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Abstract

Many Internet of Things (IoT) applications would ben-

efit if streams of data could be analyzed rapidly at the

Edge, near the data source. However, existing Stream

Processing Engines (SPEs) are unsuited for the Edge be-

cause their designs assume Cloud-class resources and

relatively generous throughput and latency constraints.

This paper presents EDGEWISE, a new Edge-friendly

SPE, and shows analytically and empirically that

EDGEWISE improves both throughput and latency. The

key idea of EDGEWISE is to incorporate a congestion-

aware scheduler and a fixed-size worker pool into an SPE.

Though this idea has been explored in the past, we are

the first to apply it to modern SPEs and we provide a new

queue-theoretic analysis to support it. In our single-node

and distributed experiments we compare EDGEWISE to

the state-of-the-art Storm system. We report up to a 3x

improvement in throughput while keeping latency low.

1 Introduction

Internet of Things (IoT) applications are growing rapidly

in a wide range of domains, including smart cities, health-

care, and manufacturing [33, 43]. Broadly speaking, IoT

systems consist of Things, Gateways, and the Cloud.

Things are sensors that “read” from the world and actua-

tors that “write” to it, and Gateways orchestrate Things

and bridge them with the Cloud.

At the moment, IoT systems rely on the Cloud to pro-

cess sensor data and trigger actuators. In principle, how-

ever, Things and Gateways could perform some or all

data analysis themselves, moving the frontier of compu-

tation and services from the network core, the Cloud [17],

to its Edge [21, 67], where the Things and Gateways re-

side. In this paper we explore the implications of this

paradigm in a promising use case: stream processing.

Stream processing is well suited to the IoT Edge com-

Figure 1: The Edge connects Things to the Cloud, and

can perform local data stream processing.

puting setting. Things generate continuous streams of

data that often must be processed in a timely fashion;

stream processing performs analysis on individual data

points (tuples) rather than batches [24, 69]. As shown in

Figure 1, stream processing is described by a directed

acyclic graph, called a topology, whose vertices are data

processing operations and edges indicate data flow.

Modern Stream Processing Engines (SPEs) such as

Storm [15], Flink [13], and Heron [49] have mostly been

designed for the Cloud, assuming powerful computing

resources and plenty of memory. However, these assump-

tions do not hold at the Edge. In particular, these SPEs

use a simple One Worker Per Operation Architecture

(OWPOA). Given a dataflow topology and the degree

of parallelism of each operation, OWPOA-style SPEs

assign a dedicated worker thread to each operation in-

stance, and link the worker-operation pairs with queues.

Then, they rely on the operating system (OS) scheduler

to choose which worker (operation) to schedule next,

leading to lost scheduling opportunities: data propagates

haphazardly through the topology because the schedul-

ing of worker threads is left to the congestion-oblivious

OS. With Cloud-scale resources these inefficiencies are

amortized, but at the Edge they cannot be.

The database community studied efficient operation

scheduling about a decade before modern SPEs came into

vogue [18, 25]. Sadly, however, lessons learned from this
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early research were not carried into the design of modern

SPEs, leading to a sub-optimal performance when the

existing OWPOA-style SPEs are used at the Edge setting.

Existing IoT computing literature (e.g. [58, 64]) has ig-

nored this history and has been building Edge computing

platforms based on unmodified modern SPEs. This paper

explores the impact of applying to modern SPEs these

“lost lessons” of operation scheduling.

We present EDGEWISE, an Edge-friendly SPE that

revives the notion of engine-level operation scheduling

to optimize data flows in a multiplexed (more operations

than processor cores) and memory-constrained Edge en-

vironment. EDGEWISE re-architects SPE runtime design

and introduces an engine-level scheduler with a fixed-size

worker pool where existing profiling-guided scheduling

algorithms [18, 25] may be used. EDGEWISE also pro-

poses a queue-length-based congestion-aware scheduler

that does not require profiling yet achieves equivalent (or

better) performance improvement. EDGEWISE monitors

the numbers of pending data in queues, and its sched-

uler determines the highest-priority operation to process

next, optimizing the flow of data through the topology.

In addition, the EDGEWISE’s worker pool avoids unnec-

essary threading overheads and decouples the data plane

(operations) from the control plane (workers).

We show analytically and empirically that EDGEWISE

outperforms Apache Storm [15], the exemplar of modern

SPEs, on both throughput and latency. EDGEWISE is a

reminder of both the end-to-end design principle [65] and

the benefits of applying old lessons in new contexts [61].

This paper provides the following contributions:

• We study the software architecture of existing SPEs

and discuss their limitations in the Edge setting (§3).

To the best of our knowledge, this paper is the first to

observe the lack of operation scheduling in modern

SPEs, a forgotten lesson from old SPE literature.

• We present EDGEWISE, a new Edge-friendly SPE.

EDGEWISE learns from past lessons to apply an

engine-level scheduler, choosing operations to opti-

mize data flows and leveraging a fixed-size worker

pool to minimize thread contention (§4).

• Using queuing theory, we argue analytically that our

congestion-aware scheduler will improve both through-

put and latency (§5). To our knowledge, we are the

first to mathematically show balancing the queue sizes

lead to improved performance in stream processing.

• We demonstrate EDGEWISE’s throughput and latency

gains on IoT stream benchmarks (§7).

2 Background: Stream Processing

This section provides background on the stream process-

ing programming model (§2.1) and two software archi-

tectures used in existing SPEs (§2.2).

2.1 Dataflow Programming Model

Stream processing uses the dataflow programming model

depicted in the center of Figure 1 [24, 69]. Data tuples

flow through a directed acyclic graph (topology) from

sources to sinks. Each inner node is an operation that

performs arbitrary computation on the data, ranging from

simple filtering to complex operations like ML-based

classification algorithms. In the Edge context a source

might be an IoT sensor, while a sink might be an IoT

actuator or a message queue to a Cloud service.

