
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Evaluating File System Reliability
on Solid State Drives

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder, University of Toronto

https://www.usenix.org/conference/atc19/presentation/jaffer

Evaluating File System Reliability on Solid State Drives

Shehbaz Jaffer∗

University of Toronto
Stathis Maneas∗

University of Toronto
Andy Hwang

University of Toronto
Bianca Schroeder

University of Toronto

Abstract
As solid state drives (SSDs) are increasingly replacing hard
disk drives, the reliability of storage systems depends on the
failure modes of SSDs and the ability of the file system lay-
ered on top to handle these failure modes. While the classical
paper on IRON File Systems provides a thorough study of
the failure policies of three file systems common at the time,
we argue that 13 years later it is time to revisit file system
reliability with SSDs and their reliability characteristics in
mind, based on modern file systems that incorporate jour-
naling, copy-on-write and log-structured approaches, and are
optimized for flash. This paper presents a detailed study, span-
ning ext4, Btrfs and F2FS, and covering a number of different
SSD error modes. We develop our own fault injection frame-
work and explore over a thousand error cases. Our results
indicate that 16% of these cases result in a file system that
cannot be mounted or even repaired by its system checker. We
also identify the key file system metadata structures that can
cause such failures and finally, we recommend some design
guidelines for file systems that are deployed on top of SSDs.

1 Introduction
Solid state drives (SSDs) are increasingly replacing hard disk
drives as a form of secondary storage medium. With their
growing adoption, storage reliability now depends on the
reliability of these new devices as well as the ability of the
file system above them to handle errors these devices might
generate (including for example device errors when reading or
writing a block, or silently corrupted data). While the classical
paper by Prabhakaran et al. [45] (published in 2005) studied
in great detail the robustness of three file systems that were
common at the time in the face of hard disk drive (HDD)
errors, we argue that there are multiple reasons why it is time
to revisit this work.

The first reason is that failure characteristics of SSDs differ
significantly from those of HDDs. For example, recent field
studies [39, 43, 48] show that, while their replacement rates

∗These authors contributed equally to this work.

(due to suspected hardware problems) are often by an order
of magnitude lower than those of HDDs, the occurrence of
partial drive failures that lead to errors when reading or writ-
ing a block or corrupted data can be an order of magnitude
higher. Other work argues that the Flash Translation Layer
(FTL) of SSDs might be more prone to bugs compared to
HDD firmware, due to their high complexity and less matu-
rity, and demonstrate this to be the case when drives are faced
with power faults [53]. This makes it even more important
than before that file systems can detect and deal with device
faults effectively.

Second, file systems have evolved significantly since [45]
was published 13 years ago; the ext family of file systems has
undergone major changes from the ext3 version considered
in [45] to the current ext4 [38]. New players with advanced
file-system features have arrived. Most notably Btrfs [46], a
copy-on-write file system which is more suitable for SSDs
with no in-place writes, has garnered wide adoption. The
design of Btrfs is particularly interesting as it has fewer total
writes than ext4’s journaling mechanism. Further, there are
new file systems that have been designed specifically for flash,
such as F2FS [33], which follow a log-structured approach to
optimize performance on flash.

The goal of this paper is to characterize the resilience of
modern file systems running on flash-based SSDs in the face
of SSD faults, along with the effectiveness of their recovery
mechanisms when taking SSD failure characteristics into ac-
count. We focus on three different file systems: Btrfs, ext4,
and F2FS. ext4 is an obvious choice, as it is the most com-
monly used Linux file system. Btrfs and F2FS include features
particularly attractive with respect to flash, with F2FS being
tailored for flash. Moreover, these three file systems cover
three different points in the design spectrum, ranging from
journaling to copy-on-write to log-structured approaches.

The main contribution of this paper is a detailed study, span-
ning three very different file systems and their ability to detect
and recover from SSD faults, based on error injection target-
ing all key data structures. We observe huge differences across
file systems and describe the vulnerabilities of each in detail.

USENIX Association 2019 USENIX Annual Technical Conference 783

Over the course of this work we experiment with more than
one thousand fault scenarios and observe that around 16% of
them result in severe failure cases (kernel panic, unmount-
able file system). We make a number of observations and file
several bug reports, some of which have already resulted in
patches. For our experiments, we developed an error injection
module on top of the Linux device mapper framework.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a taxonomy of SSD faults and a description
of the experimental setup we use to emulate these faults and
test the reaction of the three file systems. Section 3 presents
the results from our fault emulation experiments. Section 4
covers related work and finally, in Section 5, we summarize
our observations and insights.

2 File System Error Injection
Our goal is to emulate different types of SSD failures and
check the ability of different file systems to detect and recover
from them, based on which part of the file system was affected.
We limit our analysis to a local file system running on top
of a single drive. Note that although multi-drive redundancy
mechanisms like RAID exist, they are not general substitutes
for file system reliability mechanisms. First, RAID is not
applicable to all scenarios, such as single drives on personal
computers. Second, errors or data corruption can originate
from higher levels in the storage stack, which RAID can
neither detect nor recover.

Furthermore, our work only considers partial drive fail-
ures, where only part of a drive’s operation is affected, rather
than fail-stop failures, where the drive as a whole becomes
permanently inaccessible. The reason lies in the numerous
studies published over the last few years, using either lab ex-
periments or field data, which have identified many different
SSD internal error mechanisms that can result in partial fail-
ures, including mechanisms that originate both from the flash
level [10, 12, 13, 16–19, 21, 23, 26, 27, 29–31, 34, 35, 40, 41,
47, 49, 50] and from bugs in the FTL code, e.g. when it is not
hardened to handle power faults correctly [52, 53].

Moreover, a field study based on Google’s data centers
observes that partial failures are significantly more common
for SSDs than for HDDs [48].

This section describes different SSD error modes and how
they manifest at the file system level, and also our experimen-
tal setup, including the error injection framework and how we
target different parts of a file system.

2.1 SSD Errors in the Field and their Manifes-
tation

This section provides an overview over the various mecha-
nisms that can lead to partial failures and how they manifest
at the file system level (all summarized in Table 1).

Uncorrectable Bit Corruption: Previous work [10, 12, 13,
16–19,21,26,27,29,34,35,41] describes a large number of er-

ror mechanisms that originate at the flash level and can result
in bit corruption, including retention errors, read and program
disturb errors, errors due to flash cell wear-out and failing
blocks. Virtually all modern SSDs incorporate error correct-
ing codes to detect and correct such bit corruption. However,
recent field studies indicate that uncorrectable bit corruption,
where more bits are corrupted than the error correcting code
(ECC) can handle, occurs at a significant rate in the field. For
example, a study based on Google field data observes 2-6 out
of 1000 drive days with uncorrectable bit errors [48]. Uncor-
rectable bit corruption manifests as a read I/O error returned
by the drive when an application tries to access the affected
data (“Read I/O errors” in Table 1).

Silent Bit Corruption: This is a more insidious form of bit
corruption, where the drive itself is not aware of the corruption
and returns corrupted data to the application (“Corruption” in
Table 1). While there have been field studies on the prevalence
of silent data corruption for HDD based systems [9], there is
to date no field data on silent bit corruption for SSD based
systems. However, work based on lab experiments shows that
3 out of 15 drive models under test experience silent data
corruption in the case of power faults [53]. Note that there
are other mechanisms that can lead to silent data corruption,
including mechanisms that originate at higher levels in the
storage stack, above the SSD device level.

FTL Metadata Corruption: A special case arises when
silent bit corruption affects FTL metadata. Among other
things, the FTL maintains a mapping of logical to physical
(L2P) blocks as part of its metadata [8]; metadata corruption
could lead to “Read I/O errors” or “Write I/O errors”, when
the application attempts to read or write a page that does not
have an entry in the L2P mapping due to corruption. Corrup-
tion of the L2P mapping could also result in wrong or erased
data being returned on a read, manifesting as “Corruption” to
the file system. Note that this is also a silent corruption - i.e.
neither the device nor the FTL is aware of these corruptions.

Misdirected Writes: This refers to the situation where dur-
ing an SSD-internal write operation, the correct data is being
written to flash, but at the wrong location. This might be due
to a bug in the FTL code or triggered by a power fault, as
explained in [53]. At the file system level this might manifest
as a “Corruption”, where a subsequent read returns wrong
data, or a “Read I/O error”. This form of corruption is silent;
the device does not detect and propagate errors to the storage
stack above until invalid data or metadata is accessed again.

