
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Your Coflow has Many Flows:
Sampling them for Fun and Speed

Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin, Purdue University

https://www.usenix.org/conference/atc19/presentation/jajoo

Your Co�ow Has Many Flows: Sampling Them for Fun and Speed

Akshay Jajoo
ajajoo@purdue.edu

Y. Charlie Hu
ychu@purdue.edu
Purdue University

Xiaojun Lin
linx@purdue.edu

Abstract
Co�ow scheduling improves data-intensive application per-
formance by improving their networking performance. State-
of-the-art online co�ow schedulers in essence approximate
the classic Shortest-Job-First (SJF) scheduling by learning the
co�ow size online. In particular, they use multiple priority
queues to simultaneously accomplish two goals: to sieve long
co�ows from short co�ows, and to schedule short co�ows
with high priorities. Such a mechanism pays high overhead
in learning the co�ow size: moving a large co�ow across
the queues delays small and other large co�ows, and moving
similar-sized co�ows across the queues results in inadvertent
round-robin scheduling.

We propose Philae, a new online co�ow scheduler that
exploits the spatial dimension of co�ows, i.e., a co�ow has
many �ows, to drastically reduce the overhead of co�ow size
learning. Philae pre-schedules sampled �ows of each co�ow
and uses their sizes to estimate the average �ow size of the
co�ow. It then resorts to Shortest Co�ow First, where the no-
tion of shortest is determined using the learned co�ow sizes
and co�ow contention. We show that the sampling-based
learning is robust to �ow size skew and has the added bene�t
of much improved scalability from reduced coordinator-local
agent interactions. Our evaluation using an Azure testbed,
a publicly available production cluster trace from Facebook
shows that compared to the prior art Aalo, Philae reduces
the co�ow completion time (CCT) in average (P90) cases by
1.50× (8.00×) on a 150-node testbed and 2.72× (9.78×) on a
900-node testbed. Evaluation using additional traces further
demonstrates Philae’s robustness to �ow size skew.

1 Introduction

1.1 Motivation
In big data analytics jobs, speeding up the communication
stage where the data is transferred between compute nodes
is important to speed up the jobs. However, improving net-
work level metrics such as �ow completion time may not
translate into improvements at the application level metrics
such as job completion time. The co�ow abstraction [18] was
proposed to bridge such a gap. The abstraction captures the
collective network requirements of applications, as reduced
co�ow completion time (CCT) can directly lead to faster job
completion time [20, 24].

There have been a number of e�orts on network designs
for co�ows [7, 21, 27] that assume complete prior knowledge
of co�ow sizes (The co�ow size is de�ned as the total size of
its constituent �ows.). However, in many practical settings,
co�ow characteristics are not known a priori. For example,
multi-stage jobs pipeline data from one stage to the next
as soon as the data is generated, which makes it di�cult
to know the size of each �ow [22, 40]. A recent study [40]
shows various other reasons why it is not very plausible to
learn �ow sizes from applications, for example, learning �ow
sizes from applications requires changing either the network
stack or the applications.

Scheduling co�ows in such non-clairvoyant settings, how-
ever, is challenging. The major challenge in developing an
e�ective non-clairvoyant co�ow scheduling scheme has cen-
tered around how to learn the co�ow sizes online quickly
and accurately, as once the co�ow sizes (bytes to be trans-
ferred) can be estimated, one can apply variations of the
classic Shortest-Job-First (SJF) algorithm such as Shortest
Co�ow First [21] or apply an LP solver (e.g., [7]).

State-of-the-art online non-clairvoyant schedulers such as
Saath [30], Gravtion [29] and Aalo [19] in essence learn
co�ow sizes and approximate SJF using discrete priority
queues, where all newly arriving co�ows start from the high-
est priority queue, and move to lower priority queue as they
send more data (without �nishing), i.e., cross the per-queue
thresholds. In this way, the smaller co�ows �nish in high
priority queues, while the larger co�ows gradually move to
the lower priority queues where they �nish after smaller
co�ows.

To realize the above idea in scheduling co�ows which have
�ows at many network ports, i.e., in a distributed setting, Aalo
uses a global coordinator to assign co�ows to logical priority
queues, and uses the total bytes sent by all �ows of a co�ow as
its logical “length” in moving co�ows across the queues. The
logical priority queues are mapped to local priority queues
at each port, and the individual local ports then schedule the
�ows in its local priority queues, e.g., by enumerating �ows
from the highest to lowest priority queues and using FIFO
to order the �ows within each queue.

In essence, Aalo learns co�ow sizes by actually scheduling
the co�ow, a “try and miss” approach to approximate SJF. As
co�ow sizes are not known, in each queue, Aalo schedules
each co�ow for a �xed amount of data (try). If the co�ow
does not �nish (miss), it is demoted to a lower priority queue.

USENIX Association 2019 USENIX Annual Technical Conference 833

Afterwards, such a co�ow will no longer block co�ows in
higher priority queues.

Using multiple priority queues to learn the relative co�ow
sizes of co�ows this way, however, negatively a�ects the
average CCT and the scalability of the coordinator:

(1) Intrinsic queue-transit overhead: Every co�ow
that Aalo transits through the queues before reaching its
�nal queue worsens the average CCT because during transi-
tions, such a co�ow e�ectively blocks other shorter co�ows in
the earlier queues it went through, which would have been
scheduled before this co�ow starts in a perfect SJF.

(2) Overhead due to inadvertent round-robin: Al-
though Aalo attempts to approximate SJF, it inadvertently
ends up doing round-robin for co�ows of similar sizes as it
moves them across queues. Aalo assigns a �xed threshold of
data transfer for each co�ow in each queue. Assume there
are “N” co�ows in a queue that do not �nish in that queue.
Aalo schedules one co�ow (chosen using FIFO) and demotes
it to a lower priority queue when the co�ow reaches the
data threshold. At that point, the next co�ow from the same
queue is scheduled, which joins the previous co�ow at a
lower priority queue after exhausting its quantum, and this
cycle continues as co�ows of similar sizes move through
the queues. E�ectively, these co�ows experience the round-
robin scheduling which is known to have the worst average
CCT [39], when jobs are of similar sizes.

(3) Limited scalability from frequent updates from
local ports: To support the try-and-error style learning, the
coordinator requires frequent updates from all local ports
of the bytes sent for each co�ow in order to move co�ows
across multiple queues timely. This results in high load on
the central coordinator from receiving frequent updates and
calculating and sending new rate allocations, which limits
the scalability of the overall approach.
Empirical measurement We quantify the co�ow size
learning overhead of Aalo, de�ned as the portion of the bytes
of a co�ow that has been transferred (or the fraction of its
CCT spent in doing so) before reaching its correct queue,
using a trace from Facebook clusters [4] (see detailed method-
ology in §8). Figure 1 shows that 40% of the co�ows that
moved beyond the initial queue reached the correct priority
queue after spending more than 20% of their CCT moving
across early queues.

1.2 Our Contribution
We propose Philae, a new non-clairvoyant co�ow scheduler
with a dramatically di�erent approach to learning co�ow
sizes to enable online SJF. To leverage optimal scheduling
SJF in co�ow scheduling, it is vital to learn the co�ow sizes
quickly and accurately. Philae achieves this objective by
exploiting the spatial dimension of co�ows, i.e., a co�ow typ-
ically consists of many �ows, via sampling, a highly e�ective
technique used in large-scale surveys [34]. In particular, Phi-
lae pre-schedules sampled �ows, called pilot �ows, of each

10−3 10−2 10−1 100

Learning time/Total time

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Philae
Aalo

Figure 1: CDF of learning overhead per co�ow, i.e., the time
to reach the correct priority queue as a fraction of CCT,
excluding co�ows directly scheduled by Philae or �nish in
Aalo’s �rst queue.
co�ow and uses their measured size to estimate the co�ow
size. It then resorts to SCF using the estimated job size.

Intuitively, such a sampling scheme avoids all three
sources of overhead in Aalo – Once the co�ow sizes are
learned, the co�ows are assigned to the correct queues, which
avoids the intrinsic queue-transit and round-robin e�ects.
Further, a sampling-based design has an important bene�t –
it o�ers much higher scalability than priority-queue-based
learning in Aalo. This is because unlike Aalo, after estimating
the co�ow size, Philae clients do not need to send periodic
updates of bytes sent-so-far to the centralized coordinator.

Developing a complete non-clairvoyant co�ow scheduler
based on the simple sampling idea raises three questions:
(1) Why is sampling more e�cient than the priority-queue-
based co�ow size learning? (2) Will sampling be e�ective in
the presence of skew of �ow sizes? (3) How to design the
complete scheduler architecture? We systematically address
these questions with design rational, theoretical analysis,
system design, prototyping, and extensive evaluation.