Though an operation can be arbitrary, the preferred

idiom is outer I/O, inner compute. In other words, I/O

should be handled by source and sink nodes, and the

inner operation nodes should perform only memory and

CPU-intensive operations [3, 41]. This idiom is based on

the premise that the more unpredictable costs of I/O will

complicate the scheduling and balancing of operations.

After defining the topology and the operations, data

engineers convert the logical topology into a physical

topology that describes the number of physical instances

of each logical operation. In a distributed setting engi-

neers can also indicate preferred mappings from opera-

tions to specific compute nodes. An SPE then deploys the

operations onto the compute node(s), instantiates queues

and workers, and manages the flow of tuples from one

operation to another.

2.2 Stream Processing Engines

Starting from the notion of active databases [55, 76],

early-generation SPEs were proposed and designed

by the database community in the early 2000s: e.g.

Aurora [24], TelegraphCQ [27], Stream [16], and Bo-

realis [7, 28]. Interest in SPEs led to work on per-

formance optimization techniques such as operation

scheduling [18, 25] and load shedding [35, 70]. We will

revisit these works shortly (§3.4).

The second generation of “modern SPEs” began with

Apache Storm [15] (2012) as part of the democratiza-

tion of big data. Together with Apache Flink [13] and

Twitter’s Heron [49], these second-generation SPEs have

been mainly developed by practitioners with a focus on

scalable Cloud computing. They have achieved broad

adoption in industry.

Under the hood, these modern SPEs are based on the

One Worker Per Operation Architecture (OWPOA, Fig-

ure 2). In the OWPOA, the operations are connected

by queues in a pipelined manner, and processed by its

930    2019 USENIX Annual Technical Conference USENIX Association



Figure 2: One Worker Per Operation Architecture (OW-

POA). It assigns a worker thread for each operation. The

example shows the case with N operations. Q represents

a queue where a gray box means a pending data.

Figure 3: EDGEWISE Architecture (§4). The scheduler

picks which operation to run. In this example, operation

2 and operation N had the longest queues, so they were

scheduled.

own workers. Some operations may be mapped onto

different nodes for distributed computing or to take ad-

vantage of heterogeneous resources (GPU, FPGA, etc.).

In addition, the OWPOA monitors the health of the topol-

ogy by checking the lengths of the per-operation queues.

Queue lengths are bounded by a backpressure mecha-

nism [32, 49], during which the source(s) buffer input

until the operation queues clear.

3 Edge SPE Requirements Analysis

Stream processing is an important use case for Edge com-

puting, but as we will show, existing SPEs are unsuited

for the Edge. This section discusses our Edge SPE re-

quirements analysis and the drawbacks of existing SPEs.

3.1 Our Edge Model

We first present our model for the Edge.

Hardware. Like existing IoT frameworks (e.g.

Kura [36], EdgeX [2], and OpenFog [5]), we view

the Edge as a distributed collection of IoT Gateways

that connect Things to the Cloud. We consider Edge

stream processing on IoT Gateways that are reasonably

stable and well connected, unlike mobile drones or

vehicles. We further assume these IoT Gateways have

limited computing resources compared to the Cloud:

few-core processors, little memory, and little permanent

storage [17, 67]. However, they have more resources

than those available to embedded, wireless sensor

networks [50], and thus can afford reasonably complex

software like SPEs. For example, Cisco’s IoT Gateways

come with a quad-core processor and 1GB of RAM [31].

Applications. Edge topologies consume IoT sensor data

and apply a sequence of reasonably complex operations:

e.g. SenML [44] parsers, Kalman filters, linear regres-

sions, and decision tree classifications. For example,

FarmBeats [72], a smart farm platform, uses IoT Gate-

ways to collect data from various sensors and drones, to

create summaries before sending them to the Cloud for

long-term and cross-farm analytics, and to perform time-

sensitive local data processing. We therefore assume a

diverse set of workloads ranging from simple extraction-

transform-load (ETL) and statistical summarization to

predictive model training and classification.

3.2 Edge SPE Requirements

Every SPE aims for high throughput, and Edge SPEs are

no exception. In addition, we see the following unique

requirements for the Edge:

(1) Multiplexed. An Edge SPE must support an arbitrary

topology on limited resources. We particularly focus on

supporting a single topology in which there are more

operations than processors, such that operation execu-

tions must be multiplexed on limited processors. Where

a server-class machine can use threads unconcernedly, an

Edge-class machine must be wary of unnecessary over-

heads.

(2) Low latency. An Edge SPE must offer low latency,

else system architects should simply transmit raw data to

the Cloud for analysis.

(3) No backpressure. The backpressure mechanism in

Cloud SPEs is inadvisable at the Edge for two reasons.

First, it is a “stop the world” scheme that destroys system

latency, but latency is critical for Edge workloads. Sec-

ond, it assumes that a data source can buffer pending data.

While the Cloud can assume a persistent data source such

as Kafka [4], at the Edge there is nowhere to put this data.

Modern “real-time” SPEs such as Storm and Flink do

not support file I/O based buffering. As a result the SPE

must be congestion-aware to ensure queue lengths do not

exceed available memory.
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(4) Scalable. The SPE must permit scaling across multi-

processors within an IoT Gateway and across multiple

Gateways, especially to take advantage of locality or

heterogeneity favorable to one operation or another.

3.3 Shortcomings of OWPOA-style SPEs

The OWPOA naturally takes advantage of intra-node

and inter-node parallelism, especially when data engi-

neers make a good logical-to-physical mapping. In the

OWPOA, however, multiplexing becomes challenging

in complex topologies, because each logical operation

must have at least one worker and there may be more

workers than cores on a compute node. If there are too

many workers assigned to one compute node the poor

scheduling of workers will artificially limit performance.

Let us explain the issue in detail. The OWPOA relies

on the OS scheduler to decide which worker-operation

pair to schedule next. If the input rate is low enough that

most queues are empty (i.e. the SPE is over-provisioned),

there is no harm in such an approach. Only some opera-

tions will have work to do and be scheduled, while the

remainder will sleep.

