
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

R2P2: Making RPCs first-class datacenter citizens
Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion, EPFL

https://www.usenix.org/conference/atc19/presentation/kogias-r2p2

R2P2: Making RPCs first-class datacenter citizens

Marios Kogias George Prekas Adrien Ghosn Jonas Fietz Edouard Bugnion

EPFL, Switzerland

Abstract
Remote Procedure Calls are widely used to connect data-

center applications with strict tail-latency service level objec-
tives in the scale of µs. Existing solutions utilize streaming
or datagram-based transport protocols for RPCs that impose
overheads and limit the design flexibility. Our work exposes
the RPC abstraction to the endpoints and the network, mak-
ing RPCs first-class datacenter citizens and allowing for in-
network RPC scheduling.

We propose R2P2, a UDP-based transport protocol specif-
ically designed for RPCs inside a datacenter. R2P2 exposes
pairs of requests and responses and allows efficient and scal-
able RPC routing by separating the RPC target selection from
request and reply streaming. Leveraging R2P2, we imple-
ment a novel join-bounded-shortest-queue (JBSQ) RPC load
balancing policy, which lowers tail latency by centralizing
pending RPCs in the router and ensures that requests are only
routed to servers with a bounded number of outstanding re-
quests. The R2P2 router logic can be implemented either in a
software middlebox or within a P4 switch ASIC pipeline.

Our evaluation, using a range of microbenchmarks, shows
that the protocol is suitable for µs-scale RPCs and that its
tail latency outperforms both random selection and classic
HTTP reverse proxies. The P4-based implementation of R2P2
on a Tofino ASIC adds less than 1µs of latency whereas the
software middlebox implementation adds 5µs latency and
requires only two CPU cores to route RPCs at 10 Gbps line-
rate. R2P2 improves the tail latency of web index searching
on a cluster of 16 workers operating at 50% of capacity by
5.7× over NGINX. R2P2 improves the throughput of the
Redis key-value store on a 4-node cluster with master/slave
replication for a tail-latency service-level objective of 200µs
by more than 4.8× vs. vanilla Redis.

1 Introduction

Web-scale online data-intensive applications such as search,
e-commerce, and social applications rely on the scale-out ar-
chitectures of modern, warehouse-scale datacenters to meet

service-level objectives (SLO) [7, 17]. In such deployments,
a single application can comprise hundreds of software com-
ponents, deployed on thousands of servers organized in mul-
tiple tiers and connected by commodity Ethernet switches.
The typical pattern for web-scale applications distributes the
critical data (e.g., the social graph) in the memory of hun-
dreds of data services, such as memory-resident transactional
databases [26, 85, 87–89], NoSQL databases [62, 78], key-
value stores [22,54,59,67,93], or specialized graph stores [14].
Consequently, online data-intensive (OLDI) applications are
deployed as 2-tier applications with root servers handling
end-user queries and leaf servers holding replicated, sharded
data [8, 58]. This leads to a high fan-in, high fan-out connec-
tion graph between the tiers of an application that internally
communicates using RPCs [11]. Each client must (a) fan-out
an RPC to the different shards and (b) within each shard,
choose a server from among the replica set. Moreover, each
individual task can require from only few microseconds (µs)
of user-level execution time for simple key-value requests [54]
to a handful of milliseconds for search applications [35].

To communicate between the tiers, applications most com-
monly layer RPCs on top of TCP, either through RPC frame-
works (e.g., gRPC [31] and Thrift [86]) or through application-
specific protocols (e.g., Memcached [59]). This leads to a mis-
match between TCP, which is a byte-oriented, streaming trans-
port protocol, and message-oriented RPCs. This mismatch
introduces several challenges, one of which is RPC load dis-
tribution. In one approach, root nodes randomly select leaves
via direct connections or L4-load balancing. This approach
leads to high fan-in, high fan-out communication patterns,
load-imbalance and head-of-line blocking. The second ap-
proach uses a L7 load balancer or reverse proxy [1, 16, 25]
to select among replicas on a per request basis, e.g., using a
Round-Robin or Join-Shortest-Queue (JSQ) algorithm. While
such load balancing policies improve upon random selection,
they do not eliminate head-of-line blocking. Furthermore, the
load balancer can become a scalability bottleneck.

This work proposes a new communication abstraction for
datacenter applications that exposes RPCs as first-class citi-

USENIX Association 2019 USENIX Annual Technical Conference 863

zens of the datacenter not only at the client and server end-
points, but also in the network. Endpoints have direct control
over RPC semantics, do not suffer from head-of-line blocking
because of connection multiplexing, and can limit buffering at
the endpoints. The design also enables RPC-level processing
capabilities for in-network software or hardware middleboxes,
including scheduling, load-balancing, straggler-mitigation,
consensus and in-network aggregation.

As a first use case, we show how to use our network
protocol to implement efficient, scalable, tail-tolerant, high-
throughput routing of RPCs. Our design includes an RPC
router that can be implemented efficiently either in software
or within a programmable switch ASIC such as P4 [12]. In
addition to classic load balancing policies, we support Join-
Bounded-Shortest-Queue (JBSQ(n)), a new RPC scheduling
policy that splits queues between the router and the servers,
allowing only a bounded number of outstanding requests per
server, which significantly improves tail-latency.

We make the following contributions :

• The design of Request-Response Pair Protocol (R2P2), a
transport protocol designed for datacenter µs-RPCs that
exposes the RPC abstraction to the network and the end-
points, breaks the point-to-point RPC communication as-
sumptions, and separates request selection from message
streaming, nearly eliminating head-of-line blocking.

• The implementation of the R2P2 router on a software
middlebox that adds only 5µs to end-to-end unloaded
latency and is capable of load balancing incoming RPCs
at line rate using only 2 cores.

• The implementation of the R2P2 router within a P4-
programmable Tofino dataplane ASIC, which eliminates
the I/O bottlenecks of a software middlebox and reduces
latency overhead to 1µs.

• The implementation of JBSQ(n), a split-queue schedul-
ing policy that utilizes a single in-network queue and
bounded server queues and improves tail-latency even
for µs-scale tasks.

Our evaluation with microbenchmarks shows that our R2P2
deployment with a JBSQ(3) router achieves close to the the-
oretical optimal throughput for 10µs tasks across different
service time distributions for a tail-latency SLO of 150µs
and 64 independent workers. Running Lucene++ [56], an
open-source websearch library over R2P2, shows that R2P2
outperforms conventional load balancers even for coarser-
grain, millisecond-scale tasks. Specifically, R2P2 lowers the
99th percentile latency by 5.7× at 50% system load over NG-
INX with 16 workers. Finally, running Redis [78], a popular
key-value store with built-in master-slave replication, over
R2P2 demonstrates an increase of 4.8×– 5.6× in throughput
vs. vanilla Redis (over TCP) at a 200µs tail-latency SLO for

different read:write ratios. The Redis improvements are
due to the cumulative benefits of a leaner protocol, kernel
bypass, and scheduling improvements.

The paper is organized as follows: §2 provides the
necessary background. §3 describes the R2P2 protocol
and §4 its implementation. §5 is the experimental eval-
uation of R2P2. We discuss related work in §6 and
conclude in §7. The R2P2 source code is available at
https://github.com/epfl-dcsl/r2p2.

2 Background

2.1 Datacenter RPCs
TCP has emerged as the main transport protocol for latency-
sensitive, intra-datacenter RPCs running on commodity hard-
ware, as its reliable stream semantics provide a convenient
abstraction to build upon. Such use is quite a deviation from
the original design of a wide-area, connection-oriented proto-
col for both interactive (e.g., telnet) and file transfer appli-
cations. TCP’s generality comes with a certain cost as RPC
workloads usually consist of short flows in each direction. In
many cases, the requests and replies are small and can fit in a
single packet [5,63]. Although RDMA is an alternative, it has
specific hardware requirements and can be cumbersome to
program, leading to application-specific solutions [22, 42, 43].

Overall, the requirements of RPCs differ from the assump-
tions made by TCP in terms of failure semantics, connection
multiplexing, API scalability, and end-point buffering:

RPC semantics: Some datacenter applications choose weak
consistency models [18] to lower tail latency. These applica-
tions typically decompose the problem into a series of inde-
pendent, often idempotent, RPCs with no specific ordering
guarantees. Requests and responses always come in pairs that
are semantically independent from other pairs. Thus, the reli-
able, in-order stream provided by TCP far stronger than the
applications needs and comes with additional network and
system overheads.

