
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Extension Framework for File Systems
in User space

Ashish Bijlani and Umakishore Ramachandran, Georgia Institute of Technology

https://www.usenix.org/conference/atc19/presentation/bijlani

Extension Framework for File Systems in User space

Ashish Bijlani
Georgia Institute of Technology

Umakishore Ramachandran
Georgia Institute of Technology

Abstract
User file systems offer numerous advantages over their in-
kernel implementations, such as ease of development and bet-
ter system reliability. However, they incur heavy performance
penalty. We observe that existing user file system frameworks
are highly general; they consist of a minimal interposition
layer in the kernel that simply forwards all low-level requests
to user space. While this design offers flexibility, it also
severely degrades performance due to frequent kernel-user
context switching.

This work introduces EXTFUSE, a framework for develop-
ing extensible user file systems that also allows applications
to register “thin” specialized request handlers in the kernel
to meet their specific operative needs, while retaining the
complex functionality in user space. Our evaluation with two
FUSE file systems shows that EXTFUSE can improve the
performance of user file systems with less than a few hundred
lines on average. EXTFUSE is available on GitHub.

1 Introduction
User file systems not only offer better security (i.e., un-
privileged execution) and reliability [46] when compared to
in-kernel implementations, but also ease the development
and maintenance/debugging processes. Therefore, many
approaches to develop user space file systems have also
been proposed for monolithic Operating Systems (OS), such
as Linux and FreeBSD. While some approaches target
specific systems [25, 45, 53], a number of general-purpose
frameworks for implementing user file systems also ex-
ist [3, 14, 29, 33, 47]. FUSE [47], in particular, is the
state-of-the-art framework for developing user file systems.
Over a hundred FUSE file system have been created in aca-
demic/research [11,32,37,41,44,49], as well as in production
settings [9, 24, 40, 52].

Being general-purpose, the primary goal of the aforemen-
tioned frameworks is to enable easy, yet fully-functional im-
plementation of file systems in user space supporting multiple
different functionalities. To do so, they implement a mini-
mal kernel driver that interfaces with the Virtual File System
(VFS) operations and simply forwards all low-level requests
to user space. For example, when an application (app) makes
an open() system call, the VFS issues a lookup request for
each path component. Similarly, getxattr requests are is-
sued to read security labels while serving write() system
calls. Such low-level requests are simply forwarded to user

space. This design offers flexibility to developers to easily
implement their functionality and apply custom optimizations,
but also incurs a high overhead due to frequent user-kernel
switching and data copying. For example, despite several
recent optimizations, even a simple passthrough FUSE file
system can introduce up to 83% overhead on an SSD [50].
As a result, some FUSE file systems have been replaced by
alternative implementations in production [8, 22, 24].

There have been attempts to address performance issues
of user file system frameworks, for example, by eliminating
user-kernel switching in FUSE under certain scenarios [28,
34]. Nevertheless, the optimizations proposed pertain to their
specific use cases and do not address the inherent design
limitations of existing frameworks.

We observe that the interfaces exported by existing user
file system frameworks are too low-level and general-purpose.
As such, they fail to match the specific operative needs of
file systems. For example, getxattr requests during write()
can be completely eliminated for files containing no secu-
rity labels. lookup replies from the daemon could be cached
and validated in the kernel to reduce context switches to user
space. Similarly, when stacking sandboxing functionality
for enforcing custom permissions checks in open() system
call, I/O requests (e.g., read/write) could be passed directly
through the host file system. Nevertheless, modifying exist-
ing frameworks to efficiently address specific functional and
performance requirements of each use case is impractical.

We borrow the idea of safely extending system services
at runtime from past works [6, 13, 43, 56] and propose to
address the performance issues in existing user file systems
frameworks by allowing developers to safely extend the func-
tionality of the kernel driver at runtime for specialized han-
dling of their use case. This work introduces EXTFUSE, an
extension framework for file systems in user space that al-
lows developers to define specialized “thin” extensions along
with auxiliary data structures for handling low-level requests
in the kernel. The extensions are safely executed under a
sandboxed runtime environment in the kernel immediately as
the requests are issued from the upper file system layer (e.g.,
VFS), thereby offering a fine-grained ability to either serve
each request entirely in the kernel (fast path) or fall back to
the existing complex logic in user space (slow path) to achieve
the desired operative goals of functionality and performance.
The fast and slow paths can access (and modify) the auxiliary
data structures to define custom logic for handling requests.

