Algorithms

In this section, we first discuss the basic workings of
disk-based graph engines and BFS-like algorithms. We
focus on semi-external graph engines that store ver-
tex attributes in memory, as main memory of commod-
ity computers today is typically large enough to hold
vertex attributes in their entirety. Then, through Sec-
tions 2.2∼2.4, we discuss the characteristics of BFS-like
algorithms that we observe in our analysis.

2.1 Basics of Disk-based Graph Engines

In vertex-centric computations, the entire set or a subset
of vertices are activated as they receive messages in each
iteration. Then the edge lists of the activated vertices

are accessed when necessary to send messages to the
neighboring vertices [25]. As they are accessed, these
edge lists are retrieved from disk to memory in page
granularity, whose size typically ranges from 1KB to a
few MBs [7, 12, 34, 40]. These pages are then stored in
the page cache, which is either controlled by the graph
engine or the file system [7, 12, 19, 40].

The edge lists are generally sorted and indexed by the
owner vertex ID and stored sequentially on disk. Some
graph engines apply optimized partitioning schemes
such as hybrid-cut partitioning, instead of the more
general vertex-cut or edge-cut partitioning, to reduce
I/O [6, 39, 43]. Also, when I/O requests are issued to
retrieve the pages, requests for adjacent pages may be
merged for higher throughput [21, 40].

Performance of graph algorithms on disk-based graph
engines depends largely on the efficiency of accessing
the input graph [7, 19]. In disk-based engines, both the
vertex attributes and input graphs are stored on disk
that are randomly accessed by the graph algorithms.
However, the overhead of accessing the input graph is
generally higher than that of accessing vertex attributes
as a large portion of vertex attributes are typically
cached in memory. In particular, as mentioned previ-
ously, semi-external graph engines store all the vertex
attributes in main memory.

Graph algorithms written in the vertex-centric model
run iteratively, with a varying subset of vertices acti-
vated per iteration depending on the algorithm type. In
BFS and BFS-like algorithms, only the “frontier” ver-
tices are activated in each iteration. Thus, only the edge
lists of these vertices are accessed in a random manner.

As the edge lists of activated vertices are accessed,
pages containing these edges are loaded into the page
cache. As page units are large, edges of unactivated
vertices may also be in the retrieved page and hence,
needlessly loaded to memory. To achieve high cache uti-
lization, and consequently, high performance, we want
the page cache to contain edges of as many activated
vertices as possible. This requires the vertices in the in-
put graph to be ordered such that the edges of activated
vertices in the same iteration are stored in proximity.

2.2 Uniform Edge List Reference

Retrieving edge lists on disk has a significant effect on
performance [19, 43]. To alleviate this burden, it would
be desirable to cache the frequently requested edge lists
of the vertices. To this end, we observe the edge list
request pattern in representative BFS-like algorithms.
Common logic tells us that for a vertex with a large
edge list, that is, a large number of neighbor vertices,
more requests will be targeted to that vertex and its
edge list. However, interestingly and contrary to this
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(a) LiveJournal (b) Wikipedia

Figure 1: Distribution of edge list reference counts: ref-
erence counts for vertices of the same in-degree are av-
eraged and plotted relative to the vertex with the largest
reference count for each algorithm. The gray line shows
the number of vertices corresponding to each in-degree.

logic, we find that there are no substantial differences
in the number of edge list accesses among the vertices,
even for vertices that have widely varying degrees.

Figure 1, which are representative results, shows the
distributions of the number of edge list requests for the
BFS, DIAM, and BC algorithms with the LiveJournal and
Wikipedia dataset 2. The graphs show the average num-
ber of requests for the vertices with the same in-degrees,
that is, having the same number of in-bound edges, nor-
malized to the maximum average request count.

Initially, our conjecture was that the number of re-
quests for a vertex (and thus, to its edge list) would be
roughly proportional to its in-degree because messages
(hence requests) are sent over edges in a vertex-centric
model. However, Figure 1 shows that there is only a
small difference in the number of edge requests between
high and low in-degree vertices. The average counts are
nearly constant and the variance (not shown) are low.

The reason for such uniform reference count is that in
the vertex computation model, the edge list of a vertex
is accessed only once per iteration as multiple requests
to a vertex are merged into a single request if they are
issued in the same iteration. Thus, for a high in-degree
vertex whose neighbor vertices are densely connected to
each other in real-world graphs [10, 20], the majority of
requests to the vertex are sent as a single request. More-
over, in some BFS-like algorithms such as BFS, each
vertex is processed only once in the entire running of
the algorithm, with the exception of unreachable ver-
tices. So the edge lists are also requested only once for
each vertex. Thus, the number of edge list references is
independent of the in-degrees and close to a constant.

The observation that there is no substantial difference
in the number of references to the edge list tells us that
strategies such as simply storing frequently accessed
edge lists in memory is not an effective approach for
improving performance. We take this observation to

2The full dataset descriptions are provided in Table 1.

Figure 2: Page cache hit ratios for BFS-like algorithms.
The page cache size is varied from 5% to 30% of the
input graph size.

propose a different method for caching the edge lists of
vertices, which we discuss in Section 3.