Connection multiplexing: To amortize the setup cost of TCP
flows, RPCs are typically layered on top of persistent con-
nections, and most higher-level protocols support multiple
outstanding RPCs on a flow, e.g., HTTP/2, memcache, etc.
Multiplexing different RPCs on the same flow implies order-
ing the requests that share a socket, even though the individ-
ual RPCs are semantically independent. This ordering limits
scheduling choices and can lead to Head-of-Line-Blocking
(HOL). HOL appears when fast requests are stuck behind a
slower request and when a single packet drop affects multiple
pending requests.

Connection scalability: The high fan-in, high fan-out pat-
terns of datacenter applications lead to large number of con-
nections and push commodity operating systems beyond their

864 2019 USENIX Annual Technical Conference USENIX Association

16xM/G/1 PL(2) JSQ JBSQ(2) M/G/16

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

9
9
th

 L
a
te

n
c
y

(a) Fixed

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

(b) Exponential

0.0 0.2 0.4 0.6 0.8 1.0

System Load (rho)

0

2

4

6

8

10

(c) Bimodal

Figure 1: Simulation results for the 99th percentile latency across 3 service time distributions with S = 1

efficiency point. Recent work has addressed the issue either
by deviating from the POSIX socket interface while main-
taining TCP as the transport [9] or by developing custom
protocols, e.g., to deploy memcached on a combination of
connection-less UDP for RPC get and router proxy for RPC
set [67].

Endpoint bufferbloat: Prior work has addressed network-
specific issues of congestion management and reliability
within the network [2, 3]. Unfortunately, the use of TCP via
the POSIX socket API leads to buffering in both endpoints
over which applications have little control or visibility [45].
Applications willing to trade-off harvest vs. yield [29] would
ideally never issue RPCs with no chance of returning by the
deadline due to buffering in the network stack.

2.2 Load balancing
The problem of spreading out load extends to load balanc-
ing across servers within a distributed, scale-out environment.
Load balancers encapsulate a set of servers behind a single
virtual IP address and improve the availability and capacity of
applications. Load balancing decisions, however, can severely
affect throughput and tail-latency; thus, a significant amount
of infrastructure is dedicated to load balancing [23, 60]. Load
balancers can be implemented either in software [23, 64, 69]
or in hardware [1, 16, 25, 60] and fall into two broad cate-
gories: (1) Layer-4 (“network”) load balancers that use the
5-tuple information of the TCP or UDP flow to select a des-
tination server. The assignment is static and independent of
the load; (2) Layer-7 (“application”) load balancers come in
the form of HTTP reverse proxies as well as protocol-specific
routers implemented in software middleboxes [67] or SDN
switches [13, 15]. These load balancers terminate the client
TCP connections, use dynamic policies to select a target, and
reissue the request to the server on a different connection.

Layer-7 load balancers support many policies to decide the
eventual RPC target, including random, power-of-two [61],
round-robin, Join-Shortest-Queue (JSQ), and Join-Idle-Queue
(JIQ) [55]. Layer-7 load balancers are ubiquitous at the web
tier and can theoretically mitigate tail-latency better, due to

their dynamic policies. However, they are less commonly de-
ployed within tiers of applications to support µs-scale RPCs.
The reasons for this are (i) the increased latency due to the ex-
tra hop (ii) the scalability issues introduced when all requests
and responses flow through a proxy.

2.3 As a queuing theory problem

In this section, we approach the problem of RPC load bal-
ancing from a theoretical point of view by abstracting away
system aspects using basic queuing theory. We show the ben-
efits of request-level load balancing over random-selection
among distributed queues (which is equivalent to L4 load bal-
ancing) in improving tail-latency, and we evaluate different
request-level load balancing policies.

Fortunately, the theoretical answers are clear: single-queue,
multi-worker models (i.e., M/G/k according to Kendall’s no-
tation) perform better than distributed multi-queue models
(i.e., k×M/G/1, with one queue per worker) because they are
work-conserving and guarantee that requests are processed in
order [49, 90].

Between those two extremes, there are other models that
improve upon random selection and are practically imple-
mentable through L7 load balancing. Power-of-two [61]
(PL(2)), or similar schemes, are still in the realm of random-
ized load balancing, but perform better than a blind random
selection. JSQ performs close to a single queue model for
low-variability service times [55].

We define Join-Bounded-Shortest-Queue JBSQ(n) as a
policy that splits queues between a centralized component
with an unbounded queue and distributed bounded queues
of maximum depth n for each worker (including the task
currently processed). The single-queue model is equivalent to
JBSQ(1) whereas JSQ is equivalent to JBSQ(∞).

Figure 1 quantifies the tail-latency benefit, at the 99th per-
centile, for these queuing models observed in a discrete event
simulation. We evaluate a configuration with a Poisson arrival
process, k = 16 workers, and three well-known distributions
with the same service time S̄ = 1. These distributions are:
deterministic, exponential and bimodal-1 (where 90% of re-

USENIX Association 2019 USENIX Annual Technical Conference 865

quests execute in .5 and 10% in 5.5 units) [55].
From the simulation results, we conclude that: (1) there is

a dramatic gap in performance between the random, multi-
queue model and the single-queue approach, which is optimal
among FCFS queuing systems. (There is no universally op-
timal scheduling strategy for tail-latency [90].) (2) PL(2)
improves upon random selection, but these benefits diminish
as service time variability increases. JSQ performs close to the
optimal for low service time variability. (3) JBSQ(2), while it
deviates from the single queue model, outperforms JSQ under
high load as the service time variability increases.

These results are purely theoretical and in particular as-
sume perfect global knowledge by the scheduler or load bal-
ancer. This global view would be the result of communication
between the workers and the load balancer in a real deploy-
ment. Any practical system must consider I/O bottlenecks
and additional scheduling delays because of this communica-
tion. In this paper, we make the claim that JBSQ(n) can be
implemented in a practical system and can deliver maximal
throughput with small values of n even for µs-scale tasks, thus
minimizing tail latency and head-of-line blocking.

3 R2P2: A transport protocol for RPCs

We propose R2P2 (Request-Response Pair Protocol), a UDP-
based transport protocol specifically targeting latency-critical
RPCs within a distributed infrastructure, i.e., a datacenter.
R2P2 exposes the RPC abstraction to the network, thus al-
lowing for efficient in-network request-level load balancing.

R2P2 is a connectionless transport protocol capable of sup-
porting higher-level protocols such as HTTP without protocol-
level modifications. Unlike traditional multiplexing of the
RPC onto a reliable byte-oriented connection, R2P2 is an
inherently request/reply-oriented protocol that maintains no
state across requests. The R2P2 request-response pair is ini-
tiated by the client and is uniquely identified by a triplet of
< src_IP,src_port,req_id >. This design choice decouples
the request destination (set by the client) from the actual
server that will reply, thus breaking the point-to-point RPC
communication semantics and enabling the implementation
of any request-level load balancing policy.

Figure 2 describes the interactions and the packets ex-
changed in sending and receiving an RPC within a distributed
infrastructure that uses a request router to load balance re-
quests across the servers. We illustrate the general case of a
multi-packet request and a multi-packet response.

1. A REQ0 message opens the RPC interaction, uniquely
defined by the combination of source IP, UDP port, and
an RPC sequence number. The datagram may contain
the beginning of the RPC request itself.

2. The router identifies a suitable target server and directs
the message to it. If there is no available server, requests
can temporarily queue up in the router.

Clients Router Server

N

REQRDY

REQ0

REQ0

REQN

REPLY
R2P2-FEEDBACK

1 2

3

4

5
6

Figure 2: The R2P2 protocol for a request-reply exchange.
Each message is carried within a UDP packet. Single arrows
represent a single packet whereas double arrows represent a
stream of datagrams.

3. If the RPC request exceeds the size of data in the REQ0
payload, then the server uses a REQready message to
inform the client that it has been selected and that it will
process the request.

4. Following (3), the client directly sends the remainder of
the request as REQn messages.

5. The server replies directly to the client with a stream of
REPLY messages.

6. The servers send R2P2-FEEDBACK messages to the router
to signal idleness, availability, or health, depending on
the load balancing policies.

We note a few obvious consequences and benefits of the
design: (i) Given that an RPC is identified by the triplet, re-
sponses can arrive from a different machine than the original
destination. Responses are sent directly to the client, bypass-
ing the router; (ii) there is no head-of-line blocking resulting
from multiplexing RPCs on a socket, since there are no sock-
ets and each request-response pair is treated independently;
(iii) there are no ordering guarantees across RPCs; (iv) the
protocol is suited for both short and long RPCs. By avoiding
the router for REQn message and replies, the router capacity
is only limited by its hardware packet processing rate, not by
the overall amount of size of the messages.