Shorn Writes: A shorn write is a write that is issued by
the file system, but only partially done by the device. In [53],
the authors observe such scenarios surprisingly frequently
during power faults, even for enterprise class drives, while
issuing properly synchronized I/O and cache flush commands
to the device. A shorn write is similar to a “torn write", where
only part of a multi-sector update is written to the disk, but
it applies to sector(s) which should have been fully persisted
due to the use of a cache flush operation. One possible expla-

784 2019 USENIX Annual Technical Conference USENIX Association

nation is the mismatch of write granularities between layers.
The default block size for file systems is larger (e.g. 4KB
for ext4/F2FS, and 16KB for Btrfs) than the physical device
(e.g. 512B). A block issued from the file system is mapped
to multiple physical blocks inside the device. As a result,
during a power fault, only some of the mappings are updated
while others remain unchanged. Even if physical block sizes
match that of the file system, another possible explanation is
because SSDs include on-board cache memory for buffering
writes, shorn writes may also be caused by alignment and
timing bugs in the drive’s cache management [53]. Moreover,
recent SSD architectures use pre-buffering and striping across
independent parallel units, which do not guarantee atomicity
between them for an atomic write operation [11]. The increase
in parallelism may further expose more shorn writes.

At the file system level, a shorn write is not detected until
its manifestation during a later read operation, where the file
system sees a 4KB block, part of which contains data from
the most recent update to the block, while the remaining part
contains either old or zeroed out data (if the block was recently
erased). While this could be viewed as a special form of silent
bit corruption, we consider this as a separate category in terms
of how it manifests at the file system level (called “Shorn
Write” corresponding to column (d) in Table 1) as this form of
corruption creates a particular pattern (each sequence of 512
bytes within a 4KB block is either completely corrupted or
completely correct), compared to the more random corruption
event referred to by column (c).

In [53], the authors observe shorn writes manifesting in two
patterns, where only the first 3/8th or the first 7/8th of a block
gets written and the rest is not. Similarly in our experiments,
we keep only the first 3/8th of a 4KB block. We assume the
block has been successfully erased, so the rest of the block
remains zeroed out. Our module can be configured to test
other shorn write sizes and patterns as well.

Dropped writes: The authors in [53] observe cases where
an SSD internal write operation gets dropped even after an
explicit cache flush (e.g. in the case of a power fault when
the update was in the SSD’s cache, but not persisted to flash).
If the dropped write relates to FTL metadata, in particular to
the L2P mapping, this could manifest as a “Read I/O error”,
“Write I/O error” or “Corruption” on a subsequent read or
write of the data. If the dropped write relates to a file system
write, the result is the same as if the file system had never
issued the corresponding write. We create a separate cate-
gory for this manifestation which we refer to as “Lost Write”
(column (e) in Table 1).

Incomplete Program operation: This refers to the situation
where a flash program operation does not fully complete
(without the FTL noticing), so only part of a flash page gets
written. Such scenarios were observed, for example, under
power faults [53]. At the file system level, this manifests as a
“Corruption” during a subsequent read of the data.

Incomplete Erase operation: This refers to the situation

SSD/Flash Errors (a) (b) (c) (d) (e)
Uncorrectable Bit Corruption X
Silent Bit Corruption X
FTL Metadata Corruption X X X
Misdirected Writes X X
Shorn Writes X
Dropped Write X X X X
Incomplete Program Operation X X
Incomplete Erase Operation X

Table 1: Different types of flash errors and their manifestation
in the file system. (a) Read I/O error (b) Write I/O error (c)
Corruption (d) Shorn Write (e) Lost Write.

where a flash erase operation does not completely erase a flash
erase block (without the FTL detecting and correcting this
problem). Incomplete erase operations have been observed
under power faults [53]. They could also occur when flash
erase blocks wear-out and the FTL does not handle a failed
erase operation properly. Subsequent program operations to
the affected erase block can result in incorrectly written data
and consequently “Corruption”, when this data is later read
by the file system.

2.2 Comparison with HDD faults
We note that there are also HDD-specific faults that would
manifest in a similar way at the file system level. However, the
mechanisms that cause faults within each media are different
and can for example affect the frequency of observed errors.
One such case are uncorrectable read errors which have been
observed at a much higher frequency in production systems
using SSDs than HDDs [48] (a trend that will likely only get
worse with QLC). There are faults though whose manifesta-
tion does actually differ from HDDs to SSDs, due to inherent
differences in their overall design and operation. For instance,
a part affected by a shorn write may contain previously written
data in the case of an HDD block, but would contain zeroed
out data if that area within the SSD has been correctly erased.
In addition, the large degree of parallelism inside SSDs makes
correctness under power faults significantly more challenging
than for HDDs (for example, ensuring atomic writes across
parallel units). Finally, file systems might modify their behav-
ior and apply different fault recovery mechanisms for SSDs
and HDDs; for example, Btrfs turns off metadata duplication
by default when deployed on top of an SSD.

2.3 Device Mapper Tool for Error Emulation
The key observation from the previous section is that all SSD
faults we consider manifest in one of five ways, corresponding
to the five columns (a) to (e) in Table 1. This section describes
a device mapper tool we created to emulate all five scenarios.

In order to to emulate SSD error modes and observe each
individual file system’s response, we need to intercept the
block I/O requests between the file system and the block
device. We leverage the Linux device mapper framework to
create a virtual block device that intercepts requests between
the file system and the underlying physical device. This allows

USENIX Association 2019 USENIX Annual Technical Conference 785

Programs
mount, umount, open, creat, access, stat, lstat, chmod, chown,
utime, rename, read, write, truncate, readlink, symlink, unlink,
chdir, rmdir, mkdir, getdirentries, chroot

Table 2: The programs used in our study. Each one stresses a
single system call and is invoked several times under different
file system images to increase coverage.

us to operate on block I/O requests and simulate faults as if
they originate from a physical device, and also observe the file
system’s reaction without modifying its source code. In this
way, we can perform tracing, parse file system metadata, and
alter block contents online, for both read and write requests,
while the file system is mounted. For this study, we use the
Linux kernel version 4.17.

Our module can intercept read and write requests for se-
lected blocks as they pass through the block layer and re-
turn an error code to the file system, emulating categories
(a) “Read Error” and (b) “Write Error” in Table 1. Possible
parameters include the request’s type (read/write), block num-
ber, and data structure type. In the case of multiple accesses
to the same block, one particular access can be targeted. We
also support corruption of specific data structures, fields and
bytes within blocks, allowing us to emulate category (c) “Cor-
ruption”. The module can selectively shear multiple sectors
of a block before sending it to the file system or writing it
on disk, emulating category (d) “Shorn Write”. Our module
can further drop one or more blocks while writing the blocks
corresponding to a file system operation, emulating the last
category (e) “Lost Write”. The module’s API is generic across
file systems and can be expanded to different file systems. Our
module can be found at [6].

2.4 Test Programs
We perform injection experiments while executing test pro-
grams chosen to exercise different parts of the POSIX API,
similar to the “singlets” used by Prabhakaran et al. [45]. Each
individual program focuses on one system call, such as mkdir
or write. Table 2 lists all the test programs that we used in
our study. For each test program, we populate the disk with
different files and directory structures to increase code cover-
age. For example, we generate small files that are stored inline
within an inode, as well as large files that use indirect blocks.
All our programs pedantically follow POSIX semantics; they
call fsync(2) and close(2), and check the return values to
ensure that data and metadata has successfully persisted to
the underlying storage device.

2.5 Targeted Error Injection
Our goal is to understand the effect of block I/O errors and
corruption in detail depending on which part of a file system
is affected. That means our error injection testbed requires
the ability to target specific data structures and specific fields
within a data structure for error injection, rather than ran-
domly injecting errors. We therefore need to identify for each

ext4
Data Structure Approach
super block, group descriptor, inode
blocks, block bmap, inode bmap

dumpe2fs

dir_entry debugfs, get block inode, stat on in-
ode number, check file type

extent debugfs, check for extent of a file
or directory path

data debugfs, get block inode, stat on in-
ode number, check file type

journal debugfs, check if parent inode
number is 8

Btrfs
Data Structure Approach
fstree, roottree, csumtree, extentTree,
chunkTree, uuidTree, devTree, logTree

device mapper module check btrfs
node header fields at runtime

DIR_ITEM DIR_INDEX INODE_REF
INODE_DATA EXTENT_DATA

btrfs-debug-tree

F2FS
superblock, checkpoint, SIT, NAT, inode,
d/ind node, dir. block, data

device mapper module

Table 3: The approach to type blocks collected using either
blktrace or our own device mapper module.

program which data structures are involved and how the parts
of the data structure map to the sequence of block accesses
generated by the program.