USENIX Association 2019 USENIX Annual Technical Conference 121

https://extfuse.github.io

EXTFUSE consists of three components. First, a helper
user library that provides a familiar set of file system APIs
to register extensions and implement custom fast-path func-
tionality in a subset of the C language. Second, a wrapper
(no-ops) interposition driver that bridges with the low-level
VFS interfaces and provides the necessary support to for-
ward requests to the registered kernel extensions as well as to
the lower file system, as needed. Third, an in-kernel Virtual
Machine (VM) runtime that safely executes the extensions.

We have built EXTFUSE to work in concert with existing
user file system frameworks to allow both the fast and the
existing slow path to coexist with no overhauling changes to
the design of the target user file system. Although there are
several user file system frameworks, this work focuses only
on FUSE because of its wide-spread use. Nonetheless, we
have implemented EXTFUSE as in a modular fashion so it
can be easily adopted for others.

We added support for EXTFUSE in four popular FUSE
file systems, namely LoggedFS [16], Android sdcard daemon,
MergerFS, and BindFS [35]. Our evaluation of the first two
shows that EXTFUSE can offer substantial performance im-
provements of user file systems by adding less than a few
hundred lines, on average.

This paper makes the following contributions:
• We identify optimization opportunities in user file sys-

tem frameworks for monolithic OSes (§2) and propose
extensible user file systems.

• We present the design (§3) and architecture (§3.4) of
EXTFUSE, an extension framework for user file systems
that offers the performance of kernel file systems, while
retaining the safety properties of user file systems.

• We demonstrate the applicability of EXTFUSE by adopt-
ing it for FUSE, the state-of-the-art user file system
framework, and evaluating it on Linux (§6).

• We show the practical benefits and limitations of the
EXTFUSE with two popular FUSE file systems, one
deployed in production (§6.2).

2 Background and Extended Motivation
This section provides a brief technical background on FUSE
and its limitations that motivate our work.

2.1 FUSE
FUSE is the state-of-the-art framework for developing user
file systems. It consists of a loadable kernel driver and a
helper user-space library that provides a set of portable APIs
to allow users to implement their own fully-functional file
system as an unprivileged daemon process on Unix-based
systems with no additional kernel support. The driver is a
simple interposition layer that only serves as a communica-
tion channel between the user-space daemon and the VFS.
It registers a new file system to interface with the VFS op-
erations and directly forwards all low-level requests to the
daemon, as received.

The library provides two different sets of APIs. First,
a fuse_lowlevel_ops interface that exports all VFS oper-
ations such as lookup for path to inode mapping. It is used
by file systems that need to access low-level abstractions
(e.g., inodes) for custom optimizations. Second, a high-level
fuse_operations interface that builds on the low-level APIs.
It hides complex abstractions and offers a simple (e.g., path-
based) API for the ease of development. Depending on their
particular use case, developers can adopt either of the two
APIs. Furthermore, many operations in both APIs are op-
tional. For example, developers can choose to not handle
extended attributes (xattrs) operations (e.g., getxattr).

As apps make system calls, the VFS layer forwards all low-
level requests to the kernel driver. For example, to serve the
open() system call on Linux, the VFS issues multiple lookup
requests to the driver, one for each input path component.
Similarly, every write() request is preceded by a getxattr
request from the VFS to fetch the security labels. The driver
queues up all requests, along with the relevant parameters,
for the daemon through /dev/fuse device file and blocks the
calling app thread until the requests are served. The daemon,
through the libfuse interface, retrieves the requests from the
queue, processes them as needed, and enqueues the results for
the driver to read. The driver copies the results, populating
VFS caches, as appropriate (e.g., page cache for read/write,
dcache for dir entries from lookup), and wakes the app thread
and returns the results to it. Once cached, the subsequent
accesses to the same data are served with no user-kernel
round-trip communication.

In addition to the common benefits of user file systems such
as ease of development and maintenance, FUSE also provides
app-transparency and fine-grained control to developers over
the low-level API to easily support their custom functionality.
Furthermore on Linux, the FUSE driver is GPL-licensed,
which detaches the implementation in user space from legal
obligations [57]. It also supports multiple language bindings
(e.g., Python, Go, etc.), thereby enabling access to ecosystem
of third-party libraries for reuse.