Unlike protocols that blindly provide reliable message de-
livery, R2P2 exposes failures and delays to the application.
R2P2 follows the end-to-end argument in systems design [80].
A client application initiates a request-response pair and deter-
mines the failure policy of each RPC according to its specific
needs and SLOs. By propagating failures to the application,
the developer is free to choose between at-least-once and at-
most-once semantics by re-issuing the same request that failed.
Unlike TCP, failures affect only the RPC in question, not
other requests. This is useful in cases with fan-out replicated

866 2019 USENIX Annual Technical Conference USENIX Association

Header Size

PacketId/Packet Count

F

0 16

ReqId

Magic

MessageType ReservedPolicy L

Figure 3: R2P2 Header Format

requests, where R2P2 can provide system support for the
implementation of tail-mitigation techniques, such as hedged
requests [17].

While novel in the context of µs-scale, in-memory comput-
ing, the connection “pair” is similar in spirit to the “exchange”
that is the core of the SCSI/Fibre Channel protocol (FCP [27]).
For example, a single-packet-request-multi-packet-response
RPC over R2P2 would be similar to SCSI read within a
single fibre channel exchange. Equivalently, an R2P2 multi-
packet-request-single-packet-response would be similar to a
SCSI write.

3.1 Transport considerations
Figure 3 describes a proposed R2P2 header, while Table 1
includes the different R2P2 messages. All R2P2 messages
are UDP datagrams. R2P2 supports a 16-bit request id whose
scope is local to the (src_ip, src_port) pair. As such,
each client ((src_ip, src_port) pair) can have up to
65536 outstanding RPCs, well beyond any practical limi-
tations. The R2P2 header also includes a 16-bit packet id
meaning that each R2P2 message can consist of up to 65536
MTU-sized packets. The above two fields can be extended, if
necessary, without changing the protocol semantics. Currently
R2P2 uses two flags (F, L) to denote the first and last packet
of a request.

Finally, the R2P2 header contains a Policy field, which
allows client applications to directly specify certain policies
to the router, or any other intermediate middlebox, for this
specific RPC. Currently, the only implemented policies are
unrestricted, which allows the router to direct REQ0 packet
to any worker in the set, and sticky, which forces the router
to direct the message to the master worker among the set. This
mechanism is central to our implementation of a tail-tolerant
Redis, based on a master/slave architecture. It is used to direct
writes to the master, but balances reads according to the load
balancing policy. Additional policies, e.g., session-stickiness,
or policies implementing different consistency models, can
be implemented in R2P2 middleboxes and will be identified
by this header field, thus showcasing the benefits of R2P2’s
in-network RPC awareness.

Deployment assumptions: We assume that R2P2 is de-
ployed within a datacenter, i.e., the clients, router and servers
are connected by a high-bandwidth, low-latency Ethernet fab-
ric. We make no assumptions about the core network that

Message Description
REQUEST A message carrying an RPC request
REPLY A message carrying an RPC reply
REQRDY Sent by the server to the client to

ack the REQ0 of a multi-packet re-
quest

R2P2-FEEDBACK Sent by the server to the router
DROP Sent by the router or the server to a

client to explicitly drop a request
SACK Sent by the client or the server to

ask for missing packets in a request
or reply

Table 1: The R2P2 message types

can depend either on ECMP flow hashing or packet spray-
ing [30, 32, 63]. R2P2 tolerates packet reordering within the
same message and reconstructs the message at the end-point.
By design, though, there is no ordering guarantee across RPCs,
even if they are sent by the same client.

Timer management: Given that the assumed deployment
model allows for packet reordering, packet loss detection
depends on timers. There is one retransmission timeout RTO
timer used for multi-packet requests or responses. It is in the
order of milliseconds and triggers the transmission of a SACK
message request for the missing packets. Servers garbage
collect RPCs with failed multi-packet requests or multi-packet
replies after a few RTOs. On the client side there is a timer
set by the client application when sending the request. This
timer is disarmed when the whole reply is received, and can
be as aggressive as the application SLO. Based on this timer
applications can implement tail-mitigation techniques [17] or
early drop requests based on their importance.

Congestion management: R2P2 focuses on reducing queu-
ing on the server side; we do not make any explicit contribu-
tion in congestion control. Instead, R2P2 can utilize existing
solutions for congestion control, including (1) Homa [63],
whose message semantics easily map to R2P2’s request-
response semantics and (2) ECN-based schemes such as
DCTCP [2] and DCQCN [94]. Congestion control will be
necessary only for multi-packet requests and replies (REQN
and REPLY), and is independent of the interactions described
in Fig 2.

Flow Control: R2P2 implements two levels of flow control,
one between the client and the middlebox and one between
the middlebox and the servers. R2P2 middleboxes can drop
individual requests, either randomly or based on certain prior-
ity policies, if they become congested, without affecting other
requests, thus implementing the first level of flow control.
Based on the functionality and the policy, the middlebox is
in charge of implementing the second level of flow control
to the servers. In the JBSQ case, JBSQ limits the number of

USENIX Association 2019 USENIX Annual Technical Conference 867

outstanding requests on each server, thus servers can not be
overwhelmed.

3.2 API
R2P2 exposes a non-POSIX API specifically designed for
RPC workloads. Making RPCs first class citizens and expos-
ing the request-response abstraction through the networking
stack significantly simplifies writing client-server applica-
tions. Application code that traditionally implements the RPC
logic on top of a byte stream abstraction is now part of the
R2P2 layer of the networking stack.

Table 2 summarizes the corresponding application calls
and callbacks for the client and server application. The
API has an asynchronous design that allows applications to
easily send and receive independent RPCs. When calling
r2p2_send_req the client application sets the timer timeout
and callback functions independently for each RPC request.
The client and server applications are notified only when the
entire response or request messages have arrived through the
req_success and req_recv callbacks, equivalently.

3.3 JBSQ router design considerations
R2P2 exposes the request-response abstraction to the network
as a first-class citizen. It is expected that a software or hard-
ware middlebox will manipulate client requests to implement
a certain policy, e.g., scheduling, load balancing, admission
control, or even application logic, e.g., routing requests to
the right server in a distributed hash table. In this section, we
discuss the design choices regarding an R2P2 request router
implementing the JBSQ scheduling policy. Similar ideas can
be applied to other middleboxes with alternative functionality.

The choice of JBSQ: As seen in § 2.3 JSQ and JBSQ per-
form closer to the optimal single queue model. JBSQ though
offers several practical benefits over JSQ. It implements router-
servers flow control and can be implemented within a Tofino

Application Calls
Type Description

r2p2_poll Poll for incoming req/resp
r2p2_send_req Send a request
r2p2_send_response Send a response
r2p2_message_done Deallocate a request or response

Callbacks
Type Description

req_recv Received a new request
req_success Request was successful
req_timeout Timer expired
req_error Error condition

Table 2: The r2p2-lib API

ASIC. JSQ requires finding the minimum among a number of
values, which is hard to implement in a hardware dataplane.
Also, JBSQ achieves better latency under high load and ser-
vice time dispersion. That is because JSQ uses the queue size
as a proxy for queuing time, which can be misleading in the
presence of service-time dispersion.

R2P2-FEEDBACK messages: To implement the JBSQ(n)
policy we leverage the R2P2-FEEDBACK messages provided
by the R2P2 specification. These messages, sent by the
servers back to the router after completing the service of
a request, specify: (i) The maximum number of outstanding
RPCs the server is willing to serve (the “n” in JBSQ(n)). By
sending the current “n” in every R2P2-FEEDBACK message,
servers can dynamically change the number of outstanding
requests based on the application SLOs. (ii) The number of
requests this server has served including the last request. The
router uses this information to track the current number of
outstanding requests in the server’s bounded queue. This field
makes the message itself idempotent and the protocol robust
to R2P2-FEEDBACK drops.

We note that this approach puts each server in charge
of controlling its own lifecycle by sending unsolicited
R2P2-FEEDBACK messages, e.g., to join a load balancing
group, leave it, adjust its bounded queue size based on its
idle time, or to periodically signal its idleness.

Direct client request - direct server return: R2P2 imple-
ments direct server return (DSR) [34, 65] since the replies do
not go through the router. This is a widely-used technique
in L4 load balancers with static policies [65]. R2P2 uses
DSR while implementing request-level load balancing. In
addition, R2P2 implements direct client request, where the
router handles only the first packet of a multi-packet request,
while the rest is streamed directly to the corresponding server,
thus avoiding router IO bottlenecks.

Deployment: A software R2P2 router is deployed as a mid-
dlebox and traffic is directed to its IP address. The hardware
R2P2 router is also deployed as an IP-addressed middle-
box. The same hardware can also be a Top-of-Rack switch
serving traffic to servers within the rack, following a “rack-
scale” deployment pattern. In such a pattern, the router has
full visibility on the RPC traffic to the rack and all packets go
through the ToR switch. This could enable simplifications to
the packet exchange, e.g., using R2P2-FEEDBACK messages
only for changing the depth of the bounded queues; the ToR
can estimate their current size by tracking the traffic.

