
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

EROFS: A Compression-friendly Readonly File
System for Resource-scarce Devices

Xiang Gao, Huawei Technologies Co., Ltd.; Mingkai Dong, Shanghai Jiao Tong University;
Xie Miao, Wei Du, and Chao Yu, Huawei Technologies Co., Ltd.;.

 Haibo Chen, Shanghai Jiao Tong University / Huawei Technologies Co., Ltd.

https://www.usenix.org/conference/atc19/presentation/gao

EROFS: A Compression-friendly Readonly File System for

Resource-scarce Devices

Xiang Gao1, Mingkai Dong2, Xie Miao1, Wei Du1, Chao Yu1, and Haibo Chen2,1

1Huawei Technologies Co., Ltd.
2Shanghai Jiao Tong University

Abstract

Smartphones usually have limited storage and runtime mem-

ory. Compressed read-only file systems can dramatically de-

crease the storage used by read-only system resources. How-

ever, existing compressed read-only file systems use fixed-

sized input compression, which causes significant I/O ampli-

fication and unnecessary computation. They also consume

excessive runtime memory during decompression and deteri-

orate the performance when the runtime memory is scarce. In

this paper, we describe EROFS1, a new compression-friendly

read-only file system that leverages fixed-sized output com-

pression and memory-efficient decompression to achieve

high performance with little extra memory overhead. We also

report our experience of deploying EROFS on tens of mil-

lions of smartphones. Evaluation results show that EROFS

outperforms existing compressed read-only file systems with

various micro-benchmarks and reduces the boot time of real-

world applications by up to 22.9% while nearly halving the

storage usage.

1 Introduction

Low-end smartphones with relatively low price are still

prevalent in the market [18, 25], especially in developing

countries. At a price, such devices are usually equipped with

limited resources in both capacity and performance. For ex-

ample, a low-end Android smartphone may have 1-2GB run-

time memory and 8-16GB slow eMMC storage [19, 21, 22].

Even worse, the Android operating system itself can con-

sume more than 3GB in storage, leaving scarce storage space

available to users [46]. Even for high-end smartphones, the

increasing storage and runtime memory consumption of pop-

ular or resident apps usually render a device resource-scarce

for both user-initiated and system-initiated operations.

File systems with compression support, or compressed

file systems, can be used to release more space to the

1Short for Enhanced Read-Only File System. It has been upstreamed to

Linux 4.19 as a major feature and integrated into Huawei’s Smartphone

Operating System (called EMUI) as a top feature (https://consumer.

huawei.com/en/emui/) of version 9.1.

users by transparently compressing/decompressing file data

upon accesses. However, such file systems usually consume

more resources and yield notably worse performance during

compression/decompression. Thus they are not suitable for

resource-limited devices, especially smartphones, on which

user experience has the top priority.

Fortunately, for partitions with read-only data, such as the

/system, /vendor and /odm partitions of Android, the file sys-

tem can be made read-only to boost the performance by sim-

plifying the structures and designs for file changes. How-

ever, existing compressed read-only file systems, such as

Squashfs [10, 11], usually cause notable degradation on ac-

cess performance and incur extra memory usage during de-

compression. One key issue is that such file systems use

fixed-sized input compression, in which file data is divided

into fixed-sized chunks (e.g., 128KB) and each chunk is com-

pressed individually. The fixed-sized input compression in-

curs significant read amplification and excessively unneces-

sary computations (§2.2). Even worse, they usually require a

huge amount of runtime memory, which is scarce on low-end

smartphones or heavily-used high-end smartphones (§2.2).

To save the storage space and retain high performance

with low memory overhead, we design and implement

EROFS, an enhanced read-only file system with compres-

sion support. EROFS introduces the fixed-sized output com-

pression, which compresses file data to multiple fixed-sized

blocks, to significantly mitigate the read amplification prob-

lem and reduce unnecessary computations as much as pos-

sible. By exploiting the characteristics of compression al-

gorithms (such as LZ4), EROFS designs different memory-

efficient decompression schemes to reduce extra memory us-

age during the decompression. EROFS also adopts a set of

optimizations that carefully ensure guaranteed user experi-

ence.

The main contributions of this paper include:

• A study of existing compressed file systems which re-

veals the performance issues on resource-hungry de-

vices (§2).

• A fixed-sized output compression scheme that signifi-

USENIX Association 2019 USENIX Annual Technical Conference 149

https://consumer.huawei.com/en/emui/
https://consumer.huawei.com/en/emui/

cantly mitigates the read amplification issue (§3.1).

• A set of novel decompression schemes for both

memory-efficiency and high performance (§3.3).

• An evaluation of EROFS against other file systems to

validate the effectiveness of EROFS (§5) and a study

on the deployment experience of EROFS on tens of mil-

lions of smartphones (§6).

2 Background and Motivation

2.1 Low user-perceived storage space

Smartphones are usually resource-scarce due to the cost con-

straint. Meanwhile, the space occupied by the Android oper-

ating system is constantly increasing. Fig. 1 shows the /sys-

tem partition size in stock Android factory images [6] for

different Android versions. The sparse image strips off all

zero blocks and thus only contains all effective data; while

the raw image is the actual space consumed once stored into

the devices. From the figure, we can see the data size of

the /system partition increases from 184MB in Android 2.3.6

to 1.9GB in Android 9.0.0. Besides the trend of increasing

the effective data size, we can also see a large number of

zero blocks in Android 7 and 8, which also consume large

space. For Android 9, the zero blocks are significantly less,

which is due to the support of data block deduplication [20]

in the ext4 file system. Besides the /system partition shown

in Fig. 1, there are other space-consuming partitions for An-

droid such as /vendor, /oem and /odm [8]. As reported in pre-

vious work [46], the space used by the whole Android system

itself is increasing and far larger than what we show here.

For example, Android 6.0.0 consumes 3.17GB storage after

a factory-reset [46].

Meanwhile, the storage consumption of Android applica-

tions also keeps growing. As reported by Google Play, by

early 2017, the average app size has quintupled compared

with that at the time Google starts its Android application

marketplace [45]. As a result, the storage capacity of low-end

smartphones available for users is rather small. Further, many

top apps for smartphones tend to consume a huge amount of

memory, leaving only a small amount of memory for system-

initiated operations even on a high-end smartphone.

2.
3.

6

4.
0.

4

4.
1.

2

4.
2.

2
4.

3
4.

4

5.
0.

2

5.
1.

0

6.
0.

0

7.
0.

0

8.
0.

0

9.
0.

0

Android version

0

1

2

3

/s
y
s
te

m
 s

iz
e
 (

G
B

)

Sparse Image Size

Raw Image Size

Fig. 1: Android /system partition sizes

Compressed file systems. One intuitive approach to unleash-

ing more spaces for users is adopting compressed file sys-

tems, which exposes standard file interfaces to the applica-

tions but transparently compress and decompress file data

during file writes and reads.

Btrfs [2] is a modern B-tree file system with compres-

sion support. When compression is enabled, the file data is

divided into multiple 128KB chunks and compressed sepa-

rately. Each of the compressed chunks will be stored in an

extent, which is a run of contiguous blocks that store data

sequentially. The locations of these extents are recorded as

indexes in the B-tree structures. To read the file data, the cor-

responding extents are read from the storage and the whole

chunks are decompressed. To update a file, the new data

is compressed and written to new extents, and then the in-

dexes are updated. To read the file data, Btrfs reads the cor-

responding extents from the storage and decompresses the

whole chunks. To update a file, Btrfs compresses the new

data, writes it to new extents, and updates the indexes.

Btrfs is a general-purpose file system, so its internal struc-

tures must consider efficient data modifications and can-

not be aggressively optimized for compression. Furthermore,

compression is not the only metric. The memory consump-

tion during decompression should also be constrained.

For devices like smartphones, performance and respon-

siveness are important key metrics that cannot be compro-

mised. Hence, with the burden of efficient data modifica-

tion, Btrfs can hardly satisfy the requirements of both per-

formance and compression efficiency, as we will show later

in the evaluation (§5).

Compressed read-only file systems. Considering the ac-

cess patterns of partitions in Android, we find that system

resources are rarely modified once the Android operating sys-

tem is installed. We can thus use compressed read-only file

systems on read-only partitions to reduce the space consump-

tion for system resources while retaining the performance.