Understanding the relationship between the sequence of
block accesses and the data structures within each file system
required a significant amount of work and we had to rely on a
combination of approaches. First, we initialize the file system
to a clean state with representative data. We then run a specific
test program (Table 2) on the file system image, capturing
traces from blktrace and the kernel to learn the program’s
actual accessed blocks. Reading the file system source code
also enables us to put logic inside our module to interpret
blocks as requests pass through it. Lastly, we use offline
tools such as dumpe2fs, btrfs-inspect, and dump.f2fs
to inspect changes to disk contents. Through these multiple
techniques, we can identify block types and specific data struc-
tures within the blocks. Table 3 summarizes our approach to
identify different data structures in each of the file systems.

After identifying all the relevant data structures for each
program, we re-initialize the disk image and repeat test pro-
gram execution for error injection experiments. We use the
same tools, along with our module, to inject errors to specific
targets. A single block I/O error or data corruption is injected
into a block or data structure during each execution. This
allows us to achieve better isolation and characterization of
the file system’s reaction to the injected error.

Our error injection experiments allow us to measure both
immediate and longer-term effects of device faults. We can
observe immediate effects on program execution for some
cases, such as user space errors or kernel panics (e.g. from
write I/O errors). At the end of each test program execution,
we unmount the file system and perform several offline tests to
verify the consistency of the disk image, regardless of whether
the corruption was silent or not (e.g. persisting lost/shorn
writes): we invoke the file system’s integrity checker (fsck),
check if the file system is mountable, and check whether

786 2019 USENIX Annual Technical Conference USENIX Association

Symbol Level Description
© DZero No detection.
– DErrorCode Check the error code returned from the lower levels.
\ DSanity Check for invalid values within the contents of a block.
/ DRedundancy Checksums, replicas, or any other form of redundancy.
| DFsck Detect error using the system checker.
© RZero No attempt to recover.
/ RRetry Retry the operation first before returning an error.
| RPropagate Error code propagated to the user space.
\ RPrevious File system resumes operation from the state exactly

before the operation occurred.
– RStop The operation is terminated (either gracefully or

abruptly); the file system may be mounted as read-only.
� RFsck_Fail Recovery failed, the file system cannot be mounted.
� RFsck_Partial The file system is mountable, but it has experienced

data loss in addition to operation failure.
� RFsck_Orig Current operation fails, file system restored to pre-

operation state.
� RFsck_Full The file system is fully repaired and its state is the same

with the one generated by the execution where the op-
eration succeeded without any errors.

Table 4: The levels of our detection and recovery taxonomy.

the program’s operations have been successfully persisted
by comparing the resultant disk image against the expected
one. We also explore longer-term effects of faults where the
test programs access data that were previously persisted with
errors (read I/O, reading corrupted or shorn write data).

In this study, we use btrfs-progs v4.4, e2fsprogs v1.42.13,
and f2fs-tools v1.10.0 for our error injection experiments.

2.6 Detection and Recovery Taxonomy
We report the detection and recovery policies of all three
file systems with respect to the data structures involved. We
characterize each file system’s reaction via all observable in-
terfaces: system call return values, changes to the disk image,
log messages, and any side-effects to the system (such as
kernel panics). We classify the file system’s detection and
recovery based on a taxonomy that was inspired by previous
work [45], but with some new extensions: unlike [45], we also
experiment with file system integrity checkers and their abil-
ity to detect and recover from errors that the file system might
not be able to deal with and as such, we add a few additional
categories within the taxonomy that pertain to file system
checkers. Also, we create a separate category for the case
where the file system is left in its previous consistent state
prior to the execution of the program (RPrevious). In particular,
if the program involves updates on the system’s metadata,
none of it is reflected to the file system. Table 4 presents our
taxonomy in detail.

A file system can detect the injected errors online by check-
ing the return value of the block I/O request (DErrorCode),
inspecting the incoming data and performing some sanity
checks (DSanity), or using redundancies, e.g. in the form of
checksums (DRedundancy). A successful detection should alert
the user via system call return values or log messages.

To recover from errors, the file system can take several
actions. The most basic action is simply passing along the
error code from the block layer (RPropagate). The file system
can also decide to terminate the execution of the system call,
either gracefully via transaction abort, or abruptly such as

crashing the kernel (RStop). Lastly, the file system can per-
form retries (RRetry) in case the error is transient, or use its
redundancy data structures to recover the data.

It is important to note that for block I/O errors, the actual
data stored in the block is not passed to the disk or the file
system. Hence, no sanity check can be performed and DSanity
is not applicable. Similarly, for silent data corruption experi-
ments, our module does not return an error code, so DErrorCode
is not relevant.

We also run each file system’s fsck utility and report on
its ability to detect and recover file systems errors offline,
as it may employ different detection and recovery strategies
than the online file system. The different categories for fsck
recovery are shown in Table 4.

3 Results
Tables 5 and 6 provide a high-level summary of the results
from our error injection experiments following the detection
and recovery taxonomy from Table 4. Our results are orga-
nized into six columns corresponding to the fault modes we
emulate. The six tables in each column represent the fault
detection and recovery results for each file system under a
particular fault. The columns (a-w) in each table correspond
to the programs listed in Table 2, which specify the opera-
tion during which the fault mode was encountered, and rows
correspond to the file system specific data structure, that was
affected by the fault.

Note that the columns in Tables 5 and 6 have a one-to-one
correspondence to the fault modes described in Section 2 (Ta-
ble 1), with the exception of shorn writes. After a shorn write
is injected during test program execution and persisted to the
flash device, we examine two scenarios where the persisted
partial data is accessed again: during fsck invocation (Shorn
Write + Fsck column) and test program execution (Shorn
Write + Program Read column).

3.1 Btrfs
We observe in Table 5 that Btrfs is the only file system that
consistently detects all I/O errors as well as corruption events,
including those affecting data (rather than only metadata). It
achieves this through the extensive use of checksums.

However, we find that Btrfs is much less successful in
recovering from any issues than the other two file systems. It is
the only file system where four of the six error modes can lead
to a kernel crash or panic and subsequently a file system that
cannot be mounted even after running btrfsck. It also has the
largest number of scenarios that result in an unmountable file
system after btrfsck (even if not preceded by a kernel crash).
Furthermore, we find that node level checksums, although
good for detecting block corruption, they remove an entire
node even if a single byte becomes corrupted. As a result,
large chunks of data are removed, causing data loss.

Before we describe the results in more detail below, we
provide a brief summary of Btrfs data structures. The Btrfs

USENIX Association 2019 USENIX Annual Technical Conference 787

Read I/O Error Write I/O Error Corruption

Bt
rfs

De
tec

tio
n fs tree

cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
–| –|

–| –| –|
–|
–|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| –| ©|
–|
–|
–|

–|

a b c d e f g h i j k l m n o p q r s t v w
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–| –|
–| –|

–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–| –| –|

–| –| –| –| –| –| –| –| –| –|

a b c d e f g h i j k l m n o p q r s t v w
| |

| | |
|
|

| |
|
|
|

Bt
rf

sR
ec

ov
er

y fs tree
cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– ©|– |– |– |– |–

| |– –
–
–

©©©©©©©©©©©©©©©©©©© |– ©
–
–
–

|–

a b c d e f g h i j k l m n o p q r s t v w
– – –© – – –© – – – – –

– – – – –© – – – – – – – – – – – – – – – –
© | © | | |– – –©©© – © – – – – |– –© –

© – © – – – – – – – – ©

– © –

| |– |– |– |– |– |– |– |– |–

a b c d e f g h i j k l m n o p q r s t v w
|– ©

© |– |–
|–
|–

©©©©©©©©©©©©©©©©©©© |– ©
|–
|–
|–

|–

ex
t4

De
te

ct
io

n superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
–|

©–| ©–|
–|

–| –| –| –| –| –|
–| –| –| –| –| –|

–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–|
©

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| © –|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|
–| –| –| –| –| –| –|
–| –| –| –| –| –| –|

–| –| –| –| –|
–| –| –| –| –| –|

–|
–| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –| –|

–

a b c d e f g h i j k l m n o p q r s t v w
|

| | | | | | | | | | | © | | | | | | | | |
|

| | | | | |
| © | |

| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |

|
©

ex
t4

R
ec

ov
er

y superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
–

|– |– |– ©|– ©|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– – |–
–

© ©© ©©©
©© ©©© ©

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

–
|–

a b c d e f g h i j k l m n o p q r s t v w
©© © ©© © © © |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
© ©© ©©© ©
– – – – – – –

– – – – –
|– |– |– |– |– |–

|–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

©

a b c d e f g h i j k l m n o p q r s t v w
|–

|– |– |– |– |– |– |– |– |– |– |–© |– |– |– |– |– |– |– |– |–
|–

© ©© ©©©
©© ©©

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–

|–
©

F2
FS

De
tec

tio
n superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
–
–
–
–

– –
–

– – – – – – – – – – – – – – – – – – – –
–

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

© ©

a b c d e f g h i j k l m n o p q r s t v w
©|

©|
©|

| |
©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©

F2
FS

Re
co

ve
ry superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w

|–
|–

|– |–
|–

|– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |– |–
|–

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© ©©©©© ©© ©©© © ©

© ©

a b c d e f g h i j k l m n o p q r s t v w
©
©
©
©

©©©©©©©©©©©©©©©©©©©© ©
©

©©©©©©©©©©©©©©©©©©© ©
©

Table 5: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and F2FS for different read, write, and corruption
experiments. The programs that were used are: a: access b: truncate c: open d: chmod e: chown f: utimes g: read h: rename i: stat j: lstat k:
readlink l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write r: getdirentries s: creat t: mount v: umount w: chroot. An empty box indicates
that the block type is not applicable to the program in execution. Superimposed symbols indicate that multiple mechanisms were used.