2.3 Ineffectiveness of the Page Cache

Locality per I/O access is known to be poor for BFS-
like algorithms running on disk-based systems. This
is because pages are brought into the page cache by
active vertices and these active vertices are determined
in a rather random manner at each iteration [23, 27].
To quantify this, we run experiments using the BFS-
like algorithms provided in FlashGraph and observe
the hit ratio of the page cache. Figure 2 depicts the
results for page cache sizes ranging from 5% to 30%
of the input graph run on the Twitter dataset. We see
that all algorithms show low hit ratios. WCC, which
shows the highest hit ratio, operates differently as the
algorithm starts out with all the vertices, and as the
component ID of each vertex converges, the number
of active vertices decreases3. However, a small number
of vertices linger around in later iterations, and those
vertices fit in the page cache resulting in the higher
hit ratio. More importantly, though, we find that for all
algorithms, increasing the page cache has little impact
on the hit ratio, improving only by 5 to 10% even with
a six factor increase in page cache size.

Our conclusion here is that the page cache in disk-
based graph engines does not play a major role in re-
gards to performance for BFS-like algorithms. Simply
increasing the page cache cannot be a solution, and
there needs to be a different approach to resolve this
ineffectiveness, for which Basc in Section 3 is proposed.

2.4 Impact of Graph Layout on Disk
Both SSDs and HDDs show faster performance with
sequential reads than random reads [31]. Thus, how a
graph is stored and accessed by the running algorithm
has substantial impact on performance. In this section,

3Section 5 describes in detail how the algorithms are implemented.
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Figure 3: Performance of BFS, DIAM, and BC for Gorder
normalized to random ordering for three datasets.

we perform experiments to help us understand the per-
formance impact of graph layouts.

For the experiments, we restructure a graph in two
different orderings and measure the performance of
the graph algorithms. In the first, we randomly assign
the vertex IDs, and in the second, we use Gorder [38],
which was proposed to improve the locality of access
to vertices and their edge lists for main memory graph
systems. In particular, Gorder computes the ordering
of vertices and their edge lists by optimizing its local-
ity score, which is defined based on whether densely
connected vertices are ordered closely within a given
distance. Then, the graph is stored in CSR (Compressed
Sparse Row) format, where the edge lists of vertices are
ordered by their vertex IDs and stored sequentially.

Figure 3 compares the performance of three BFS-like
algorithms with Gorder and random ordering on three
datasets. We can see that the algorithms perform consis-
tently better with Gorder than with random ordering.
Clearly, ordering strongly affects the performance of
BFS-like algorithms. In Section 4, we propose a novel
ordering scheme that benefits BFS-like algorithms.

3 BFS-Aware Static Cache
In Section 2.3, we discussed how the page cache is inef-
fective and that simply growing its size does not help
BFS-like algorithms. In this section, we propose a differ-
ent caching scheme to help improve the performance of
BFS-like algorithms.

Aside from the typical cache that a graph engine or
the system software manages, we propose to have a sep-
arate static cache, which we call the BFS-Aware Static
Cache or Basc. Basc is loaded with the edge lists of some
pre-selected vertices before the algorithm starts. Hence,
there is overhead involved with the initial selection pro-
cess, which we describe later in this section. Also, un-
like a typical page cache that dynamically stores and
replaces edge lists as they are accessed, Basc is static,
that is, the cache contents do not change throughout its
execution and no replacement is involved.

As the edge list of only some selected vertices are

Figure 4: Basc and page cache interaction.

statically stored in Basc, it is important to identify the
vertices that are likely to improve performance so that
they can be stored in Basc. Note that naively storing
the edge lists of frequently accessed vertices does not
suffice. This is because, as was discussed in Section 2.2
and shown with Figure 1, the number of accesses to the
edge lists of each vertex is similar for all vertices. Thus,
our approach is to consider the interaction between
Basc and the page cache, which we elaborate below.

The key optimization point with Basc is memory uti-
lization. While Basc is separate cache space, we do not
make use of extra space, but rather take space from the
page cache, that is, reduce the page cache size, and use
this space for Basc. Thus, when selecting the vertices for
Basc, our goal is to utilize the space for Basc much more
efficiently than when used as a page cache. For example,
consider a case in Figure 4, where u’s neighbor vertices
(i.e., their edge lists) are about to be retrieved. (Note that
in real graphs, an edge list can be composed of in-bound
and/or out-bound edges. Here, we show an illustration
using out-bound edges.) Notice that while the edge lists
of u’s neighbor vertices x, y, and z are stored in page A,
the edge list of vertex v is stored in page B. Thus, while
a cached page A would be well used, page B, on the
other, would be retrieved only to access the edge list of
v with the rest of the page being brought in for naught.
In such a case, v would be pre-selected and it’s edge list
stored in Basc, so that the entire page containing the
data (page B, in this case) need not be retrieved to the
page cache during execution. Selecting vertices for Basc
in this manner to improve overall memory utilization is
formally discussed in the next section.

3.1 The Vertex Pre-Selection Problem
We formulate the problem of pre-selecting vertices for
Basc as a problem of minimizing the overall weighted
I/O requests for accessing edge lists. To define the prob-
lem, we first make the following assumptions:

Assumption 1 The neighbor vertices of each vertex are
accessed simultaneously. Thus, their edge lists are
retrieved at the same time.

462    2019 USENIX Annual Technical Conference USENIX Association



Assumption 2 The number of edge list requests for
each vertex is equivalent among all the vertices.

Assumption 3 Each edge (u,v) probabilistically issues
a request to access the edge list of target vertex v.
Due to Assumption 2, the probability of issuing the
request is inversely proportional to v’s in-degree.