Unlike compressed read-write file systems which are com-

plicated by data modifications, compressed read-only file sys-

tems exclude data updates by design, which exposes more op-

portunities for higher compression ratio and faster data reads.

Squashfs [11] is a widely-used compressed read-only file

system in Linux with many features and moderate perfor-

mance. It supports several compression algorithms, and the

chunk (i.e., compression input) size can be chosen from 4KB

to 1MB. In Squashfs, metadata can be compressed, and in-

odes and directories are stored more compactly. File data is

compressed chunk by chunk, and the compressed data blocks

are stored sequentially. The compressed sizes of each origi-

nal data chunk are stored in a list within the inode. These

sizes are used to locate the position of compressed blocks

during decompression.

2.2 Deficiency of existing readonly file systems

Compressed read-only file systems are designed to minimize

storage usage. However, applying existing compressed read-

150 2019 USENIX Annual Technical Conference USENIX Association

only file systems on resource-scarce smartphones can induce

significant overhead on both performance and memory con-

sumption. For example, we first tried to use Squashfs for

the read-only partitions on Android. While the system boots

successfully with Squashfs, booting the camera application

requires tens of seconds even with light background work-

loads.

Why is there such a huge performance slowdown? We

conducted a detailed study of Squashfs with default config-

uration using microbenchmarks and uncover that the perfor-

mance degradation mainly originates from two parts. The

first one is I/O amplification. We used FIO [23] to evalu-

ate the basic performance of Squashfs. When Android se-

quentially reads 16MB from the 1GB enwik9 [40] file stored

in Squashfs, the actually issued I/O is 7.25MB. While the

number looks decent regarding compression, Squashfs issues

165.27MB I/O reads when Android reads 16MB randomly.

Moreover, when Android reads the first 4KB of every 128KB,

reading 16M file data issued as much as 203.91MB I/O read.

The difference suggests that when Squashfs reads some data

that is not decompressed and cached before, the size of data

requested is significantly amplified.

The second reason is extra memory consumption. The to-

tal memory consumption after sequentially reading the 1GB

enwik9 file on Squashfs is about 1.35GB, which suggests

that decompression in Squashfs requires a significant amount

of temporary memory compared to the size of the original

data needed. This causes high pressure to Android since

memory is a key factor for user experience given that An-

droid and its apps already consume a large amount of mem-

ory. On one hand, allocating memory during decompression

may trigger memory swapping, which involves victim selec-

tions and I/Os with high cost. On the other hand, consum-

ing much extra memory during decompression affects other

components or applications by dropping their cached data or

swapping out useful memory pages.

We further analyzed the design and implementation of

Squashfs and found the following two defects.

Fixed-sized input compression. Existing file systems

compress original data in a fixed-sized chunk, generating

variable-sized compressed data. As shown in Fig. 2(a),

Squashfs takes a fixed-sized data (e.g., a 128KB chunk) as

the input of a single invocation of the compression algorithm.

The compression algorithm then generates the compressed

data whose size depends on the content of the input data. The

compressed data of one file is usually compacted in the origi-

nal data order, to reduce wasted space in the first and the last

blocks of each compressed chunk.

Such a compression approach appears decent but has a no-

table deficiency due to amplified I/O and wasted computa-

tion. For example, in Fig. 2(b), the application wants to get

the first byte of the 128KB chunk. To satisfy the application’s

request, the Squashfs has to read all compressed data from

block 1 to block 7. Considering the minimal requested block

size of the underlying storage devices is 4KB, the I/O is am-

plified 7 times! This is because the file system must read all

related compressed blocks, even if the number of compressed

blocks is very large. Even worse, even if not all data stored

in the first block and the last block are useful for the decom-

pression, they must be read from the storage altogether. In

the example, the shadowed parts of block 1 and block 7 in

Fig. 2(b) contribute nothing to the decompression but have

to be read from the storage. Besides, the decompression pro-

cess for useless data also causes huge CPU wastes that lead

to high performance interference of other running apps (such

as the Camera mentioned before).

One possible mitigation would be reducing the input

chunk size to 4KB in Squashfs. While this might alleviate

the I/O amplification, this non-trivially reduces the compres-

sion ratio and incurs higher CPU utilization, as we will show

in section 5.

Massive memory consumption and data move-

ments. The other defect we found is that Squashfs

requires massive temporary memory during the decompres-

sion. Upon file read requests, Squashfs will first look up the

metadata to get the number of related compressed blocks. It

then allocates memory (e.g., the buffer_head structure) for

each of the compressed blocks, and issues I/O reads to fetch

the compressed blocks from the storage to the allocated

buffer_heads. Since the buffers in buffer_heads of adjacent

compressed blocks might not have continuous virtual ad-

dresses, Squashfs has to copy data in the buffer_heads of all

compressed blocks to a single continuous buffer. Then, the

compression algorithm decompresses all original data and

puts them in a temporary output buffer. Finally, Squashfs

copies the original data from the temporary output buffer to

the corresponding page cache pages.

From the above routine, two pre-allocated temporary

buffers are used and an array of buffer_heads are dy-

namically allocated for the decompression. The number of

buffer_head needs to be large enough to store all compressed

blocks. However, allocating such a large amount of mem-

ory can cause severe performance degradation under a low-

memory situation.

In addition to extra memory allocation, there are two data

movements during decompression: from the buffer_heads to

the temporary input buffer, and from the temporary output

buffer to the page cache. These two data movements also

cause performance overhead since, most of the time, the com-

pression/decompression algorithm is bottlenecked by mem-

ory accesses.

The above two defects in Squashfs reveal two challenges

when designing a compressed read-only file system for

resource-scarce smartphones.

• How to reduce I/O amplification during the decompres-

sion without sacrificing the compression ratio?

• How to reduce memory consumption during the decom-

pression to prevent performance degradation?

USENIX Association 2019 USENIX Annual Technical Conference 151

128KB chunk 128KB chunk 128KB chunk 128KB chunk

21 3 4

21 3 4

compress

compact

original data

compressed data in storage

(a) Fixed-sized input

blk
0

blk
1

blk
2

blk
3

blk
4

blk
5

128KB chunk

original data

compressed data in storage

blk
6

blk
7

blk
8

(b) Fixed-sized input issues

chunk chunk chunk

original data

compressed data in storage

4K 4K 4K 4K 4K

chunk chunk

(c) Fixed-sized output

Fig. 2: Compression approaches

3 EROFS:Enhanced Compressed File System

This section presents the design of EROFS, a compression-

friendly readonly file system which overcomes the deficiency

of prior systems. The key design of EROFS includes fixed-

sized output compression, cached I/O and in-place I/O, and

memory-efficient decompression.

3.1 Fixed-sized output compression

To overcome the read amplification incurred by the fixed-

sized input compression, EROFS adopts a different compres-

sion approach: fixed-sized output compression.

To generate fixed-sized output, EROFS compresses the file

data using a sliding window, whose size is a fixed value and

can be configured during image generation. The compression

algorithm is invoked multiple times until all file data is com-

pressed. For example, with a 1MB sliding window, EROFS

feeds the compression algorithm with 1MB original data at

a time. The algorithm then compresses the original data as

much as possible until all 1MB data is consumed or the con-

sumed data can generate exactly 4KB compressed data. The

remaining original data is combined with more data, forming

another 1MB original data for the next invocation of com-

pression. Fig. 2(c) depicts the fixed-sized output compres-

sion, in which variable-sized original data is compressed to

4KB blocks.

There are several benefits of using fixed-sized output com-

pression compared to the fixed-sized input one. First, as what

we will show in the evaluation (§5.3), it has better com-

pression ratio under the same compression unit size. This

is reasonable since the fixed-sized output compression can

compress data as much as possible until the output limit is

reached, while the fixed-sized input compression can only

compress a fixed size of data at a time. Second, during the

decompression, only the compressed blocks that contain the

requested data will be read and processed. In the previous ex-

ample where a single original block is requested, at most two

compressed blocks will be read and decompressed. Third, as

we will show later in §3.3, the fixed-sized output compres-

sion makes it possible to do in-place decompression, which

further reduces the memory consumption in EROFS.