© DZero – DErrorCode \ DSanity / DRedundancy | DFsck

© RZero / RRetry | RPropagate \ RPrevious – RStop

� RFsck_Full � RFsck_Orig � RFsck_Partial � RFsck_Fail � Crash/Panic+RFsck_fail

788 2019 USENIX Annual Technical Conference USENIX Association

Shorn Write + Program Read Shorn Write + Fsck Lost Writes

Bt
rfs

De
tec

tio
n fs tree

cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
| | | | | | | | | © | | | | | | | | | © |

| | ©
©
©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| | ©|
©
©
©

|

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©|
©| ©|
©| ©| ©| ©©©©©©| ©©| ©| ©| ©| ©| ©| ©| ©| ©| ©©| ©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©|

©| © ©| ©| ©| ©| ©| ©| ©| ©| ©|

a b c d e f g h i j k l m n o p q r s t v w
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©| ©|
©| ©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

©| ©|

©| ©|

Bt
rf

sR
ec

ov
er

y fs tree
cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree
data

a b c d e f g h i j k l m n o p q r s t v w
|– |– |– |– |– |– |– |– |–© |– |– |– |– |– |– |– |– |– |– |–

|– |– ©
©
©

©©©©©©©©©©©©©©©©©©©– ©
©
©
©

|–

a b c d e f g h i j k l m n o p q r s t v w
– | –©© – –©© ©©©©© © |

©
©©©©©©©©©©©©©©©©©©©©©©
©©©©©©©©©©©©©©©©©©©©©©

– – –©© ©© © ©© – ©

©© ©

© © © ©©©©©©©©

a b c d e f g h i j k l m n o p q r s t v w
© ©©©©© ©©© ©©©©© ©

©©©©©©©©©©©©©©©©©©©©©©
©©© ©©©©©©©©©©©©©©©©©©

© ©©©© ©© © ©© ©

© ©

© © ©

ex
t4

De
te

ct
io

n superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
©

| | | | | | | | | | | | | | | | | | |
©

©| ©| ©| ©| ©| ©|
©© ©© ©

©©©©©©©©©©©©©©©©©©© ©
©©©©©©©©©©©©©©©©©©© ©

©
© ©

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©©©©© ©©©©©© ©©©©© ©
©© ©©© ©©©©©©©© © ©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©
©©©©©©©©©©©©©©©©©© ©©

©

a b c d e f g h i j k l m n o p q r s t v w
©| ©©©© ©© © © ©©

©©©©© ©©©©©©©©©©©© ©©
©| © ©© ©©©| ©| ©©| ©©©©©©| ©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©©©©©©©©©©©©©©©©©© ©©
© ©© ©

ex
t4

R
ec

ov
er

y superblock
inode
group desc
block bitmap
inode bitmap
directory
extent
journal
data

a b c d e f g h i j k l m n o p q r s t v w
©

|– |–
©

© ©© ©©©
©© ©© ©

©© |– ©© |–©©© | | | | ©©©© | © ©
©©©©©©©©©©©©©©©©©©© ©

©
|

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©©©©© ©©©©©© ©©©©© ©
©© ©©© ©©©©©©©©©© ©©
© ©© ©©© ©

©© ©© ©
© | © ©

©
©©©©©© ©©©© ©©©©© ©

©

a b c d e f g h i j k l m n o p q r s t v w
©©©©© ©© © © ©©

©© ©© ©©©©©©©©©©©© ©©
©© ©© ©©©©©©©©©©©©©
© ©© ©©© ©

©© ©© ©
© © ©© ©

©©©©©©©©©©©©©©©©©© ©©
© ©© ©

F2
FS

De
tec

tio
n superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
©|

©|
©|

| |
©|

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|

© © ©

a b c d e f g h i j k l m n o p q r s t v w

© ©© ©© © ©

©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©| ©|
©| ©| ©| ©| ©|
©| ©| ©| ©| ©| ©| ©| ©| ©|

© ©|

F2
FS

Re
co

ve
ry superblock

checkpoint
NAT
SIT
inode
(d/ind) node
dir. entry
data

a b c d e f g h i j k l m n o p q r s t v w
©
©
©
©

©©©©©©©©©©©©©©©©©©©© ©
©

©©©©©©©©©©©©©©©©©©© ©
©

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© ©©©©© ©© ©©© © ©

© © ©

a b c d e f g h i j k l m n o p q r s t v w

© ©©©©© ©© ©©© © ©
© ©© © ©
© © ©© ©©© © ©

© ©

Table 6: The results of our analysis on the detection and recovery policies of Btrfs, ext4, and F2FS for different shorn write + program read,
shorn write + fsck, and lost write experiments. The programs that were used are: a: access b: truncate c: open d: chmod e: chown f: utimes g:
read h: rename i: stat j: lstat k: readlink l: symlink m: unlink n: chdir o: rmdir p: mkdir q: write r: getdirentries s: creat t: mount v: umount w:
chroot. An empty box indicates that the block type is not applicable to the program in execution. Superimposed symbols indicate that multiple
mechanisms were used.

© DZero – DErrorCode \ DSanity / DRedundancy | DFsck

© RZero / RRetry | RPropagate \ RPrevious – RStop

� RFsck_Full � RFsck_Orig � RFsck_Partial � RFsck_Fail � Crash/Panic+RFsck_fail

USENIX Association 2019 USENIX Annual Technical Conference 789

file system arranges data in the form of a forest of trees,
each serving a specific purpose (e.g. file system tree (fstree)
stores file system metadata, checksum tree (csumtree) stores
file/directory checksums). Btrfs maintains checksums for all
metadata within tree nodes. Checksum for data is computed
and stored separately in a checksum tree. A root tree stores the
location of the root of all other trees in the file system. Since
Btrfs is a copy-on-write file system, all changes made on a
tree node are first written to a different location on disk. The
location of the new tree nodes are then propagated across the
internal nodes up to the root of the file system trees. Finally,
the root tree needs to be updated with the location of the other
changed file system trees.

3.1.1 Read errors

All errors get detected (DErrorCode) and registered in the op-
erating system’s message log, and the current operation is
terminated (RStop). btrfsck is able to run, detect and correct
the file system in most cases, with two exceptions. When the
fstree structure is affected, btrfsck removes blocks that are
not readable and returns an I/O error. Another exception is
when a read I/O error is encountered while accessing key
tree structures during a mount procedure: mount fails and
btrfsck is unable to repair the file system.

3.1.2 Corruption

Corruption of any B-tree node. Checksums inside each tree
node enable reliable detection of corruption; however, Btrfs
employs a different recovery protocol based on the type of
the underlying device. When Btrfs is deployed on top of a
hard disk, it provides recovery from metadata corruption us-
ing metadata replication. Specifically, reading a corrupted
block leads to btrfs-scrub being invoked, which replaces
the corrupted primary metadata block with its replica. Note
that btrfs-scrub does not have to scan the entire file sys-
tem; only the replica is read to restore the corrupted block.
However, in case the underlying device is an SSD, Btrfs turns
off metadata replication by default for two reasons [7]. First,
an SSD can remap a primary block and its replica internally
to a single physical location, thus deduplicating them. Sec-
ond, SSD controllers may put data written together in a short
time span into the same physical storage unit (i.e. cell, erase
block, etc.), which is also a unit of SSD failures. Therefore,
btrfs-scrub is never invoked in the case of SSDs, as there
is no metadata duplication. This design choice causes a sin-
gle bit flip of fstree to wipe out files and entire directories
within a B-Tree node. If a corrupted tree node is encountered
while mount reads in all metadata trees into memory, the con-
sequences are even more severe: the operation fails and the
disk is left in an inconsistent and irreparable state, even after
running btrfsck.