In summary, this paper makes the following contributions:
(1) Using a production datacenter trace from Facebook, we
show that the prior art scheduler Aalo spends substantial
amount of time and network bandwidth in learning co�ow
sizes, which negatively a�ects the CCT of co�ows.
(2) We propose the novel idea of applying sampling in the
spatial dimension of co�ow to signi�cantly reduce the over-
head of online learning co�ow sizes.
(3)We present theoretical underpinning explaining why sam-
pling remains e�ective in the presence of �ow size skew.
(4) We present the design and implementation of Philae.
(5) We extensively evaluate Philae via simulations and
testbed experiments, and show that compared to the prior
art, the new design reduces the average CCT by 1.51× for
the Facebook co�ow trace and by 1.36× for a trace with
properties similar to a Microsoft production cluster.
(6) The CCT improvement mainly stems from reduced co�ow
size learning overhead. Philae reduces the median latency
and data sent in �nding the right queue for co�ows in Aalo
by 19.0× and 20.0×, respectively (§8.2).

834 2019 USENIX Annual Technical Conference USENIX Association

2 Background and Problem Statement

We start with a brief review of the co�ow abstraction and the
need for non-clairvoyant co�ow scheduling. We then state
the network model and problem formulation.

Co�ow abstraction In data-parallel applications such as
Hadoop [1] and Spark [2], the job completion time heav-
ily depends on the completion time of the communication
stage [12, 20]. The co�ow abstraction [18] was proposed to
speed up the communication stage to improve application
performance. A co�ow is de�ned as a set of �ows between
several nodes that accomplish a common task. For example,
in map-reduce jobs, the set of all �ows from all map to all
reduce tasks in a single job forms a typical co�ow. The co�ow
completion time (CCT) is de�ned as the time duration be-
tween when the �rst �ow arrives and the last �ow completes.
In such applications, improving CCT is more important than
improving individual �ows’ completion time (FCT) for im-
proving the application performance [19, 21, 24, 29, 30].

Non-clairvoyant co�ows Data-parallel directed acyclic
graphs (DAGs) typically have multiple stages which are rep-
resented as multiple co�ows with dependencies between
them. Recent systems (e.g., [3, 22, 28, 36]) employ optimiza-
tions that pipeline the consecutive computation stages which
removes the barrier at the end of each co�ow, making know-
ing �ow sizes of each co�ow beforehand di�cult. Thus in
this paper, we focus on non-clairvoyant co�ow scheduling
which do not assume knowledge about co�ow characteristics
such as �ow sizes upon co�ow arrival.

Non-blocking network fabric We assume the same non-
blocking network fabric model in recent network designs for
co�ows [7,19,21,29,30], where the datacenter network fabric
is abstracted as a single non-blocking switch that intercon-
nects all the servers, and each server (computing node) is
abstracted as a network port that sends and receives �ows. In
such a model, the ports, i.e., server uplinks and downlinks, are
the only source of contention as the network core is assumed
to be able to sustain all tra�c injected into the network. We
note that the abstraction is to simplify our description and
analysis, and is not required or enforced in our evaluation.

Problem statement Our goal is to develop an e�cient non-
clairvoyant co�ow scheduler that optimizes the communication
performance, in particular the average CCT, of data-intensive
applications without prior knowledge, while guaranteeing star-
vation freedom and work conservation and being resilient
to the network dynamics. The problem of non-clairvoyant
co�ow scheduling is NP-hard because co�ow scheduling
even assuming all co�ows arrive at time 0 and their size are
known in advance is already NP-hard [21]. Thus practical
non-clairvoyant co�ow schedulers are approximation algo-
rithms. Our approach is to dynamically prioritize co�ows by
e�ciently learning their �ow sizes online.

3 Key Idea

Our new non-clairvoyant co�ow scheduler design, Philae, is
based on a key observation about co�ows that a co�ow has a
spatial dimension, i.e., it typically consists of many �ows. We
thus propose to explicitly learn co�ow sizes online by using
sampling, a highly e�ective technique used in large-scale sur-
veys [34]. In particular, Philae preschedules sampled �ows,
called pilot �ows, of each co�ow and uses their measured
sizes to estimate the co�ow size. It then resorts to SJF or
variations using the estimated co�ow sizes.

Developing a complete non-clairvoyant co�ow scheduler
based on the simple sampling idea raises three questions:

(1) Why is sampling more e�cient than the priority-queue-
based co�ow size learning? Would scheduling the remaining
�ows after sampled pilot �ows are completed adversely a�ect
the co�ow completion time?

(2) Will sampling be e�ective in the presence of skew of �ow
sizes?

(3) How to design the complete scheduler architecture?
We answer the �rst two questions below, and present the

complete architecture design in §4.

3.1 Why is sampling more e�cient?

Scheduling pilot �ows �rst before the rest of the �ows can
potentially incur two sources of overhead. First, schedul-
ing pilot �ows of a newly arriving co�ow consumes port
bandwidth which can delay other co�ows (with already esti-
mated sizes). However, compared to the multi-queue based
approach, the overhead is much smaller for two reasons: (1)
Philae schedules only a small subset of the �ows (e.g., fewer
than 1% for co�ows with many �ows). (2) Since the CCT of a
co�ow depends on the completion of its last �ow, some of its
earlier �nishing �ows could be delayed without a�ecting the
CCT. Philae exploits this observation and schedules pilot
�ows on the least-busy ports to increase the odds that it only
a�ects earlier �nishing �ows of other co�ows.

Second, scheduling pilot �ows �rst may elongate the CCT
of the newly arriving co�ow itself whose other �ows cannot
start until the pilot �ows �nish. This is again typically in-
signi�cant for two reasons: (1) A co�ow (e.g., from a MapRe-
duce job) typically consists of �ows from all sending ports
to all receiving ports. Conceptually, pre-scheduling one out
of multiple �ows from each sender may not delay the co�ow
progress at that port, because all �ows at that port have to
be sent anyway. (2) Co�ow scheduling is of high relevance
in a busy cluster (when there is a backlog of co�ows in the
network), in which case the CCT of co�ow is expected to
be much higher than if it were the only co�ow in the net-
work, and hence the piloting overhead is further dwarfed by
a co�ow’s actual CCT.

USENIX Association 2019 USENIX Annual Technical Conference 835

3.2 Why is sampling e�ective in the pres-
ence of skew?

The �ow sizes within a co�ow may vary (skew). Intuitively,
if the skew across �ow sizes is small, sampling even a small
number of pilot �ows will be su�cient to yield an accurate
estimate. Interestingly, even if the skew across �ow sizes is
large, our experiment indicates that sampling is still highly
e�ective. In the following, we give both the intuition and
theoretical underpinning for why sampling is e�ective.

Consider, for example, two co�ows and the simple setting
where both co�ows share the same set of ports. In order to
improve the average CCT, we wish to schedule the shorter
co�ow ahead of the longer co�ow. If the total sizes of the
two co�ows are very di�erent, then even a moderate amount
of estimation error of the co�ow sizes will not alter their
ordering. On the other hand, if the total sizes of the two
co�ows are close to each other, then indeed the estimation
errors will likely alter their ordering. However, in this case
since their sizes are not very di�erent anyway, switching the
order of these two co�ows will not signi�cantly a�ect the
average CCT.
Analytic results. To illustrate the above e�ect, we show
that the gap between the CCT based on sampling and assum-
ing perfect knowledge is small, even under general �ow size
distributions. Speci�cally, co�ows C1 and C2 have cn1 and
cn2 �ows, respectively. Here, we assume that n1 and n2 are
�xed constants. Thus, by taking c to be larger, we will be
able to consider wider co�ows. Assume that each �ow of C1
(correspondingly, C2) has a size that is distributed within a
bounded interval [a1,b1] ([a2,b2]) with mean µ1 (µ2), i.i.d.
across �ows. However, the exact distributions can be arbi-
trary. Let T c be the total completion time when the exact
�ow sizes are known in advance. Let T̃ c be the average CCT
by sampling m1 and m2 �ows from C1 and C2, respectively.
Without loss of generality, we assume that n2µ2≥ n1µ1. Then,
using Hoe�ding’s Inequality, we can show that,

lim
c→∞

T̃ c−T c

T c ≤ 4exp

− 2(n2µ2−n1µ1)
2(

n2(b2−a2)√
m2

+ n1(b1−a1)√
m1

)2

 n2µ2−n1µ1

n2µ2 +2n1µ1

(1)
(Note that here we have used the fact that, since both co�ows
share the same set of ports and c is large, the CCT is asymp-
totically proportional to the co�ow size.)