3.2 Cached I/O and in-place I/O

Before the actual decompression, EROFS needs space to

store the compressed data retrieved from the storage. While

this is costly for fixed-sized input compression due to ex-

cessive memory allocation and even page swapping, fixed-

sized output compression would incur much less cost since

EROFS clearly knows that each compression only retrieves

up to two compressed blocks. There are two strategies for

EROFS: cached I/O and in-place I/O. EROFS uses cached

I/O for compressed blocks that will be partially decom-

pressed. EROFS manages a special inode whose page cache

stores compressed blocks indexed by the physical block num-

ber. Thus, for cached I/O, EROFS will allocate a page in the

special inode’s page cache to initiate the I/O request, so that

the compressed data will be directly fetched to the allocated

page by the storage driver.

For compressed blocks that will be completely decom-

pressed, EROFS uses in-place I/O. On each file read, VFS

will allocate pages in the page cache for the file system to put

file data. For any one of these pages that contains no mean-

ingful data before the decompression, we call it a reusable

page. For in-place I/O, EROFS uses the last reusable page to

initialize the I/O request.

Both I/O strategies are necessary. For cached I/O, partially

decompressed blocks are cached in the special page cache,

so that subsequent reads to the uncompressed part can use

these blocks without invoking additional I/O requests. For

blocks that are fully decompressed, they are unlikely to be

used later since all decompressed data is stored in the page

cache, which can serve subsequent reads without decompres-

sion. Thus, cached I/O vainly increases the memory spike

due to page allocations for fully compressed blocks, while

not contributing to subsequent file reads. In such cases, in-

place I/O avoids unnecessary memory allocation, which re-

lieves the memory pressure especially when there are many

in-flight file read requests on different compressed blocks.

Note that although it is possible to put the compressed block

on the stack, it is not recommended to do so since the stack

size is limited to be 16KB [14] and it is not easy to know how

many bytes of the stack are still available.

3.3 Decompression

After loading compressed data into memory, we illustrate

how EROFS decompresses data both fast and memory-

efficiently. Examples in this section are based on Fig. 3(a)

where the first five blocks (D0 to D4) and part of the block

D5 are compressed to block C0, and the rest blocks are com-

pressed to block C1. In this subsection, we only introduce

152 2019 USENIX Annual Technical Conference USENIX Association

D0 D1 D2 D3 D4 D5 D6

C0

D7

original data blocks

compressed blocksC1

D8

(a) Compression

D0 D1 D2 D3

C0 compressed blocks

temporary pages

D4

page cache

virtual
memory

physical
memory

mappings

decompress

(b) Vmap decompression

D8

compressed blocksC1

page cache

D5 D6 D7 D8

per-CPU buffer

decompress
memcpy

(c) Buffer decompression

D 0 D1 D2 D3

temporary pages

D4

page cache

virtual
memory

physical
memory

mappings

decompress

C0
(D5)

(d) In-place decompression

Fig. 3: Decompression

how a single compressed block is decompressed since, for

read requests containing data in multiple compressed blocks,

the compressed blocks are decompressed one by one simi-

larly. For example, to read blocks D4 to D6 in Fig. 3(a), C0

is firstly decompressed to get D4 and the first part of D5; then

C1 is decompressed to get the rest of D5 and D6.

Vmap decompression To get the data in block D3 and D4,

EROFS first reads the compressed block C0 from the storage

and stores it in the memory. Then EROFS will decompress it

in following steps.

1. Find the largest needed block number that is stored in

the compressed block (C0), which is the fifth block (D4)

in the example. As an advantage, EROFS only needs to

decompress the first five blocks (D0 to D4), rather than

decompressing all original data blocks.

2. For each of the data blocks that need to be decom-

pressed, find memory space to store them. In the exam-

ple shown in Fig. 3(b), EROFS allocates three tempo-

rary physical pages to store D0, D1, and D2. For the re-

quested two blocks, D3 and D4, EROFS reuses the two

physical pages that have been allocated by VFS in the

page cache.

3. Since the decompression algorithm requires continuous

memory as the destination of decompression, EROFS

maps physical pages prepared in the previous step into a

continuous virtual memory area via the vmap interface.

4. If it’s in-place I/O, in which case the compressed block

(C0) is stored in the page cache page, EROFS also needs

to copy the compressed data (C0) to a temporary per-

CPU page so that the decompressed data won’t over-

write the compressed data during the decompression.

5. Finally, the decompression algorithm is invoked, and

data in the compressed block is extracted to the continu-

ous memory area. After the compression, the three tem-

poral physical pages and the virtual memory area can

be reclaimed, and the requested data has already been

written to the corresponding page cache pages.

Per-CPU buffer decompression The above decompres-

sion approach causes two problems. The first one is that

it is still required to dynamically allocate physical memory

pages, which increases the memory pressure on memory-

constrained devices. The second problem is that using vmap

and vunmap on each decompression is inefficient.

EROFS leverages per-CPU buffers to mitigate the prob-

lems when the decompressed data is less the four pages.

As shown in Fig. 3(c), a four-page memory buffer is pre-

allocated for each CPU as the per-CPU buffer. For decom-

pression that extracts no more than four blocks of data,

EROFS decompresses the data to the per-CPU buffer and

then copy the requested data to the page cache pages. In the

example demonstrated in Fig. 3(c), data in block D8 is re-

quested. The compressed data in C1 is directly decompressed

to the per-CPU buffer, and the content of D8 is copied to the

page cache page via memcpy.

The length of the per-CPU buffer is empirically decided,

but it can effectively eliminate memory allocations since the

per-CPU buffer can be reused across different decompres-

sions. The per-CPU buffer decompression is a cost-effective

trade-off which mitigates issues in the vmap decompression

while introducing extra memory copies.

Rolling decompression To avoid the overhead of vmap

and vunmap and eliminate other dynamic page allocations,

EROFS allocates a large virtual memory area2 and 16 physi-

cal pages for each CPU.

Before each compression, EROFS uses the 16 physical

pages, along with the physical pages of the page cache to

fill in the VM area, so that step 2 and step 3 of the vmap

decompression can be skipped.

EROFS uses LZ4 as the compression algorithm, which

needs to look backward at no more than 64KB of the decom-

pressed data [7]. Thus, for a compression that extracts more

than 16 pages, EROFS can reuse the physical page mapped

16 virtual pages (i.e., 64KB) before. For example, in Fig. 4,

the virtual addresses to store blocks D0 to D15 are backed by

the 16 physical pages. The virtual page of D16 can be backed

by the same physical page with D0 since each virtual address

in D16 is 64KB away from the corresponding address in D0.

D17 is backed in the same way by the physical page used by

D1. D18, which is requested by the file read, uses the physi-

cal page of the page cache.

As a result, 16 physical pages are sufficient for any decom-

pression cases by using such a rolling decompression.

2A virtual memory of 256 pages is sufficient for all the workloads we have

met.

USENIX Association 2019 USENIX Annual Technical Conference 153

mappings

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18

16 physical pages for each cpu
page cache

physical page

per-CPU VM area

Fig. 4: An example of rolling decompression

In-place decompression In step 4 of the vmap decompres-

sion approach, the compressed data is moved to a temporary

per-CPU page to avoid data not yet compressed from being

overwritten by the compressed data (Fig. 5).

C2

D9 D10 C2’

decompress in-place

seq. A

decompressed seq. A

same blocks

seq. corrupted

Fig. 5: An example compressed block (C0) that cannot

be decompressed in-place. The decompressed data of se-

quence A corrupts the next sequence (the shadow part)

which has not been decompressed.

However, if such a situation will never happen for a com-

pressed block, we can decompress it in-place to avoid the

extra memory allocation and memory copies. EROFS sim-

ulates the decompression during mkfs and marks whether a

compressed block can be decompressed in-place in the block

index. During the decompression of a block that can be de-

compressed in-place, step 4 is skipped. In our tested work-

load enwik9 in §5, 99.6% compressed blocks can be decom-

pressed in-place; thus, most blocks can benefit from the in-

place decompression as long as they are retrieved by in-place

I/O.