Directory corruption. We observe that when a node cor-
ruption affects a directory, the corruption could actually be
recovered, but Btrfs fails to do so. For performance reasons,

Btrfs maintains two independent data structures for a direc-
tory (DIR_ITEM and DIR_INDEX). If one of these two becomes
corrupted, the other data structure is not used to restore the
directory. This is surprising considering that the existing re-
dundancy could easily be leveraged for increased reliability.

3.1.3 Write errors

Superblock & Write I/O errors: Btrfs has multiple copies
of its superblock, but interestingly, the recovery policy upon
a write error is not identical for all copies. The superblocks
are located at fixed locations on the disk and are updated at
every write operation. The replicas are kept consistent, which
differs from ext4’s behavior. We observe that a write I/O error
while updating the primary superblock is considered severe;
the operation is aborted and the file system remounts as read-
only. On the other hand, write I/O errors for the secondary
copies of the superblock are detected, but the overall operation
completes successfully, and the secondary copy is not updated.
While this allows the file system to continue writing, this is
a violation of the implicit consistency guarantee between all
superblocks, which may lead to problems in the future, as the
system operates with a reduced number of superblock copies.

Tree Node & Write I/O errors: A write I/O error on a tree
node is registered in the operating system’s message log, but
due to the file system’s asynchronous nature, errors cannot be
directly propagated back to the user application that wrote the
data. In almost all cases, the file system is forced to mount as
read-only (RStop). A subsequent unmount and btrfsck run
in repair mode makes the device unreadable for extentTree,
logTree, rootTree and the root node of the fstree.

3.1.4 Shorn Write + Program Read

We observe that the behavior of Btrfs during a read of a shorn
block is similar to the one we observed earlier for corruption.
The only exception is the superblock, as its size is smaller
than the 3/8th of the block and it does not get affected.

3.1.5 Shorn Write + Fsck

Shorn writes on root tree cause the file system to become un-
mountable and unrecoverable even after a btrfsck operation.
We also find kernel panics during shorn writes as described
in Section 3.1.7.

3.1.6 Lost Writes

Errors get detected only during btrfsck. They do not get
detected or propagated to user space during normal operation.
btrfsck is unable to recover the file system, which is ren-
dered unmountable due to corruption. The only recoverable
case is a lost write to the superblock; for the remaining data
structures, the file system eventually becomes unmountable.

3.1.7 Bugs found/reported.

We submitted 2 bug reports for Btrfs. The first bug report is
related to the corruption of a DIR_INDEX key. The file system
was able to detect the corruption but deadlocks while listing

790 2019 USENIX Annual Technical Conference USENIX Association

the directory entries. This bug was fixed in a later version [1].
The second bug is related to read I/O errors specifically on
the root directory, which can cause a kernel panic for certain
programs. We encountered 2 additional bugs during a shorn
write that result in a kernel panic, both having the same root
cause. The first case involves a shorn write to the root of the
fstree, while the second case involves a shorn write to the root
of the extent tree. In both cases, there is a mismatch in the
leaf node size, which forces Btrfs to print the entire tree in
the operating system’s message log. While printing the leaf
block, another kernel panic occurs where the size of a Btrfs
item does not match the Btrfs header. Rebooting the kernel
and running btrfsck fails to recover the file system.

3.2 ext4
ext4 is the default file system for many widely used Linux dis-
tributions and Android devices. It maintains a journal where
all metadata updates are sequentially written before the main
file system is updated. First, data corresponding to a file sys-
tem operation is written to the in-place location of the file
system. Next, a transaction log is written on the journal. Once
the transaction log is written on the journal, the transaction
is said to be committed. When the journal is full or suffi-
cient time has elapsed, a checkpoint operation takes place
that writes the in-memory metadata buffers to the in-place
metadata location on the disk. On the event of a crash before
the transaction is committed, the file system transaction is
discarded. If the commit has taken place successfully on the
journal but the transaction has not been checkpointed, the file
system replays the journal during remount, where all meta-
data updates that were committed on the journal are recovered
from the journal and written to the main file system.

ext4 is able to recover from an impressively large range of
fault scenarios. Unlike Btrfs, it makes little use of checksums
unless metadata_csum feature is enabled explicitly during
file system creation. Further, it deploys a very rich set of
sanity checks when reading data structures such as directories,
inodes and extents1, which helps it deal with corruptions.

It is also the only one of the three file systems that is able
to recover lost writes of multiple data structures, due to its
in-place nature of writes and a robust file system checker.
However, there are a few exceptions where the correspond-
ing issue remains uncorrectable (see the red cells in Table 6
associated with ext4’s recovery).

Furthermore, we observe instances of data loss caused
by shorn and lost writes involving write programs, such as
create and rmdir. For shorn writes, ext4 may incur silent
errors, and not notify the user about the errors.

Before describing some specific issues below, we point out
that our ext4 results are very different from those reported for

1We report failure results for both directory and file extents together. Since
our pre-workload generation creates a number of files and directories in the
root directory, at least 1 extent block corresponding to the root directory gets
accessed by all programs.

ext3 in [45], where a large number of corruption events and
several read and write I/O errors were not detected or han-
dled properly. Clearly, in the 13 years that have passed since
then, ext developers have made improvements in reliability a
priority, potentially motivated by the findings in [45].

I/O errors, corruption and shorn writes of Inodes: The
most common scenario leading to data loss (but still a consis-
tent file system) is a fault, in particular read I/O error, corrup-
tion or shorn write, that affects an inode, which results in the
data of all files having their inode structure stored inside the
affected inode block becoming inaccessible.

Read I/O errors, corruption and shorn writes of Direc-
tory blocks: A shorn write involving a directory block is
detected by the file system and eventually, the correspond-
ing files and directories are removed. Empty files are com-
pletely removed by e2fsck by default, while non-empty files
are placed into the lost+found directory. However, the parent-
child relationship is lost, which we encode as RFsck_Partial.

Write I/O errors and group descriptors: There is only
one scenario where e2fsck does not achieve at least partial
success: When e2fsck is invoked after a write error on a
group descriptor, it tries to rebuild the group descriptor and
write it to the same on-disk location. However, as it is the
same on-disk location that generated the initial error, e2fsck
encounters the same write error and keeps restarting, running
into an infinite loop for 3 cases (see RFsck_Fail).

Read I/O error during mount: ext4 fails to complete the
mount operation if a read I/O error occurs while reading a
critical metadata structure. In this case, the file system cannot
be mounted even after invoking e2fsck. We observe similar
behavior for the other two file systems as well.

3.3 F2FS
F2FS is a log-structured file system designed for devices
that use an FTL. Data and metadata are separately written
into 6 active logs (default configuration), which are grouped
by data/metadata, files/directories, and other heuristics. This
multi-head logging allows similar blocks to be placed together
and increases the number of sequential write operations.

F2FS divides its logical address space into the metadata
region and the main area. The metadata region is stored at
a fixed location and includes the Checkpoint (CP), the Seg-
ment Information Table (SIT), and the Node Address Table
(NAT). The checkpoint stores information about the state of
the file system and is used to recover from system crashes.
SIT maintains information on the segments (the unit at which
F2FS allocates storage blocks) in the main area, while NAT
contains the block addresses of the file system’s nodes, which
comprise of file/directory inodes, direct, and indirect nodes.
F2FS uses a two-location approach for these three structures.
In particular, one of the two copies is “active” and used to
initialize the file system’s state during mount, while the other
is a shadow copy that gets updated during the file system’s
execution. Finally, each copy of the checkpoint points to its

USENIX Association 2019 USENIX Annual Technical Conference 791

corresponding copy of SIT and NAT.
F2FS’s behavior when encountering read/write errors or

corruption differs significantly from that of ext4 and Btrfs.
While read failures are detected and appropriately propagated
in nearly all scenarios, we observe that F2FS consistently
fails to detect and report any write errors, independently of
the operation that encounters them and the affected data struc-
ture. Furthermore, our results indicate that F2FS is not able
to deal with lost and shorn writes effectively and eventually
suffers from data loss. In some cases, a run of the file system’s
checker (called fsck.f2fs) can bring the system to a consis-
tent state, but in other cases, the consequences are severe. We
describe some of these cases in more detail below.

3.3.1 Read errors

Checkpoint / NAT / SIT blocks & read errors. During its
mount operation, if F2FS encounters a read I/O error while
trying to fetch any of the checkpoint, NAT, or SIT blocks, then
it mounts as read-only. Additionally, F2FS cannot be mounted
if the inode associated with the root directory cannot be ac-
cessed. In general, fsck.f2fs cannot help the file system
recover from the error since it terminates with an assertion
error every time it cannot read a block from the disk.