Given its general-purpose design and numerous advantages,
over a hundred FUSE file systems with different functionali-
ties have been created. A large majority of them are stackable;
that is, they introduce incremental functionality on the host
file system [38]. FUSE has long served as a popular tool for
quick experimentation and prototyping new file systems in
academic and research settings [11, 32, 37, 41, 44, 49]. How-
ever, more recently a host of FUSE file systems have also been
deployed in production. Both Gluster [40] and Ceph [52] clus-
ter file systems use a FUSE network client implementation.
Android v4.4 introduced FUSE sdcard daemon (stackable) to
add multi-user support and emulate FAT functionality on the
EXT4 file system [24].

While exporting low-level abstractions and VFS interfaces
offers more control and flexibility to developers, this design
comes with a cost. It induces frequent user-kernel round-

122 2019 USENIX Annual Technical Conference USENIX Association

Media W/ xattr (%Diff) W/O xattr (%Diff)

SW RW SW RW

HDD -0.29 -3.80 -0.17 -2.83
SSD -11.5 -23.38 +0.31 -12.24

Table 1: Percentage difference between I/O throughput (ops/sec) for
EXT4 vs FUSE StackfsOpt (see §6) under single thread 4K Seq
Write (SW), and Rand Write (RW) settings on a 60GB file across
different storage media as reported by Filebench [48]. Received 15
million getxattr requests.

trip communication and data copying, and thus inevitably
yields poor runtime performance. Nonetheless, FUSE has
evolved significantly over the years; several optimizations
have been added to minimize the user-kernel communication:
zero-copy data transfer (splicing), and utilizing system-wide
shared VFS caches (page cache for data I/O and dentry cache
for metadata). However, despite these optimizations, FUSE
severely degrades runtime performance in a host of scenar-
ios. For instance, data caching improves I/O throughput by
batching requests (e.g., read-aheads, small writes), but it does
not help apps that perform random reads or demand low write
latency (e.g., databases). Splicing is only used for over 4K re-
quests. Therefore, apps with small writes/reads (e.g., Android
apps, etc.) will incur data copying overheads. Worse yet, the
overhead is higher with faster storage media. Even a simple
passthrough (no-ops) FUSE file system can introduce up to
83% overhead for metadata-heavy workloads on SSD [50].

The performance penalty incurred by user file systems over-
shadows their benefits. Consequently, some user file systems
have been replaced with alternative implementations in pro-
duction. For instance, Android v7.0 replaced the sdcard dae-
mon with its in-kernel implementation after several years [24].
Ceph [52] adopted an in-kernel client for Linux kernel [8].

2.2 Generality vs Specialization
We observe that being highly general-purpose, the FUSE
framework induces unnecessary user-kernel communication
in many cases, yielding low throughput and high latency. For
instance, getxattr requests generated by the VFS during
write() system calls (one per write) can double the number
of user-kernel transitions, which decreases the I/O through-
put of sequential writes by over 27% and random writes by
over 44% compared to native (EXT4) performance (Table 1).
Moreover, the penalty incurred is higher with the faster media.

Nevertheless, simple filtering or caching metadata replies
in the kernel can substantially reduce user-kernel communi-
cation. For instance, by caching the last getxattr reply in
the FUSE driver and simply validating the cached state for
every subsequent getxattr request from the VFS on the same
file, unnecessary user-kernel transitions can be eliminated to
achieve significant improvement in write performance. Simi-
larly, replies from other metadata operations, such as lookup

and getattr can be cached, validated, and served entirely
within the kernel. Note that custom validation of cached meta-
data is imperative, and lack of support to do so may result in
incorrect behavior as happens in the case of optimized FUSE
that leverages VFS caches to serve requests (§5.1).

Many stackable user file systems add a thin layer of func-
tionality; they perform simple checks in a few operations and
pass remaining requests directly through the host (lower) file
system. LoggedFS [16] filters requests that must be logged
and do so by accessing host file system services. Union file
systems such as MergerFS [20] determine the backend host
file in open() and redirects I/O requests to it. Android sdcard
daemon performs access permission checks only in metadata
operations (e.g., open, lookup), but data I/O requests (e.g.,
read, write, etc.) are simply forwarded to the lower file sys-
tem. Thin functionality that realizes such use cases does not
need any complex processing in user space, and therefore
can easily be stacked in the kernel, thereby avoiding expen-
sive user-kernel switching to yield lower latency and higher
throughput for the same functionality. Furthermore, data I/O
requests could be directly forwarded to the host file system.