Router high availability: The router itself is nearly state-
less and a highly-available implementation of the router is
relatively trivial. Upon a router failure, only soft state re-
garding the routing policy is lost, including the current size
of the per-worker bounded queue and the queue of pending
RPCs. Clients simply failover to the backup router using a
virtual IP address and reissue RPCs upon timeout, using the

868 2019 USENIX Annual Technical Conference USENIX Association

exact same mechanism used to handle a REQ0 packet loss.
Servers reconstruct the relationship with the router with their
R2P2-FEEDBACK message to the new router.

Server membership: Servers behind the R2P2 router can
fail and new servers can join the load balancing group.
R2P2-FEEDBACK messages implicitly confirm to the router
that a server is alive. In case of a failure, the lack of
R2P2-FEEDBACK messages will prevent the router from send-
ing requests to the failed server, and the bounded nature
of JBSQ(n) limits the number of affected RPCs. Similarly,
newly-added servers can send R2P2-FEEDBACK messages to
the router informing about their availability to serve requests.

The choice of JBSQ(n): The choice of n in JBSQ is crucial.
A small n will behave closer to a single-queue model, but
will restrict throughput. The rationale behind the choice of
n is similar to the Bandwidth Delay Product. On each queue
there should be enough outstanding requests so that the server
does not stay idle during the server-router communication.
For example, for a communication delay of around 15 µs and
a fixed service time of 10 µs, n=3 is enough to achieve full
throughput. Shorter service times will require higher n values.
High service time dispersion and batching on the server will
also require higher values than what predicted by the heuristic.
Servers can even dynamically adjust the value of n based on
their processing rate and minimal idle time between requests.

4 Implementation

We implement (1) r2p2-lib as userspace Linux library on
top of either UDP sockets or DPDK [21] (§4.1); (2) the soft-
ware R2P2 router on top of DPDK (§4.2) and (3) the hardware
solution in the P414 programming language [72] to run within
a Barefoot Tofino ASIC [6] (§4.3).

4.1 r2p2-lib

The library links into both client and server application code.
It exposes the previously described API and abstracts the
differences between the Linux socket and the DPDK-based
implementations. The current implementation is non-blocking
and rpc_poll is typically called in a spin loop. To do so, we
depend on epoll for Linux, while for DPDK we implemented
a thin ARP, IP, and UDP layer on top of DPDK’s polling mode
driver, and exposed that to r2p2-lib. Our C implementation
of r2p2-lib consists of 1300 SLOC.

R2P2 does not impose any threading model. Given the
callback-based design, threads in charge of sending or receiv-
ing RPCs operate in a polling loop mode. The library sup-
ports symmetric models, where threads are in charge of both
network and application processing, by having each thread
manage and expose a distinct worker queue through a specific
UDP destination port. The DPDK implementation further
manages a distinct Tx and Rx queue per thread, and uses

Flow Director [36] to steer traffic based on the UDP des-
tination port. In an asymmetric model, a single dispatcher
thread links with r2p2-lib, and the other worker threads are
in charge of application processing only. This model exposes
one worker queue via one UDP destination port.

4.2 Router - software implementation
We implemented a Random, a Round-Robin, a JSQ and a
JBSQ(n) policy on the software router. The main implemen-
tation requirements for the router are (1) it should add the
minimum possible latency overhead, and (2) it should be
able to process short REQ0 and R2P2-FEEDBACK messages at
line rate. While the router processes only those two types
of packets, the order in which it processes them matters.
Specifically for JBSQ, the ideal design separates REQ0 from
R2P2-FEEDBACK messages into two distinct ingress queues
and processes R2P2-FEEDBACKs with higher priority to ensure
that the server state information is up-to-date and minimize
queuing delays.

Our DPDK implementation uses two different UDP ports,
one for each message type, using Flow Director for queue
separation. Given the strict priority of control messages
and the focus on scalability, we chose a multi-threaded
router implementation with split roles for REQ0 threads and
R2P2-FEEDBACK threads, with each thread having its own Rx
and Tx queues.
JBSQ(n) requires a counter per worker queue that counts

the outstanding requests. To minimize cache-coherency traffic,
the router maintains two single-writer arrays, one updated on
every REQ0 and the other on every R2P2-FEEDBACK, with one
entry per worker.

The implementation of the R2P2-FEEDBACK thread is com-
putationally very cheap and embarrassingly scalable. Process-
ing REQ0 messages requires further optimizations to reduce
cache-coherency traffic, e.g., maintain the list of known idle
workers, cache the current queue sizes, etc. Our implemen-
tation relies on adaptive bounded batching [9] to amortize
the cost of PCIe I/O operations, as well as that of the cache-
coherency traffic (the counters are read once per iteration).
We limit the batch size to 64 packets.

Finally, we implement a tweak to the JBSQ(n) policy with
n ≥ 2: when no idle workers are present, up to 32 packets
are held back for a bounded amount of time on the optimistic
view that an R2P2-ACK message may announce the next idle
worker. This optimization helps absorb instantaneous conges-
tion and approximate the single-queue semantics in medium
load situations.

4.3 P4/Tofino implementation
We built a proof-of-concept P4 implementations of R2P2
router for Tofino [6] using P414 [72]. Similar to the soft-
ware implementation, the switch only processes REQ0 and

USENIX Association 2019 USENIX Annual Technical Conference 869

R2P2-FEEDBACK messages and leverages P4 registers to keep
soft state. P4 registers are locations in the ASIC SRAM, which
can be read and updated from both the control and dataplane.

We focus our description on the implementation of
JBSQ(n) for the Tofino dataplane, as the others are trivial
in comparison. It consists of 480 lines of P4 source, including
header descriptions. Unlike the software implementation that
can easily buffer the outstanding REQ0 messages if there is no
available server queue, high-performance pipelined architec-
tures, such as Tofino, do not allow buffering in the dataplane.
Thus, our P4 logic executes as part of the ingress pipeline
of the switch and relies heavily on the ability to recirculate
packets through the dataplane via a virtual port. The imple-
mentation leverages an additional header that is added to the
packet to carry metadata through the various recirculation
rounds and is removed before forwarding the packet to the
target server.

The logic for REQ0 tries to find a server with≤ i outstanding
packets in round i. There is one register instance correspond-
ing to each server, holding the number of outstanding requests.
If a suitable server is found, the register value is increased by
one, the packet destination is changed to the address of the
equivalent server, and the packet is directed to the egress port.
We start with i = 0 and we increase till i = n from JBSQ(n).
When i reaches n and there is still no available server, we
keep recirculating the packet without increasing i further. As
an optimization to reduce the number of recirculations, the
dataplane keeps the i for the last forwarded request and starts
from that.

To overcome the Tofino limitation of only being able to
compare a limited number of registers in one pass, we also
leverage recirculation to inspect the outstanding requests of
each bounded queue in each round. Register instances that
correspond to different queues are organized in groups that
can be checked in one pass. If no available queue is found in
the first group, the packet is recirculated (without increasing
i) and the second group of queues is checked, etc. When a
REQ0 arrives, it is initially assigned to a group in a round-robin
fashion to further reduce the amount of recirculations.

The logic for R2P2-FEEDBACK decrements the outstanding
count for the specific server based on the packet source and
consumes the packet without forwarding it.

The use of recirculation has two side-effects: (1) the order
of RPCs cannot be guaranteed as one packet may be recircu-
lated while another one is not; (2) the atomicity of the full set
of comparisons is not guaranteed as R2P2-FEEDACK packet
may be processed while an REQ0 packet is being recirculated.
Non-optimal decisions may occur as the result of this race
condition.

5 Evaluation

To evaluate the performance and the efficacy of the R2P2
protocol, the two implementations of the router, as well as

the trade-offs in using JBSQ(n) over other routing policies,
we run a series of synthetic microbenchmarks and two real
applications in a distributed setup with multiple servers. The
microbenchmarks depend on an RPC service with config-
urable service time and response size. All our experiments are
open-loop [83] and clients generate requests with a Poisson
inter-arrival time. We use two baselines and compare them
against different configurations for R2P2 with and without
the router: (1) vanilla NGINX [66] serving as reverse proxy
for HTTP requests; and (2) ZygOS [76], a state-of-the-art
work-conserving multicore scheduler. As a load generator we
use an early version of Lancet [46].