We now define the problem of selecting vertices for
Basc as a problem of minimizing the overall weighted
requests:

minimize
C

F(C)=
∑
v∈V

∑
(v,u1)∈E
u1<C

(
1

r(u1)di(u1)
1∑

(v,u2)∈E
u2∈P (u1)
u2<C

do(u2)
)

subject to
∑
v∈C

deg(v) ≤M,
∑
v∈C

deg(v) ≥M − ε, where

• ε is a small positive number
• C represents the set of cached vertices
• E is the set of all edges in the given graph
• P (u) is the set of vertices whose edge lists are stored

in the same page as vertex u
• r(u) is the expected number of requests to the page

where u is stored, which we assume to be propor-
tional to the number of vertices whose edge lists are
stored in the page

• di(u), do(u) are the in- and out-degree of vertex u,
respectively

• M represents the size of available memory for Basc.

Function F represents the penalty accrued by misuse
of pages in the cache. If the cache is fully utilized, there
is no penalty. F increases as the cache is more and more
underutilized. Hence, our goal is to minimized F.

More concretely, F iterates over all the edges in a
graph; for each vertex, we take every edge ((v,u1) ∈ E)
that is not in the cache (u1 < C) and adds up the penalty,
which is represented by the terms in parenthesis. Within
the left term in the parenthesis, 1/di(u1) represents the
probability of issuing the request for a given edge. If
the page is already in the page cache, we do not need
to issue the request (realized by u1 < C). To consider
only those pages not in the cache, we include the other
term 1/r(u1), as we assume that the probability of the
page holding u1 to be in the cache is proportional to
the number of expected requests to the page. Thus, the
left term in the parenthesis represents the probability
of issuing a request over the edge (v,u1) for u1 not in
the cache. The right term in the parenthesis represents
the actual penalty incurred, which is inversely propor-
tional to the utilization of the page. Page utilization is
computed as the summation of do(u2) because under
Assumption 1, the neighbor vertices of each vertex are
accessed simultaneously. The right term, (1/

∑
do(u2)),

Algorithm 1: Greedy Vertex Selection (GVS) for Basc

Input: G = (V ,E), M: Basc size, K : iteration number
Output: A set of selected vertices C

1 Function SelectVertices (G=(V ,E), K , M )
2 C = ∅, m = 0
3 for k := 1 to K do
4 for v ∈ V do
5 T [v] = 0

6 for v ∈ V do
7 for u1 ∈ neighbor(v) \C do
8 t = 0
9 for u2 ∈ neighbor(v) ∩ P(u1) \C do

10 t← t + dego(u2)

11 T [u1]← T [u1] + 1
r(u1) ·

1
t ·

1
degi (u1)

12 while T , ∅ do
13 u← n ∈ T with minimum T [n]

dego(n)

14 if m+ dego(u) ≥ k
KM then

15 break;

16 C← C ∪ {u}, m←m+ dego(u)

17 return C

is minimized for (v,u1) if all the other neighbor vertices
(u2) of v is stored in the same page as u1 and they tightly
fit in a single page.

Our intent here is to minimize the overall weighted,
that is, penalized, requests. If we were to simply min-
imize the number of requests, we just need to cache
the vertices in descending order of their degrees. In the
evaluation, we demonstrate that our approach results
in better performance than simply caching the vertices
in degree order.

The above optimization problem is an integer pro-
gramming problem. As the objective function F(C) is
nonlinear and non-convex, the problem is NP-hard [13].
Thus, a fast algorithm that provides an optimal solution
does not exist. We propose a heuristic algorithm to solve
this problem in the next section.

3.2 Vertex Selection for Basc
We now present a heuristic algorithm for selecting ver-
tices for Basc. Our algorithm, called Greedy Vertex Se-
lection (GVS), takes a greedy approach based on the
profits per cost for the vertex. In particular, a vertex is
selected to be cached if the overhead, that is, the penalty,
of the request for a vertex is high, where the penalty
calculations are based on F(C) described in Section 3.1.

Algorithm 1 shows the overall procedure of GVS. It
takes as input G, the input graph, M, the memory size
available for Basc, and K , the number of iterations, and
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at each iteration selects vertices for M/K amount of
memory. The outer-most Σ in F(C) is covered by lines
6–11 and the next Σ by the for loop in line 7. The
for loop in line 9 represents the Σ in the denomina-
tor of the second term within the parenthesis. Finally,
line 11 represents the calculations for the two terms in
the parenthesis for F(C). Instead of summing up the
penalties, GVS attributes the computed penalty to tar-
get vertices of individual edges – T [u1] in line 11. After
each iteration, the penalty of each vertex is normalized
by its degree (line 13). GVS selects the vertices with the
highest normalized penalty whose degrees amount to
1/K of Basc and puts them in Basc. This is repeated for
K iterations to completely fill Basc.

As K becomes larger, we select smaller number of
vertices at each iteration and more frequently compute
the changes in I/O penalty as the result of the selection.
Thus, larger K gives more fine-grained and accurate ver-
tex selection, but incurs more computational overhead.

The time complexity of GVS is O(K(|E|+ |V |)) as the
computation of the page utilizations in lines 10–11 can
be calculated once and re-used per each vertex v, and
the loop in lines 12–16 can be implemented using selec-
tion algorithms for finding the k’th smallest number.