But if the input rate rises (equivalently, if the SPE

becomes less provisioned) then the SPE will become

saturated, i.e. most or all queues will contain tuples. In

this case any operation might be scheduled by the OS.

As some operations take longer than others, a typical

round-robin OS scheduler will naturally imbalance the

queue lengths and periodically trigger backpressure. For

example, in Figure 2, although Queue 2 is full, the OS

may unwisely schedule the other worker-operation pair

first, triggering backpressure unnecessarily and leading

to significantly high latency.

3.4 A Lost Lesson: Operation Scheduling

As noted earlier (§2.2), the database community has stud-

ied different profiling-guided priority-based operation

scheduling algorithms [18, 25] in the context of multi-

ple operations and a single worker, before the modern

OWPOA-style SPEs were born. For instance, Carney

et al. [25] proposed a “Min-Latency” algorithm which

assigns higher (static) priority on latter operations than

earlier operations in a topology and processes old tuples

in the middle of a topology before newly arrived tuples,

with a goal to minimize average latency. For a topology

with multiple paths, the tie is broken by the profiled ex-

ecution time and input-output ratio of each operation.

With a goal to minimize queue memory sizes, Babcock

et al. [18] proposed a “Min-Memory” algorithm (called

Chain) which favors operations with higher input-output

reduction and short execution time (e.g., faster filters).

Unfortunately, however, modern OWPOA-style SPEs

(e.g. Storm [15], Flink [13], Heron [49]) have not adopted

these research findings when designing multi-core multi-

worker SPEs and simply relied on the congestion-

oblivious OS scheduler. This paper argues that Edge

SPEs should be rearchitected to regain the benefits of

engine-level operation scheduling to optimize data flows

in a multiplexed Edge environment. In particular, we com-

pare the effectiveness of both profiling-based (old) and

dynamic balancing (new) scheduling algorithms, and re-

port that all offer significant throughput and latency im-

provements over modern SPEs.

4 Design of EDGEWISE

This section presents EDGEWISE, an Edge-friendly SPE,

that leverages a congestion-aware scheduler (§4.1) and a

fixed-size worker pool (§4.2), as illustrated in Figure 3.

EDGEWISE achieves higher throughput and low latency

by balancing the queue lengths, with the effect of push-

ing the backpressure point to a higher input rate. Thus

EDGEWISE achieves higher throughput without degrad-

ing latency (no backpressure). We later analyze the im-

proved performance mathematically in §5.

4.1 Congestion-Aware Scheduler

EDGEWISE addresses the scheduling inefficiency of the

OWPOA by incorporating a user-level scheduler to make

wiser choices. In the OWPOA design, physical operations

are coupled to worker threads and are scheduled accord-

ing to the OS scheduler policy. The EDGEWISE sched-

uler separates the threads (execution) from the operations

(data). Prior work has proposed using profiling-based

operation scheduling algorithms [18, 25]. Instead, we

propose a profiling-free dynamic approach that balances

queue sizes by assigning a ready thread to the operation

with the most pending data.

The intuition behind EDGEWISE is shown in Figure 4,

which compares the behavior of an OWPOA-style SPE

to EDGEWISE in a multiplexed environment. Figure 4(a)

shows the unwise choice that may be made by the random

scheduler of the OWPOA, leading to backpressure (high

latency). Figure 4(b) contrasts this with the choice made

by EDGEWISE’s congestion-aware scheduler, evening

out the queue lengths to avoid backpressure.

We believe EDGEWISE’s congestion-aware scheduler

would be beneficial to the Cloud context, as an intra-

node optimization. In practice, however, we expect that

EDGEWISE will have greater impact in the Edge setting,

where (1) with few cores, there are likely more operators

than cores, (2) latency is as critical as throughput, and (3)

memory is limited.
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Figure 4: A scheduling example with two operations, multiplexed on a single core. The Q(ueue) size is two. Initially, Q1

has one tuple and Q2 is full. (a) The random OS scheduler in OWPOA lets Op(eration) 1 process tuples ③ and (newly

coming) ④ first, overflowing Q2 and triggering unnecessary backpressure. (b) EDGEWISE knows Q2 has more pending

data, and thus schedules the more critical Op2 first, avoiding congestion.

4.2 Fixed-size Worker Pool

EDGEWISE’s scheduler decouples data from execution,

requiring some changes in how EDGEWISE realizes the

physical topology supplied by data engineers. Rather

than dedicating a worker to each operation as in the OW-

POA, EDGEWISE processes data on a fixed set of work-

ers in the worker pool (Figure 3). These workers move

from operation to operation as assigned by the sched-

uler. EDGEWISE could in principle work solely from

the logical topology, in effect dynamically rearranging

the physical topology (# workers assigned to each op-

eration). However, this would violate any assumptions

about thread safety or physical topology embedded in

the logical topology. Thus, EDGEWISE uses the exist-

ing physical topology to bound the number of workers

assigned to any operation at one time.

The worker pool size is configurable. By default it is

set to the number of processors, because we assume that

most operations are CPU-intensive per the recommended

stream programming model (§2.1). If there are many

I/O-bound operations, a fixed-size worker pool may lead

to sub-optimal performance, requiring users to tune the

pool size.

Putting it together. The scheduler dynamically chooses

which operation a worker should perform. When a worker

is ready, it asks the scheduler for an assignment, and

the scheduler directs it to the operation with the longest

pending data queue. Without work, it sleeps. When new

data arrives, the scheduler wakes up the worker. The

worker non-preemptively1 completes the operation, and

EDGEWISE directs the output to the downstream opera-

tion queue(s). Different operations may run in parallel:

e.g., operations 2 and N in Figure 3. However, for FIFO

guarantees, EDGEWISE schedules at most one worker to

any operation instance (i.e. to any queue).

EDGEWISE supports three different data consumption

policies for each scheduling turn: (1) All consumes all

1More precisely, it is non-preemptive at the engine level.