The FUSE framework offers a few configuration (config)
options to the developers to tune the behavior of its kernel
driver for their use case. However, those options are coarse-
grained and implemented as fixed checks embedded in the
driver code; thus, it offers limited static control. For example,
for file systems that do not support certain operations (e.g.,
getxattr), the FUSE driver caches this knowledge upon first
ENOSUPPORT reply and does not issue such requests subse-
quently. While this benefits the file systems that completely
omit certain functionality (e.g., security xattr labels), it does
not allow custom and fine-grained filtering of requests that
may be desired by some file systems supporting only partial
functionality. For example, file systems providing encryp-
tion (or compression) functionality may desire a fine-grained
custom control over the kernel driver to skip the decryption
(or decompression) operation in user space during read()
requests on non-sensitive (or unzipped) files.

As such, the FUSE framework proves to be too low-level
and general-purpose in many cases. While it enables a number
of different use cases, modifying the framework to efficiently
handle special needs of each use case is impractical. This is
a typical unbalanced generality vs. specialization problem,
which can be addressed by extending the functionality of the
FUSE driver in the kernel [6, 13, 43].

3 Design
In this section, we 1) present an overview of EXTFUSE, 2)
discuss the design goals and challenges we faced, and 3)
mechanisms we adopted to address those challenges.

3.1 Overview
EXTFUSE is a framework for developing extensible FUSE
file systems for UNIX-like monolithic OSes. It allows the

USENIX Association 2019 USENIX Annual Technical Conference 123

unprivileged FUSE daemon processes to register “thin” exten-
sions in the kernel for specialized handling of low-level file
system requests, while retaining their existing complex logic
in user space to achieve the desired level of performance.

The registered extensions are safely executed under a sand-
boxed eBPF runtime environment in the kernel (§3.3), im-
mediately as requests are issued from the upper file system
(e.g., VFS). Sandboxing enables the FUSE daemon to safely
extend the functionality of the driver at runtime and offers a
fine-grained ability to either serve each request entirely in the
kernel or fall back to user space, thereby offering safety of
user space and performance of kernel file systems.

EXTFUSE also provides a set of APIs to create shared
key-value data structures (called maps) that can host abstract
data blobs. The user-space daemon and its kernel extensions
can leverage maps to store/manipulate their custom data types
as needed to work in concert and serve file system requests in
the kernel without incurring expensive user-kernel round-trip
communication if deemed unnecessary.

3.2 Goals and Challenges
The over-arching goal of EXTFUSE is to carefully balance
the safety and runtime extensibility of user file systems to
achieve the desired level of performance and specialized
functionality. Nevertheless, in order for developers to use
EXTFUSE, it must also be easy to adopt. We identify the
following concrete design goals.
Design Compatibility. The abstractions and interfaces of-
fered by EXTFUSE framework must be compatible with
FUSE without hindering existing functionality or proper-
ties. It must be general-purpose so as to support multiple
different use cases. Developers must further be able to adopt
EXTFUSE for their use case without overhauling changes
to their existing design. It must be easy for them to imple-
ment specialized extensions with little to no knowledge of the
underlying implementation details.
Modular Extensibility. EXTFUSE must be highly modular
and limit any unnecessary new changes to FUSE. Particularly,
developers must be able to retain their existing user-space
logic and introduce specialized extensions only if needed.
Balancing Safety and Performance. Finally with
EXTFUSE, even unprivileged (and untrusted) FUSE
daemon processes must be able to safely extend the
functionality of the driver as needed to offer performance
that is as close as possible to the in-kernel implementation.
However, unlike Microkernels [2, 23, 30] that host system
services in separate protection domains as user processes
or the OSes that have been developed with safe runtime
extensibility as a design goal [6, 13], extending system
services of general-purpose UNIX-like monolithic OSes
poses a design trade-off question between the safety and
performance requirements.

Untrusted extensions must be as lightweight as possible,
with their access restricted to only a few well-defined APIs

to guarantee safety. For example, kernel file systems offer
near-native performance, but executing complex logic in the
kernel results in questionable reliability. Additionally, most
OS kernels employ Address Space Randomization [36], Data
Execution Prevention [5], etc. for code protection and hid-
ing memory pointers. Providing unrestricted kernel access
to extensions can render such protections useless. There-
fore, extensions must not be able to access arbitrary memory
addresses or leak pointer values to user space.