We can further optimize the algorithm by comput-
ing the page utilization only for those vertices that are
affected by the selection in the previous iteration. The
vertices that require re-computation are those that are
stored in the same pages as the selected vertices and are
in neighbor relations. Let us now consider the complex-
ity of GVS with this optimization. The number of se-
lected vertices in an iteration is O(M/K), if the selected
ones have the same degree. The number of vertices for
re-computation is proportional to the number of disk
pages that the selected vertices are stored in. In one
extreme, all the selected vertices may be in a same disk
page, while in the other extreme, all may be in separate
pages. If the layout of the graph is carefully ordered
to improve locality, the selected vertices in an iteration
will tend to be grouped and stored in a small number
of pages. Thus, we derive the complexity assuming that
the number of pages is bounded by the square root of
the selected vertices, which is in between the two ex-
tremes. Then, the cost for the re-computation in lines 6
through 11 is O(

√
M/K). Furthermore, the sorting and

selection of the M/K vertices in lines 12 through 16 can
be done incrementally using a heap data structure, thus
its complexity isO(M/K ·log(|V |)). Thus, the complexity
of GVS is O(|E|+ |V |+

√
K ·M +M · log(|V |)), where the

first two terms are for the first iteration and the rest are
for the remaining K − 1 iterations. In Section 5, we ex-
perimentally show that our complexity analysis for GVS
is reasonable and that GVS time is roughly proportional
to
√
K and M.

4 Bringing New Order
In Section 2.4, we showed how ordering affected the per-
formance of BFS-like algorithms and presented the need
for effective graph layouts. In this section, we present an
ordering scheme that we call Neighborhood Ordering
(Norder, for short) that is tailored to BFS-like algorithms.
Before so doing, we first present the I/O cost model that
forms the basis for the development of Norder.

4.1 Modeling I/O Cost
In all BFS-like algorithms, the vertices that are activated
in a particular iteration are the neighbor vertices of the
frontiers of the previous iteration. How these activated
vertices are ordered on disk substantially affects I/O
performance. If these vertices could be stored together,
the number of I/O requests could be reduced, leading
to improved performance.

From this intuition, we empirically derive the follow-
ing cost model for BFS-like algorithms, where cost is
the edge list access cost, which we want to minimize:

Cost =
∑
v∈V

deg(v) · σ2(nbr(v)) (1)

where deg(v) is the in-degree of vertex v and σ2(nbr(v))
is the variance of v’s neighbor vertex IDs, assuming
CSR format. The first term, deg(v), which implies that
cost increases with higher in-degree, that is, with more
neighbors, comes from empirical and algorithmic analy-
sis. Consider a vertex with high in-degree. Such a vertex
is likely to be accessed in an early iteration of BFS traver-
sal. Thus, it is also likely that the majority of its neighbor
vertices have not yet been traversed, which, in turn, in-
curs access to new edge lists, and thus, increases I/O
cost. In contrast, a vertex with low in-degree is likely to
be traversed in a later iteration. At this point of traver-
sal, it is also likely that the majority of its neighbors
would have already been traversed and thus, not incur
any more I/O cost. Thus, we conclude that I/O cost is
proportional to the degree of the vertex. The second
term, σ2(nbr(v)) is the overhead of I/O based on the
neighbors’ vertex ID variance. That is, neighbors whose
vertex IDs show large variance are likely to be scattered
across the disk, in contrast to those whose IDs are close
together. Neighbors widely scattered along the disk will
naturally incur more I/Os to have them retrieved.

To assess the model’s accuracy, we compare the costs
estimated by the model and the actual execution times
for three BFS-like algorithms with the datasets YT, FL,
and LJ (which we describe in detail in Section 5). For
each algorithm and dataset, we generate 20 graph order-
ings that yield different I/O costs. This is done by, first,
applying three orderings – PageRank-sorted, Gorder,
and the original ordering, and then, incrementally and
partially shuffling the vertex IDs of each ordering.
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Figure 5: Regression of I/O cost model for three BFS-
like algorithms with three datasets YT, FL, and LJ.

Figure 5 shows the results, where each data point rep-
resents one of the 20 graph orderings with its position
determined by the cost of the model (x-axis) and the
execution time (y-axis), both normalized to the maxi-
mum value on each axis. The lines are the results of
applying linear regression on the data points, with the
r2 values of each dataset shown in parentheses. We see
that our cost model results in reasonably high r2 values,
meaning that the estimation is quite accurate.

4.2 Neighborhood Ordering
Based on the cost model in the previous section, we pro-
pose a simple, yet effective graph ordering that we call
Neighborhood Ordering or Norder. The key component
of Norder is to simply assign consecutive IDs to the
neighbors of all vertices, in particular, to the neighbors
of high in-degree vertices. This simple strategy has the
effect of decreasing the variance of the neighbor vertex
IDs of high in-degree vertices resulting in increased
locality, thus minimizing the overall cost of Equation 1.

To reorder a graph with Norder, we first arrange the
vertices in descending order of their in-degrees. Then,
starting from the vertex with the highest in-degree go-
ing downward, we perform a bounded breadth first
search and assign a vertex ID in the traversed order.
The depth bound for the traversal is set to two as we em-
pirically found it to be effective for overall performance.
Depth beyond two showed minimal performance gains,
but incurred high overhead for ordering.

This simple ordering scheme is inexpensive to com-
pute compared to other schemes such as Gorder, yet
effective for disk-based graph engines. For example, it
takes less than five minutes to compute Norder for the
Twitter graph with 1.9 billion edges, while Gorder takes
more than three hours. We quantify this and other per-
formance issues in the next section.