Equation (1) can be interpreted as follows. First, due to
the �rst exponential term, the relative gap between T̃ c and
T c decreases as b1−a1 and b2−a2 decrease. In other words,
as the skew of each co�ow decreases, sampling becomes
more e�ective. Second, when b1−a1 and b2−a2 are �xed,
if n2µ2 − n1µ1 is large (i.e., the two co�ow sizes are very
di�erent), the value of the exponential function will be small.
On the other hand, if n2µ2− n1µ1 is close to zero (i.e., the
two co�ow sizes are close to each other), the numerator on

the second term on the right hand side will be small. In both
cases, the relative gap between T̃ c and T c will also be small,
which is consistent with the intuition explained earlier. The
largest gap occurs when n2µ2− n1µ1 is on the same order
as n2(b2−a2)√

m2
+ n1(b1−a1)√

m1
. Finally, although these analytical

results assume that both co�ows share the same set of ports,
similar conclusions on the impact of estimation errors due
to sampling also apply under more general settings.

The above analytical results suggest that, when c is large,
the relative performance gap for CCT is a function of the
number of pilot �ows sampled for each co�ow, but is indepen-
dent of the total number of �ows in each co�ow. In practice,
large co�ows will dominate the total CCT in the system.
Thus, these results partly explain that, while in our experi-
ments the number of pilot �ows is never larger than 1% of
the total number of �ows, the performance of our proposed
approach is already very good.

Finally, the above analytical results do not directly tell
us how to choose the number of pilot �ows, which likely
depends on the probability distribution of the �ow size. In
practice, we do not know such distribution ahead of time.
Further, while choosing a larger number of pilot �ows re-
duces the estimation errors, it also incurs higher overhead
and delay. Therefore, our design (§4) needs to have practical
solutions that carefully address these issues.

4 Philae Design

In this section, we present the detailed design of Philae,
which addresses three design challenges: (1) Co�ow size es-
timation: How to choose and schedule the pilot �ows for
each newly arriving co�ow? (2) Starvation avoidance: How
to schedule co�ows after size estimation using variations
of SJF that avoid starvation? (3) Co�ow scheduling: How to
schedule among all the co�ows with estimated sizes?

4.1 Philae architecture

Fig. 2 shows the Philae architecture. Philae models the
entire datacenter as a single big-switch with each computing
node as an individual port. The scheduling task in Philae is
divided among (1) a central coordinator, and (2) local agents
that run on individual ports. A computing framework such
as Spark [42] �rst registers (removes) a co�ow when a job
arrives (�nishes). Upon a new co�ow arrival, old co�ow com-
pletion, or pilot �ow completion, the coordinator calculates
a new co�ow schedule, which includes (1) co�ows that are to
be scheduled in the next time slot, and (2) �ow rates for the
individual �ows of a co�ow, and pushes this information to
the local agents which use this information to allocate their
bandwidth. The local agents will follow the current schedule
until they receive a new schedule.

836 2019 USENIX Annual Technical Conference USENIX Association

Pilot flow queue

Priority queues

Framework

Local Agent

Coordinator CoFlow operations

Task 1

Task N

…

Port

Set priority

Figure 2: Philae architecture.

4.2 Sampling pilot �ows

As discussed in §3, Philae estimates the size of a co�ow
online by actually scheduling a subset of its �ows (pilot �ows)
at their ports. We do not schedule the �ows of a co�ow other
than the pilot �ows until the completion of the pilot �ows in
order to avoid unnecessary extra blocking of other potentially
shorter co�ows.
How many pilot �ows? When a new co�ow arrives, Phi-
lae �rst needs to determine the number of pilot �ows. As
discussed at the end of §3, the number of pilot �ows a�ects the
trade-o� between the co�ow size estimation accuracy and
scheduling overhead. For co�ows with skewed �ow sizes, ac-
curately estimating the total co�ow size potentially requires
sampling the sizes of many pilot �ows. However, scheduling
pilot �ows has associated overhead, i.e., if the co�ow turns
out to be a large co�ow and should have been scheduled to
run later under SJF.

We explore several design options for choosing the number
of pilot �ow. Two natural design choices are using a constant
number of pilot �ows or a �xed fraction of the total number of
�ows of a co�ow. In addition, we observe that typical co�ows
consist of �ows between a set of senders (e.g., mappers) and
a set of receivers (e.g., reducers) [23]. We thus include a third
design choice of a �xed fraction of sending ports. This design
also spreads the pilot �ows to avoid having multiple pilot
�ows contending for the same sending ports. We empirically
found that (§8.2) limiting the pilot �ows to 5% to 10% of the
number of its sending ports (e.g., mappers in a MapReduce
co�ow) strikes a good balance between estimation accuracy
and overhead. We note the total number of �ows sampled in
this case is still under 1%.

Finally, we estimate the total co�ow size as S = fi ·N, where
N is the number of �ows in a co�ow, and fi is the average
size of the sampled pilot �ows.
Which �ows to probe? Second, Philae needs to decide
which ports to schedule the chosen number of probe �ows
for a co�ow. For this, we use a simple heuristic where, upon
the arrival of a new co�ow, we select the ports for its pilot

�ows that are least busy, i.e., having pilot �ows from the least
number of other co�ows. Philae starts with the least busy
sending port and iterates over receiving ports starting with
the least busy receiving port and assigns the �ow if it exists.
It then updates the statistics for the number of pilot �ows
scheduled at each port and repeats the above process. Such
a choice will likely delay fewer co�ows when the pilot �ows
are scheduled and hence reduce the elongation on their CCT.
We note that such an online heuristic may not be optimal;
more sophisticated algorithms can be derived by picking
ports for multiple co�ows together. However, we make this
design choice for its simplicity and low time complexity to
ensure that the coordinator makes fast decisions.
How to schedule pilot �ows? In Philae, we prioritize the
pilot �ows of a new co�ow over existing �ows to accelerate
learning the size of the new co�ow. In particular, at each port,
pilot �ows have high priority over non-pilot �ows. If there
are multiple outstanding pilot �ows (of di�erent co�ows) at
a port, Philae schedules them in the FIFO order.

4.3 Co�ow scheduling with starvation
avoidance

Once the sizes of co�ows are learned, we can apply variations
of the SJF policy to schedule them. However, it is well known
that such policies can lead to starvation.

There are many ways to mitigate the starvation issue.
However, a subtlety arises where even slight di�erence in
how starvation is addressed can result in di�erent performance.
For example, the multiple priority queues in Aalo has the
bene�t of ensuring progress of all co�ows, but assigning
di�erent time-quanta to di�erent priority queues can result
in di�erent average CCT for the same workload. To ensure
the fairness of performance comparison with Aalo, we need
to ensure that both Philae and Aalo provide the same level
of starvation freedom (or progress measure).

For this reason, in this paper, we inherit the multiple pri-
ority queue structure from Aalo for co�ow scheduling. As
in Aalo, Philae sorts the co�ows among multiple priority
queues. In particular,Philae uses N queues, Q0 to QN−1, with
each queue having lower queue threshold Qlo

q and higher
threshold Qhi

q , where Qlo
0 = 0, Qhi

N−1 = ∞, Qlo
q+1 = Qhi

q , and the
queue thresholds grow exponentially, i.e., Qhi

q+1 = E · Qhi
q .

The overall co�ow scheduling in Philae works as follows.
After the co�ow size is estimated using pilot �ows, Philae
assigns the co�ow to the priority queue using inter-co�ow
policies discussed in §4.4. Within a queue, we use FIFO to
schedule co�ows. Lastly, we use weighted sharing of net-
work bandwidth among the queues, where a priority queue
receives a network bandwidth based on its priority. As in
Aalo, the weights decrease exponentially with decrease in
the priority of the queues.

Using FIFO within the priority queue and weighted fair
sharing among the queues together ensure the same starva-

USENIX Association 2019 USENIX Annual Technical Conference 837

tion freedom and thus meaningful performance comparison
between Philae and Aalo [19].

4.4 Inter-co�ow scheduling policies
In Philae, we explore four di�erent scheduling policies based
on di�erent combinations of co�ow size and contention, two
size-based policies (A, B) as in Aalo, a contention-based, sim-
ilar to the intra-queue policy used in Saath [30] (C), and a
new contention-and-length-based policy (D):
(A) Smallest job �rst:Co�ows are sorted based on co�ow

size (l ·n).
(B) Smallest remaining data �rst: Co�ows are sorted

based on remaining data (l ·n−d).
(C) Least contention �rst: Co�ows are sorted based on

their contention (c).
(D) Least length-weighted total-port contention

�rst: Co�ows are sorted based on the sum of port-wise con-
tention times estimated �ow length ∑

p
cp · l.