3.3.2 Write errors & Lost Writes

We observe that F2FS does not detect write errors (as injected
by our framework), leading to different issues, such as corrup-
tion, reading garbage values, and potentially data loss. As a
result, during our experiments, newly created or previously
existing entries have been completely discarded from the sys-
tem, applications have received garbage values, and finally,
the file system has experienced data loss due to an incomplete
recovery protocol (i.e. when fsck.f2fs is invoked). Consid-
ering that F2FS does not detect write I/O errors, lost writes
end up having the same effect, since the difference between
the two is that a lost write is silent (i.e. no error is returned).

3.3.3 Corruption

Data corruption is reliably detected only for inodes and check-
points, which are the only data structures protected by check-
sums, but even for those two data structures, recovery can be
incomplete, resulting in the loss of files (and the data stored in
them). The corruption of other data structures can lead to even
more severe consequences. For example, the corruption of the
superblock can go undetected and lead to an unmountable file
system, even if the second copy of the superblock is intact.
We have filed two bug reports related to the issues we have
identified and one has already resulted in a fix. Below we
describe some of the issues around corruption in more detail.

Inode block corruption. Inodes are one of only two F2FS
data structures that are protected by checksums, yet their
corruption can still create severe problems. One such scenario
arises when the information stored in the footer section of an
inode block is corrupted. In this case, fsck.f2fs will discard

the entry without even attempting to create an entry in the
lost_found directory, resulting in data loss.

Another scenario is when an inode associated with a di-
rectory is corrupted. Then all the regular files stored inside
that directory and its sub-directories are recursively marked
as unreachable by fsck.f2fs and are eventually moved to
the lost_found directory (provided that their inode is valid).
However, we observe that fsck.f2fs does not attempt to
recreate the structure of sub-directories. It simply creates an
entry in the lost_found directory for regular files in the sub-
directory tree, not sub-directories. As a result, if there are
different files with the same name (stored in different paths
of the original hierarchy), then only one is maintained at the
end of the recovery procedure.

Checkpoint corruption. Checkpoints are the other data
structure, besides inodes, that is protected by checksums. We
observe that issues only arise if both copies of a checkpoint
become corrupted, in which case the file system cannot be
mounted. Otherwise, the uncorrupted copy will be used during
the system’s mount operation.

Superblock corruption. While there are two copies of
the superblock, the detection of corruption to the superblock
relies completely on a set of sanity checks performed on
(most) of its fields, rather than checksums or comparison of
the two copies. If sanity checks identify an invalid value, then
the backup copy is used for recovery. However, our results
show that the sanity checks are not capable of detecting all
invalid values and thus, depending on the corrupted field, the
reliability of the file system can suffer.

One particularly dangerous situation is a corruption of the
offset field, which is used to calculate a checkpoint’s start-
ing address inside the corresponding segment, as it causes
the file system to boot from an invalid checkpoint location
during a mount operation and to eventually hang during its
unmount operation. We filed a bug report which has resulted
in a new patch that fixes this problem during the operation
of fsck.f2fs; specifically, the patch uses the (checksum-
protected) checkpoint of the system to restore the correct
value. Future releases of F2FS will likely include a patch that
enables checksums for the superblock.

Another problem with superblock corruption, albeit less
severe, arises when the field containing the counter of sup-
ported file extensions, which F2FS uses to identify cold data,
is corrupted. The corruption goes undetected and as a result,
the corresponding file extensions are not treated as expected.
This might lead to file system performance problems, but
should not affect reliability or consistency.

SIT corruption. SIT blocks are not protected against cor-
ruption through any form of redundancy. We find cases where
the corruption of these blocks severely compromises the con-
sistency of the file system. For instance, we were able to
corrupt a SIT block’s bitmap (which keeps track of the al-
located blocks inside a segment) in such a way that the file
system hit a bug during its mount operation and eventually,

792 2019 USENIX Annual Technical Conference USENIX Association

became unmountable.
NAT corruption. This data structure is not protected

against corruption and we observe several problems this can
create. First, the node ID of an entry can be corrupted and
thus, point to another entry inside the file system, to an invalid
entry or a non-existing one. Second, the block address of an
entry can be corrupted and thus, point to another entry in the
system or an invalid location. In both cases, the original entry
is eventually marked as unreachable by fsck.f2fs, since the
reference to it is no longer available inside the NAT copy, and
placed in the lost_found directory. As already mentioned, files
with identical names overwrite each other and eventually only
one is stored inside the lost_found directory.

Direct/Indirect Node corruption. These blocks are used
to access the data of large files and also, the entries of large
directories (with multiple entries). Direct nodes contain en-
tries that point to on-disk blocks, while indirect nodes contain
entries that point to direct nodes. Neither single nor double in-
direct nodes are protected against corruption. We observe that
corruption of these nodes is not detected by the file system.
Even when an invocation of fsck.f2fs detects the corrup-
tion problems can arise. For example, we find a case where
after the invocation of fsck.f2fs the system kept reporting
the wrong (corrupted) size for a file. As a result, when we tried
to create a copy of the file, we received a different content.

Directory entry corruption. Directory entries are stored
and organized into blocks. Currently, there is no mechanism
to detect corruption of such a block and we observe numerous
problems this can create. For example, when the field in a
directory entry that contains the length of the entry’s name is
corrupted the file system returns garbage information when
we try to get the file’s status. Moreover, the field containing
the node ID of the corresponding inode can be corrupted and
as a result point to any node currently stored in the system.
Finally, an entry can “disappear” by storing a zero value into
the corresponding index inside the directory’s bitmap.

In the last two cases, any affected entry is eventually
marked as unreachable by fsck.f2fs, since their parent di-
rectory does no longer point to it. As already mentioned, files
with identical names overwrite each other and eventually only
one is stored inside the lost_found directory.

3.3.4 Shorn Write + Program Read

The results when a program reads a block previously affected
by a shorn write are similar to those for corruption, since
shorn writes can be viewed as a special type of corruption.
The only exception is the superblock, as it is a small data
structure that happened not to be affected by our experiments.

3.3.5 Shorn Write + Fsck

Directory entries and shorn writes. Blocks that contain di-
rectory entries are not protected against corruption. Therefore,
a shorn write goes undetected and can cause several problems.
First, valid entries of the system “disappear” after invoking

fsck.f2fs, including the special entries that point to the
current directory and its parent. Second, in some cases, we
additionally observed that after re-mounting the file system,
an attempt to list the contents of a directory resulted in an
infinite loop. In both cases, the affected entries were eventu-
ally marked as unreachable by fsck.f2fs and were dumped
into the lost_found directory. As we have already mentioned,
files with identical names in different parts of the directory
tree conflict with each other and eventually, only one makes
it to the lost_found directory. In some cases, fsck.f2fs is
not capable of detecting the entire damage a shorn write has
caused; we ran into a case where after remounting the file
system, all the entries inside a directory ended up having the
same name, eventually becoming completely inaccessible.

3.3.6 Bugs found/reported

We have filed two bug reports related to the issues we have
identified around handling corrupted data and one has already
resulted in a fix [2, 4]. Moreover, we have reported F2FS’s
failure to handle write I/O errors [3].

4 Related Work
Our work is closest in spirit to the pioneering work by
Prabhakaran et al. [45], however our focus is very different.
While [45] was focused on HDDs, we are specifically inter-
ested in SSD-based systems and as such consider file systems
with features that are attractive for usage with SSDs, including
log-structured and copy-on-write systems. None of the file
systems in our study existed at the time [45] was written and
they mark a significant departure in terms of design principles
compared to the systems in [45]. Also, since we are focused
on SSDs, we specifically consider reliability issues that arise
from the use of SSDs. Additionally, we provide some ex-
tensions to the work in [45], such as exploring whether fsck
is able to detect and recover from those issues that the file
systems cannot handle during their online operation.

Gunawi et al. [28] make use of static analysis and explore
how file systems and storage device drivers propagate error
codes. Their results indicate that write errors are neglected
more often than read errors. Our study confirms that write
errors are still not handled properly in some file systems, espe-
cially when lost and shorn writes are considered. In [51], the
authors conduct a performance evaluation on the transaction
processing system between ext2 and NILFS2. In [42], the
authors explore how existing file systems developed for differ-
ent operating systems behave with respect to features such as
crash resilience and performance. Nonetheless, the provided
experimental results only present the performance of read and
write operations. Recently, two new studies presented their
reliability analysis of file systems in a context other than the
local file system. Ganesan et al. [25] present their analysis
on how modern distributed storage systems behave in the
presence of file-system faults. Cao et al. [20] present their
study on the reliability of high-performance parallel systems.

USENIX Association 2019 USENIX Annual Technical Conference 793

In contrast, in our work, we focus on local file systems and
explore the effect of SSD related errors.