4 Implementation

We have implemented EROFS as a Linux file system and

upstreamed the common part of EROFS to Linux kernel3.

In the current implementation, we use 4KB as the fixed

output size since it is the minimal unit of page management

and storage data transfers, and thus I/O amplification can

be minimized. We support LZ4 (v1.8.3) as the compression

algorithm since it has the fastest decompression speed and

good compression ratio in our case. Other compression algo-

rithms, such as LZO, can be supported once they are mod-

ified to provide fixed-sized output compression interfaces.

Only the file data is compressed in EROFS; metadata such

as inode and directory entries is stored without compression.

Currently, EROFS is still under active development and

new features are constantly shipped into the smartphones

3Since some optimizations are not yet upstreamed, we also make the lat-

est version of the code available at https://github.com/erofs/atc19-

erofs and https://github.com/erofs/atc19-mkfs.

after a rigorous commercial testing process. Hence, we in-

troduce two versions of EROFS: 1) the latest version with

all features and optimizations presented in this paper; 2) the

commercially-deployed version, which has all features and

optimizations except the rolling decompression and the in-

place decompression. The two versions are also different in

decompression policies which we will illustrate in §4.2.

4.1 EROFS image layout

Fig. 6 shows the layout of an EROFS image. As in other

file systems, a super block is located at the beginning of the

image. Following the super block, metadata and data may be

stored in a mixed style without constraints on the order.

In the current implementation, metadata and data of a file

are stored together for better locality. For each file, as shown

in Fig. 6, an inode is stored at the beginning, followed by

blocks containing the extended attributes (i.e., xattrs) and

the block index. Blocks for compressed or uncompressed file

data (encoded blocks) are stored at the end of each file.

Since an inode can be placed anywhere in the image, the

inode number is calculated from the position of an inode, so

that the inode can be quickly located. Blocks for xattrs and

the block index are omitted if a file contains no xattrs or is

uncompressed. Further, xattrs, the block index and file data

can also be inlined within an inode if possible, which reduces

storage overhead and decreases the number of I/O requests

since the inlined data/metadata is read along with the inode.

The block index is used to quickly locate the correspond-

ing encoded block for read requests. Fig. 6 shows an exam-

ple block index for a regular file containing ten blocks be-

fore compression. The block index is an array of 8B-length

entries, each of which corresponds to a data block before

compression. Each entry indicates whether the correspond-

ing data block is the head block (the boolean head field in

Fig. 6), which starts a new encoded block. If so, the encoded

block address (blkaddr), the offset of the first byte in the

new encoded block (offset), whether the encoded block is

compressed (cmpr), and whether the block can be decom-

pressed in-place (dip) are also stored. If not, there must be

a head block before the uncompressed block, and the block

number difference to the head block is recorded in dist.

For a read request to an uncompressed data block, EROFS

gets the block index entry according to the requested block

number. For a head block, EROFS decompresses data from

the block at blkaddr, and if the offset is non-zero, EROFS

may also need to decompress from the nearest encode block

stored before the blkaddr. For a non-head block, EROFS

calculates the location of the corresponding head block ac-

cording to the stored dist, and starts to decompress until the

requested block data is decompressed.

Some data blocks (e.g., block 5 in Fig. 6), which are larger

after compression, are not compressed and directly stored

as encoded blocks. For these cases, the corresponding cmpr

fields are set to false (i.e., “N” in the figure).

154 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/erofs/atc19-erofs
https://github.com/erofs/atc19-erofs
https://github.com/erofs/atc19-mkfs

Directories are stored similarly as the regular files, except

that there is no block index, and the encoded blocks are used

to store uncompressed directory entries. For better locality of

random accesses in directories, EROFS puts all dirent head-

ers (e.g., inode number, file type, and name length) at the be-

ginning of directory entries part, and places filenames after

those headers.

Y 710 Y/N0x14 0
N / // 1

8
9

30 1 2 4 5 6 7 8 9

0x10 0x11 0x12 0x13

uncompressed data blocks

encoded blocksblock index

inode
0x14

Y 0 Y/Y0x10
N / //
Y 2019 Y/N0x11

0
1
0

head?offset
cmpr?/dip?

N / // 1
N / //
Y 0 N/N0x12

2
0

Y 0 Y/Y0x13 0
N / // 1

0
1
2
3
4
5
6
7

idx

2019B

Super
Block …

xattrs
(optional)

block index

710B

blkaddr dist

Fig. 6: EROFS image layout and the block index

4.2 Decompression policy

Two versions of EROFS have different decompression poli-

cies. The commercially-deployed EROFS uses the per-CPU

buffer decompression if less than four original data blocks

are to be extracted; otherwise, the vmap decompression is

used.

In the latest EROFS, all four decompression approaches

are implemented. If there is no more than one data block to

be extracted, the per-CPU buffer decompression is chosen.

Otherwise, if a compressed block is retrieved using in-place

I/O and can be decompressed in-place, EROFS employs the

in-place decompression approach which avoids unnecessary

memory allocations and memory copies. For other cases

where the decompressed blocks can fit in the pre-allocated

VM area, EROFS uses the rolling decompression since it

beats the vmap decompression with less memory allocation

overheads. For any other cases, the vmap decompression ap-

proach is adopted.

4.3 Optimizations

Index memory optimization It is possible that EROFS

compresses hundreds of pages of original data into a single

compressed block. In such a case, EROFS needs hundreds

of pointers to keep track of where each page of the original

data should be stored. These pointers can consume a large

amount of memory. To address such a problem, EROFS tries

to store the information with the help of reusable pages. If

there are more than one VFS allocated pages are reusable,

EROFS uses the last page to store the compressed data, and

the other pages to store some of these pointers during the I/O.

Before the actual decompression, these pointers are moved

onto the stack, so that the reusable pages are free to store the

decompressed data.

Scheduling optimization Decompression requires a rel-

atively long time. Thus it is not suitable to be done within

the interrupt context. In some file systems, such as Btrfs [2],

when compressed data has been fetched to memory, a dedi-

cated thread will be woken up to decompress the data. When

the decompression is finished, the reader thread which is-

sues the I/O will be woken up to get the decompressed data

from the page cache. To reduce scheduling overhead, EROFS

decompresses data in the reader thread, without dedicated

threads for decompression. Thus once the compressed data

has been fetched to memory, the reader thread will be directly

woken up and start decompressing the data.

Cohort decompression Several requests can be in-flight

simultaneously. If an original data block is requested on

thread A and the corresponding compressed block is being

decompressed by another thread named thread B, rather than

decompressing the data by itself, thread A can wait for thread

B to finish the decompression, and then directly read the

decompressed data from the page cache. Such cooperation

reuses the decompressed data and prevents a single data be-

ing decompressed multiple times.

Image patching Although EROFS is a compressed read-

only file system, there are cases such as system upgrade or

security patching where the data stored in EROFS needs to

be updated. EROFS provides a feature called image patching,

which supports partial data updates. Usually, modifying a sin-

gle bit in the original file data might cause a huge amount

of scattered modifications in the compressed data. Instead

of modification in-place, image patching places updated data

at the end of the EROFS image, and when the correspond-

ing file data blocks are requested, the origin data blocks are

firstly decompressed and then the updated data is applied to

overwrite the decompressed data in memory. In this way, im-

age patching prevents scattering of changes and supports par-

tial data updates without re-compressing the while file sys-

tem.

5 Evaluation

We have conducted a set of experiments to answer the follow-

ing questions:

• How does compression affect the performance of file

system read accesses?

• How much memory does EROFS consume during de-

compression?

• How does EROFS affect the boot time on real-world

applications?

5.1 Evaluation setup

By default, we conduct experiments on an ARM develop-

ment board, HiKey 960, running Android 9 Pie with Linux

kernel 4.14. The board is equipped with Kirin 960 (four

Cortex-A73 big cores and four Cortex-A53 little cores), 3GB

Hynix LPDDR4 memory and 32GB Samsung UFS storage.

We also evaluate on two kinds of smartphones in some

experiments. The low-end smartphones are equipped with

MT6765 (eight Cortex-A53 cores), 2GB memory and 32GB

USENIX Association 2019 USENIX Annual Technical Conference 155

eMMC storage. High-end smartphones run with Kirin 980

(four Cortex-A76 cores and four Cortex-A55 cores), 6GB

memory and 64GB UFS storage.