5 Evaluation
We evaluate the effect of Basc and Norder with six BFS-
like algorithms – breadth first search (BFS), measuring
diameter of graph (DIAM), betweenness centrality (BC),
shortest paths (SP), all-pair shortest paths (APSP), and
weakly connected components (WCC). These algorithms

Table 1: Datasets used in evaluation.
Graph V E Graph V E
Youtube (YT) 3.2M 9.4M LiveJournal (LJ) 4.8M 68M
Flickr (FL) 2.3M 33M Twitter (TW) 53M 1.9B
Wikipedia (WK) 18M 172M

represent, to the best of our knowledge, all the BFS-like
algorithms in the field, except for Influence Maximiza-
tion (IM). IM, however, is simply a repetitive execution
of BFS, hence omitted from our evaluation [16].

BFS and SP are written as described in Pregel [25].
DIAM runs BFS multiple times, first from a random
vertex and then from the vertices with the maximum
distances in previous runs. For APSP, we sample 128
source vertices and compute the distances from those
sources using a modified SP that computes the distances
from a group of source vertices, the same as it is written
in Graphene [21]. BC implements the algorithm pro-
posed by Brandes [4]. It runs SP from each source vertex
and counts the number of paths passed for each vertex.
This is repeated for all the source vertices. As compu-
tation is intense, an approximate approach is taken by
computing the centrality scores with 128 randomly sam-
pled source vertices [5]. WCC is implemented in the
typical manner of propagating component IDs for each
vertex and then computing the minimum IDs.

The experiments are conducted with five real-world
networks that are publicly available from KONECT [36]
and are shown in Table 1. The datasets include one
large network, Twitter (TW) and two relatively small
graphs, Youtube (YT) and Flickr (FL), that are used to
understand the scalability of our techniques.

We implement and evaluate our optimizations mainly
on FlashGraph, a semi-external graph engine optimized
for SSDs. We choose FlashGraph because 1) it is a rep-
resentative semi-external graph engine, 2) it is recently
developed thus, most known I/O optimizations are pro-
vided, and 3) it is actively maintained and core graph
algorithms are already implemented in the system. Of
the six algorithms, SP and APSP are our own implemen-
tations that we added, while the other four are those
provided by FlashGraph. Additionally, we test our opti-
mizations on Graphene [21], an SSD-based graph engine
optimized with fine-grained I/O management. Details
of these experiments are discussed in Section 5.4.

For all experiments, we run the algorithms with eight
computation threads and a separate single I/O thread.
We run the experiments ten times and report the aver-
age execution times as well as the standard deviation.
All the experiments are performed on a machine with
Intel Xeon E5-2683 v4 having 128GB physical memory
running Ubuntu 16.04. Of the 128GB memory the sys-
tem is configured to use only a portion of the memory
(maximum 10GB) for caching. The actual cache size
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Figure 6: Execution times of graph algorithms on SSD
with Basc using different vertex selection schemes nor-
malized to the page cache only case. We vary the cache
size to be 10% to 40% of the input graph size.

used varies for the algorithm and dataset, hence, for
each experiment, we specify the cache size relative to
the input graph size. Note that our goal is to show the
effectiveness of our techniques on disk-based graph en-
gines. Hence, we intentionally control memory to exer-
cise the disks. The memory used is controlled by fixing
the memory size that each part of the graph system uses
and monitoring the total amount of memory used.

An Intel 400GB SSD connected via the SATA 6.0Gb/s
interface is used as external storage as this is a com-
mon setting. We also run the same experiments on a
typical HDD setting, but do not present the results in
the interest of space and as the results do not deviate
much from the results for the SSD. For each experiment,
only a single disk is used. Unless otherwise stated, we
set the page size to be 8KB, which is the typical access
unit for NAND flash-based SSDs [8]. We use the page
cache implemented in the graph system and hence, no
OS kernel modification is involved. We completely clear
the page cache for each experiment, and the OS page
cache is turned off by setting the O_DIRECT flag for
I/O operations so as to remove the system effect.

Note that, unless otherwise mentioned, we present
results only for three datasets, LJ, WK, and TW for the
BFS, DIAM, and BC algorithms only. This is done in
the interest of space and as the results for the other
datasets and algorithms show similar trend. However,
we present statistical numbers for all algorithms and
datasets and, where there are unique points of interest,
we explicitly elaborate on those points separately.

5.1 Evaluation of Basc
In this section, we evaluate Basc and the Greedy Ver-
tex Selection (GVS) algorithm in various settings. In
evaluating Basc, we compare the ‘page cache plus Basc’
setting with the ‘page cache only’ setting, where both
settings use the same amount of memory. To compare
with GVS, we test three other selection schemes for Basc:
selecting vertices with high degrees (HighD), selecting
vertices with low degrees (LowD), and selecting vertices

Figure 7: Execution times with varying Basc and page
cache size ratios normalized to the page cache only case.
The x-axis represents the Basc usage portion.

randomly (Rand), of which the last is used as the base-
line. For GVS, we set the total number of iterations (K
in Algorithm 1) to be 1,000 for YT, FL, LJ, WK, and 200
for TW. (Even though we do not show results for YT and
FL, the settings for all experiments are presented for re-
producibility.) As was previously discussed, with large
K values, a smaller number of vertices are selected per
iteration. This results in more frequent computation of
I/O penalty changes, thus increased computation over-
head. Hence, for feasibility reasons we choose a smaller
K value for the large input graph TW. For the experi-
ments in this section we do not apply any reordering
algorithm and use the input graphs as they are given
in KONECT [36]. We evaluate the combined effect of
ordering and Basc separately in Section 5.3.
Evaluation Result. Figure 6 shows the results for ex-
periments where the page cache size is set to 5% of
the graph size and an additional 10% to 40% of the
graph size is provided for Basc. As mentioned earlier,
for the ‘page cache only’ setting (denoted ‘page cache’),
the page cache size is equally set, that is, 15% to 45%
of the graph size is used. All results are shown normal-
ized to that of ‘page cache only’. The results presented
here exclude the time to load Basc, which must be done
before the algorithms are executed. We discuss this and
other forms of overhead in the last part of this section.