Finally, different techniques involving hardware or modifi-
cations inside the FTL have been proposed to mitigate existing
errors inside SSDs [14, 15, 22, 35–37, 44].

5 Implications
• ext4 has significantly improved over ext3 in both detection
and recovery from data corruption and I/O injection errors.
Our extensive test suite generates only minor errors or data
losses in the file system, in stark contrast with [45], where
ext3 was reported to silently discard write errors.
• On the other hand, Btrfs, which is a production grade file
system with advanced features like snapshot and cloning, has
good failure detection mechanisms, but is unable to recover
from errors that affect its key data structures, partially due to
disabling metadata replication when deployed on SSDs.
• F2FS has the weakest detection against the various errors
our framework emulates. We observe that F2FS consistently
fails to detect and report any write errors, regardless of the
operation that encounters them and the affected data structure.
It also does not detect many corruption scenarios. The result
can be as severe as data loss or even an unmountable file
system. We have filed 3 bug reports; 1 has already been fixed
and the other 2 are currently under development.
• File systems do not always make use of the existing redun-
dancy. For example, Btrfs maintains two independent data
structures for each directory entry for enhanced performance,
but upon failure of one, does not use the other for recovery.
• We notice potentially fatal omissions in error detection and
recovery for all file systems except for ext4. This is concern-
ing since technology trends, such as continually growing SSD
drive capacities and increasing densities as QLC drives which
are coming on the market, all seem to point towards increas-
ing rather than decreasing SSD error rates in the future. In
particular for flash-focused file systems, such as F2FS, where
for a long time focus has been on performance optimization,
an emphasis on reliability is needed if they want to be a seri-
ous contender for ext4.
• File systems should make every effort to verify the correct-
ness of metadata through sanity checks, especially when the
metadata is not protected by a mechanism, such as check-
sums. The most mature file system in our study, ext4, does
a significantly more thorough job at sanity checks than for
example F2FS, which has room for improvement. There have
also been recent efforts towards this direction in the context
of a popular enterprise file system [32].
• Checksums can be a double-edged sword. While they help
increase error detection, coarse granularity checksums can
lead to severe data loss. For instance, manipulation of even 1
byte of the checksummed file system unit leads to discard of
the entire file system unit in the case for Btrfs. Ideally having
a directory or a file system level checksum that discards only
1 entity instead of all co-located files/directories should be

implemented. A step in this direction is File-Level Integrity
proposed for Android [5, 24]. The tradeoff of adding fine-
grained checksums is the space and performance overhead,
since a checksum protects a single inode instead of a block
of inodes. Finally, note that checksums can only help with
detecting corruption, but not with recovery (ideally a file sys-
tem can both detect corruption and recover from it). These
points have to be considered together when implementing
checksums inside the file system.
• One might wonder whether added redundancy as described
in the Iron file system paper [45] might resolve many of the
issues we observe. We hypothesize that for flash-based sys-
tems, redundancy can be less effective in those (less likely)
cases where both the primary and replica blocks land in the
same fault domain (same erase block or same flash chip), af-
ter being written together within a short time interval. Even
though modern flash devices keep multiple erase blocks open
and stripe incoming writes among them for throughput, this
does not preclude the scenario where both the primary and
replica blocks land in the same fault domain.
• Maybe not surprisingly, a few key data structures (e.g. the
journal’s superblock in ext4, the root directory inode in ext4
and F2FS, the root node of fstree in Btrfs) are responsible
for the most severe failures, usually when affected by a silent
fault (e.g. silent corruption or silently dropped write).It might
be worthwhile to perform a series of sanity checks for such
key data structures before persisting them to the SSD e.g.
during an unmount operation.

6 Limitations and Future Work
Some of the fault types we explore in our study are based on
SSD models that are several years old by now, whose internal
behavior could have changed since then. However, we observe
that some issues are inherent to flash and therefore likely to
persist in new generations of drives, such as retention and
disturb errors, which will manifest as read errors at the file
system level. The manifestation of other faults, e.g. those
related to firmware bugs or changes in page and block size,
might vary for future drive models. Our tool is configurable
and can be extended to test new error patterns.

File systems must remain consistent in the face of different
types of faults. As part of future work, we plan to extend
our device mapper module to emulate additional fault modes,
such as timeouts. Additionally, our work can be expanded to
include additional file systems, such as XFS, NTFS and ZFS.
Finally, another extension to our work could be exploring how
file systems respond to timing anomalies as those described
in [26], where I/Os related to some blocks can become slower,
or the whole drive is slow.

Acknowledgements
We thank our USENIX ATC ’19 reviewers and our shepherd,
Theodore Ts’o, for their detailed feedback and valuable sug-
gestions.

794 2019 USENIX Annual Technical Conference USENIX Association

References
[1] Btrfs Bug Report. https://bugzilla.kernel.org/

show_bug.cgi?id=198457.

[2] F2FS Bug Report. https://bugzilla.kernel.org/
show_bug.cgi?id=200635.

[3] F2FS Bug Report - Write I/O Errors. https://
bugzilla.kernel.org/show_bug.cgi?id=200871.

[4] F2FS Patch File. https://sourceforge.net/p/
linux-f2fs/mailman/message/36402198/.

[5] fs-verity: File System-Level Integrity Protec-
tion. https://www.spinics.net/lists/
linux-fsdevel/msg121182.html. [Online; ac-
cessed 06-Jan-2019].

[6] Github code repository. https://github.com/
uoftsystems/dm-inject.

[7] Btrfs mkfs man page. https://btrfs.wiki.kernel.
org/index.php/Manpage/mkfs.btrfs, 2019. [On-
line; accessed 06-Jan-2019].

[8] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance. In USENIX An-
nual Technical Conference (ATC ’08), volume 57, 2008.

[9] Lakshmi N Bairavasundaram, Andrea C Arpaci-
Dusseau, Remzi H Arpaci-Dusseau, Garth R Goodson,
and Bianca Schroeder. An Analysis of Data Corruption
in the Storage Stack. ACM Transactions on Storage
(TOS), 4(3):8, 2008.

[10] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky, Jeff J
Peterson, Robert Shiner, and Neal Mielke. A new reli-
ability model for post-cycling charge retention of flash
memories. In Proceedings of the 40th Annual Interna-
tional Reliability Physics Symposium, pages 7–20. IEEE,
2002.

[11] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 359–374,
Santa Clara, CA, 2017. USENIX Association.

[12] Simona Boboila and Peter Desnoyers. Write Endurance
in Flash Drives: Measurements and Analysis. In Pro-
ceedings of the 8th USENIX Conference on File and Stor-
age Technologies (FAST ’10), pages 115–128. USENIX
Association, 2010.

[13] Adam Brand, Ken Wu, Sam Pan, and David Chin. Novel
read disturb failure mechanism induced by FLASH cy-
cling. In Proceedings of the 31st Annual International

Reliability Physics Symposium, pages 127–132. IEEE,
1993.

[14] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[15] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur
Mutlu, and Erich F Haratsch. Vulnerabilities in MLC
NAND flash memory programming: experimental anal-
ysis, exploits, and mitigation techniques. In 23rd Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 49–60. IEEE, 2017.

[16] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in MLC NAND flash memory: Measure-
ment, Characterization, and Analysis. In Proceedings
of the Conference on Design, Automation and Test in
Europe, pages 521–526. EDA Consortium, 2012.

[17] Yu Cai, Yixin Luo, Erich F Haratsch, Ken Mai, and Onur
Mutlu. Data retention in MLC NAND flash memory:
Characterization, optimization, and recovery. In 21st In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 551–563. IEEE, 2015.

[18] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai.
Program interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In 31st In-
ternational Conference on Computer Design (ICCD),
pages 123–130. IEEE, 2013.

[19] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F Haratsch,
Adrian Cristal, Osman S Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In 30th Interna-
tional Conference on Computer Design (ICCD), pages
94–101. IEEE, 2012.

[20] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong
Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. PFault:
A General Framework for Analyzing the Reliability of
High-Performance Parallel File Systems. In Proceed-
ings of the 2018 International Conference on Supercom-
puting, pages 1–11. ACM, 2018.

[21] Paolo Cappelletti, Roberto Bez, Daniele Cantarelli, and
Lorenzo Fratin. Failure mechanisms of Flash cell in
program/erase cycling. In Proceedings of the IEEE
International Electron Devices Meeting, pages 291–294.
IEEE, 1994.