EDGEWISE can still be preempted by the underlying OS scheduler.

the tuples in the queue; (2) Half consumes half of the

tuples in the queue; and (3) At-most-N consumes at most

N tuples in the queue. Intuitively, in a saturated system,

consuming a small constant number in each quantum

will cause the scheduler to make more decisions overall.

As our scheduler is fast, the more decisions it makes the

better it should approximate the ideal schedule (evaluated

in §7.4). Such consumption policies are not possible in

OWPOA-style SPEs.

EDGEWISE meets the Edge SPE design goals, listed

in §3.2. EDGEWISE retains the achievements of the OW-

POA, and to these it adds the multiplexed, low-latency,

and no-backpressure requirements. EDGEWISE’s sched-

uler allows it to balance queue lengths, improving aver-

age latency and avoiding the need for backpressure by

keeping heavier operations from lagging behind.

5 Performance Analysis of EDGEWISE

This section shows analytically that EDGEWISE will

achieve higher throughput (§5.1) and lower latency (§5.2)

than OWPOA. Lastly, in §5.3 we discuss how to measure

relevant runtime metrics for the performance analysis.

To the best of our knowledge, we are the first to apply

queueing theory to analyze the improved performance in

the context of stream processing. Prior scheduling works

in stream processing either provide no analysis [25] or

focus only on memory optimization [18].

5.1 Higher Throughput

First we show that maximum end-to-end throughput de-

pends on scheduling heavier operations proportionally

more than lighter operations. This is impossible to guar-

antee in the scheduler-less modern SPEs, but easy for

EDGEWISE’s scheduler to accomplish.

Our analysis interprets a dataflow topology as a queu-

ing network [38, 46]: a directed acyclic graph of stations.

Widgets (tuples) enter the network via the queue of the

first station. Once the widget reaches the front of a sta-

tion’s queue, a server (worker) operates on it, and then it

advances to the next station. The queuing theory model
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allows us to capture the essential differences between

EDGEWISE and the OWPOA. In the rest of this section

we draw heavily on [38, 46], and we discuss the model’s

deviations from real topology behavior at the end.

Modeling. Given the input rate λi and the service rate µi

of a server i, the server utilization ρi (fraction of time it

is busy) is defined as:

ρi =
λi

µi

(1)

A queuing network is stable when ρi < 1 for all servers

i. If there is a station to which widgets arrive more quickly

than they are serviced, the queue of that station will grow

unbounded. In an SPE, unbounded queue growth triggers

the backpressure mechanism, impacting system latency.

Suppose we want to model a topology with M opera-

tions in this way. We can represent the input and server

rates of each operation as a function of λ0 and µ0, the

input and service rates of the first operation, respectively.

We are particularly interested in λ0 as it is the input rate

to the system; higher λ0 means higher throughput. Ex-

pressing the input scaling factors and relative operation

costs for an operation i as qi and ri, we can write the

input rate λi and the service rate µi for operation i as:

λi = qi ·λ0 µi = ri ·µ0

In queuing theory, each node is assumed to have an

exclusive server (worker). However, in the Edge, there

may be fewer servers (processor cores) than stations (op-

erations). If there are C processor cores, we can model

processor contention by introducing a scheduling weight

wi, subject to ∑M
i wi =C, yielding the effective service

rate µi
′:

µi
′ = wi ·µi = wi · (ri ·µ0)

For instance, when one core is shared by two oper-

ations, a fair scheduler halves the service rate (w1 =
w2 =

1
2
) as the execution time doubles. The constraint

∑M
i wi = C reflects the fact that C processor cores are

shared by M operations.

Similarly, the effective server utilization ρi
′ can be re-

defined based on µi
′. To keep the system stable (eliminate

backpressure), we want ρi
′ to be less than one:

∀i, ρi
′ =

λi

µi
′
=

qi ·λ0

wi · ri ·µ0
< 1 (2)

which can be rearranged as

∀i, λ0 < wi ·
ri

qi

·µ0 (3)

Optimizing. Remember, λ0 represents the input rate to

the system and is under our control; a higher input rate

means higher throughput (e.g. the system can sample

sensors at a higher rate). Assuming that µ0, ri, and qi are

constants for a given topology, the constraint of Equa-

tion (3) implies that the maximum input rate λ0 that an

SPE can achieve is upper-bounded by the minimum of

wi ·
ri
qi

over all i. Thus, our optimization objective is to:

maximize min
i
(wi ·

ri

qi

)

subject to
M

∑
i

wi =C

(4)

It is straightforward to show that the maximum input

rate can be achieved when wi ·
ri
qi

are equal to each other

for all i: i.e.,

w1 : w2 : · · · : wN =
q1

r1
:

q2

r2
: · · · :

qM

rM

In other words, the scheduling weight wi should be

assigned proportional to
qi

ri
. This is indeed very intuitive.

An operation becomes heavy-loaded when it has a higher

input rate (higher qi) and/or a lower service rate (lower

ri). Such an operation should get more turns.

Scheduling. EDGEWISE’s scheduler dynamically identi-

fies heavily loaded operations and gives them more turns.

The queue of an operation with higher input rate and

higher compute time (lower service rate) grows faster

than the others. By monitoring queue sizes, we can iden-

tify and favor the heavy-loaded operations with more

frequent worker assignments.

Compare this behavior to that of the OWPOA. There,

the “fair” OS scheduler blindly ensures that wi is the same

for each operation, unaware of relative input and service

rates, leading to suboptimal throughput. Once saturated,

one of the heavy operations will reach the utilization cap

of ρi = 1, become a bottleneck in the topology, and even-

tually trigger backpressure and latency collapse. Data

engineers can attempt to account for this by profiling

their topologies and specifying more workers for heavier

operations. Fundamentally, however, this is an ad hoc

solution: the OS scheduler remains blind.

In our evaluation (§7.3.1) we show that EDGEWISE

achieves wi ·
ri
qi

equality across operations at runtime,

leading to an optimal balanced effective server utilization

ρi
′. In contrast, we report that in the OWPOA approach,

increasing the input rate leads to increasingly unbalanced

ρi
′ across operations.