For micro-benchmarks, we run FIO [23], a flexible I/O

tester, on various file systems including EROFS, Squashfs,

Btrfs, Ext4, and F2FS. We use the latest version of EROFS

for micro-benchmark evaluation. Among these file systems,

EROFS and Squashfs are designed to be compressed read-

only file systems; Btrfs is a file system with compression

support, but it is not a file system designed for read-only data;

Ext4 is the default file system used by Android; F2FS is a

file system designed for mobiles and is widely used in some

smartphones.

EROFS is configured to use 4KB-sized output compres-

sion with LZ4. Squashfs is configured to use LZ4 with 4KB,

8KB, 16KB, and 128KB compression chunk sizes, indicated

by Squashfs-4K, Squashfs-8K, Squashfs-16K, and Squashfs-

128K, respectively. Btrfs is configured to run in read-only

mode without data integrity checks for a fair comparison.

The compression algorithm used by Btrfs is LZO, since Btrfs

does not support LZ4. Both Ext4 and F2FS are used without

compression in the experiments since they do not support it.

For real-world applications, we compare EROFS with

Ext4, since Ext4 is now the default file system used by An-

droid [17]. We use the commercial version for real-world

evaluation since it takes time to ship the latest version to

smartphones. We also tried to use Squashfs on Android.

However, it costed too much CPU and memory resources,

and when trying to run a camera application, the phone froze

for tens of seconds before it finally failed.

5.2 Micro-benchmarks

We use FIO to show the basic I/O efficiency of different file

systems. In this experiment, we use enwik9 [40] as the work-

load, which is the first 109 bytes of the English Wikipedia

dump. We store the file in different file systems and read the

file to test the file system read throughput. Each read is a 4KB

buffered read. We test the throughput under three scenarios:

sequential read, random read, and stride read. For the sequen-

tial read, we read the file 4KB by 4KB sequentially; thus the

following reads are highly likely to hit in cache since the data

is already loaded in the memory by previous decompression

or prefetching (i.e., readahead). For the random read, we ran-

domly read the whole file; thus the reads can hit in the cache

if the data is already decompressed by previous reads. The

last scenario is the stride read, in which we only read the

first 4KB in every 128KB data. Since the largest compres-

sion chunk is 128KB, stride reads will not hit in cache4. We

test stride reads to illustrate the worst-case performance for

compressed file systems.

Before each test, the page cache is dropped to reduce inter-

ference. All tests are done at least ten times, and the average

4In enwik9 and silesia.tar, no more than 128KB data is compressed to a

single block in EROFS.

throughputs are reported. The max relative standard devia-

tion is 17.3% for stride reads on A53 cores and 5.1% for the

rest results. Fig. 7 shows the following results we observed.

Btrfs performs worst in all tests compared with EROFS and

Squashfs-128K, since it is designed neither for compression

nor for read-only data. On one hand, Btrfs does not take

advantage of the read-only property and has to consider up-

dates; thus it is outperformed by the compressed read-only

file systems EROFS and Squashfs-128K. On the other hand,

decompression in Btrfs incurs notable performance overhead

compared to Ext4 and F2FS which do not need to decom-

press data during reads. This is reasonable since Btrfs is not

designed to be a compressed read-only file system.

Btrfs performs better than other configurations of

Squashfs for sequential reads, which is caused by its larger

compression chunk (128KB). The advantages shrink in ran-

dom reads where prefetching does not work; the advantage

disappears in stride reads where decompressing more data

than requested becomes the burden.

Overall, this result shows the inefficiency of using general

file systems with compression support for read-only data and

emphasizes the necessity of designing compressed read-only

file systems.

As the size of compression input increases, the performance

of Squashfs increases for random reads and sequential reads,

but decreases for stride reads. The main reason for this

phenomenon is the locality and cache. Since file systems

have enough memory to cache file data in this experiment,

all decompressed data will be cached and possibly be read

in the future. Thus for random reads and sequential reads,

the larger-sized data is decompressed, more future reads will

hit the cache. That is basically the reason why the Squashfs

throughputs grow as the compression chunk size increases.

Since both sequential and random reads will read the

whole file, there is only a little performance difference, which

is caused by the good locality and prefetching.

For stride reads, however, FIO only reads the first 4KB

data for each 128KB data, which eradicates the benefits of

memory cache since all the data decompressed but not re-

quested will never be used in the future. Thus the more ir-

relevant data is read and decompressed, the more time and

resource are wasted, yielding worse performance. That ex-

plains why the throughput drops with the increase of the com-

pression chunk size for Squashfs.

EROFS performs best in most of the tests among file sys-

tems with compression support and sometimes outperforms

file systems that do not compress data. For sequential reads,

EROFS exhibits the best performance among compressed

file systems. Most wins come from the design of fixed-sized

output compression and the elimination of unnecessary mem-

ory allocations and data movements compared with Squashfs.

For random reads, EROFS is outperformed by Squashfs-

128K since the latter can decompress and cache the whole

file during the test, while EROFS only benefits from cached

156 2019 USENIX Annual Technical Conference USENIX Association

stride rand seq stride rand seq stride rand seq stride rand seq
0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

A73-2362MHz A73-903MHz A53-1844MHz A53-533MHz

EROFS

Btrfs-128K-LZO

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

Ext4

F2FS

Fig. 7: FIO micro-benchmark results under three read patterns at four CPU frequencies

I/Os. However, EROFS still performs better than other com-

pressed file systems. For stride reads, since the prefetching is

barely useful, EROFS still yields the best throughput among

compressed file systems, but the win is limited.

Compared with Ext4 and F2FS without compression sup-

port, EROFS always performs comparably with and even out-

performs them (e.g., the sequential reads on A73 cores). The

reason is that even if EROFS needs to decompress data, it

reads much less data from the storage thanks to compression.

stride rand seq
0

100

200

300

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

EROFS

Btrfs-128K-LZO

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

Ext4

F2FS

Fig. 8: FIO micro-benchmark results for silesia.tar

We also use the workload, silesia.tar [9], to conduct the

same experiment. Silesia.tar is a tarball of the silesia com-

pression corpus, which covers typical data types used nowa-

days. The results show the same trends as enwik9, so we only

present the result for A73 cores at 2362MHz in Fig. 8.

5.3 Compression ratio and memory usage

We also evaluated the compression ratio and memory con-

sumption during the decompression of each file system. We

use both enwik9 and silesia.tar to present the compression

ratio of different file systems. Fig. 9(a) and Fig. 9(b) show

the number of bytes used on each file system for enwik9 and

silesia.tar. The origin line in both figures represents the size

of the uncompressed workload file, which is 953.67MB for

enwik9 and 202.1MB for silesia.tar. Currently, EROFS only

supports 4KB-sized output compression, but compared with

Squashfs-4K, the compressed size is 10% and 9% smaller for

the two workloads. The figure also matches the facts that the

larger the compression unit, the better the compression ratio.

0.0 0.5 1.0
Compressed size (GB)

Origin

Btrfs-128K-LZO

EROFS

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

0.93

0.62

0.52

0.58

0.52

0.47

0.37

(a) enwik9

0 50 100 150 200 250
Compressed size (MB)

202.1

120.0

100.9

109.2

101.2

93.8

78.0

(b) silesia.tar

Fig. 9: Compressed size

0.0 0.5 1.0 1.5
Memory usage (GB)

Ext4

EROFS

Squashfs-4K

Squashfs-8K

Squashfs-16K

Squashfs-128K

0.97

1.01

1.56

1.50

1.45

1.35

Fig. 10: Decompression memory usage

Fig. 10 shows the memory used after decompressing the

enwik9 file. The test is conducted as follows: boot the ma-

chine, mount the file system, read the file stored in the file

system, check the memory used, and then reboot.