Our experimental setup consists of cluster of 17 machines
connected by a Quanta/Cumulus 48x10GbE switch with a
Broadcom Trident+ ASIC. The machines are a mix of Xeon
E5-2637 @ 3.5 GHz with 8 cores (16 hyperthreads), and
Xeon E5-2650 @ 2.6 GHz with 16 cores (32 hyperthreads).
All machines are configured with Intel x520 10GbE NICs
(82599EB chipset). To reduce latency and jitter, we config-
ured the machine that measures latency to direct all UDP
packets to the same NIC queue via Flow Director. The Bare-
foot Tofino ASIC runs within a Edgecore Wedge100BF-32X.
The Edgecore is directly connected to the Quanta switch via
a 40Gbps link and therefore operates as a 1-port router.

5.1 Router characterization
We use the synthetic RPC service to evaluate the latency
overhead of the router, the maximal throughput and the op-
timal request load balancing policy. We configure a setup of
4 servers with 16 threads (64 independent workers), running
the synthetic RPC service over DPDK.

Throughput: We first evaluate the sustainable throughput
of the software router. We run a synthetic RPC service with
8-byte requests and we configure the size of the response.

Figure 4 shows the achieved goodput as a function of the
response size, and compares a configuration with R2P2 mes-
sages handled by a JBSQ load balancing policy, with a NGINX
configured as reverse proxy for HTTP messages. For small
response sizes, the router is bottlenecked by the router’s NIC’s
packets per second (PPS), or the number of outstanding re-
quests in each queue, n in JBSQ(n). JBSQ(3) was enough to
achieve maximum throughput. As the response size increases
though, the application goodput converges to 4×10GbE, the
NIC bottleneck of the 4 servers with payloads as small as 2048.
Obviously, this is made possible by the protocol itself, which
bypasses the router for all REPLY messages. Note that because
R2P2 leverages both Direct Server Return and Direct Client
Request, even in cases of large requests the router would not
be the bottleneck, unlike traditional L4 DSR-enabled load bal-
ancing. In contrast, the NGINX I/O bottleneck limits goodput
to the load balancer’s 10Gbps NIC.

870 2019 USENIX Annual Technical Conference USENIX Association

SW-JBSQ(1) SW-JBSQ(3) NGINX-JSQ

0 2000 4000 6000 8000

Response size (bytes)

0

10

20

30

G
o
o
d
p
u
t
(G

b
p
s
)

Figure 4: Achieved Goodput as a function of the response
size for the JBSQ policy on the software router managing 4
servers connected with 10GbE NICs compared to NGINX
configured as HTTP reverse proxy loadbalancing the same 4
servers using a JSQ policy.

Latency overheads and saturation: Figure 5 uses a zero-
cost (“echo”) RPC service with 8-byte requests and responses,
to measure the 99th percentile tail latency as a function of
the load for the software middlebox and the Tofino router
with the JBSQ policy. As a baseline, we use a DIRECT con-
figuration where clients bypass the router and send requests
directly to the servers after a random choice. The figure shows
that the latency added by the router is 5µs for the software
middlebox and 1µs for the Tofino solution. The software
latency is consistent with the characteristics of one-way for-
warding performance of the Intel x520 chipset using DPDK.
The hardware latency is consistent with the behavior of an
ASIC solution that processes and rewrites packet headers in
the dataplane. Figure 5 also shows the point of saturation,
which corresponds to 7 MRPS for the software middlebox.
Given that for every request forwarded the router receives one
R2P2-FEEDBACK message, the router handles more than 14M
PPS, which is the hardware limit. We were unable to char-
acterize the maximal per-port capability of the Tofino ASIC
running the R2P2 logic beyond >8 MRPPS with tiny requests
and replies, simply for lack of available client machines. We
also observe that the hardware implementation, as expected,
requires a smaller n for JBSQ(n). In the figure we show the
smallest value of n that achieved maximum throughput.

Comparison of scheduling policies: Figure 6 uses a syn-
thetic S̄ = 25µs workload to evaluate the different request
load balancing policies, implemented on the software router.
We evaluate the following policies: DIRECT, where clients by-
pass the router by making a random server selection, RANDOM
where clients talk to the router and the router makes a random
selection among the servers, RR where the router selects a tar-
get server in a round-robin manner, SW-JBSQ(n) which is the
software implementation for the bounded shortest queue with
n outstanding requests, and JSQ which is the R2P2 router’s
implementation of the join-shortest-queue policy. We also
compare R2P2 with using NGINX as an HTTP reverse proxy
implementing a JSQ policy, which is a vanilla, widely-used

0 1 2 3 4 5 6 7 8

Load (MRPS)

0

10

20

30

40

50

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

SW-JBSQ(3)

P4-JBSQ(2)

DIRECT

Figure 5: Tail-latency as a function of throughput for a zero
service time synthetic RPC service for the software (SW-JBSQ)
and the Tofino (P4-JBSQ) implementation of JBSQ compared
to DIRECT. In DIRECT clients bypass the router and talk di-
rectly to servers by making a random server choice.

NGINX-JSQ

RANDOM

DIRECT

RR

SW-JBSQ(1)

SW-JBSQ(2)

JSQ

SW-JBSQ(3)

0.0 0.5 1.0 1.5 2.0 2.5

Load (MRPS)

0

100

200

300

400

500

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

Figure 6: Evaluation of different load balancing policies for
an exponential service time workload with S̄ = 25µs.

deployment for request-level load balancing.
We make the following observations: (i) NGINX overheads

prevent throughput scalability; (ii) DIRECT and RAND configu-
rations perform similarly for R2P2, which is the result of a
random choice (in the client or the router equivalently); (iii)
RR performs better than random choice, but worse than JBSQ,
given the service time dispersion; (iv) JBSQ(n ≥ 3) achieves
maximum throughput. Given that the communication time
between the server and the router is ∼ 15µs and the exponen-
tial service time dispersion, this is on par with our analysis in
§ 3.3. (v) JSQ performs similarly to JBSQ(3) for this service
time.

5.2 Synthetic Time Microbenchmarks
Figure 7 evaluates JBSQ(n) performance with an aggressive
S̄ = 10µs mean service time and three different service time
distributions: Fixed, Exponential and Bimodal where 10%
of the request are 10x slower than the rest [55]. We present
results for both the software and Tofino implementation, for
JBSQ(1) and the optimal n choice for each configuration.
Requests and the responses are 8 bytes. We observe:

• For all experiments, all JBSQ(n) variants approximate
the optimal single-queue approach (M/G/64) until the
saturation point for JBSQ(1).

USENIX Association 2019 USENIX Annual Technical Conference 871

RANDOM SW-JBSQ(1) P4-JBSQ(1) SW-JBSQ(5) P4-JBSQ(3) M/G/64

0 1 2 3 4 5 6

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

(a) Fixed (64 workers)

0 2 4 6

Load (MRPS)

0

50

100

150

(b) Exponential (64 workers)

0 1 2 3 4 5 6

Load (MRPS)

0

50

100

150

(c) Bimodal (64 workers)

Figure 7: Synthetic Service Time Microbenchmarks. Service time S̄ = 10µs.

• Beyond the saturation point of JBSQ(1), an increase in
the tail latency as the system configuration trades off
higher throughput (i.e., JBSQ(n > 1)) against the use of
a theoretically-optimal approach.

• A comparison between the software and hardware im-
plementation shows that more outstanding requests are
required for the software implementation; this is because
the communication latency between the server and the
hardware router is ∼5µs faster.

• JBSQ achieves the optimal performance, as predicted by
the M/G/64 model, both for the software and the hard-
ware implementation within the 150µs SLO.

• Reducing n can have a considerable impact on tail-
latency especially in cases with high service time dis-
persion, as it can be seen in Figure 7c (SW-JBSQ(5) vs.
P4-JBSQ(3))

5.3 Multi-packet Requests Microbenchmark

R2P2 implements the following logic in splitting requests to
packets. If the request fits in a single packet, the whole request
payload is transferred with REQ0. In the case of a multi-packet
request, REQ0 is a 64-byte packet, carrying only the first part
of the request and the rest of the payload is transferred with
the REQN packets directly to the server. This way the router
does not become a throughput bottleneck in the case of large
requests, while the extra round-trip is avoided in the case of
small requests.

To evaluate the extra round-trip that R2P2 introduces in
the case of multi-packet requests with the distinction between
REQ0 and REQN, we ran a synthetic microbenchmark with
larger requests. Based on the above logic, a 1464-byte request
is the biggest request that fits in a single packet given the size
of protocol headers. Equivalently, a 1465-byte request is the
smallest request that requires 2 packets, and consequently an
extra round-trip. We run the synthetic service time RPC server
with the bimodal service time distribution of S̄ = 10 and the 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

DIRECT-1465

P4-JBSQ(5)-1465

DIRECT-1464

Figure 8: Bimodal service time with S̄ = 10µs and 64 work-
ers with single and multi-packet requests. DIRECT-1464 cor-
responds to an 1-packet request, while DIRECT-1465 and
P4-JBSQ(5) correspond to 2-packet requests.

different request sizes. We compare the DIRECT deployment
with one using the router with the JBSQ policy.