We use the following parameters of a co�ow to de�ne the
metrics in scheduling algorithms: (1) average �ow length (l)
from piloting, (2) number of �ows (n), (3) number of sender
and receiver ports (s,r), (4) total amount of data sent so
far (d), (5) contention (c), de�ned as the number of other
co�ows sharing any ports with the given co�ow, and (6)
port-wise contention (cp), de�ned as the number of other
co�ows blocked at a given port p.
Philae uses Policy D by default, as it results in the least

average CCT (§8). For all policies, we continue to use the
priority-queue based scheduling, and the algorithms only
di�er in what metric they use in assigning co�ows to the pri-
ority queues. In contrast, Aalo does not handle inter-co�ow
contention, and uses the total bytes sent so far (d) to move
co�ows across multiple priority queues.

4.5 Rate allocation
Once the scheduling order of the co�ows is determined, we
need to determine the rates for the individual �ows at each
port. First, since we want to quickly �nish the pilot �ow,
at any port that has pilot �ows, Philae assigns the entire
port bandwidth to the pilot �ows. For the remaining ports,
as discussed in §4.3, across multiple queues, Philae assigns
weighted shares of the port bandwidth, by assigning them
varying numbers of scheduling intervals according to the
weights assigned to each priority queues.

Second, at each scheduling interval, Philae assigns rates
for the �ows of the co�ow in the head of the FIFO queue as
follows. It assigns equal rates at all the ports containing its
�ows as there is no bene�t in speeding-up its �ows at certain
ports when its CCT depends on the slowest �ow. At each port,
we could use max-min fairness to schedule the individual
�ows of the co�ow (to di�erent receivers), and then assign
the rate of the slowest �ow to all the �ows in the co�ow.
Afterwards, the port-allocated bandwidths are incremented

accordingly at the coordinator, which then allocates rates
for the next co�ow in the same FIFO queue, and so on.

Though the above max-min approach has the advantage of
minimizing bandwidth wastage, it slows down the coordina-
tor which has to iterate over many �ows. In our experiments,
we used a simple scheme where we assign the entire band-
width at the sender and receiver ports to one �ow of the
co�ow at the head of the FIFO queue at a time. We found
that this simple scheme has very marginal e�ect on CCTs
but makes the rate assignment process considerably faster.

4.6 Additional design issues

Thin co�ow bypass Recall that, in Philae, when a new
co�ow arrives,Philae only schedules its pilot �ows. All other
�ows of that co�ow are delayed until the pilot �ows �nish
and co�ow size is known. However, such a design choice can
inadvertently lead to higher CCTs for co�ows, particularly for
thin co�ows, e.g., a two-�ow co�ow would end up serializing
scheduling its two �ows, one for the piloting purpose.

To avoid CCT degradations for thin co�ows, we schedule
all �ows of a co�ow if its width is under a threshold (set to 7
in Philae; §8.6 provides sensitivity analysis for thresholds).
Failure tolerance and recovery Cluster dynamics such
as stragglers or node failure can delay some of the �ows
of a co�ow or start new �ows, increasing their CCT. The
Philae design automatically self-adjusts to speed up co�ows
that are a�ected by cluster dynamics using the following
mechanisms: (1) It adjusts the co�ow size as the amount of
data left by the co�ow, which is essentially the di�erence
between the size calculated using pilot �ows and amount
of data already sent. (2) It calculates contention only on the
ports that have un�nished �ows.
WorkConservationBy default,Philae schedules non-pilot
�ows of a co�ow only after all its pilot �ows are over. This
can lead to some ports being idle where the non-pilot �ows
are waiting for the pilot �ows to �nish. In such cases, Philae
schedules non-pilot �ows of co�ows which are still in the
sampling phase at those ports. In work conservation, the
co�ows are scheduled in the FIFO order of arrival of co�ows.

5 Scalability Analysis

Compared to learning co�ow sizes using priority queues (PQ-
based) [19,30], learning co�ow sizes by sampling Philae not
only reduces the learning overhead as discussed in §3.1 and
shown in §8.2, but also signi�cantly reduces the amount of
interactions between the coordinator and local agents and
thus makes the coordinator highly scalable, as summarized
in Table 1.

First, PQ-based learning requires much more frequent up-
date from local agents. PQ-based learning estimates co�ow
sizes by incrementally moving co�ows across priority queues

838 2019 USENIX Annual Technical Conference USENIX Association

Table 1: Comparison of frequency of interactions between
the coordinator and local agents.

Update Update of Rate
of data sent �ow completion calculation

Philae No Yes Event triggered
Aalo Periodic (δ) Yes Periodic (δ)

according to the data sent by them so far. As such, the sched-
uler needs frequent updates (every δ ms) of data sent per
co�ow from the local agents. In contrast, Philae directly
estimates a co�ow’s size upon the completion of all its pilot
�ows. The only updates Philae needs from the local agents
are about the �ow completion which is needed for updating
contentions and removing �ows from active consideration..

Second, PQ-based learning results in much more frequent
rate allocation. In sampling-based approach, since co�ow
sizes are estimated only once, co�ows are re-ordered only
upon co�ow completion or arrival events or in the case of
contention based policies only when contention changes,
which is triggered by completion of all the �ows of a co�ow
at a port. In contrast, in PQ-based learning, at every δ interval,
co�ow data sent are updated and co�ow priority may get
updated, which will trigger new rate assignment.

Our scalability experiments in §9.3 con�rms that Philae
achieves much higher scalability than Aalo.

6 Implementation

We implemented both Philae and Aalo scheduling policies
in the same framework consisting of the global coordinator
and local agents (Fig. 2), in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the co�ows
based on the operations received from the registering frame-
work. The key implementation challenge for the coordinator
is that it needs to be fast in computing and updating the
schedules. The Philae coordinator is optimized for speed
using a variety of techniques including pipelining, process
a�nity, and concurrency whenever possible.

Local agents: The local agents update the global coordi-
nator only upon completion of a �ow, along with its length if
it is a pilot �ow. Local agents schedule the co�ows based on
the last schedule received from the coordinator. They comply
to the last schedule until a new schedule is received. To inter-
cept the packets from the �ows, local agents require the com-
pute framework to replace datasend(), datarecv()
APIs with the corresponding Philae APIs, which incurs very
small overhead.

Co�ow operations: The global coordinator runs inde-
pendently from, and is not coupled to, any compute frame-
work, which makes it general enough to be used with any
framework. It provides RESTful APIs to the frameworks for
co�ow operations: (a) register() for registering a new
co�ow when it enters, (b) deregister() for removing a

co�ow when it exits, and (c) update() for updating co�ow
status whenever there is a change in the co�ow structure,
e.g., during task migration and restarts after node failures.

7 Evaluation Highlights

We evaluated Philae using a 150-node and a 900-node
testbed cluster in Azure and using large scale simulations
by utilizing a publicly available Hive/MapReduce trace col-
lected from a 3000-machine, 150-rack Facebook production
cluster [4] and multiple derived traces with varying degrees
of �ow size skew to measure Philae’s robustness to skew.

• Facebook (FB) trace: The trace contains 150 ports and
526 (> 7×105 �ows) co�ows, that are extracted from
Hive/MapReduce jobs from a Facebook production clus-
ter. Each co�ow consists of pair-wise �ows between a
set of senders and a set of receivers.

Due to the lack of other publicly available co�ow trace1, we
derived three additional traces using the original Facebook
trace in order to more thoroughly evaluate Philae under
varying co�ow size skew:

• Low-skew-�ltered: Starting with the FB trace, we �l-
tered out co�ows that have skew (max �ow length/min
�ow length) less than a constant k. We generated �ve
traces in this class with k = 1,2,3,4,5. The �ltered
traces have 142, 100, 65, 51 and 43 co�ows, respectively.

• Mantri-like: Starting with the FB trace, we adjusted the
sizes of the �ows sent by the mappers, keeping the total
reducer data the same as given in the original trace, to
match the skew of a large Microsoft production cluster
trace as described in Mantri [12]. In particular, the sizes
are adjusted so that the coe�cients of variation across
mapper data are about 0.34 in the 50th percentile case
and 3.1 in the 90th percentile case. This trace has the
same numbers of co�ows and ports as the FB trace.