However, severely restricting extensibility can prevent user
file systems from fully meeting their operative performance
and functionality goals, thus defeating the purpose of exten-
sions in the first place. Therefore, EXTFUSE must carefully
balance safety and performance goals.
Correctness. Furthermore, specialized extensions can alter
the existing design of user file systems, which can lead to
correctness issues. For example, there will be two separate
paths (fast and slow) both operating on the requests and data
structs at the same time. The framework must provide a way
for them to synchronize and offer safe concurrent accesses.

3.3 eBPF
EXTFUSE leverages extended BPF (eBPF) [26], an in-kernel
Virtual Machine (VM) runtime framework to load and safely
execute user file system extensions.
Richer functionality. eBPF is an extension of classic Berke-
ley Packet Filters (BPF), an in-kernel interpreter for a pseudo
machine architecture designed to only accept simple network
filtering rules from user space. It enhances BPF to include
more versatility, such as 64-bit support, a richer instruction set
(e.g., call, cond jump), more registers, and native performance
through JIT compilation.
High-level language support. The eBPF bytecode backend
is also supported by Clang/LLVM compiler toolchain, which
allows functionality logic to be written in a familiar high-level
language, such as C and Go.
Safety. The eBPF framework provides a safe execution en-
vironment in the kernel. It prohibits execution of arbitrary
code and access to arbitrary kernel memory regions; instead,
the framework restricts access to a set of kernel helper APIs
depending on the target kernel subsystem (e.g., network) and
required functionality (e.g., packet handling). The frame-
work includes a static analyzer (called verifier) that checks
the correctness of the bytecode by performing an exhaus-
tive depth-first search through its control flow graph to detect
problems, such as infinite loops, out-of-bound, and illegal
memory errors. The framework can also be configured to
allow or deny eBPF bytecode execution request from unprivi-
leged processes.
Key-Value Maps. eBPF allows user space to create map data
structures to store arbitrary key-value blobs using system
calls and access them using file descriptors. Maps are also
accessible to eBPF bytecode in the kernel, thus providing a
communication channel between user space and the bytecode

124 2019 USENIX Annual Technical Conference USENIX Association

to define custom key-value types and share execution state or
data. Concurrent accesses to maps are protected under read-
copy update (RCU) synchronization mechanism. However,
maps consume unswappable kernel memory. Furthermore,
they are either accessible to everyone (e.g., by passing file
descriptors) or only to CAP_SYS_ADMIN processes.

eBPF is a part of the Linux kernel and is already used heav-
ily by networking, tracing, and profiling subsystems. Given
its rich functionality and safety properties, we adopt eBPF
for providing support for extensible user file systems. Specifi-
cally, we define a white-list of kernel APIs (including their
parameters and return types), and abstractions that user file
system extensions can safely use to realize their specialized
functionality. The eBPF verifier utilizes the whitelist to vali-
date the correctness of the extensions. We also build on eBPF
abstractions (e.g., maps) and apply further access restrictions
to enable safe in-kernel execution, as needed.

3.4 Architecture

Figure 1: Architectural view of the EXTFUSE framework. The
components modified or introduced have been highlighted.

Figure 1 shows the architecture of the EXTFUSE frame-
work. It is enabled by three core components, namely a kernel
file system (driver), a user library (libExtFUSE), and an in-
kernel eBPF virtual machine runtime (VM).

The EXTFUSE driver uses interposition technique to in-
terface with FUSE at low-level file system operations. How-
ever, unlike the FUSE driver that simply forwards file system
requests to user space, the EXTFUSE driver is capable of
directly delivering requests to in-kernel handlers (extensions).
It can also forward a few restricted set of requests (e.g., read,
write) to the host (lower) file system, if present. The latter
is needed for stackable user file systems that add thin func-
tionality on top of the host file system. libExtFUSE exports a
set of APIs and abstractions for serving requests in the kernel,
hiding the underlying implementation details.