Overall, Basc with GVS shows substantially better
performance than the other schemes. We see that low-
degree selection generally is a sound choice performing,
in most cases, better than page cache, though, we do
observe cases where it does worse. Overall, for all algo-
rithms and datasets (including those not shown here),
Basc with GVS is the clear winner, being 28.87% faster
on harmonic average than page cache for all the cases.

To compare the efficiency of ‘page cache’ and Basc

with GVS, we vary the ratio of the page cache and Basc

sizes and measure their performance. Figure 7 shows
the results as the total size of the two caches is set to
20% of the graph size and as the size of Basc varies
from 0% to 90% of the total cache size. We see that
the performance consistently improves as Basc size is
increased. This is because BFS-like algorithms show
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Figure 8: Mean and standard deviation of page cache uti-
lization when executed with Basc with Random, HighD,
LowD, and GVS algorithms.

poor temporal locality and using the space as Basc is
more effective than using the space as a page cache.
Effect on page cache utilization. To verify that Basc
with GVS improves page cache utilization, we evaluate
BFS-like algorithms with Basc and measure the page
cache utilizations for the different vertex selection algo-
rithms (GVS, HighD, LowD, and Rand).

Page cache utilization is measured as follows. For
the entire execution of the algorithms, for each page re-
trieved to the page cache, individual 64 byte granularity
units of the page are monitored throughout while the
page resides in the page cache. Utilization of the page,
calculated when the page is evicted, is the fraction of
the total accessed units within the page size. Page cache
utilization that is reported is the average of all the pages
evicted as well as those still residing in the page cache
at the end of the algorithm execution. Note that the con-
tents in Basc are not considered in these calculations.
Essentially, this value tells us how efficiently contents
brought in to the page cache are being used.

Figure 8 compares the page cache utilizations for
different vertex selection algorithms when the page
cache and Basc size is 5% and 20%, respectively, of the
input graph size. For all the graphs across the three
algorithms, GVS shows highest page cache utilization
for most cases. For all algorithms and datasets experi-
mented with (for the same page cache and Basc sizes as
above), GVS shows 33.8% higher utilization than ran-
dom selection in harmonic mean, and in the best case,
is almost twice that of random selection (FL with BFS,
not shown), with the worst case, being equivalent (YT
with DIAM, also not shown). Compared to LowD, GVS
shows up to 22.5% higher utilization (FL with APSP).
However, there are also occasions where low-degree se-
lection shows slightly higher utilization (WK with BFS
and DIAM).
Vertex Selection and Loading Overhead. There are
two sources of overhead in deploying Basc. One is the
cost for running GVS to select the vertices to load and
the other is the overhead to actually load the selected

Table 2: Execution times of running GVS and loading
the selected vertices to Basc (unit: seconds).

K YT FL LJ WK TW

GVS

1 4.6 4.9 7.8 19.8 132
10 5.9 7.6 11.3 29.2 321
100 16.7 24.7 26.3 76.4 1581
1000 94.8 103 146 449 5612

Loading 2.5 3.2 4.3 6.2 44.8

Figure 9: Efficiency of Basc over a graph (LJ) that
changes 0.2% each day. Execution time of BFS with
Basc is normalized to that of page cache only each day.

vertices into Basc. Both must be executed before the
algorithm is executed. We quantify these overheads by
measuring the running time of Algorithm 1 separately
with varying K from 1 to 1000, as well as the time to
load to Basc. Table 2 shows the results when Basc size
is 20% of the dataset. We observe that vertex loading
overhead is generally lower compared to the vertex se-
lection overhead. For vertex selection, as we increase
the value of K , the execution time increases sublinearly.
The results also show that the selection time increases
proportionally to the graph size, or more accurately,
Basc size. (Refer to Table 1 for the characteristics of the
dataset and note that we are setting Basc size (M) to be
20% of input graph size, which is proportional to the
number of edges.)

Although the selection and loading times are not neg-
ligible, once loaded, the algorithm of choice is executed
100s, if not 1000s or even more times [11,42], more than
compensating for the overhead for selection and load-
ing. For example, running of DIAM a hundred times on
LJ or BC just ten times on TW with Basc improves the
overall running time even with the selection and load-
ing overhead. Furthermore, this selection process can
be run in the background independent of and without
influencing the execution of the graph algorithms.

More importantly, these actions need to run only spar-
ingly. Reports have shown that the social graph in Face-
book changes by 0.2% a day [9], which means that in a
one month period the graph would only differ by 6%.
To quantify how much effect small changes in the in-
put graph have on Basc, we conduct a series of exper-
iments where we change the graph (LJ) by 0.2% over
30 times to simulate changes in a one month period [9].
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Figure 10: The sensitivity of GVS on iteration number K .
(a) Execution time normalized by that withK = 1, where
the dotted gray line represents 1.5 ×

√
K . (b) Speedup

over page cache only where the solid lines are for GVS
and the dotted lines are for LowD.