• Wide-co�ows-only: We �ltered out all the co�ows in
the FB trace with the total number of �ows ≤ 7, the
default thin co�ow bypass threshold (thinLimit) in Phi-
lae. The �ltered trace has 269 co�ows spreading over
150 ports.

The primary performance metrics used in the evaluation
are CCT or CCT speedup, de�ned as the ratio of a CCT un-
der other baseline algorithms and under Philae, piloting
overhead, and co�ow size estimation accuracy.

The highlights of our evaluation results are:
(1) Philae signi�cantly improves the CCTs. In simulation

using the FB trace, the average CCT is improved by 1.51×
over the prior art, Aalo. Individual CCT speedups are 1.78×
in the median case (P90 = 9.58×). For the Mantri-like trace,

1A challenge that has also been faced by previous work on co�ow
scheduling such as [19, 27, 29, 44].

USENIX Association 2019 USENIX Annual Technical Conference 839

Table 2: Performance improvement over Aalo for varying pilot �ow selection schemes.

Constant Proportional to number of senders Proportional to number of �ows
2 5% 10% 20% 50% 100% 1% 10%

Avg. error 13.21% 6.14% 5.42% 4.94% 5.53% 4.25% 4.15% 2.90%
Avg. CCT 1.27x 1.51x 1.45x 1.50x 1.50x 1.50x 1.43x 0.49x

P50 speedup 1.75x 1.78x 1.76x 1.71x 1.52x 1.40x 1.33x 0.69x
P90 speedup 9.00x 9.58x 9.00x 9.15x 8.33x 8.45x 8.23x 8.23x

the average CCT is improved by 1.36× and individual CCT
speedups are 1.75× in the median case (P90 = 12.0×).
(2) The CCT improvement mainly stems from the reduc-

tion in the learning overhead (in terms of latency and amount
of data sent) in determining the right queue for the co�ows.
Compared to Aalo, median reduction in the absolute latency
in �nding the right queue for co�ows in Philae is 19.0×,
and in absolute amount of data sent is 20.0× (§8.2).
(3) Philae improvements are consistent when varying the

skew among the �ow sizes in a co�ow (§8.5).
(4) Philae improvements are consistent when varying its

parameters (§8.6).
(5) The Philae coordinator is much more scalable than

that of Aalo (§9.3).

8 Simulation

We present detailed simulation results in this section, and
the testbed evaluation of our prototype in §9.
Experimental setup: Our simulated cluster uses the same
number of nodes (sending and receiving network ports) as in
the trace. As in [19], we assume full bisection bandwidth is
available, and congestion can happen only at network ports.

The default parameters for Aalo and Philae in the experi-
ments are: starting queue threshold (Qhi

0) is 10MB, exponen-
tial threshold growth factor (E) is 10, number of queues (K) is
set to 10, the weights assigned to individual priority queues
decrease exponentially by a factor of 10, and the new schedule
calculation interval δ is set to 8ms for the 150-node cluster 2,
the default suggested in its publicly available simulator [19].
In Philae, a new schedule is calculated on demand, upon
arrival of a new co�ow, completion of a co�ow, or completion
of all pilot �ows of a co�ow. Finally, in Philae the threshold
for thinLimit (T) is set to 7, the number of pilot �ows assigned
to wide co�ows are max(1,0.05 ·S), where S is the number
of senders, and the default inter-co�ow scheduling policy in
Philae is Least length-weighted total-port contention.

8.1 Pilot �ow selection policies
We start by evaluating the impact of di�erent policies in
choosing the pilot �ows for a co�ow in Philae. Table 2 sum-
marizes the improvement in average CCT of Philae over

28ms is the time to send 1MB of data.

Aalo and average error in size estimation normalized to the
actual co�ow size, when varying the pilot �ow selection pol-
icy while keeping other parameters as the default in Philae,
using the FB trace.

Unsurprisingly, the estimation accuracy increases when
increasing the number of pilot �ows across the three selec-
tion schemes: constant, fraction of senders, and fraction of
total �ows. However, as the number of pilot �ows increases
(over the range of parameter choices), the CCT speedup (P50
and P90 of individual co�ow CCT speedups) decreases. This
is because the bene�t from size estimation accuracy improve-
ment from using additional pilot �ows does not o�set the
added overhead from completing the additional pilot �ows
and the delay they incur to other co�ows.

We �nd sampling 5% of the number of senders per co�ow
strikes a good trade-o� between piloting overhead and size
estimation accuracy leading to the best CCT reduction. We
thus set it (0.05 ·S) as the default pilot �ow selection policy.

8.2 Piloting overhead and accuracy

101 102 103 104 105 106 107

Actual size (MB)

101

102

103

104

105

106

107

Es
tim

at
ed

 si
ze

 (M
B)

Figure 3: Philae co�ow size learning accuracy. Co�ows that
did not go through the piloting phase (48%) are not shown.

Next, using the default pilot selection policy, we evaluate
Philae’s e�ectiveness in estimating co�ow sizes by sampling
pilot �ows. Fig. 3 shows a scatter plot of the actual co�ow
size vs. estimated size from running Philae under the default
settings. We observe that Philae co�ow’s size estimation is
highly accurate except for a few outliers. Overall, the average
and standard deviation of relative estimation error are 0.06
and 0.15, respectively, and for the top 99% and 95% co�ows
(in terms of estimation accuracy), the average (standard de-
viation) of relative error are only 0.05 (0.12) and 0.03 (0.07)
respectively. Interestingly, a few co�ows experience large
estimation errors, and we found they all have very high skew

840 2019 USENIX Annual Technical Conference USENIX Association

in their �ow lengths; the mean standard deviation in �ow
lengths, normalized by the average length, of the bottom 1%
(in terms of accuracy) ranges between 4.6 and 6.8.

Fig. 1 shows the cost of estimating the correct queue for
each co�ow in Philae and Aalo, measured as the time in
learning the co�ow size as a fraction of the co�ow’s CCT in
Philae and Aalo. We see that under Philae, about 63% of
the co�ows spent less than 1% of their CCT in the learning
phase, while under Aalo, 63% co�ows reached the correct
priority queue after spending up to 22% of their CCT moving
across other queues. Compared to Aalo,Philae in the median
case sends 20× less data in determining the right queue and
reduces the latency in determining the right queue by 19×.

8.3 Inter-co�ow scheduling policies
Philae di�ers from Aalo in two ways: online size estima-
tion and inter-�ow scheduling policy. Here, we evaluate the
e�ectiveness of the four inter-co�ow scheduling policies of
Philae discussed in §4.4, keeping the remaining parameters
as the default. Such evaluation allows us to decouple the
contribution of sampling-based learning from the e�ect of
scheduling policy di�erence.

Table 3 shows the CCT improvement of Philae under the
four inter-�ow scheduling policies over Aalo. We make the
following observations.

First, Philae with the purely sized-based policy, Smallest
job �rst (A), which uses the same inter-queue and intra-
queue scheduling policy as Aalo and only di�ers from Aalo
in co�ow size estimation, reduces the average CCT (P50) of
Aalo by 1.40x (1.48x).

In contrast, the default Philae uses Least length-
weighted total-port contention (D), which uses the sum
of size-weighted port contention to assign co�ows to priority
queues, and slightly outperforms the size-based policy A; it
reduces the average CCT (P50) of Aalo by 1.51x (1.78x). This
is because it captures the diversity of contention at di�erent
ports, which happens often in real distributed settings, and
at the same time accounts for the co�ow size by using length-
weighted sum of the port-wise contention. The above results
for policy A and policy D indicate that the primary improve-
ment in Philae comes from its sampling-based co�ow size
estimation scheme.

Shortest remaining time �rst (B) performs similarly as
smallest job �rst. This is because the preemptive nature of
SRTF will kick in only on arrival of new co�ows. Also, al-
though SRTF is advantageous for small co�ows, since Philae
already schedules thin co�ows at high priority, many thin
and thus small co�ows are anyways being scheduled at high
priority under both policies A and B, and as a result they
perform similarly.

Finally, Least contention �rst (C) performs poorly. This
is because contention for a co�ow is de�ned as the unique
number of other co�ows that share ports, and as a result such
a policy completely ignores the size (length) of the co�ows.

Table 3: CCT speedup in Philae under di�erent inter-co�ow
scheduling policies (§4.4) over Aalo.