Runtime deviations from the model. Our queuing the-

ory model captures real SPE behavior in the essentials,

but it deviates somewhat in the particulars. We give two

prominent examples. The first deviation is that our queu-

ing theory model assumes predictable widget fan-in and

fan-out ratios at each operator (i.e. constant qi and ri).

In reality these are distributions. For example, an op-

eration that splits a sentence into its constituent words
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Figure 5: A per-operation latency breakdown example of (a) OWPOA, and (b) EDGEWISE. Incoming data tuples ①, ②,

and ③ are being queued. When scheduled (dark gray box), the operation i processes a pending tuple. A tuple j can be in

one of three states: waiting in the middle of the queue (TQ), at the head of the queue waiting to be scheduled (TS), or

being computed (TC). Later in §7.3.2, we show that TQ dominates the per-operation latency in a saturated system.

will emit one tuple for “Please”, two tuples for “Please

accept”, and so on. The second deviation is that we as-

sumed that operations have constant costs. In reality it

will take such a sentence-splitting operation more time

to process longer sentences.

Considering these deviations, the difficulty data en-

gineers face when generating physical topologies for a

OWPOA SPE is clear: it is difficult to identify a single in-

teger quantity of workers to assign to each operation, and

even then balance will only be achieved probabilistically

over many scheduling cycles. In contrast, EDGEWISE

automatically balances the assignment of workers to op-

erations.

5.2 Lower Latency

Now we show that EDGEWISE can achieve lower end-

to-end latency than the OWPOA without compromising

throughput. Our analysis hinges on the observation that

unbalanced queue lengths have an outsized effect on la-

tency, so that balancing queue lengths leads to an overall

improvement in latency.

The total latency for a completed tuple equals the sum

of the latencies paid at each operation it visited on its

way from source to sink, plus communication latencies

outside of our control:

Latency =
M

∑
i

(Li +Comm.)≈
M

∑
i

Li (5)

In stream processing, the per-operation latency con-

sists of (1) the queue time TQ, waiting in the queue; (2)

the schedule time TS, waiting for a turn at the head of

the queue; and (3) the (pure) compute time TC, being

processed. As illustrated in Figure 5, these times come

at a different form. In OWPOA (a), the preemptive OS

scheduler makes TS and TC interleaved. In EDGEWISE

(b), the non-preemptive scheduler makes clear distinction

because an operation is not scheduled until a worker is

available, and when scheduled, it completes its work.

In a saturated system, we treat TS and TC as constants,

while TQ will grow with the input rate to dominate Li.

Li = TQ +(TS +TC)≈ TQ (6)

Assuming that the input and service rates, λ and µ, can

be modeled as exponential random variables2, Gross et

al. [38] show that the queue time TQ can be expressed as

TQ =
ρ

µ−λ
=

λ

µ(µ−λ)
(7)

Note that TQ has a vertical asymptote (approaches ∞)

at µ= λ, and a horizontal asymptote (approaches 0) when

µ >> λ. In other words, for a given λ, a tuple will wait

longer in the queues of heavier operations, and crucially

the growth in wait time is non-linear (accelerates) as µ

approaches λ. This means that heavier operations have

a much larger TQ and thus Li (Equation (6)) than lighter

operations, and an outsized impact on overall latency

(Equation (5)).

Though the effect of heavy operations may be

dire when using the OWPOA’s random scheduler,

EDGEWISE’s congestion-aware scheduler can avoid this

problem by giving more hardware resources (CPU

turns) to heavier operations over lighter ones. In effect,

EDGEWISE balances the TQ of different operations, re-

ducing the TQ of tuples waiting at heavy operations but

increasing the TQ of tuples waiting at lighter operations.

According to Gross et al.’s model this balancing act is

not a zero-sum game: we expect that the lighter opera-

tions sit near the horizontal asymptote while the heavier

operations sit near the vertical asymptote, and balancing

queue times will shift the entire latency curve towards

the horizontal asymptote. In our evaluation we support

this analysis empirically (§7.3.2).

2For λ and µ with general distributions, the curve in the λ< µ region

is similar. The exponential model simplifies the presentation.
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5.3 Measuring Operation Utilization

In our evaluation we compare EDGEWISE with a state-

of-the-art OWPOA. For a fine-grained comparison, in

addition to throughput and latency we must compare

the operation utilization ρ = λ
µ

discussed in §5.1. This

section describes how we can fairly compare EDGEWISE

against a baseline OWPOA system in this regard.

We want to compare the server (operation) utilization

of EDGEWISE and the baseline. As argued in §5.1, an

ideal result is a balanced utilization vector consisting

of equal values 1− ε, with ε chosen based on latency

requirements. As operation utilization may change over

the lifetime of an SPE run (e.g. as it reaches “steady-

state”), we incorporate a time window Tw into the metric

given in Equation (1).

During a time window Tw, an operation might be per-

formed on N tuples requiring a total of TE CPU time.

The input rate for this operation during this window is

λw = N
Tw

and the service rate is µw = 1
TE

, so we have

windowed utilization ρw as:

ρw =
λw

µw

= TE ·
N

Tw

(8)

Unsurprisingly, we found that this is the utilization

metric built into Storm [15]3, the baseline system in our

evaluation.

In the OWPOA, computing ρw is easy. Tw is fixed, N

is readily obtained, and TE can be calculated by moni-

toring the beginning and ending time of performing the

operation on each tuple:

TE =
1

N

N

∑
j

(Tend( j)−Tbegin( j)) (9)

Equation (9) would suffice to measure ρw for the OW-

POA, but for a fair comparison between the OWPOA

and EDGEWISE we need a different definition. Note that

Tend( j)−Tbegin( j) captures the total time a worker spends

applying an operation to a tuple, and in the OWPOA (Fig-

ure 5 (a)) this calculation includes both TC (pure computa-

tion) and TS (worker contention). As EDGEWISE’s sched-

uler is non-preemptive (Figure 5 (b)), measuring TE in

this way would capture only EDGEWISE’s TC. Doing so

would ignore its TS, the time during which EDGEWISE’s

scheduler decides not to schedule an operation with a

non-empty queue in favor of another operation with a

longer queue. This would artificially decrease TE and

thus ρw for this operation.