We randomly add or remove edges with preferential
attachment [3] where the ratio to add and remove is
8 to 2. Then, we run BFS with Basc, set to 20% of the
data size, for which the selection and loading is done
for the initial graph. Figure 9 shows the results of the
experiments where the execution times with Basc is
normalized to those of page cache only for each day. We
observe that the relative performance of Basc over page
cache only is nearly constant with only a 5% difference
– maximum 19.2% and minimum 14.1%. In addition,
the hit ratio of Basc, which is measured as the number
of edge list access in Basc over the total number of edge
list requests, declines slowly each day from 50.4% to
50.2%. This tells us that selection and loading can be
performed over long periods, for example, once every
month incurring only minimal overhead.
Sensitivity of GVS on iteration number K . As GVS
execution time and its selection outcome rely on the
iteration number K , we evaluate their sensitivity on K .
We run GVS with varying values of K , starting from
1 up to 1000, and measure the GVS execution time.
The size of Basc is set to be 20% of the input graph
size. Figure 10(a) plots the results normalized to the
execution times with K = 1. We observe that execution
time increases by less than 45×, even for K = 1000, and
that the plots for the three input graphs are all below
the 1.5×

√
K line represented by the gray dotted line.

We also measure the performance of Basc with GVS
as K is varied. Figure 10(b) shows the performance im-
provements over the page cache only settings. The solid
lines are for Basc with GVS and the dotted lines are
for Basc with LowD (low-degree vertex selection). We
observe that Basc with GVS performs consistently bet-
ter than LowD even when K = 1. Moreover, as K in-
creases, the performance improvement by GVS quickly
saturates, that is, the performance improvement with
K = 50 is almost the same as that with K = 1000. Hence,
for extremely large graphs whose GVS overhead can be

Figure 11: Mean and standard deviation of execution
times of five graph orderings normalized to that of
Gorder. The numbers in parenthesis below each algo-
rithm are the absolute execution time, in seconds, of the
reference, in this case, Gorder. (Note that we use similar
presentation format in subsequent figures.)

potentially quite high, we can reduce the value of K to
trade off the performance improvements of running the
graph algorithms and GVS running time.

5.2 Evaluation of Neighborhood Ordering
We now consider the performance impact of Norder. For
comparison, we use Gorder, the state-of-the-art graph
ordering scheme for in-memory graph analysis. Also, we
evaluate three other ordering schemes: PageRank sorted
ordering, degree sorted ordering, and random ordering.
For Gorder we set its parameter w (window size) to be
the average number of edge lists in a single page for all
the algorithms. Note that only the page cache is used
and Basc is not deployed in these experiments. The size
of the page cache is set to 25% of the input graph size.

Figure 11 shows the performance of the algorithms
on an SSD normalized to Gorder, with the absolute ex-
ecution times (in seconds) of Gorder also presented in
the parentheses below each algorithm name for refer-
ence. We use this format of presentation for subsequent
results as well. For all three algorithms, graph ordering
has strong influence, with Norder performing the best.
For all algorithms and datasets, Norder is 31.3% and
68.5% faster in harmonic mean than Gorder and PageR-
ank sorted ordering, respectively. For all algorithms and
datasets Norder showed fastest performance except for
WCC with TW and FL, for which Degree sorted order
was fastest. This is due to the characteristics of WCC.
In the later iterations of the algorithm, a small number
of vertices linger on; these vertices typically have small
in-degrees, hence storing them closely on disk improves
the performance of the page cache for WCC.
Cost of ordering: The cost of applying Norder is much
lower than that of Gorder. Table 3 compares the com-
putation times of the two ordering schemes. As Gorder
stores the input graph in main memory to compute the
ordering, all data is loaded to the 128GB memory in our
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Table 3: Computation times (unit: seconds)

YT FL LJ WK TW

Gorder 12.5 39.6 45.6 169.3 11687.1

Norder 2.0 2.7 7.2 16.9 243.5

Figure 12: Mean and standard deviation of execution
times of three caching schemes with Gorder and Norder
normalized to that of page cache with Gorder.

system for these measurements. All orderings are com-
puted using a single thread as this is how it is provided
with the open-sourced Gorder. We observe that Norder
is 6 to 14 times faster than Gorder for small graphs,
while for the large graph TW, it is close to fifty times
faster. If we consider the ordering time with the exe-
cution time of the algorithms, we can see that BFS-like
algorithms benefit even more with Norder.

5.3 Combining Basc and Norder
Now we evaluate the overall performance gain by apply-
ing the two optimizations together. For comparison we
also perform experiments with Gorder and two caching
schemes, page cache and Basc with LowD. For caching,
the default setting of 5% of the input graph size is used
for the page cache and an additional 20% is added on
as Basc or the page cache.

Figure 12 shows the performance results for all combi-
nations of ordering and caching. The two optimizations
together noticeably improve the performance of all the
algorithms. Overall, for all algorithms and datasets (in-
cluding those not shown here) Basc with Norder is 1.54
times faster than page cache with Gorder in harmonic
mean. In the best case, Basc with Norder is 2.56 times
faster for APSP with YT and in the worst case, it is 1.37
times faster for DIAM with LJ.

More importantly, however, the results demonstrate
that the two optimizations can be synergistic. For ex-
ample, low-degree vertex selection sometimes brings
about performance degradation compared to page cache
(WK with BFS and DIAM), implying that the two op-

Figure 13: Mean and standard deviation of execution
times of BFS-like algorithms in Graphene, with and
without Basc, normalized to that of page cache only
case with 8KB page size.

timizations (LowD and Norder) do not interact well.
However, GVS consistently and substantially improves
performance in all cases with the two orderings, espe-
cially with Norder.