Priority estimation metric P50 P90 Avg. CCT
Estimated size (A) 1.48x 8.27x 1.40x
Remaining size (B) 1.54x 8.34x 1.37x

Global Contention (C) 0.75x 8.26x 0.13x
Length-weighted total-port contention (D) 1.78x 9.58x 1.51x

(Philae)

8.4 Average CCT improvement

We now compare the CCT speedups of Philae against 5 well-
known co�ow scheduling policies: (1) Aalo, (2) Aalo-Oracle,
which is an oracle version of Aalo where the scheduler knows
the �nal queue of a co�ow upon its arrival time and directly
starts the co�ow from that queue, (3) SEBF in Varys [21]
which assumes the knowledge of co�ow sizes apriori and
uses the Shortest E�ective Bottleneck First policy, where the
co�ow whose slowest �ow will �nish �rst is scheduled �rst.
(4) FIFO, which is a single queue FIFO based co�ow scheduler,
and (5) FAIR, which uses per-�ow fair sharing. We do not
include Saath [30] in the comparison as it does not provide
the same liveliness guarantees as Philae which as discussed
in §4.3 can obscure the comparison result. All experiments
use the default parameters discussed in the setup, including
K,E,S, unless otherwise stated. The results are shown in
Fig. 4(a). We make the following observations.

First, we compare CCT under Philae against under Aalo-
Oracle, where Aalo-Oracle starts all co�ows at the correct
priority queues (i.e., no learning overhead). Philae im-
proves the average CCT by 1.18× and P50 CCT by 1.40×,
respectively. Since Aalo-Oracle pays no overhead for co�ow
size estimation, its worse performance suggests that using
length-weighted total-port contention in assigning co�ows
to the priority queues in Philae outperforms Aalo’s size-
based, contention-oblivious policy in assigning co�ows to
the queues.

Second, Philae improves the average CCT over Aalo by
1.51× (median) and P50 by 1.78. The signi�cant additional
improvement on top of the gain over Aalo-Oracle comes
from fast and accurate estimation of the right queues for the
co�ows (Fig. 1).

Third, Philae, which requires no co�ow size knowledge
a priori, achieves comparable performance as SEBF [21]; it
reduces the average CCT by 1.16×. Again this is because
its total-port contention policy outperforms the contention-
oblivious SEBF.

Finally, Philae signi�cantly outperforms the single-queue
FIFO-based co�ow scheduler, with a median (P90) CCT
speedup of 3.00 (77.96)× and average CCT speedup of 3.16×,
and the un-coordinated �ow-level fair-share scheduler, with
a median (P90) CCT speedup of 70.82× (1947×) and average
CCT speedup of 5.66×.

To gain insight into how di�erent co�ows are a�ected by
Philae over Aalo, we group the co�ows in the trace into

USENIX Association 2019 USENIX Annual Technical Conference 841

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

102

103

CC
T

Sp
ee

du
p

1.51 1.18

5.67 3.16
1.16

P10-P90
P50
Average

(a) Using original FB trace.

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

CC
T

Sp
ee

du
p

1.54 1.15 3.7 2.83
1.12

P10-P90
P50
Average

(b) Using Wide-co�ows-only trace.

> 1 > 2 > 3 > 4 > 5
Skew

10−1

100

CC
T

Sp
ee

du
p

1.45 1.44 1.44 1.4 1.38

P10-P90
P50
Average

(c) Using 5 Low-skew-�ltered traces.

AaloAalo(Oracle)FAIR FIFO SEBF
Other schedulers

10−1

100

101

102

103

CC
T

Sp
ee

du
p

1.36 1.14
4.24 2.64

1.07

P10-P90
P50
Average

(d) Using the Mantri-like trace.

Figure 4: CCT speedup using Philae compared to using other co�ow schedulers on di�erent traces. In Fig. 4(c), the x-axis
denotes the minimum skew in the 5 Low-skew-�ltered traces.

Bin-1 Bin-2 Bin-3 Bin-4
Bins

100

101

CC
T

Sp
ee

du
p

2.88

0.59

1.67 1.52

P10-P90
P50
Average

Figure 5: Performance
breakdown into bins shown
in Table 4.

10−2 10−1 100 101 102

Speedup

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

JCT
CCT

Figure 6: [Testbed] Distribution
of speedup in CCT and JCT in
Philae using the FB trace.

Table 4: Bins based on total co�ow size and width (number
of �ows). The numbers in brackets denote the fraction of
co�ows in that bin.

width ≤ 7(thin) width > 7(wide)
size ≤ 100MB (small) bin-1 (44.3%) bin-2 (24.1%)
size > 100MB (large) bin-3 (4.5%) bin-4 (27.1%)

four bins de�ned in Table 4, and show in Fig. 5 the CCT
speedups for each bin. We see that Philae improves CCT
for all co�ows in bin 1 and 3 and for large fraction in bin-4.
Most of the underperforming co�ows fall in bin-2. Co�ows
in bin-2 have width > 7 and size < 100MB, i.e., the �ows
are short but wide. Because the width exceeds the thinLimit,
Philae schedules the pilot �ows to estimate the co�ow size
�rst (§4). Thus, although the remaining �ows are short, they
get delayed until the completion of the pilot �ows, which
results in CCT increase.

Finally, since thin co�ows bene�t from Philae’s scheme of
bypassing probing for thin co�ows, we also compare Philae
with other schemes using the Wide-co�ows-only trace which
consists of all co�ows wider than the default thinLimit (7)
in Philae. Fig. 4(b) shows that Philae continues to perform
well, reducing the average CCT by 1.54×, 1.15×, and 1.12×
over Aalo, Aalo-Oracle, and SEBF, respectively.

8.5 Robustness to co�ow data skew

Next, we evaluate Philae’s robustness to �ow size skew by
comparing it against Aalo using traces with varying degrees
of skew. First, we evaluate Philae using the Mantri-like
trace. Fig. 4(d) shows that Philae consistently outperforms
prior-art co�ow schedulers. In particular, Philae reduces the
average CCT by 1.36x compared to Aalo. Second, we evalu-

ate Philae using the Low-skew-�ltered traces which have
low skew co�ows �ltered out. Fig. 4(c) shows that Philae
performs better than Aalo even with highly skewed traces
and reduces the average CCT by 1.45×, 1.44×, 1.44×, 1.40×
and 1.38× for the �ve Low-skew-�ltered traces containing
co�ows with skew of at least 1, 2, 3, 4 and 5, respectively.

8.6 Sensitivity analysis
Compared to Aalo, Philae has only two additional para-
maters: thinLimit and �ow sampling rate. We already dis-
cussed the choice of sampling rate in §8.1. Below, we evaluate
the sensitivity of Philae to thinLimit and other design pa-
rameters common to Aalo by varying one parameter at a
time while keeping the rest as the default.
Thin co�ow bypassing limit (T) In this experiment, we
vary thinLimit (T) in Philae for bypassing co�ows from
the probing phase. The result in Fig. 7(a) shows that the
average CCT remains almost the same as T increases. This
is because the average CCT is dominated by wide and large
co�ows, which are not a�ected by thinLimit. However, the
P50 speedup increases till T = 7 and tapers o� after T = 7.
The reason for the CCT improvement until T = 7 is that
all �ows of thin co�ows (with width ≤ 7) are scheduled
immediately upon arrival which improves their CCT, and
the number of thin co�ows is signi�cant.
Start queue threshold (Qhi

0) We next vary the threshold for
the �rst priority queue from 2 MB to 64 MB. Fig. 7(b) shows
the average CCT of Philae over Aalo. Overall, Philae is
not very sensitive to the threshold of �rst priority queue
and the CCT speedup over Aalo is within 8% of the default
Philae (10 MB). The speedup appears to oscillate with a
periodicity of 5x to 10x. For example, the speedups for 2 MB
and 64 MB are close to that of the default (10 MB), while
for 4 MB and 32 MB are lower. This can be explained by
the impact of the �rst queue threshold on job segregation;
with the default queue threshold growth factor of 10, every
time the �rst queue threshold changes by close to 10x, the
distribution of jobs across the queues become similar.
Multiplication factor (E) In this experiment, we vary the
queue threshold growth factor from 2 to 64. Recall that the
queue thresholds are computed as Qhi

q = Qhi
q−1 ·E . Thus, as E

grows, the number of queues decreases. As shown in Fig. 7(c),

842 2019 USENIX Annual Technical Conference USENIX Association

(a) Thin co�ow bypass threshold (b) First queue capacity (Qhi
0) (c) Exponent (E)

Figure 7: [Simulation] Philae sensitivity analysis. We vary one parameter of Philae keeping rest same as default and compare
it with Aalo.

smaller queue threshold multiplication factor which leads to
more queues performs better because of �ne-grained priority
segregation.

9 Testbed Evaluation

Next, we deployed Philae in a 150-machine Azure cluster
and a 900-machine cluster to evaluate its performance and
scalability.