Since the file is roughly 1GB, the remainders are either

used by other parts of the operating system or temporarily

USENIX Association 2019 USENIX Annual Technical Conference 157

Table 1: I/O amount under different read patterns

I/O (MB) seq-read rand-read stride-read

Requested 16.00 16.00 16.00

Squashfs-4K 10.65 26.19 26.23

Squashfs-8K 9.82 33.52 34.08

Squashfs-16K 9.05 46.42 48.32

Squashfs-128K 7.25 165.27 203.91

EROFS 10.14 26.12 25.93

Table 2: I/O patterns

I/O size =4K <=8K <=16K <128K =128K >128K

% 19.0 23.9 30.4 78.9 19.9 1.2

used by the file system. Besides EROFS and Squashfs, we

also tested Ext4 as the baseline. From the figure, we can see

that compared to Ext4, the memory overhead for four config-

urations of Squashfs ranges from 39.6% to 61.6%. However,

memory used by EROFS is only slightly higher than the Ext4

(about 4.9%). The result shows that EROFS has much lower

memory spikes than Squashfs and proves the effectiveness of

memory-friendly decompression of EROFS.

In the test, there is only one file to be decompressed,

and we allocate abundant memory to ensure that no mem-

ory reclamation or swapping will happen during the decom-

pression. However, in a real-world scenario where more files

will be decompressed simultaneously, more memory will be

needed by the decompression of Squashfs. Once the avail-

able memory is scarce, memory reclamation or swapping

may happen, which is very expansive and affects not only

the file systems, but also other components or applications in

the whole system. Thus in real-world scenarios, the advan-

tages of EROFS, which uses as little as memory during the

decompression, will be more remarkable.

5.4 I/O amplification and I/O patterns

We reran tests mentioned in §2.2 on EROFS and differ-

ent Squashfs configurations. Table 1 lists the actual I/O is-

sued when reading 16MB file data under three read patterns.

EROFS issued the least I/O for random reads and stride reads.

Yet, since Squashfs-8K, Squashfs-16K and Squashfs-128K

have a better compression ratio, they read less data than

EROFS for sequential reads. In summary, EROFS reduces

the I/O amplification for most cases compared with Squashfs,

especially for random reads and stride reads.

We further identified the I/O pattern in a simulated real-

world environment to illustrate how I/O amplification will

affect real-world applications. We installed 100 apps and ran

the Monkey tool [13] to randomly tap the screen once per

second for 3 hours. We collected the I/O sizes passed to the

readpage and readpages interfaces and show the propor-

tion of different I/O sizes in Table 2. The result shows that

there are quite a lot of I/Os (30.4%) with sizes no more than

16K, which we consider as random I/Os. The amount of ran-

dom I/Os is reasonable since as the system keeps running for

a long time, some pages in the applications’ page cache are

reclaimed due to memory shortage. The insignificant amount

of random I/Os emphasizes the importance of EROFS’s ef-

fort of reducing the I/O amplification.

5.5 Throughput and space savings

0 6 15 24 34 47 52 65 74 85 90 96
Space savings (%)

200

400

600

800

T
h
ro

u
g
h
p
u
t

(M
B

/s
) Ext4-Seq

Ext4-Rand

EROFS-Seq

EROFS-Rand

(a) Throughput on A73 cores 2362MHz

0 6 15 24 34 47 52 65 74 85 90 96
Space savings (%)

50

100

150

200

250

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

(b) Throughput on A73 cores 903MHz

Fig. 11: Throughput under different space savings

Fig. 11 depicts the throughput of EROFS and Ext4 under

different space savings. The space savings is the value of

space reduced by the compression divided by the size of orig-

inal data; thus, a larger space savings indicates more space

saved. For simplicity, we only show the results for big cores,

since similar trends are presented on little cores.

For the test, we collected blocks in our compressed parti-

tions and check their space savings. When we found a block

that matches our expected space savings, the original data

was decompressed and duplicated multiple times to form a

roughly 512MB file. Then we stored the file in EROFS and

read it to get the read throughput under its space savings. We

also stored the file in Ext4 and got the corresponding read

throughput for comparison.

Generally, the throughput of Ext4 remains stable during

the test and the performance of EROFS increases together

with space savings. EROFS achieves much better throughput

than Ext4 when the space savings is high enough. In such

cases, a single compressed block can be decompressed to

dozens of blocks. Thus, the number of I/O requests is no-

tably reduced, leading to higher performance. While when

the space savings is low, the performance of EROFS is simi-

lar to Ext4 for random reads and worse than Ext4 for sequen-

tial reads. This is the result of the conjunction of I/O costs

and decompression computation costs. For random reads, the

I/O is more expensive than the decompression computation.

While for sequential reads, due to prefetching, I/O is less

costly and the computation cost dominates when the space

158 2019 USENIX Annual Technical Conference USENIX Association

savings is low.

5.6 Different decompression approaches and

optimization

To illustrate the effect of different decompression ap-

proaches, we ran FIO sequential reads on the Kirin 980

smartphone with A76 cores at 2600MHz. The vmap de-

compression approach serves file reads at 726.5MB/s while

the per-CPU buffer decompression yields throughput of

736.5MB/s. File data is read at 769.7MB/s in the latest

EROFS with the rolling decompression and the in-place de-

compression added.

We also evaluated the effect of scheduling optimization in

§4.3 with the same configuration. In the random read work-

load, the average throughput of EROFS without the schedul-

ing optimization is 64.49MB/s, while with the optimization,

the performance improves 9.5% to be 70.61MB/s.

5.7 Real-world applications

For real-world applications, we ran modified Android 9 Pie

on both low-end smartphones and high-end smartphones,

whose hardware configurations are listed in §5.1. Android

system partitions such as /system, /vendor, and /odm are com-

pressed with EROFS, and the space savings ranges from 30%

to 35%. We tested the boot time of thirteen popular applica-

tions required by the production team. We compared appli-

cation boot time on EROFS to those on Ext4 and present rel-

ative boot time in Table 3. On average, EROFS reduces the

boot time by 5.0% for low-end smartphones and 2.3% for

high-end smartphones compared with Ext4.

We also conducted the same test while running FIO as the

background workload to simulate real-world scenarios. In

the FIO workloads, four threads randomly read and write in-

dividual files with rate limited at 256KB/s for both reads and

writes. The last two rows in Table 3 show the boot time with

FIO workloads, where the reduction of boot time is 3.2% and

10.9% for low-end and high-end smartphones, respectively.

0 2 4 6 8 10
Camera boot time (s)

0

25

50

75

C
u
m

u
la

ti
v
e
 n

u
m

b
e
rs

Ext4

EROFS

Fig. 12: Camera boot time

Other than the boot time of various applications, we also

tested the boot time distribution of the camera application on

the aforementioned high-end smartphones. To simulate the

situation where memory is scarce, we ran a program in the

background which continuously allocates memory and fills

in garbage data. We waited until the program consumed all

zram in the system before starting the experiment, and kept it

running during the evaluation. In the experiment, we booted

several applications in turn and recorded the boot time when

it’s the camera’s turn to boot. We collected each time of 92

camera boots for both EROFS and Ext4, and present the cu-

mulative distribution in Fig. 12. The camera application run-

ning on EROFS boots faster than on Ext4 for more than 90%

of the boots, while the longest boot time on EROFS is worse

than that on Ext4. We think the result is acceptable since

EROFS saves the storage space while reduces the boot time

in most of the cases.

6 Experience over deployment

EROFS has been deployed to tens of millions of smartphones.

Here, we report some experiences during the deployment.

Optimizing for all cases, not only common

cases. Deploying a new file system to replace an ex-

isting one is much harder than we first imagine. The reason

is that a commercial product like a smartphone needs to

retain the benefit and features of an existing file system.

Hence, we need to carefully optimize EROFS for all cases

instead of common cases to avoid performance degradation

even in some rare cases.

For example, the performance of reading some files on

EROFS is slightly worse than on Ext4. To optimize, we

leave files with low compression ratio uncompressed for bet-

ter performance. Further, we collect access frequencies of

file blocks from anonymous beta users and store them in

dedicated files. According to the frequency information, we

pre-decompress the most frequently requested parts of com-

pressed files and pin them in the memory to balance the stor-

age consumption and the performance. As a result, the per-

formance of EROFS can be as good as, and sometimes better

than Ext4, while the storage consumption is significantly re-

duced.

Incomplete implementation leads to performance abnor-

malities and failures in real-world scenarios. We tested

EROFS after the main functionalities have been imple-

mented. However, several kinds of malfunctions happened

during real-world tests.