Figure 8 summarizes the result of the experiment. We
observe that there is a fixed gap of around 15µs between
DIRECT-1464 and DIRECT-1465 curves that corresponds to
the extra round-trip between the client and the server. We,
also, run the multi-packet request scenario while using the P4
router with the JBSQ policy. We show that despite the extra
round-trip, the intermediate hop, and the increased number of
packets to process, the 99th percentile latency is close to the
single-packet scenario in the DIRECT case, which justifies our
design decision to pay an extra round-trip to achieve better
scheduling.

5.4 Using R2P2 for server work conservation
We now demonstrate how the use of network-based load bal-
ancing, e.g., using R2P2, can increase the efficiency of a
single server scheduling tasks. For this, we compare R2P2
with JBSQ with the performance of ZygOS [76], a state-of-
the-art system optimized for µs-scale, multicore computing
that includes a work-conserving scheduler within a special-
ized operating system. ZygOS relies on work-stealing across
idle cores and makes heavy use of inter-processor interrupts.
Both ZygOS and JBSQ(n) offer a work-conserving solution
to dispatch requests across the multiple cores of a server: Zy-

872 2019 USENIX Annual Technical Conference USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Load (MRPS)

0

50

100

150

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

M/M/16

ZygOS

P4-JBSQ(3)

Figure 9: Comparison of R2P2 with the ZygOS [76] work-
conserving scheduler: Exponential workload with S̄ = 10µs.

gOS does it within the server in a protocol-agnostic manner,
whereas R2P2 implements the policy in the network.

Figure 9 compares ZygOS with the Tofino implementation
of JBSQ(3) for the 10µs exponentially-distributed service
time workload using a single Xeon server. As in the pre-
vious configurations, for the R2P2 implementation each of
the 16 Xeon cores, is exposed as a worker with a distinct
queue to the router, listening to a different UDP port. In this
experiment, the theoretical lower bound is therefore deter-
mined by M/M/16. We observe that JBSQ(3) exceeds the
throughput performance of ZygOS, with no visible impact
on tail latency despite the additional hop and that JBSQ(3) is
sufficient to achieves the maximum throughput. For a service-
level objective set at 150µs, R2P2 with JBSQ(3) outperforms
ZygOS by 1.26×. The explanation is that the R2P2 server
operates on a set of cores in parallel without synchronization
or cache misses, whereas ZygOS has higher overheads due
to protocol processing, boundary crossings, task stealing, and
inter-processor interrupts.

5.5 Lucene++
Web search is a replicated, read-only workload with variability
in the service time coming from the different query types, thus
it is an ideal use-case for R2P2-JBSQ. For our experiments we
used Lucene++ [56], which is a search library ported to serve
queries via either HTTP or R2P2. A single I/O thread dis-
patches one request at a time to 16 Lucene++ worker threads,
each of them searching part of the dataset. The experimental
setup relies on 16 disjoint indices created from the English
Wikipedia page articles dump [91], yielding an aggregated
index size of 3.5MB. All indices are loaded in memory at
the beginning of the execution to avoid disk accesses. The
experimental workload is a subset of the Lucene nightly re-
gression query list, with 10K queries that comprise of simple
term, Boolean combinations of terms, proximity, and wild-
card queries [57]. The median query service time is 750µs,
with short requests taking less than 450µs and long ones over
10ms.

Figure 10 summarizes the experiment results for running
Lucene++ on a 16-server cluster, each using 16 threads. The
NGINX-JSQ and HTTP-DIRECT experiments rely on 1568

HTTP-DIRECT

RANDOM

NGINX-JSQ

SW-JBSQ(1)

0 2500 5000 7500 10000 12500 15000 17500

Load (RPS)

0

10000

20000

30000

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

Figure 10: Lucene++ running on 16 16-threaded workers

persistent TCP client connections. First, we observe that
HTTP-DIRECT over TCP and RANDOM over R2P2 which are
multi-queue models, have higher tail-latency. Then, we see
that NGINX-JSQ and SW-JBSQ(1) on R2P2 deliver the same
throughput; system and network protocol overheads are irrel-
evant for such coarse-grain workload. Also, n = 1 is enough
to get maximum throughput, given the longer average service
time. SW-JBSQ(1) delivers that throughput via the optimal
single-queue implementation, with a significant impact on tail
latency. As a result, R2P2 lowers the 99th percentile latency
by 5.7× at 50% system load over nginx.

5.6 Redis
Redis [78] supports a master/slave replication scheme with
read-only slaves. We ported Redis on R2P2 and ran it on
DPDK for the Facebook USR workload [5]. We used the
sticky R2P2 policy (see §3) to direct writes to the master
node and we load balance reads across the master and slave
nodes, based on the RANDOM and the JBSQ policy. Redis has
sub-µs service times. Thus, to achieve maximum throughput
we had to increase the number of tokens to 20 per worker
(SW-JBSQ(20)), for the software router. For the vanilla Redis
over TCP clients randomly select one of the servers for read
requests, while they only send write requests to the master.

Figure 11a shows that R2P2, for an SLO of 200µs
at the 99th percentile, achieves 5.30× better through-
put for the USR workload over vanilla Redis over TCP
(TCP-DIRECT) because of reduced protocol and system over-
heads, while SW-JBSQ(20) achieves slightly better through-
put than RANDOM for the same SLO. Figure 11b increases the
write percentage of the workload from 0.2% to 2%, which
increases service time variability: R2P2 RANDOM has 4.09×
better throughput than TCP-DIRECT. SW-JBSQ(20) further
improves throughput by 18%, for a total speedup of 4.8×, as
a result of better load balancing decisions.

6 Related work

RPCs can be transported by different IP-based protocols in-
cluding HTTP2 [10], QUIC [48], SCTP [84], DCCP [47],

USENIX Association 2019 USENIX Annual Technical Conference 873

TCP-DIRECT RANDOM SW-JBSQ(20)

0.0 0.5 1.0 1.5 2.0 2.5

Load (MRPS)

0

100

200

300

9
9
th

 L
a
te

n
c
y
 (

µ
s
)

(a) Standard USR workload [5] (0.2% writes)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Load (MRPS)

0

100

200

300

(b) Modified USR with 2% writes

Figure 11: 99th percentile latency vs. throughput for Redis in a 4-node master/slave configuration.

or similar research approaches [4, 28, 30, 32, 63] that iden-
tify the TCP limitations and optimize for flow-completion
time. Libraries such as gRPC [31] and Thrift [86] abstract
away the underlying transport stream into request-reply pairs.
Approaches such as eRPC [41] aim at end-host system opti-
mizations and are orthogonal to R2P2. Load balancers proxy
RPC protocols such as HTTP in software [23, 66, 69] or in
hardware [1, 16, 25, 60]. R2P2 exposes the RPC abstraction
to the network to achieve better RPC scheduling, and to the
application to hide the complexity of the underlying transport.

Load dispatching, direct or through load balancers, typi-
cally pushes requests to workers, requiring tail-mitigation
techniques [17, 33]. In Join-Idle-Queue [55], workers pull
requests whenever they are idle. R2P2 additionally sup-
ports JBSQ(n), which exposes the tradeoff between maximal
throughput and minimal tail latency explicitly.

Task scheduling in distributed big data systems is largely
aimed at taming tail-latency and sometimes depends on split-
queue designs [19, 20, 44, 71, 75, 77, 92], typically operating
with millisecond-scale or larger tasks. R2P2 provides the
foundation for scheduling of µs-scale tasks.

Multi-core servers are themselves distributed systems with
scheduling and load balancing requirements. This is done by
distributing flows using NIC mechanisms [79] in combina-
tion with operating systems [24, 73] or dataplane [9, 37, 74]
support. Zygos [76] and Shinjuku [40] are an intra-server,
work-conserving schedulers for short tasks that rely on task
stealing and inter-processor interrupts. R2P2 eliminates the
need for complex task stealing strategies by centralizing the
logic in the router.

Recent work has focused on key-value stores [54,59,70,78].
MICA provide concurrent-read/exclusive-access (CREW)
within a server [54] by offloading the routing decisions to the
client, while hardware and software middleboxes [39, 53, 67]
or SDN switches [13, 15] enhance the performance and func-
tionality of key-value stores in-network. RackOut extended
the notion of CREW to rack-scale systems [68]. R2P2 sup-
ports general-purpose RPCs not limited to key-value stores,
together with a mechanisms for steering policies which can

be used to implement CREW both within a single server and
across the datacenter.