Testbed setup: We rerun the FB trace on a Spark-like
framework on a 150-node cluster in Microsoft Azure [5].
The coordinator runs on a Standard DS15 v2 server with
20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor
and 140GB memory. The local agents run on D2v2 with
the same processor as the coordinator with 2-core and 7GB
memory. The machines on which local agents run have 1
Gbps network bandwidth. Similarly as in simulations, our
testbed evaluation keeps the same �ow lengths and �ow ports
in trace replay. All the experiments use default parameters
K,E,S and the default pilot �ow selection policy.

9.1 CCT Improvement
In this experiment, we measure CCT improvements of Phi-
lae compared to Aalo. Fig. 6 shows the CDF of the CCT
speedup of individual co�ows under Philae compared to
under Aalo. The average CCT improvement is 1.50× which
is similar to the results in the simulation experiments. We
also observe 1.63× P50 speedup and 8.00× P90 speedup.

We also evaluated Philae using the Wide-co�ow-only
trace. Table 5 shows that Philae achieves 1.52× improve-
ment in average CCT over Aalo, similar to that using the full
FB trace. This is because the improvement in average CCT
is dominated by large co�ows, Philae is speeding up large
co�ows, and the Wide-co�ow-only trace consists of mostly
large co�ows.

9.2 Job Completion Time
Next, we evaluate how the improvement in CCT a�ects the
job completion time (JCT). In data clusters, di�erent jobs

Table 5: [Testbed] CCT improvement in Philae as compared
to Aalo.

P50 P90 Avg. CCT
FB Trace 1.63× 8.00× 1.50×

Wide-co�ow-only 1.05× 2.14× 1.49×

Table 6: [Testbed] Average (standard deviation) coordinator
CPU time (ms) per scheduling interval in 900-port runs. Phi-
lae did not have to calculate and send new rates in 66% of
intervals, which contributes to its low average.

Rate Calc. New Rate Send Update Recv. Total
Philae 2.99 (5.35) 4.90 (11.25) 6.89 (17.78) 14.80 (28.84)

Aalo 4.28 (4.14) 17.65 (20.9) 10.97 (19.98) 32.90 (34.09)

spend di�erent fractions of their total job time in data shu�e.
In this experiment, we used 526 jobs, each corresponding
to one co�ow in the FB trace. The fraction of time that the
jobs spent in the shu�e phase follows the same distribution
used in Aalo [19], i.e., 61% jobs spent less than 25% of their
total time in shu�e, 13% jobs spent 25-49%, another 14% jobs
spent 50-74%, and the remaining spent over 75% of their total
time in shu�e. Fig. 6 shows the CDF of individual speedups
in JCT. Across all jobs, Philae reduces the job completion
time by 1.16× in the median case and 7.87× in the 90th

percentile. This shows that improved CCT translates into
better job completion time. As expected, the improvement
in job completion time is smaller than the improvement in
CCT because job completion time depends on the time spent
in both compute and shu�e (communication) stages, and
Philae improves only the communication stage.

9.3 Scalability

Finally, we evaluate the scalability of Philae by comparing
its performance with Aalo on a 900-node cluster. To drive
the evaluation, we derive a 900-port trace by replicating the
FB trace 6 times across ports, i.e., we replicated each job 6
times, keeping the arrival time for each copy the same but
assigning sending and receiving ports in increments of 150
(the cluster size for the original trace). We also increased the

USENIX Association 2019 USENIX Annual Technical Conference 843

Table 7: [Testbed] Percentage of scheduling intervals where
synchronization and rate calculation took more than δ for
150-port and δ′(= 6×δ) for 900-port runs.

150 ports 900 ports
Philae 1% 10%

Aalo 16% 37%

scheduling interval δ by 6 times to δ′ = 6×δ.
Philae achieved 2.72× (9.78×) speedup in average (P90)

CCT over Aalo. The higher speedup compared to the 150-
node runs (1.50×) comes from higher scalability of Philae.
In 900-node runs, Aalo was not able to �nish receiving up-
dates, calculating new rates and updating local agents of new
rates within δ′ in 37% of the intervals, whereas Philae only
missed the deadline in 10% of the intervals. For 150-node
runs these values are 16% for Aalo and 1% for Philae. The
21% increase in missed scheduling intervals in 900-node runs
in Aalo resulted in local agents executing more frequently
with outdated rates. As a result, Philae achieved even higher
speedup in 900-node runs.

As discussed in§5, Aalo’s poorer coordinator scalability
comes from more frequent updates from local agents and
more frequent rate allocation, which result in longer coordi-
nator CPU time in each scheduling interval. Table 6 shows
the average coordinator CPU usage per interval and its break-
down. We see that (1) on average Philae spends much less
time than Aalo in receiving updates from local agents, be-
cause Philae does not need updates from local agents at
every interval – on average in every scheduling interval
Philae receives updates from 49 local agents whereas Aalo
receives from 429 local agents, and (2) on average Philae
spends much less time calculating new rates and send new
rates. This is because rate calculation in Philae is triggered
by events and Philae did not have to �ush rates in 66% of
the intervals.

10 Related Work
Co�ow scheduling: In this paper, we have shown Philae
outperforms prior-art non-clairvoyant co�ow scheduler Aalo
from more e�cient learning of co�ow sizes online. Saath [30]
and Graviton [29] also learn co�ow sizes online using prior-
ity queues and hence su�ers the same ine�ciency as Aalo.
Graviton [29] uses the number of ports a co�ow is present at,
as an additional indicator of its size. In [19], Aalo was shown
to outperform previous non-clairvoyant co�ow schedulers
Baraat [24] by using global coordination, and Orchestra [20]
by avoiding head-of-line blocking.

Clairvoyant co�ow schedulers such as Varys [21] and Sin-
cronia [7] assume prior knowledge of co�ows upon arrival.
Varys runs a shortest-e�ective-bottleneck-�rst heuristic for
inter-co�ow scheduling and performs per-�ow rate alloca-
tion at the coordinator. Sincronia improves the scalability of
the centralized coordinator of Varys by only calculating the
co�ow ordering at the coordinator (by solving an LP) and

o�oading �ow rate allocation to individual local agents. Sin-
cronia is orthogonal to Philae; once co�ow sizes are learned
through sampling, ideas from Sincronia can be adopted in
Philae to order co�ows and o�oad rate allocation to local
ports. CODA [44] tackles an orthogonal problem of identify-
ing �ows of individual co�ows online.

However, recent studies [19, 40] have shown various rea-
sons why it is not very plausible to learn �ow sizes from
applications beforehand. For example, many applications
stream data as soon as data are generated and thus the appli-
cation does not know the �ow sizes until �ow completion,
and learning �ow sizes from applications requires changing
either the network stack or the applications.

Flow scheduling: There exist a rich body of prior work
on �ow scheduling. E�orts to minimize �ow completion time
(FCT), both with prior information (e.g., PDQ [26], pFab-
ric [9]) and without prior information (e.g., Fastpass [35],
PIAS [13], [14]), fall short in minimizing CCTs which depend
on the completion of the last �ow [21]. Similarly, Hedera [8]
and MicroTE [15] schedule the �ows with the goal of reduc-
ing the overall FCT, which again is di�erent from reducing
the overall CCT of co�ows.

Speculative scheduling Recent works [16, 33] use the
idea of online requirement estimation for scheduling in data-
center. In [31], recurring big data analytics jobs are scheduled
using their history.

Job scheduling: There have been much work on schedul-
ing in analytic systems and storage at scale by improving
speculative tasks [11, 12, 43], improving locality [10, 41], and
end-point �exibility [17, 38]. The co�ow abstraction is com-
plimentary to these work, and can bene�t from them. Com-
bining co�ow with these approaches remains a future work.
Scheduling in parallel processors: Co�ow schedul-

ing by exploiting the spatial dimension bears similarity to
scheduling processes on parallel processors and multi-cores,
where many variations of FIFO [37], FIFO with back�ll-
ing [32] and gang scheduling [25] have been proposed.

11 Conclusion

State-of-the-art online co�ow schedulers approximate the
classic SJF by implicitly learning co�ow sizes and pay a high
penalty for large co�ows. We propose the novel idea of sam-
pling in the spatial dimension of co�ows to explicitly and
e�ciently learn co�ow sizes online to enable e�cient on-
line SJF scheduling. Our extensive simulation and testbed
experiments show the new design o�ers signi�cant perfor-
mance improvement over prior art. Further, the sampling-in-
spatial-dimension technique can be generalized to other dis-
tributed scheduling problems such as cluster job scheduling.
We have made our simulator publicly available at https:
//github.com/coflowPhilae/simulator [6].
Acknowledgement We thank our shepherd Patrick Stuedi
and the anonymous reviewers for their insightful comments.