One example is that after the smartphone runs on EROFS

for days, several applications become extremely slow at

times. Eventually, we found that the root cause is the missing

implementation of page migration in EROFS. Page migra-

tion is invoked by the memory management subsystem to ask

file systems to move their data somewhere else. Most of the

time, the page migration will not be triggered and thus leav-

ing it unimplemented is benign. However, when the memory

is fragmented, which is the case when the bug happens, the

functionality of page migration is crucial to the success of

allocating contiguous memory in the system. The issue was

solved after we implemented the page migration in EROFS.

Bottlenecks shift on different platforms. We developed

USENIX Association 2019 USENIX Annual Technical Conference 159

Table 3: Relative boot time of thirteen applications on low-end and high-end smartphones. Each number in the table

is the average value of at least five boots. Negative numbers show the boot time reduction (in %) compared with Ext4,

while positive numbers indicate the boot time is prolonged (in %). FIO workloads are running in the background for

cases with ‘w/ FIO’ suffix.

App. # 1 2 3 4 5 6 7 8 9 10 11 12 13

Low-end -16.4 -3.5 +4.2 -4.0 -7.5 -1.4 -6.8 +6.3 -2.2 -18.4 -3.3 -7.6 -4.5

High-end -1.8 -0.7 -2.1 -1.8 -12.3 -3.7 +1.2 -8.0 -2.8 +0.7 +2.0 -2.7 +1.9

Low-end w/ FIO -2.8 -12.9 -5.4 +3.9 -7.6 +3.7 +4.4 -2.6 +9.9 +4.0 -11.1 -10.3 -15.1

High-end w/ FIO -4.6 -14.1 -10.7 -19.3 -7.0 -11.0 -15.0 +0.8 -22.9 -5.0 -18.9 -0.7 -13.2

early versions of EROFS on high-end smartphones where re-

sources are abundant, and tuned it to use as fewer resources

as possible. However, when we adopt the tuned EROFS to

low-end smartphones, the performance is lower than we ex-

pected. This is surprising since we have already considered

the limited resources and EROFS should work well. At last,

the trouble-maker turned out to be the scheduler. Schedul-

ing on low-end smartphones is much more costly and be-

comes the bottleneck of EROFS’s decompression, which mo-

tivated us to introduce the scheduling optimization described

in §4.3. Different platforms not only reflect resource limita-

tion directly on the amount of memory available or how fast

processors can run, but they can also shift the bottleneck of

software.

7 Related Work

Other compressed file systems. Several other file systems

support compression. AXFS [24] is a compressed read-only

file system. It is designed to enable execute-in-place (XIP),

which is not supported by common smartphone storage like

eMMC or UFS. CramFS [3] is another compressed read-

only file system, which is designed to be simple and space-

efficient. However, it also has several limitations such as lim-

ited file size. Cramfs was once obsoleted by Squashfs in the

Linux kernel [4] and then revived for XIP [5], which is not

supported by common smartphone storage like eMMC or

UFS. LeCramFS [27] extends CramFS for better read per-

formance and memory efficiency on flash memory. However,

the compression ratio is reduced, and LeCramFS generates

much larger images.

JFFS2 [15], and UBIFS [12] are two file systems designed

for flash memory. Although they support compression, they

have to manage the wear-leveling, address translation, and

garbage collection for NAND flash. Because all such fea-

tures are already provided by the eMMC and UFS firmware,

EROFS is much simpler and faster than JFFS2 and UBIFS.

Bcachefs [1] is a file system with an emphasis on reliabil-

ity and robustness. ZFS [16] is a full-fledged file system de-

signed by Sun Microsystems for Solaris. Although they both

support compression, they have to consider updates on com-

pressed files, which has a similar issue with Btrfs.

File system and storage for smartphones. File system

and storage for smartphones have long been a hot topic. For

example, Kim et al. [33] illustrated that storage can affect

application performance on smartphones and proposed sev-

eral approaches to mitigating the performance impact. Jeong

et al. [31] uncovered and mitigated the journaling of journal

(JOJ) anomaly by overhauling file systems on smartphones,

which has generated several follow-up efforts [36, 38, 44].

They further identified Quasi-Asynchronous I/O in smart-

phone file systems and boosted them for responsiveness [28].

SmartIO [41] reduces the application delay by prioritizing

reads over writes. MobiFS [43] is a memory-centric design

for smartphone data storage that improves response time and

energy consumption.

There has also been much work [29, 30, 34, 35, 37] pro-

viding benchmarking frameworks to evaluate file systems

and storage on smartphones. Due to the emergence of non-

volatile memory (NVM), recent researchers [26, 32, 39, 42,

47] also investigated how NVM can be used on smartphones.

8 Conclusion and Future Work

We introduce EROFS, a new compressed read-only file

system designed for smartphones with limited resources.

EROFS provides a comparable compression ratio while

having much higher performance and less extra memory

overhead compared to Squashfs. With fixed-sized output

compression and fast and memory-efficient decompression,

EROFS can store system code and resources with less stor-

age usage and sometimes even better performance compared

with file systems without compression support. Evaluation

shows that apps on a system installed on EROFS can boot

comparably or even faster compared with on Ext4. EROFS

has been merged to the mainline Linux and has been de-

ployed and used in tens of millions of smartphones. Cur-

rently, EROFS is still under active development, and we are

continuously adding new features, such as deduplication, ex-

tended file statistics, fiemap, and EROFS-fuse in future ver-

sions of EROFS.

Acknowledgment

We thank our shepherd Ric Wheeler and the anonymous re-

viewers for the constructive comments, Guifu Li for helping

prototype the mkfs utility, and Qiuyang Sun for his help with

the early testing and evaluation. Haibo Chen is the corre-

sponding author.

160 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Bcachefs. https://bcachefs.org.

[2] Btrfs: Main page. https://btrfs.wiki.kernel.

org/index.php/Main_Page.

[3] Cramfs - cram a filesystem onto a small ROM.

https://www.kernel.org/doc/Documentation/

filesystems/cramfs.txt.

[4] Cramfs: mark as obsolete. https://lkml.org/lkml/

2013/9/4/79.

[5] Cramfs refresh for embedded usage. https://lkml.

org/lkml/2017/8/11/726.

[6] Factory images for Nexus and Pixel devices. https://

developers.google.com/android/images.

[7] LZ4 block format description. https://github.com/

lz4/lz4/blob/master/doc/lz4_Block_format.

md.

[8] Partitions and images. https://source.android.

com/devices/bootloader/partitions-images.

[9] Silesia compression corpus. http://sun.aei.polsl.

pl/~sdeor/index.php?page=silesia.

[10] SQUASHFS. http://squashfs.sourceforge.net.

[11] SQUASHFS 4.0 filesystem. https://www.kernel.

org/doc/Documentation/filesystems/squashfs.

txt.

[12] UBIFS file system. https://www.kernel.org/doc/

Documentation/filesystems/ubifs.txt.

[13] UI/Application exerciser monkey. https://

developer.android.com/studio/test/monkey.

[14] x86_64: expand kernel stack to 16K.

https://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git/commit/?

id=6538b8ea886e472f4431db8ca1d60478f838d14b.

[15] JFFS2: The journalling flash file system, version 2.

http://www.sourceware.org/jffs2/, 2003.

[16] ZFS: the last word in file systems. https://web.

archive.org/web/20060428092023/http://www.

sun.com/2004-0914/feature/, 2004.

[17] Saving data safely. https://android-developers.

googleblog.com/2010/12/saving-data-safely.

html, 2010.

[18] Android one was conceived with india in mind, says

Google’s Sundar Pichai. https://gadgets.ndtv.

com/mobiles/news/googles-sundar-pichai-

on-android-one-in-an-exclusive-chat-with-

ndtvs-vikram-chandra-592062, 2014.

[19] HUAWEI Y3 2018. https://consumer.huawei.

com/za/phones/y3-2018/specs/, 2018.

[20] Libext2fs: add EXT2_FLAG_SHARE_DUP to de-

duplicate data blocks. https://android-review.

googlesource.com/c/platform/external/

e2fsprogs/+/642333, 2018.