Use of libExtFUSE is optional and independent of libfuse.
The existing file system handlers registered with libfuse

FS Interface API(s) Abstractions Description

Low-level fuse_lowlevel_ops Inode FS Ops

Kernel Access API(s) Abstractions Description

eBPF Funcs bpf_* UID, PID, etc. Helper Funcs
FUSE extfuse_reply_* fuse_reply_* Req Output
Kernel bpf_set_pasthru FileDesc Enable Pthru
Kernel bpf_clear_pasthru FileDesc Disable Pthru

DataStructs API(s) Abstractions Description

SHashMap CRUD Key/Val Hosts arbitrary data blobs
InodeMap CRUD FileDesc Hosts upper-lower inode pairs

Table 2: APIs and abstractions provided by EXTFUSE. It provides
FUSE-like file system interface for easy portability. CRUD (create,
read, update, and delete) APIs are offered for map data structures
to operate on Key/Value pairs. Kernel accesses are restricted to
standard eBPF kernel helper functions. We introduced APIs to
access the same FUSE request parameters as available to user space.

continue to reside in user space. Therefore, their invocation
incurs context switches, and thus, we refer to their execution
as the slow path. With EXTFUSE, user space can also register
kernel extensions that are invoked immediately as file system
requests are received from the VFS in order to allow serving
them in the kernel. We refer to the in-kernel execution as the
fast path. Depending upon the return values from the fast
path, the requests can be marked as served or be sent to the
user-space daemon via the slow path to avail any complex
processing as needed. Fast path can also return a special value
that instructs the EXTFUSE driver to interpose and forward
the request to the lower file system. However, this feature is
only available to stackable user file systems and is verified
when the extensions are loaded in the kernel.

The fast path interfaces exported by libExtFUSE are the
same as those exported by libfuse to the slow path. This
is important for easy transfer of design and portability. We
leverage eBPF support in the LLVM/Clang compiler toolchain
to provide developers with a familiar set of APIs and allow
them to implement their custom functionality logic in a subset
of the C language.

The extensions are loaded and executed inside the kernel
under the eBPF VM sandbox, thereby providing user space a
fine-grained ability to safely extend the functionality of FUSE
kernel driver at runtime for specialized handling of each file
system request.

3.5 EXTFUSE APIs and Abstractions
libExtFUSE provides a set of high-level APIs and abstractions
to the developers for easy implementation of their specialized
extensions, hiding the complex implementation details. Ta-
ble 2 summarizes the APIs. For handling file system opera-
tions, libExtFUSE exports the familiar set of FUSE interfaces
and corresponding abstractions (e.g., inode) for design com-
patibility. Both low-level as well as high-level file system
interfaces are available, offering flexibility and development
ease. Furthermore, as with libfuse, the daemon can reg-

USENIX Association 2019 USENIX Annual Technical Conference 125

ister extensions for a few or all of the file system APIs, of-
fering them flexibility to implement their functionality with
no additional development burden. The extensions receive
the same request parameters (struct fuse_[in,out]) as the
user-space daemon. This design choice not only conforms
to the principle of least privilege, but also offers the user-
space daemon and the extensions the same interface for easy
portability.

For hosting/sharing data between the user daemon and
kernel extensions, libExtFUSE provides a secure variant of
eBPF HashMap key/value data structure called SHashMap that
stores arbitrary key/value blobs. Unlike regular eBPF maps
that are either accessible to all user processes or only to
CAP_SYS_ADMIN processes, SHashMap is only accessible by
the unprivileged daemon that creates it. libExtFUSE further
abstracts low-level details of SHashMap and provides high-
level CRUD APIs to create, read, update, and delete entries
(key/value pairs).

EXTFUSE also provides a special InodeMap to enable
passthrough I/O feature for stackable EXTFUSE file sys-
tems (§5.2). Unlike SHashMap that stores arbitrary entries,
InodeMap takes open file handle as key and stores a pointer to
the corresponding lower (host) inode as value. Furthermore,
to prevent leakage of inode object to user space, the InodeMap
values can only be read by the EXTFUSE driver.

3.6 Workflow
To understand how EXTFUSE facilitates implementation of
extensible user file systems, we describe its workflow in de-
tail. Upon mounting the user file system, FUSE driver sends
FUSE_INIT request to the user-space daemon. At this point,
the user daemon checks if the OS kernel supports EXTFUSE
framework by looking for FUSE_CAP_ExtFUSE flag in the re-
quest parameters. If supported, the daemon must invoke
libExtFUSE init API to load the eBPF program that contains
specialized handlers (extensions) into the kernel and regis-
ter them with the EXTFUSE driver. This is achieved using
bpf_load_prog system call, which invokes eBPF verifier to
check the integrity of the extensions. If failed, the program
is discarded and the user-space daemon is notified of the er-
rors. The daemon can then either exit or continue with default
FUSE functionality. If the verification step succeeds and the
JIT engine is enabled, the extensions are processed by the
JIT compiler to generate machine assembly code ready for
execution, as needed.