To capture TS for an operation in EDGEWISE, we can

instead amortize the schedule time TS across all com-

pleted tuples, and describe the operation’s time during

3In Apache Storm this metric is called the operation’s capacity.

this window as spent either executing or idling with an

empty queue:

Tw = TE ·N +TemptyQ (10)

Solving Equation (10) for TE and substituting into

Equation (8), we can compute ρw in EDGEWISE:

ρw = 1−
TemptyQ

Tw

(11)

The windowed utilization metric ρw given in Equa-

tion (11) applies equally well to SPEs that use the OW-

POA or EDGEWISE.

6 Implementation

We implemented EDGEWISE on top of Apache

Storm [15] (v1.1.0). Among modern SPEs, Storm was

the most popular for data science in 2018 [20] and has

the lowest overall latency [29]. We made three major

modifications: (1) We implemented the congestion-aware

scheduler (§4.1), and added two data structures: a list of

operations with non-empty queues as scheduling candi-

dates; and a list of running operations to ensure FIFO

per queue; (2) We removed the per-operation worker

threads, and added one worker pool of (configurable)

K worker threads (§4.2); and (3) We introduced two

queuing-related metrics, TemptyQ and TQ, for server uti-

lization and latency breakdown analysis (§5.3).

EDGEWISE can be applied to other OWPOA-style

SPEs such as Flink [13] and Heron [49]. In Flink, mul-

tiple operators may be grouped in a single Task Slot,

but each operator (called “subtask”) still has its own

worker thread. Task Slot separates only the managed

“memory” of tasks, but there is no CPU isolation. As a

result, worker threads will still contend and cause con-

gestion if there are more operators than CPUs. Thus,

EDGEWISE’s congestion-aware scheduler and fixed-size

worker pool will be equally beneficial for Flink.

The EDGEWISE prototype is available at https:

//github.com/VTLeeLab/EdgeWise-ATC-19. It adds

1500 lines of Java and Clojure across 30 files.

7 Evaluation

Our evaluation first shows EDGEWISE’s throughput-

latency performance on representative Edge stream pro-

cessing workloads (§7.2), followed by detailed perfor-

mance analysis (§7.3). Then we present a sensitivity

study on different consumption policies (§7.4), and a

distributed (inter-node) performance study (§7.5).

7.1 General Methodology

Hardware. EDGEWISE is designed for the Edge, so ex-

periments use an intermediate-class computing device
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Figure 6: Tested Topolo-

gies in RIoTBench [68]:

(a) PREDictive analytics, (b)

model TRAINinig, (c) Ex-

tract, Transform, and Load,

and (d) STATistical summa-

rization. The (tuned) num-

ber of physical operations are

shown as the overlapped, mul-

tiple rectangles: e.g., 3 MQTT

Publish operations in (a).

representative of IoT Edge devices (§3.1): weaker than

Cloud-class servers but stronger than typical embedded

systems. Specifically, we use Raspberry Pi 3 Model

B devices (raspbis), which have a 1.2GHz quad-core

ARM Cortex-A53 with 1GB of RAM and run Raspbian

GNU/Linux 8.0 v4.1.18.

Baseline. We used Storm [15] as the OWPOA base-

line. We set up Storm’s dependencies, Nimbus and a

Zookeeper server, on a desktop machine, and placed the

Storm supervisors (compute nodes) on the raspbis. Be-

cause EDGEWISE optimizes the performance of a sin-

gle compute node, all but our distributed experiment

(§7.5) use a single raspbi. As our raspbis are quad-core,

EDGEWISE uses four worker threads.

Schedulers. In addition to EDGEWISE’s queue-length-

based approach, we also evaluated implementations of

the Min-Memory [18] and Min-Latency [25] schedulers,

as well as a Random scheduler. All schedulers used our

At-most-50 data consumption policy (§4.2), based on our

sensitivity study §7.4.

Benchmarks. We used the RIoTBench benchmark

suite [68], a real-time IoT stream processing benchmark

implemented for Storm4. The RIoTBench benchmarks

perform various analyses on a real-world Smart Cities

data stream [22]. Each input tuple is 380 bytes. The sizes

of intermediate tuples vary along the topology.

Figure 6 shows RIoTBench’s four topologies. We iden-

tified each physical topology using a search guided by

the server utilization metric (§5.1), resulting in physical

topologies with optimal latency-throughput curves on our

raspbi nodes [40]. We used the same physical topologies

for both Storm and EDGEWISE.

We made three modifications to the RIoTBench bench-

marks: (1) We patched various bugs and inefficiencies.

(2) We replaced any Cloud-based services with lab-based

ones; (3) To enable a controlled experiment, we imple-

mented a timer-based input generator that reads data from

4Other benchmarks [6, 53] seemed too unrealistic for our use case.

a replayed trace at a configurable input rate. To be more

specific, the Smart Cities data [22] is first loaded into the

memory, and a timer periodically (every 100 ms) feeds a

fixed-size batch of them into Spout, the source operator

in Storm. We changed the batch size to vary the input

rate. This simulates a topology measuring sensor data at

different frequencies, or measuring different number of

sensors at a fixed frequency.

Metrics. Measurements were taken during the one

minute of steady-state runs, after discarding couple min-

utes of initial phase. We measured throughput by count-

ing the number of tuples that reach the MQTT Publish

sink. Measuring throughput at the sink results in differ-

ent throughput rates for each topology at a given input

rate, since different topologies have input-output tuple

ratios: e.g., 1:2 in PRED, 1:5 in STATS. We measured la-

tency by sampling 5% of the tuples, assigning each tuple

a unique ID and comparing timestamps at source and

the same sink used for the throughput measurement. We

measured operation utilization using ρw (Equation (11)).