[21] Nokia 2.1 - long lasting entertainment. https://www.

nokia.com/phones/en_int/nokia-2, 2018.

[22] Samsung unveils the Galaxy J2 core; an introductory

smartphone packed with performance. https://news.

samsung.com/global/samsung-unveils-the-

galaxy-j2-core-an-introductory-smartphone-

packed-with-performance, 2018.

[23] AXBOE, J. Flexible I/O tester. https://github.com/

axboe/fio.

[24] BENAVIDES, T., TREON, J., HULBERT, J., AND

CHANG, W. The enabling of an Execute-In-Place

architecture to reduce the embedded system memory

footprint and boot time. JCP 3, 1 (2008), 79–89.

[25] BRUMLEY, J. Apple, Samsung continue to lose

smartphone market share in shift toward more value.

https://seekingalpha.com/article/4101007-

apple-samsung-continue-lose-smartphone-

market-share-shift-toward-value, 2017.

[26] CHEN, R., WANG, Y., HU, J., LIU, D., SHAO, Z., AND

GUAN, Y. Unified non-volatile memory and NAND

flash memory architecture in smartphones. In Design

Automation Conference (ASP-DAC), 2015 20th Asia

and South Pacific (2015), IEEE, pp. 340–345.

[27] HYUN, S., BAHN, H., AND KOH, K. Lecramfs: an ef-

ficient compressed file system for flash-based portable

consumer devices. IEEE Transactions on Consumer

Electronics 53 (2007).

[28] JEONG, D., LEE, Y., AND KIM, J.-S. Boosting quasi-

asynchronous I/O for better responsiveness in mobile

devices. In FAST (2015), pp. 191–202.

[29] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON,

Y. AndroStep: Android storage performance analy-

sis tool. In Software Engineering (Workshops) (2013),

vol. 13, pp. 327–340.

[30] JEONG, S., LEE, K., HWANG, J., LEE, S., AND WON,

Y. Framework for analyzing android I/O stack behavior:

from generating the workload to analyzing the trace.

Future Internet 5, 4 (2013), 591–610.

USENIX Association 2019 USENIX Annual Technical Conference 161

https://bcachefs.org
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://www.kernel.org/doc/Documentation/filesystems/cramfs.txt
https://lkml.org/lkml/2013/9/4/79
https://lkml.org/lkml/2013/9/4/79
https://lkml.org/lkml/2017/8/11/726
https://lkml.org/lkml/2017/8/11/726
https://developers.google.com/android/images
https://developers.google.com/android/images
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://github.com/lz4/lz4/blob/master/doc/lz4_Block_format.md
https://source.android.com/devices/bootloader/partitions-images
https://source.android.com/devices/bootloader/partitions-images
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://squashfs.sourceforge.net
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt
https://www.kernel.org/doc/Documentation/filesystems/ubifs.txt
https://www.kernel.org/doc/Documentation/filesystems/ubifs.txt
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6538b8ea886e472f4431db8ca1d60478f838d14b
http://www.sourceware.org/jffs2/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://web.archive.org/web/20060428092023/http://www.sun.com/2004-0914/feature/
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://android-developers.googleblog.com/2010/12/saving-data-safely.html
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://gadgets.ndtv.com/mobiles/news/googles-sundar-pichai-on-android-one-in-an-exclusive-chat-with-ndtvs-vikram-chandra-592062
https://consumer.huawei.com/za/phones/y3-2018/specs/
https://consumer.huawei.com/za/phones/y3-2018/specs/
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://android-review.googlesource.com/c/platform/external/e2fsprogs/+/642333
https://www.nokia.com/phones/en_int/nokia-2
https://www.nokia.com/phones/en_int/nokia-2
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://news.samsung.com/global/samsung-unveils-the-galaxy-j2-core-an-introductory-smartphone-packed-with-performance
https://github.com/axboe/fio
https://github.com/axboe/fio
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value
https://seekingalpha.com/article/4101007-apple-samsung-continue-lose-smartphone-market-share-shift-toward-value

[31] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y.

I/O stack optimization for smartphones. In USENIX

Annual Technical Conference (2013), pp. 309–320.

[32] KANG, D. H., AND EOM, Y. I. FSLRU: a page cache

algorithm for mobile devices with hybrid memory ar-

chitecture. IEEE Transactions on Consumer Electron-

ics 62, 2 (2016), 136–143.

[33] KIM, H., AGRAWAL, N., AND UNGUREANU, C. Re-

visiting storage for smartphones. ACM Transactions on

Storage (TOS) 8, 4 (2012), 14.

[34] KIM, H., RYU, M., AND RAMACHANDRAN, U. What

is a good buffer cache replacement scheme for mobile

flash storage? In ACM SIGMETRICS Performance

Evaluation Review (2012), vol. 40, ACM, pp. 235–246.

[35] KIM, J.-M., AND KIM, J.-S. Androbench: benchmark-

ing the storage performance of android-based mobile

devices. In Frontiers in Computer Education. Springer,

2012, pp. 667–674.

[36] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Re-

solving journaling of journal anomaly in android I/O:

multi-version B-tree with lazy split.

[37] LEE, K., AND WON, Y. Smart layers and dumb result:

IO characterization of an android-based smartphone. In

Proceedings of the tenth ACM international conference

on Embedded software (2012), ACM, pp. 23–32.

[38] LEE, W., LEE, K., SON, H., KIM, W.-H., NAM, B.,

AND WON, Y. WALDIO: eliminating the filesys-

tem journaling in resolving the journaling of journal

anomaly. Usenix.

[39] LUO, H., TIAN, L., AND JIANG, H. qNVRAM: quasi

non-volatile RAM for low overhead persistency en-

forcement in smartphones. In HotStorage (2014).

[40] MAHONEY, M. About the test data. http://

mattmahoney.net/dc/textdata.html, 2011.

[41] NGUYEN, D. T., ZHOU, G., XING, G., QI, X., HAO,

Z., PENG, G., AND YANG, Q. Reducing smartphone

application delay through read/write isolation. In Pro-

ceedings of the 13th Annual International Conference

on Mobile Systems, Applications, and Services (2015),

ACM, pp. 287–300.

[42] PARK, H., BAEK, S., CHOI, J., LEE, D., AND NOH,

S. H. Exploiting storage class memory to reduce en-

ergy consumption in mobile multimedia devices. In

Consumer Electronics (ICCE), 2010 Digest of Techni-

cal Papers International Conference on (2010), IEEE,

pp. 101–102.

[43] REN, J., LIANG, M. C.-J., WU, Y., AND MOSCI-

BRODA, T. Memory-centric data storage for mobile

systems.

[44] SHEN, K., PARK, S., AND ZHU, M. Journaling of jour-

nal is (almost) free.

[45] TOLOMEI, S. Shrinking APKs, growing installs.

https://medium.com/googleplaydev/shrinking-

apks-growing-installs-5d3fcba23ce2.

[46] ZHANG, X., LI, J., WANG, H., XIONG, D., QU, J.,

SHIN, H., KIM, J. P., AND ZHANG, T. Realizing trans-

parent OS/Apps compression in mobile devices at zero

latency overhead. IEEE Transactions on Computers 66,

7 (2017), 1188–1199.

[47] ZHONG, K., WANG, T., ZHU, X., LONG, L., LIU, D.,

LIU, W., SHAO, Z., AND SHA, E. H.-M. Building

high-performance smartphones via non-volatile mem-

ory: The swap approach. In Proceedings of the 14th

international conference on embedded software (2014),

ACM, p. 30.

162 2019 USENIX Annual Technical Conference USENIX Association

http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2

	Introduction
	Background and Motivation
	Low user-perceived storage space
	Deficiency of existing readonly file systems

	EROFS:Enhanced Compressed File System
	Fixed-sized output compression
	Cached I/O and in-place I/O
	Decompression

	Implementation
	EROFS image layout
	Decompression policy
	Optimizations

	Evaluation
	Evaluation setup
	Micro-benchmarks
	Compression ratio and memory usage
	I/O amplification and I/O patterns
	Throughput and space savings
	Different decompression approaches and optimization
	Real-world applications

	Experience over deployment
	Related Work
	Conclusion and Future Work