Extensions are installed in a bpf_prog_type map (called
extension map), which serves effectively as a jump table.
To invoke an extension, the FUSE driver simply executes
a bpf_tail_call (far jump) with the FUSE operation code
(e.g., FUSE_OPEN) as an index into the extension map. Once
the eBPF program is loaded, the daemon must inform
EXTFUSE driver about the kernel extensions by replying
to FUSE_INIT containing identifiers to the extension map.

Once notified, EXTFUSE can safely load and execute the

Component Version Loc Modified Loc New

FUSE kernel driver 4.11.0 312 874
FUSE user-space library 3.2.0 23 84
EXTFUSE user-space library - - 581

Table 3: Changes made to the existing Linux FUSE framework to
support EXTFUSE functionality.

extensions at runtime under the eBPF VM environment. Ev-
ery request is first delivered to the fast path, which may decide
to 1) serve it (e.g., using data shared between the fast and
slow paths), 2) pass the request through to the lower file sys-
tem (e.g., after modifying parameters or performing access
checks), or 3) take the slow path and deliver the request to user
space for complex processing logic (e.g., data encryption),
as needed. Since the execution path is chosen per-request
independently and the fast path is always invoked first, the
kernel extensions and user daemon can work in concert and
synchronize access to requests and shared data structures. It
is important to note that the EXTFUSE driver only acts as a
thin interposition layer between the FUSE driver and kernel
extensions, and in some cases, between the FUSE driver and
the lower file system. As such, it does not perform any I/O
operation or attempts to serve requests on its own.

4 Implementation

To implement EXTFUSE, we provided eBPF support for
FUSE. Specifically, we added additional kernel helper func-
tions and designed two new map types to support secure com-
munication between the user-space daemon and kernel exten-
sions, as well as support for passthrough access in read/write.
We modified FUSE driver to first invoke registered eBPF han-
dlers (extensions). Passthrough implementation is adopted
from WrapFS [54], a wrapper stackable in-kernel file system.
Specifically, we modified FUSE driver to pass I/O requests
directly to the lower file system.

Since with EXTFUSE developers can install extensions to
bypass the user-space daemon and pass I/O requests directly
to the lower file system, a malicious process could stack a
number of EXTFUSE file systems on top of each other and
cause the kernel stack to overflow. To guard against such
attacks, we limit the number of EXTFUSE layers that could
be stacked on a mount point. We rely on s_stack_depth
field in the super-block to track the number of stacked layers
and check it against FILESYSTEM_MAX_STACK_DEPTH, which
we limit to two. Table 3 reports the number of lines of code
for EXTFUSE. We also modified libfuse to allow apps to
register kernel extensions.

5 Optimizations

Here, we describe a set of optimizations that can be enabled
by leveraging custom kernel extensions in EXTFUSE to im-
plement in-kernel handling of file system requests.

126 2019 USENIX Annual Technical Conference USENIX Association

1 void handle_lookup(fuse_req_t req, fuse_ino_t pino,
2 const char *name) {
3 /* lookup or create node @cname parent @pino */
4 struct fuse_entry_param e;
5 if (find_or_create_node(req, pino, name, &e)) return;
6 + lookup_key_t key = {pino, name};
7 + lookup_val_t val = {0/*not stale*/, &e};
8 + extfuse_insert_shmap(&key, &val); /* cache this entry */
9 fuse_reply_entry(req, &e);

10 }

Figure 2: FUSE daemon lookup handler in user space. With
EXTFUSE, lines 6-8 (+) enable caching replies in the kernel.