[22] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives.
In Proceedings of the 2009 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of

USENIX Association 2019 USENIX Annual Technical Conference 795

https://bugzilla.kernel.org/show_bug.cgi?id=198457
https://bugzilla.kernel.org/show_bug.cgi?id=198457
https://bugzilla.kernel.org/show_bug.cgi?id=200635
https://bugzilla.kernel.org/show_bug.cgi?id=200635
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://bugzilla.kernel.org/show_bug.cgi?id=200871
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/
https://sourceforge.net/p/linux-f2fs/mailman/message/36402198/
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://www.spinics.net/lists/linux-fsdevel/msg121182.html
https://github.com/uoftsystems/dm-inject
https://github.com/uoftsystems/dm-inject
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs

Computer Systems (SIGMETRICS ’09), pages 181–192,
2009.

[23] Robin Degraeve, F Schuler, Ben Kaczer, Martino Loren-
zini, Dirk Wellekens, Paul Hendrickx, Michiel van Du-
uren, GJM Dormans, Jan Van Houdt, L Haspeslagh, et al.
Analytical percolation model for predicting anomalous
charge loss in flash memories. IEEE Transactions on
Electron Devices, 51(9):1392–1400, 2004.

[24] Jake Edge. File-level Integrity. https://lwn.net/
Articles/752614/, 2018. [Online; accessed 06-Jan-
2019].

[25] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy Does Not Imply Fault Tolerance: Analysis
of Distributed Storage Reactions to Single Errors and
Corruptions. In Proceedings of the 15th USENIX Con-
ference on File and Storage Technologies (FAST ’17),
pages 149–166, Santa Clara, CA, 2017. USENIX Asso-
ciation.

[26] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson,
E. Yaakobi, P. H. Siegel, and J. K. Wolf. Characterizing
Flash Memory: Anomalies, Observations, and Applica-
tions. In 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 24–33, Dec
2009.

[27] Laura M Grupp, John D Davis, and Steven Swanson.
The bleak future of NAND flash memory. In Proceed-
ings of the 10th USENIX conference on File and Storage
Technologies (FAST ’12). USENIX Association, 2012.

[28] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dussea, and Ben Li-
blit. EIO: Error Handling is Occasionally Correct. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST ’08), pages 14:1–14:16, San
Jose, CA, 2008.

[29] S Hur, J Lee, M Park, J Choi, K Park, K Kim, and K Kim.
Effective program inhibition beyond 90nm NAND flash
memories. Proc. NVSM, pages 44–45, 2004.

[30] Seok Jin Joo, Hea Jong Yang, Keum Hwan Noh,
Hee Gee Lee, Won Sik Woo, Joo Yeop Lee, Min Kyu
Lee, Won Yol Choi, Kyoung Pil Hwang, Hyoung Seok
Kim, et al. Abnormal disturbance mechanism of sub-
100 nm NAND flash memory. Japanese Journal of
Applied Physics, 45(8R):6210, 2006.

[31] Myoungsoo Jung and Mahmut Kandemir. Revisiting
Widely Held SSD Expectations and Rethinking System-
level Implications. In Proceedings of the 2013 ACM SIG-
METRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS ’13),
pages 203–216, 2013.

[32] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sum-
ith Makam. High Performance Metadata Integrity Pro-
tection in the WAFL Copy-on-Write File System. In
Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 197–212,
Santa Clara, CA, 2017. USENIX Association.

[33] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST ’15), pages 273–
286, Santa Clara, CA, 2015. USENIX Association.

[34] Jae-Duk Lee, Chi-Kyung Lee, Myung-Won Lee, Han-
Soo Kim, Kyu-Charn Park, and Won-Seong Lee. A
new programming disturbance phenomenon in NAND
flash memory by source/drain hot-electrons generated by
GIDL current. In Non-Volatile Semiconductor Memory
Workshop, 2006. IEEE NVSMW 2006. 21st, pages 31–33.
IEEE, 2006.

[35] Ren-Shuo Liu, Chia-Lin Yang, and Wei Wu. Optimizing
NAND flash-based SSDs via retention relaxation. In
Proceedings of the 10th USENIX conference on File and
Storage Technologies (FAST ’12), page 11, San Jose,
CA, 2012. USENIX Association.

[36] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch,
and Onur Mutlu. HeatWatch: Improving 3D NAND
Flash Memory Device Reliability by Exploiting Self-
Recovery and Temperature Awareness. In 24th Inter-
national Symposium on High Performance Computer
Architecture (HPCA), pages 504–517. IEEE, 2018.

[37] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. Improving 3D NAND Flash Mem-
ory Lifetime by Tolerating Early Retention Loss and
Process Variation. Proceedings of the 2018 ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’18),
2(3):37:1–37:48, December 2018.

[38] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The New ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux symposium,
volume 2, pages 21–33, 2007.

[39] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM SIGMETRICS
International Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS ’15), pages
177–190, 2015.

796 2019 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/752614/
https://lwn.net/Articles/752614/

[40] Neal Mielke, Hanmant P Belgal, Albert Fazio, Qingru
Meng, and Nick Righos. Recovery Effects in the Dis-
tributed Cycling of Flash Memories. In Proceedings of
the 44th Annual International Reliability Physics Sym-
posium, pages 29–35. IEEE, 2006.

[41] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich,
Hanmant Belgal, Eric Schares, Falgun Trivedi, Evan
Goodness, and Leland R Nevill. Bit error rate in NAND
flash memories. In Proceedings of the 46th Annual
International Reliability Physics Symposium, pages 9–
19. IEEE, 2008.

[42] Keshava Munegowda, GT Raju, and Veera Manikandan
Raju. Evaluation of file systems for solid state drives. In
Proceedings of the Second International Conference on
Emerging Research in Computing, Information, Com-
munication and Applications, pages 342–348, 2014.

[43] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR ’16), pages 7:1–7:11,
2016.

[44] Nikolaos Papandreou, Thomas Parnell, Haralampos
Pozidis, Thomas Mittelholzer, Evangelos Eleftheriou,
Charles Camp, Thomas Griffin, Gary Tressler, and An-
drew Walls. Using Adaptive Read Voltage Thresholds
to Enhance the Reliability of MLC NAND Flash Mem-
ory Systems. In Proceedings of the 24th Edition of the
Great Lakes Symposium on VLSI (GLSVLSI ’14), pages
151–156, 2014.

[45] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File
Systems. In Proceedings of the Twentieth ACM Sym-
posium on Operating Systems Principles (SOSP ’05),
pages 206–220, Brighton, United Kingdom, 2005.

[46] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. ACM Transactions on
Storage (TOS), 9(3):1–32, August 2013.

[47] Marco AA Sanvido, Frank R Chu, Anand Kulkarni,
and Robert Selinger. NAND flash memory and its
role in storage architectures. Proceedings of the IEEE,
96(11):1864–1874, 2008.

[48] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST ’16),
pages 67–80, Santa Clara, CA, 2016. USENIX Associa-
tion.

[49] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-
Ki Kim, Young-Joon Choi, Yong-Nam Koh, Sung-Soo
Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
et al. A 3.3 V 32 Mb NAND flash memory with incre-
mental step pulse programming scheme. IEEE Journal
of Solid-State Circuits, 30(11):1149–1156, 1995.

[50] Hung-Wei Tseng, Laura Grupp, and Steven Swanson.
Understanding the Impact of Power Loss on Flash Mem-
ory. In Proceedings of the 48th Design Automation
Conference (DAC ’11), pages 35–40, San Diego, CA,
2011.

[51] Yongkun Wang, Kazuo Goda, Miyuki Nakano, and
Masaru Kitsuregawa. Early experience and evaluation
of file systems on SSD with database applications. In 5th
International Conference on Networking, Architecture,
and Storage (NAS), pages 467–476. IEEE, 2010.

[52] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the Robustness of SSDs Under
Power Fault. In Proceedings of the 11th USENIX Con-
ference on File and Storage Technologies (FAST ’13),
pages 271–284, San Jose, CA, 2013. USENIX Associa-
tion.

[53] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillibridge,
Bill W. Zhao, and Elizabeth S. Yang. Reliability Analy-
sis of SSDs Under Power Fault. ACM Transactions on

Storage (TOS), 34(4):1–28, November 2016.

USENIX Association 2019 USENIX Annual Technical Conference 797

	Introduction
	File System Error Injection
	SSD Errors in the Field and their Manifestation
	Comparison with HDD faults
	Device Mapper Tool for Error Emulation
	Test Programs
	Targeted Error Injection
	Detection and Recovery Taxonomy

	Results
	Btrfs
	Read errors
	Corruption
	Write errors
	Shorn Write + Program Read
	Shorn Write + Fsck
	Lost Writes
	Bugs found/reported.

	ext4
	F2FS
	Read errors
	Write errors & Lost Writes
	Corruption
	Shorn Write + Program Read
	Shorn Write + Fsck
	Bugs found/reported

	Related Work
	Implications
	Limitations and Future Work