Each experiment was performed 5 times with each con-

figuration. The error bars indicate one standard deviation

from the average. Most data points had small variances.

7.2 Throughput-Latency Performance

We measured the throughput-latency performance curve

for each of the RIoTBench applications on one raspbi

across a range of input rates. The curves for PRED, STATS,

and ETL are shown in Figure 7; the curve for the TRAIN

application (not shown) looks like that of the ETL ap-

plication. In general, both Storm and EDGEWISE have

excellent performance when the system is under-utilized

(low throughput). Latency performance collapses at high

throughput rates as a result of frequent backpressure.

The results show that an SPE with an engine-level op-

eration scheduler and a worker pool (WP) significantly

outperforms Storm (an OWPOA-based SPE) at the Edge,

in effect shifting the Storm throughput-latency curve

down (lower latency) and to the right (higher throughput).

First, the gaps between Storm and WP+Random indicate
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Figure 7: Throughput-latency of (a) PRED, (b) STATS, and (c) ETL topologies.
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Figure 8: In PRED, as the input rate (thus throughput)

increases, the coefficient of variation (CV) of capacities

grows in Storm, but it decreases in EDGEWISE.

the benefit of avoiding unnecessary contentions in OW-

POA. More importantly, the engine-level schedulers in

effect push the backpressure point to a higher input rate,

allowing the SPEs to achieve higher throughput at a low

latency. The high variance in the Storm curves at higher

throughput rates indicate early, random backpressure.

Among the variants that use a scheduler and WP,

EDGEWISE’s queue-length-based scheduler matches or

outperforms WP+MinLat on latency and throughput,

while WP+MinMem leads to improved (but not the best)

performance as it is optimized for memory. Note that

EDGEWISE does not require profiling per-operation ex-

ecution time and input-output ratio as do MinLat and

MinMem. For PRED, while keeping the latency low (say

≤100 ms), EDGEWISE improves its throughput by 57%

(from 2800 to 4400). EDGEWISE is particularly effective

in the STATS, where it achieves a 3x throughput improve-

ment with low latency. For ETL, EDGEWISE improves

throughput from 1000 to 1350 under 50ms latency.

7.3 Detailed Performance Breakdown

This experiment investigates the underlying causes of the

throughput and latency gains described in §7.2, lending

empirical support to our analysis in §5. We use the PRED

application as a case study, though results were similar

in the other RIoTBench applications.

7.3.1 Fine-Grained Throughput Analysis

Our analysis of throughput in §5.1 predicted that balanc-

ing effective server (operation) utilization would yield

gains in throughput. To measure the extent to which

Storm and EDGEWISE balance server utilization, in this

experiment we calculated the windowed utilization ρw of

each operation using Equation (11) and then computed

the coefficient of variation (CV = stddev
avg

) of this vector.

A lower utilization CV means more balanced server uti-

lization.

Figure 8 plots the coefficient of variation for Storm and

EDGEWISE for different input rates. As the input rate

(and thus output throughput) increases, the utilization CV

increases in Storm, indicating that the operations become

unbalanced as Storm becomes saturated. In contrast, in

EDGEWISE the utilization CV decreases for larger input

rates (and the raw ρw values approach 1). As predicted,

EDGEWISE’s throughput gains are explained by its su-

perior ρw balancing.

7.3.2 Fine-Grained Latency Analysis

Our analysis of latency in §5.2 noted that in a congestion-

blind scheduler, heavier operations would develop longer

queues, and that the queuing time at these operations

would dominate end-to-end latency. We showed that an

SPE that reduced queuing times at heavy operations, even

at the cost of increased queuing times at lighter opera-

tions, would obtain an outsized improvement in latency.

In this experiment we validate this analysis empirically.

For this experiment we break down per-operation la-

tency into its constituent parts (Equation (6)) and analyze

the results in light of our analysis.

Figure 9 shows the per-operation latency for the 6 non-

source operations in the PRED topology in the baseline

Storm. Its logical and physical topology is shown in Fig-

ure 6 (a). Where our physical topology has multiple in-

stances of an operation (two instances of O1, three of O6),

we show the average queuing latency across instances.

Note first that the queue time TQ dominates the per-

operation latency Li. Then, as the input rate increases

from L(ow) to H(igh), the queues of heavier operations

(O1, O6) grow much longer than those of lighter opera-

tions, and the queue time at these operations dominates

the overall latency. Also note that the latency of lighter

operations may decrease at high throughput, as tuples are
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Figure 9: In Storm, as the throughput increases from L(ow)

to M(edium) to H(igh), the queuing latency of heavy oper-

ations (e.g., O1 and O6) increases rapidly.
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Figure 10: In EDGEWISE, as the throughput increases,

the queuing latency of heavy operations (e.g., O1 and O6)

increases slowly.

mostly waiting in the queue of heavy operations, reflect-

ing the effects of the non-deterministic OS scheduler.

In contrast, we observed different behavior for

EDGEWISE as shown in Figure 10. The heaviest opera-

tion O1 is still noticeable but its queue time under High

input rate is only 15 ms, much smaller than the 25 ms

of Storm. Of course this penalizes the lighter operations,

but as we argued in §5.2 this is not a zero-sum game; the

improvement in end-to-end latency outweighs any small

per-operation latency increase.

The schedule time TS includes both the scheduling

overhead and the waiting time due to contention. Across

all throughput rates and operations, TS remains very

small, implying that the overhead of EDGEWISE’s sched-

uler is negligible.

7.4 Data Consumption Policy

In this experiment we explored the sensitivity of

EDGEWISE’s performance to its data consumption poli-

cies: a constant number (At-most-N) or a number propor-

tional to the queue length (All, Half).

In Figure 11 you can see the effect of these rules in

the STATS topology, as well as the Storm performance

for comparison. As expected, the constant consumption

rules consistently performed well in STATS. The PRED

showed the trend similar to the STATS. The TRAIN and ETL

topologies were not sensitive to the consumption policy.