Finally, R2P2 adheres and encourages the in-network
compute research path by increasing the network visibility
to application logic and implementing in-network schedul-
ing. Approaches leveraging in-network compute include
caching [39, 53], replicated storage [38], network sequenc-
ing [51, 52], DNN training [81, 82], and database accelera-
tion [50].

7 Conclusion

We revisit the requirements to support µs-scale RPCs across
tiers of web-scale applications and propose to solve the prob-
lem in the network by making RPCs true first-class citizens of
the datacenter. We design, implement and evaluate a proof-of-
concept transport protocol developed specifically for µs-scale
RPCs that exposes the RPC abstraction to the network and at
the endpoints. We showcase the benefits of the new design
by implementing efficient, tail-tolerant µs-scale RPC load-
balancing based on a software router or a programmable P4
ASIC. Our approach outperforms standard load balancing
proxies by an order of magnitude in throughput and latency,
achieves close to the theoretical optimal behavior for 10µs
tasks, reduces the tail latency of websearch by 5.7× at 50%
load, and increases the scalability of Redis in a master-slave
configuration by more than 4.8×.

Acknowledgements

We would like to thank Katerina Argyraki, Jim Larus, the
anonymous reviewers, and our shepherd Mahesh Balakrishnan
on providing valuable feedback on the paper. Also, we would
like to thank Irene Zhang, Dan Ports and Jacob Nelson for
their insights on R2P2. This work was funded in part by a
VMWare grant and by the Microsoft Swiss Joint Research
Centre. Marios Kogias is supported in part by an IBM PhD
Fellowship.

874 2019 USENIX Annual Technical Conference USENIX Association

References

[1] A10 Networks. https://www.a10networks.com/.

[2] Mohammad Alizadeh, Albert G. Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63–74, 2010.

[3] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
Is More: Trading a Little Bandwidth for Ultra-Low La-
tency in the Data Center. In Proceedings of the 9th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 253–266, 2012.

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, pages 435–446, 2013.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of the 2012 ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, pages 53–64,
2012.

[6] Barefoot Networks. Tofino product brief. https://
barefootnetworks.com/products/brief-tofino/,
2018.

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Edition.
Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2013.

[8] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web
Search for a Planet: The Google Cluster Architecture.
IEEE Micro, 23(2):22–28, 2003.

[9] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. The IX Operating System: Com-
bining Low Latency, High Throughput, and Efficiency
in a Protected Dataplane. ACM Trans. Comput. Syst.,
34(4):11:1–11:39, 2017.

[10] M. Belshe, R. Peon, and M. Thomson. Hypertext Trans-
fer Protocol Version 2 (HTTP/2). RFC 7540 (Proposed
Standard), May 2015.

[11] Andrew Birrell and Bruce Jay Nelson. Implementing
Remote Procedure Calls. ACM Trans. Comput. Syst.,
2(1):39–59, 1984.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: programming protocol-independent
packet processors. Computer Communication Review,
44(3):87–95, 2014.

[13] Anat Bremler-Barr, David Hay, Idan Moyal, and Liron
Schiff. Load balancing memcached traffic using soft-
ware defined networking. In Proceedings of the 2017
IFIP Networking Conference, pages 1–9, 2017.

[14] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, An-
thony Giardullo, Sachin Kulkarni, Harry C. Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkateshwaran Venkataramani. TAO: Facebook’s
Distributed Data Store for the Social Graph. In Proceed-
ings of the 2013 USENIX Annual Technical Conference
(ATC), pages 49–60, 2013.

[15] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McK-
eown. AppSwitch: Application-layer Load Balancing
within a Software Switch. In Proceedings of the 1st
Asia-Pacific Workshop on Networking (APNet), pages
64–70, 2017.

[16] Citrix Netscaler ADC. https://www.citrix.com/
products/netscaler-adc/.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of the 21st ACM Sym-
posium on Operating Systems Principles (SOSP), pages
205–220, 2007.

[19] Pamela Delgado, Diego Didona, Florin Dinu, and Willy
Zwaenepoel. Job-aware Scheduling in Eagle: Divide
and Stick to Your Probes. In Proceedings of the 2016
ACM Symposium on Cloud Computing (SOCC), pages
497–509, 2016.

[20] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec,
and Willy Zwaenepoel. Hawk: Hybrid Datacenter
Scheduling. In Proceedings of the 2015 USENIX Annual
Technical Conference (ATC), pages 499–510, 2015.

[21] Data plane development kit. http://www.dpdk.org/.

[22] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th Symposium on Net-
worked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

USENIX Association 2019 USENIX Annual Technical Conference 875

https://www.a10networks.com/
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.citrix.com/products/netscaler-adc/
https://www.citrix.com/products/netscaler-adc/
http://www.dpdk.org/

[23] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody
Smith, Roman Kononov, Eric Mann-Hielscher, Ardas
Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A Fast and Reliable Soft-
ware Network Load Balancer. In Proceedings of the
13th Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 523–535, 2016.

[24] Epollexclusive kernel patch. https://lwn.net/
Articles/667087/, 2015.

[25] F5 Networks, INC. https://f5.com/.

[26] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof
Bornhövd, Stefan Sigg, and Wolfgang Lehner. SAP
HANA database: data management for modern business
applications. SIGMOD Record, 40(4):45–51, 2011.

[27] Fibre channel protocol. https://en.wikipedia.org/
wiki/Fibre_Channel_Protocol.

[28] Bryan Ford. Structured streams: a new transport ab-
straction. In Proceedings of the ACM SIGCOMM 2007
Conference, pages 361–372, 2007.

[29] Armando Fox and Eric A. Brewer. Harvest, Yield and
Scalable Tolerant Systems. In Proceedings of The 7th
Workshop on Hot Topics in Operating Systems (HotOS-
VII), pages 174–178, 1999.

[30] Peter Xiang Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
pHost: distributed near-optimal datacenter transport over
commodity network fabric. In Proceedings of the 2015
ACM Conference on Emerging Networking Experiments
and Technology (CoNEXT), pages 1:1–1:12, 2015.

[31] gRPC. http://www.grpc.io/.

[32] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
pages 29–42, 2017.

[33] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the
26th ACM Symposium on Operating Systems Principles
(SOSP), pages 168–183, 2017.

[34] HAProxy DSR. https://www.haproxy.com/
blog/layer-4-load-balancing-direct-server-
return-mode/.

[35] Md. E. Haque, Yong Hun Eom, Yuxiong He, Sameh
Elnikety, Ricardo Bianchini, and Kathryn S. McKinley.
Few-to-Many: Incremental Parallelism for Reducing
Tail Latency in Interactive Services. In Proceedings
of the 20th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-XX), pages 161–175, 2015.

[36] Intel Corp. Intel 82599 10 GbE Controller Datasheet.
http://www.intel.com/content/dam/www/public/
us/en/documents/datasheets/82599-10-gbe-
controller-datasheet.pdf.

[37] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park.
mOS: A Reusable Networking Stack for Flow Moni-
toring Middleboxes. In Proceedings of the 14th Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pages 113–129, 2017.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination. In
Proceedings of the 15th Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 35–49,
2018.

[39] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles
(SOSP), pages 121–136, 2017.

[40] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µs-scale tail la-
tency. In Proceedings of the 16th Symposium on Net-
worked Systems Design and Implementation (NSDI),
2019.

[41] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In Proceed-
ings of the 16th Symposium on Networked Systems De-
sign and Implementation (NSDI), 2019.

[42] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Using RDMA efficiently for key-value services. In
Proceedings of the ACM SIGCOMM 2014 Conference,
pages 295–306, 2014.

[43] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of the 12th Symposium on Operating Sys-
tem Design and Implementation (OSDI), pages 185–201,
2016.

876 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/667087/
https://lwn.net/Articles/667087/
https://f5.com/
https://en.wikipedia.org/wiki/Fibre_Channel_Protocol
https://en.wikipedia.org/wiki/Fibre_Channel_Protocol
http://www.grpc.io/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
https://www.haproxy.com/blog/layer-4-load-balancing-direct-server-return-mode/
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf

[44] Konstantinos Karanasos, Sriram Rao, Carlo Curino,
Chris Douglas, Kishore Chaliparambil, Giovanni Mat-
teo Fumarola, Solom Heddaya, Raghu Ramakrishnan,
and Sarvesh Sakalanaga. Mercury: Hybrid Centralized
and Distributed Scheduling in Large Shared Clusters.
In Proceedings of the 2015 USENIX Annual Technical
Conference (ATC), pages 485–497, 2015.

[45] Marios Kogias and Edouard Bugnion. Flow Control
for Latency-Critical RPCs. In Proceedings of the 2018
SIGCOMM Workshop on Kernel Bypassing Networks,
KBNets’18, pages 15–21. ACM, 2018.