5.4 BASC with Graphene
The problem of low page cache utilization for disk-based
graph systems was studied by Liu and Huang [21]. In
their proposed graph system, Graphene, they address
this problem by supporting finer-grained I/O. Specifi-
cally, Graphene stores input graphs in 512-byte pages
instead of 8KB and applies bitmap-based request man-
agement to reorder and merge I/Os.

In this section, we incorporate Basc on Graphene and
observe its effect. To do so, we simply modify the page
cache mechanism within Graphene to accommodate
Basc. Here we evaluate the effect of Basc with three
algorithms – BFS, APSP, and DIAM. The first two are
provided in Graphene and we implement DIAM for
our experiments. We were unable to implement BC due
to the complexity of Graphene’s interface. Note that
in Graphene, APSP is implemented to run BFS from
32 random sources and stores the result in a 4-byte at-
tribute, of which each bit indicates if the traversal from
the corresponding source vertex is reached. We com-
pare performance with and without Basc in Graphene
with the typical 8KB and the 512-byte page sizes. The
page cache is set to 30% of the input graph without Basc
and with Basc, the page cache is set to 10%, plus 20%
space set for Basc, along with the default thread setting.
Norder is not considered in these experiments as this is
an optimization independent of Graphene.

Figure 13 shows the evaluation results. The results
are normalized to the 8KB ‘page cache only’ results for
every algorithm for each dataset. For most of the results
the average performance of fine-grained management
is better than the coarse-grained 8K page size, though
for some, the variance for fine-grained management is
larger. We observe that overall, Basc provides similar
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improvements with Graphene showing that Basc is or-
thogonal to Graphene’s fine-grained I/O optimizations.

6 Related Work
Disk-Based Graph Engines. GraphChi is the first disk-
based graph engine [19]. Its Parallel Sliding Windows
helps it run efficiently on HDDs. TurboGraph is a disk-
based graph engine for SSDs [12]. Its pin-and-slide tech-
nique overlaps random I/O with CPU computation.
TurboGraph and other graph systems such as GTS and
GraphZ [17,41] that use the page cache for random I/O
can take advantage of Basc or Norder.

While the vertex-centric computation model is widely
used, an alternative edge-centric computation model was
recently proposed for disk-based graph systems; this
model sequentially streams edges into memory to elim-
inate random disk access [24, 32, 43]. While the edge-
centric model shows good performance for algorithms
accessing the entire graph repeatedly, its performance
for BFS-like algorithms is not as efficient.

In semi-external graph engines, vertex attributes are
stored in main memory for fast updates [18, 30, 34, 40].
Pearce et al. proposed asynchronous optimization tech-
niques for graph traversal algorithms for semi-external
graph processing [30]. FlashGraph implements several
I/O optimizations for SSDs and SSD arrays such as
merging I/O requests and overlapping I/O and com-
putation [40]. Building on top of these optimizations,
our methods improve BFS-like algorithms having poor
I/O locality even with those previous optimizations.

Several other I/O optimizations have recently been
proposed. Vora et al. employs a dynamic partitioning
scheme that prevents loading unnecessary edges [37].
GridGraph supports 2D edge partitioning [43]. In
Graphene, a bitmap based I/O optimization is applied
to merge small I/O requests [21]. Our proposed opti-
mization techniques are applicable on top of these I/O
optimizations as we have shown with Graphene.
Main Memory Graph Processing. For large-scale
graph processing, the vertex-centric computation model
was first proposed in Pregel [25], a distributed in-
memory graph system. GraphLab and its successor Pow-
erGraph is a distributed machine learning and graph
analysis system with the vertex-centric model [11,22].
SociaLite is a Datalog-based query language for dis-
tributed graph analysis [33]. Green-Marl is a domain-
specific language for writing parallel graph algorithms
for shared-memory [14]. Galois supports an implicitly
parallel vertex iterator for graph processing [29].

Wei et al. studied graph ordering for main memory
graph processing [38]. They proposed Gorder that opti-
mizes the locality of accessing vertex attributes. While
Gorder is designed for main memory systems, Norder
is for disk-based graph engines. Norder is based on an

I/O cost model and its optimization that we derive for
BFS-like algorithms on disk-based graph engines.

7 Conclusion

In this paper, we conducted an analysis of BFS-like
algorithms running on disk-based graph systems. We
showed that BFS-like algorithms have poor I/O per-
formance and the page cache in existing systems is
not effective. To supplement the page cache, we pro-
posed a BFS-Aware Static Cache or Basc that stores
edge lists of a select set of vertices in memory aside
from the page cache. We formulate the problem of se-
lecting the optimal set of such vertices as a problem
of maximizing overall I/O efficiency of BFS-like algo-
rithms. As this problem is NP-hard, an approximate
algorithm, called Greedy Vertex Selection (GVS), is de-
veloped. Also, based on our analysis of BFS-like algo-
rithms, we proposed an I/O cost model upon which
we develop an efficient graph ordering scheme called
Neighborhood Ordering (abbreviated Norder) that stores
neighboring vertices closely on disk.

We implemented our methodologies in two well-
known graph engines and evaluated them using five
real-world graphs for six BFS-like algorithms. Through
a vast set of experiments, we show that the execution
of BFS-like algorithms can be improved with Basc and
GVS compared to simply using the page cache. We also
show that Norder is less costly to compute than Gorder,
yet achieves considerable performance improvements
over Gorder. Our experimental results show that the two
optimizations collectively and synergistically provide
substantial performance gains for BFS-like algorithms.
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