844 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

References

[1] Apache hadoop. http://hadoop.apache.org.

[2] Apache spark. http://spark.apache.org.

[3] Apache tez. http://tez.apache.org.

[4] Co�ow trace from facebook datacenter.
https://github.com/co�ow/co�ow-benchmark.

[5] Microsoft azure. http://azure.microsoft.com.

[6] Philae simulator. https://github.com/
coflowPhilae/simulator.

[7] Saksham Agarwal, Shijin Rajakrishnan, Akshay
Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-optimal network design for
co�ows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 16–29, New York, NY, USA, 2018.
ACM.

[8] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic �ow scheduling for data center
networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’10, pages 19–19, Berkeley, CA, USA, 2010.
USENIX Association.

[9] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pfabric: Minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages
435–446, New York, NY, USA, 2013. ACM.

[10] Ganesh Ananthanarayanan, Sameer Agarwal, Srikanth
Kandula, Albert Greenberg, Ion Stoica, Duke Harlan,
and Ed Harris. Scarlett: Coping with skewed content
popularity in mapreduce clusters. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11,
pages 287–300, New York, NY, USA, 2011. ACM.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker,
and Ion Stoica. E�ective straggler mitigation: Attack
of the clones. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementa-
tion, nsdi’13, pages 185–198, Berkeley, CA, USA, 2013.
USENIX Association.

[12] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward
Harris. Reining in the outliers in map-reduce clusters

using mantri. In Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’10, pages 265–278, Berkeley, CA, USA, 2010.
USENIX Association.

[13] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Weicheng Sun. Pias: Practical information-agnostic
�ow scheduling for data center networks. In Proceedings
of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 25:1–25:7, New York, NY, USA, 2014.
ACM.

[14] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic �ow scheduling
for commodity data centers. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 15), pages 455–468, Oakland, CA, 2015. USENIX
Association.

[15] Theophilus Benson, Ashok Anand, Aditya Akella, and
Ming Zhang. Microte: Fine grained tra�c engineering
for data centers. In Proceedings of the Seventh COnfer-
ence on Emerging Networking EXperiments and Tech-
nologies, CoNEXT ’11, pages 8:1–8:12, New York, NY,
USA, 2011. ACM.

[16] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication, SIGCOMM
’17, pages 239–252, New York, NY, USA, 2017. ACM.

[17] Mosharaf Chowdhury, Srikanth Kandula, and Ion Sto-
ica. Leveraging endpoint �exibility in data-intensive
clusters. In Proceedings of the ACM SIGCOMM 2013 Con-
ference on SIGCOMM, SIGCOMM ’13, pages 231–242,
New York, NY, USA, 2013. ACM.

[18] Mosharaf Chowdhury and Ion Stoica. Co�ow: A net-
working abstraction for cluster applications. In Pro-
ceedings of the 11th ACMWorkshop on Hot Topics in Net-
works, HotNets-XI, pages 31–36, New York, NY, USA,
2012. ACM.

[19] Mosharaf Chowdhury and Ion Stoica. E�cient co�ow
scheduling without prior knowledge. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 393–406,
New York, NY, USA, 2015. ACM.

[20] Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael I. Jordan, and Ion Stoica. Managing data trans-
fers in computer clusters with orchestra. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 98–109, New York, NY, USA, 2011. ACM.

USENIX Association 2019 USENIX Annual Technical Conference 845

https://github.com/coflowPhilae/simulator
https://github.com/coflowPhilae/simulator

[21] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Ef-
�cient co�ow scheduling with varys. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 443–454, New York, NY, USA, 2014. ACM.

[22] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M.
Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implemen-
tation, NSDI’10, pages 21–21, Berkeley, CA, USA, 2010.
USENIX Association.

[23] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Sim-
pli�ed data processing on large clusters. volume 51,
pages 107–113, New York, NY, USA, January 2008. ACM.

[24] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani,
and Antony Rowstron. Decentralized task-aware
scheduling for data center networks. In Proceedings
of the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 431–442, New York, NY, USA, 2014. ACM.

[25] Dror G. Feitelson and Morris A. Jette. Improved uti-
lization and responsiveness with gang scheduling. In
Proceedings of the Job Scheduling Strategies for Parallel
Processing, IPPS ’97, pages 238–261, London, UK, UK,
1997. Springer-Verlag.

[26] Chi-Yao Hong, Matthew Caesar, and P. Brighten God-
frey. Finishing �ows quickly with preemptive schedul-
ing. In Proceedings of the ACM SIGCOMM 2012 Con-
ference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’12,
pages 127–138, New York, NY, USA, 2012. ACM.

[27] Xin Sunny Huang, Xiaoye Steven Sun, and T.S. Eugene
Ng. Sun�ow: E�cient optical circuit scheduling for
co�ows. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 297–311, New York,
NY, USA, 2016. ACM.

[28] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: Distributed data-parallel
programs from sequential building blocks. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007, EuroSys ’07, pages
59–72, New York, NY, USA, 2007. ACM.

[29] Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Gravi-
ton: Twisting space and time to speed-up co�ows. In
8th USENIXWorkshop on Hot Topics in Cloud Computing
(HotCloud 16), Denver, CO, 2016. USENIX Association.

[30] Akshay Jajoo, Rohan Gandhi, Y. Charlie Hu, and Cheng-
Kok Koh. Saath: Speeding up co�ows by exploiting

the spatial dimension. In Proceedings of the 13th Inter-
national Conference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’17, pages 439–450,
New York, NY, USA, 2017. ACM.

[31] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram
Rao, Konstantin Makarychev, and Matthew Caesar.
Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 407–420, New York, NY, USA, 2015.
ACM.

[32] David A. Lifka. The anl/ibm sp scheduling system. In
Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, IPPS ’95, pages 295–303, London,
UK, UK, 1995. Springer-Verlag.

[33] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers in
data centers. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 129–143, New York,
NY, USA, 2016. ACM.

[34] Stanley Lemeshow Paul S. Levy. Sampling of Popula-
tions: Methods and Applications. Wiley, 4 edition, Jun
2012.

[35] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A centralized
"zero-queue" datacenter network. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 307–318, New York, NY, USA, 2014. ACM.

[36] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-
Philippe Martin, and Dennis Fetterly. Dandelion: A
compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 49–68,
New York, NY, USA, 2013. ACM.

[37] Uwe Schwiegelshohn and Ramin Yahyapour. Analysis
of �rst-come-�rst-serve parallel job scheduling. In Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’98, pages 629–638, Philadel-
phia, PA, USA, 1998. Society for Industrial and Applied
Mathematics.

[38] David Shue, Michael J. Freedman, and Anees Shaikh.
Performance isolation and fairness for multi-tenant
cloud storage. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Implementa-
tion, OSDI’12, pages 349–362, Berkeley, CA, USA, 2012.
USENIX Association.

[39] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne.
Process Scheduling. Operating System Concepts. John
Wiley & Sons, 8 edition, 2010.

846 2019 USENIX Annual Technical Conference USENIX Association

[40] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlas,
Muhsen Owaida, Ce Zhang, and Ankit Singla. Is ad-
vance knowledge of �ow sizes a plausible assump-
tion? In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 565–580,
Boston, MA, 2019. USENIX Association.

[41] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proceedings of the
5th European Conference on Computer Systems, EuroSys
’10, pages 265–278, New York, NY, USA, 2010. ACM.

[42] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

[43] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving mapreduce per-
formance in heterogeneous environments. In Proceed-
ings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’08, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association.

[44] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf
Chowdhury, and Yanhui Geng. Coda: Toward automati-
cally identifying and scheduling co�ows in the dark. In
Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM ’16, pages 160–173, New York, NY, USA, 2016.

.

USENIX Association 2019 USENIX Annual Technical Conference 847

	Introduction
	Motivation
	Our Contribution

	Background and Problem Statement
	Key Idea
	Why is sampling more efficient?
	Why is sampling effective in the presence of skew?

	Philae Design
	Philae architecture
	Sampling pilot flows
	Coflow scheduling with starvation avoidance
	Inter-coflow scheduling policies
	Rate allocation
	Additional design issues

	Scalability Analysis
	Implementation
	Evaluation Highlights
	Simulation
	Pilot flow selection policies
	Piloting overhead and accuracy
	Inter-coflow scheduling policies
	Average CCT improvement
	Robustness to coflow data skew
	Sensitivity analysis

	Testbed Evaluation
	CCT Improvement
	Job Completion Time
	Scalability

	Related Work
	Conclusion