[46] Marios Kogias, Stephen Mallon, and Edouard Bugnion.
Lancet: A self-correcting Latency Measuring Tool. In
Proceedings of the 2019 USENIX Annual Technical Con-
ference (ATC), 2019.

[47] E. Kohler, M. Handley, and S. Floyd. Datagram Con-
gestion Control Protocol (DCCP). RFC 4340 (Proposed
Standard), March 2006. Updated by RFCs 5595, 5596,
6335, 6773.

[48] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan R. Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the ACM SIGCOMM
2017 Conference, pages 183–196, 2017.

[49] Jean-Yves Le Boudec. Performance Evaluation of Com-
puter and Communication Systems. EPFL Press, Lau-
sanne, Switzerland, 2010.

[50] Alberto Lerner, Rana Hussein, and Philippe Cudré-
Mauroux. The Case for Network Accelerated Query
Processing. In Proceedings of the 9th Biennial Con-
ference on Innovative Data Systems Research (CIDR),
2019.

[51] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of the
26th ACM Symposium on Operating Systems Principles
(SOSP), pages 104–120, 2017.

[52] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of the 12th Symposium on Operat-
ing System Design and Implementation (OSDI), pages
467–483, 2016.

[53] Xiaozhou Li, Raghav Sethi, Michael Kaminsky,
David G. Andersen, and Michael J. Freedman. Be Fast,
Cheap and in Control with SwitchKV. In Proceedings
of the 13th Symposium on Networked Systems Design
and Implementation (NSDI), pages 31–44, 2016.

[54] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In Proceedings of
the 11th Symposium on Networked Systems Design and
Implementation (NSDI), pages 429–444, 2014.

[55] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R.
Larus, and Albert G. Greenberg. Join-Idle-Queue: A
novel load balancing algorithm for dynamically scalable
web services. Perform. Eval., 68(11):1056–1071, 2011.

[56] Lucene++. https://github.com/luceneplusplus/
LucenePlusPlus.

[57] Lucene nightly benchmarks. https://
home.apache.org/~mikemccand/lucenebench.

[58] David Meisner, Christopher M. Sadler, Luiz André Bar-
roso, Wolf-Dietrich Weber, and Thomas F. Wenisch.
Power management of online data-intensive services.
In Proceedings of the 38th International Symposium on
Computer Architecture (ISCA), pages 319–330, 2011.

[59] Memcached. https://memcached.org/.

[60] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
In Proceedings of the ACM SIGCOMM 2017 Confer-
ence, pages 15–28, 2017.

[61] Michael Mitzenmacher. The Power of Two Choices
in Randomized Load Balancing. IEEE Trans. Parallel
Distrib. Syst., 12(10):1094–1104, 2001.

[62] In-memory mongodb. https://docs.mongodb.com/
manual/core/inmemory/.

[63] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: a receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the ACM SIGCOMM 2018 Conference,
pages 221–235, 2018.

[64] Nginx. https://www.nginx.com/.

[65] NGINX DSR: IP Transparency and Direct Server Return
with NGINX and NGINX Plus as Transparent Proxy.
https://www.nginx.com/blog/.

[66] NGINX Reverse Proxy. https://docs.nginx.com/
nginx/admin-guide/web-server/reverse-
proxy/.

USENIX Association 2019 USENIX Annual Technical Conference 877

https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus
https://home.apache.org/~mikemccand/lucenebench
https://home.apache.org/~mikemccand/lucenebench
https://memcached.org/
https://docs.mongodb.com/manual/core/inmemory/
https://docs.mongodb.com/manual/core/inmemory/
https://www.nginx.com/
https://www.nginx.com/blog/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

[67] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing Memcache at Facebook. In Proceedings of the 10th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 385–398, 2013.

[68] Stanko Novakovic, Alexandros Daglis, Dmitrii Ustiu-
gov, Edouard Bugnion, Babak Falsafi, and Boris Grot.
Mitigating Load Imbalance in Distributed Data Serving
with Rack-Scale Memory Pooling. ACM Trans. Comput.
Syst., 36(2):6:1–6:37, 2019.

[69] Vladimir Andrei Olteanu, Alexandru Agache, Andrei
Voinescu, and Costin Raiciu. Stateless Datacenter Load-
balancing with Beamer. In Proceedings of the 15th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 125–139, 2018.

[70] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego
Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.
The RAMCloud Storage System. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[71] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proceedings of the 24th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 69–84, 2013.

[72] The P4 Language Specification. https://p4.org/
p4-spec/p4-14/v1.0.4/tex/p4.pdf. Accessed on
20.09.2018.

[73] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert Tappan Morris. Improving network connec-
tion locality on multicore systems. In Proceedings of
the 2012 EuroSys Conference, pages 337–350, 2012.

[74] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas E. Ander-
son, and Timothy Roscoe. Arrakis: The Operating Sys-
tem Is the Control Plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, 2016.

[75] Russell Power and Jinyang Li. Piccolo: Building Fast,
Distributed Programs with Partitioned Tables. In Pro-
ceedings of the 9th Symposium on Operating System
Design and Implementation (OSDI), pages 293–306,
2010.

[76] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the 26th ACM
Symposium on Operating Systems Principles (SOSP),
pages 325–341, 2017.

[77] Jeff Rasley, Konstantinos Karanasos, Srikanth Kandula,
Rodrigo Fonseca, Milan Vojnovic, and Sriram Rao. Ef-
ficient queue management for cluster scheduling. In
Proceedings of the 2016 EuroSys Conference, pages
36:1–36:15, 2016.

[78] Redis. https://redis.io/.

[79] Microsoft corp. receive side scaling. http:
//msdn.microsoft.com/library/windows/
hardware/ff556942.aspx.

[80] Jerome H. Saltzer, David P. Reed, and David D. Clark.
End-To-End Arguments in System Design. ACM Trans.
Comput. Syst., 2(4):277–288, 1984.

[81] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-Network Com-
putation is a Dumb Idea Whose Time Has Come. In
Proceedings of The 16th ACM Workshop on Hot Topics
in Networks (HotNets-XVI), pages 150–156, 2017.

[82] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nel-
son, Panos Kalnis, Changhoon Kim, Arvind Krishna-
murthy, Masoud Moshref, Dan R. K. Ports, and Peter
Richtárik. Scaling Distributed Machine Learning with
In-Network Aggregation. CoRR, abs/1903.06701, 2019.

[83] Bianca Schroeder, Adam Wierman, and Mor Harchol-
Balter. Open Versus Closed: A Cautionary Tale. In
Proceedings of the 3rd Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2006.

[84] R. Stewart. Stream Control Transmission Protocol. RFC
4960 (Proposed Standard), September 2007. Updated
by RFCs 6096, 6335, 7053.

[85] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The End of an Architectural Era (It’s Time for a Com-
plete Rewrite). In Proceedings of the 33rd International
Conference on Very Large DataBases (VLDB), pages
1150–1160, 2007.

[86] Apache thrift. https://thrift.apache.org/.

[87] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP), pages 18–32, 2013.

[88] Voltdb. https://www.voltdb.com/.

[89] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing us-
ing RDMA and HTM. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP),
pages 87–104, 2015.

878 2019 USENIX Annual Technical Conference USENIX Association

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://redis.io/
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/hardware/ff556942.aspx
https://thrift.apache.org/
https://www.voltdb.com/

[90] Adam Wierman and Bert Zwart. Is Tail-Optimal
Scheduling Possible? Operations Research, 60(5):1249–
1257, 2012.

[91] The english wikipedia page article dump. https://
dumps.wikimedia.org/enwiki/20180401.

[92] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: a unified engine for big
data processing. Commun. ACM, 59(11):56–65, 2016.

[93] Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient
and Available In-memory KV-Store with Hybrid Erasure
Coding and Replication. In Proceedings of the 14th
USENIX Conference on File and Storage Technologie
(FAST), pages 167–180, 2016.

[94] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the ACM SIGCOMM

2015 Conference, pages 523–536, 2015.

USENIX Association 2019 USENIX Annual Technical Conference 879

https://dumps.wikimedia.org/enwiki/20180401
https://dumps.wikimedia.org/enwiki/20180401

	Introduction
	Background
	Datacenter RPCs
	Load balancing
	As a queuing theory problem

	R2P2: A transport protocol for RPCs
	Transport considerations
	API
	JBSQ router design considerations

	Implementation
	r2p2-lib
	Router - software implementation
	P4/Tofino implementation

	Evaluation
	Router characterization
	Synthetic Time Microbenchmarks
	Multi-packet Requests Microbenchmark
	Using R2P2 for server work conservation
	Lucene++
	Redis

	Related work
	Conclusion