The At-most-50 rule (solid black line) offers good latency

with the highest throughput for all, so we used it in our

other experiments.

7.5 Performance on Distributed Edge

Streaming workloads can benefit from scaling to multiple

compute nodes, and supporting scaling was one of our

design goals (§3.2). In this experiment we show that

EDGEWISE’s intra-node optimizations benefit an inter-

node (distributed) workload.

We deployed the PRED application across 2, 4, and 8

raspbis connected on a 1G Ethernet lab network, simply
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Figure 11: Sensitivity study on various consumption poli-

cies with STATS topology.

increasing the physical operation instances proportional

to the number of raspbis and assigning them uniformly

across nodes. Identifying an optimal distributed topology

(and optimal partitioning across nodes) is out of scope

for our work, which focuses on the optimal scheduling

of the topology deployed on a single node. Experiments

on visionary hundred- or thousand-node cases are left for

future work. We used the same methodology as in §7.2

to collect metrics.

As expected, EDGEWISE’s intra-node optimizations

prove beneficial in an inter-node setting. Figure 12

shows the maximum throughput achieved by Storm and

EDGEWISE with latency less than 100 ms. The scala-

bility curve shows about 2.5x throughput improvement

with 8 nodes, suggesting that a combination of network-

ing costs and perhaps a non-optimal topology keep us

from realizing the full 8x potential improvement. On this

particular physical topology, EDGEWISE achieves an 18–

71% improvement over Storm’s maximum throughput,

comparable to the 57% improvement obtained in the

1-node experiment.

8 Related Work

To the best of our knowledge, Edgent [12] is the only

other SPE tailored for the Edge. Edgent is designed for

data preprocessing at individual Edge devices rather than
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Figure 12: The maximum throughput achieved with the

latency less than 100 ms, using the PRED topology with

1, 2, 4, and 8 distributed nodes (log-scale). EDGEWISE’s

intra-node optimizations extend to a distributed setting.

full-fledged distributed stream processing. We believe

the Edge is powerful enough for more intelligent services,

and thus EDGEWISE targets a more expressive SPE lan-

guage with balanced throughput and latency.

Targeting distributed Cloud settings, a variety of aca-

demic [26, 39, 52, 62, 73] and industry/open-source [15,

49, 66] SPEs have been proposed. Some [8, 9, 11, 13, 14]

support both stream and batch processing. Most use the

OWPOA design and differentiate themselves on large-

scale distributed processing and fault tolerance. None has

our notion of an engine-level scheduler.

Researchers have studied distributed “job placement”

schedulers for Storm [10, 23, 60, 77] and Spark Stream-

ing [47, 51]. They determine where to distribute comput-

ing workloads across nodes in the Cloud. EDGEWISE

does not focus on how to partition a physical topology

for distributed computing.

Recent single-node SPE solutions leverage modern

many-core and heterogeneous architectures. For exam-

ple, GStream [78] describes an SPE tailored to GPUs,

while Saber [48] is a hybrid SPE for mixed CPU/GPU

computing that schedules operations on different hard-

ware depending on where they perform better. Stream-

Box [56] explores the high-end server space, demonstrat-

ing high throughput by extracting pipeline parallelism

on a state-of-the-art 56-core NUMA server. StreamBox

uses a worker pool (like EDGEWISE) to maximize CPU

utilization, but does not maintain a queue for each opera-

tion, making it hard to apply the Storm-like distributed

stream processing model. EDGEWISE targets the oppo-

site end of the spectrum: a compute cluster composed of

Edge-class devices where intra-node scale-up is limited

but inter-node scale-out is feasible. Thus, EDGEWISE

adopts the general distributed streaming model (scale-

out) and enables additional intra-node scale-up.

The Staged Event Driven Architecture (SEDA) [75]

was proposed to overcome the limitations of thread-

based web server architectures (e.g., Apache Httpd [1]):

namely, per-client memory and context-switch overheads.

EDGEWISE shares the same observation and proposes

a new congestion-aware scheduler towards a more effi-

cient EDA, considering how to stage (schedule) stream

processing operations.

Mobile Edge Computing (MEC) [42, 59] uses mo-

bile devices to form an Edge. Unlike EDGEWISE, they

focus on mobile-specific issues: e.g., mobility, LTE con-

nections, etc. Two works support stream processing on

mobile devices. Mobile Storm [57] ported Apache Storm

as is. MobiStreams [74] focuses on fault tolerance when

a participating mobile disappears. On the other hand,

Mobile-Cloud Computing (MCC) [30, 34, 37, 45, 63]

aims to offload computation from mobile to the Cloud.

There will be a good synergy between EDGEWISE and

MEC/MCC. EDGEWISE could be viewed as a local

cloud to which they can offload computations.

Lastly, queueing theory has been used to analyze

stream processing. The chief difference between pre-

vious analyses and our own lies in the assumption about

worker sharing. In traditional queueing theory, each oper-

ation is assumed to fairly share the workers. For example,

Vakilinia et al. [71] uses queueing network models to

determine the smallest number of workers under the la-

tency constraint, under the assumption that workers are

uniformly shared among operations. The same is true for

the analyses of Mak et al. [54] for series-parallel DAG

and Beard et al. [19] for heterogeneous hardware. On

the other hand, our analysis identifies the benefit of a

non-uniform scheduling weight, assigning more workers

to heavy-loaded operations.

9 Conclusion

Existing stream processing engines were designed for

the Cloud and behave poorly in the Edge context. This

paper presents EDGEWISE, a novel Edge-friendly stream

processing engine. EDGEWISE improves throughput and

latency thanks to its use of a congestion-aware scheduler

and a fixed-size worker pool. Some of the ideas behind

EDGEWISE were proposed in the past but forgotten by

modern stream processing engines; we enhance these

ideas with a new scheduling algorithm supported by a

new queuing-theoretic analysis. Sometimes the answers

in system design lie not in the future but in the past.
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