5.1 Customized in-kernel metadata caching
Metadata operations such as lookup and getattr are fre-
quently issued, and thus form high sources of latency in FUSE
file systems [50]. Unlike VFS caches that are only reactive
and fixed in functionality, EXTFUSE can be leveraged to
proactively cache metadata replies in the kernel. Kernel ex-
tensions can be installed to manage and serve subsequent
operations from caches without switching to user space.
Example. To illustrate, let us consider the lookup operation.
It is the most common operation issued internally by the VFS
for serving open(), stat(), and unlink() system calls. Each
component of the input path string is searched using lookup
to fetch the corresponding inode data structure. Figure 2
lists code fragment for FUSE daemon handler that serves
lookup requests in user space (slow path). The FUSE lookup
API takes two input parameters: the parent node ID and
the next path component name. The node ID is a 64-bit
integer that uniquely identifies the parent inode. The daemon
handler function traverses the parent directory, searching for
the child entry corresponding to the next path component.
Upon successful search, it populates the fuse_entry_param
data structure with the node ID and attributes (e.g., size) of
the child, and sends it to the FUSE driver, which creates a
new inode for the dentry object representing the child entry.

With EXTFUSE, developers could define a SHashMap that
hosts fuse_entry_param replies in the kernel (lines 7-10). A
composite key generated from the parent node identifier and
the next path component string arguments is used as an index
into the map for inserting corresponding replies. Since the
map is also accessible to the extensions in the kernel, sub-
sequent requests could be served from the map by installing
the EXTFUSE lookup extension (fast path). Figure 3 lists
its code fragment. The extension uses the same composite
key as an index into the hash map to search whether the cor-
responding fuse_entry_param entry exists. If a valid entry
is found, the reference count (nlookup) is incremented and a
reply is sent to the FUSE driver.

Similarly, replies from user space daemon for other meta-
data operations, such as getattr, getxattr, and readlink
could be cached using maps and served in the kernel by re-
spective extensions (Table 4). Network FUSE file systems,
such as SshFS [39] and Gluster [40] already perform aggres-
sive metadata caching and batching at client to reduce the
number of remote calls to the server. SshFS [39], for example,

1 int lookup_extension(extfuse_req_t req, fuse_ino_t pino,
2 const char *name) {
3 /* lookup in map, bail out if not cached or stale */
4 lookup_key_t key = {pino, name};
5 lookup_val_t *val = extfuse_lookup_shmap(&key);
6 if (!val || atomic_read(&val->stale)) return UPCALL;
7 /* EXAMPLE: Android sdcard daemon perm check */
8 if (!check_caller_access(pino, name)) return -EACCES;
9 /* populate output, incr count (used in FUSE_FORGET) */

10 extfuse_reply_entry(req, &val->e);
11 atomic_incr(&val->nlookup, 1);
12 return SUCCESS;
13 }

Figure 3: EXTFUSE lookup kernel extension that serves valid
cached replies, without incurring any context switches. Customized
checks could further be included; Android sdcard daemon permis-
sion check is shown as an example (see Figure 10).

implements its own directory, attribute, and symlink caches.
With EXTFUSE, such caches could be implemented in the
kernel for further performance gains.
Invalidation. While caching metadata in the kernel reduces
the number of context switches to user space, developers must
also carefully invalidate replies, as necessary. For example,
when a file (or dir) is deleted or renamed, the corresponding
cached lookup replies must be invalidated. Invalidations can
be performed in user space by the relevant request handlers or
in the kernel by installing their extensions before new changes
are made. However, the former case may introduce race
conditions and produce incorrect results because all requests
to user space daemon are queued up by the FUSE driver,
whereas requests to the extensions are not. Cached lookup
replies can be invalidated in extensions for unlink, rmdir, and
rename operations. Similarly, when attributes or permissions
on a file change, cached getattr replies can be invalidated in
setattr extension. Our design ensures race-free invalidation
by executing the extensions before forwarding requests to
user space daemon where the changes may be made.
Advantages over VFS caching. As previously mentioned,
recent optimizations added to FUSE framework leverage VFS
caches to reduce user-kernel context switching. For instance,
by specifying non-zero entry_valid and attr_valid timeout
values, dentries and inodes cached by the VFS from previ-
ous lookup operations could be utilized to serve subsequent
lookup and getattr requests, respectively. However, the
VFS offers no control to the user file system over the cached
data. For example, if the file system is mounted without
the default_permissions parameter, VFS caching of inodes
introduces a security bug [21]. This is because the cached per-
missions are only checked for first accessing user. In contrast,
with EXTFUSE, developers can define their own metadata
caches and install custom code to manage them. For instance,
extensions can perform uid-based access permission checks
before serving requests from the caches to obviate the afore-
mentioned security issue (Figure 10).

Additionally, unlike VFS caches that are only reactive,
EXTFUSE enables proactive caching. For example, since a
readdir request is expected after an opendir call, the user-
space daemon could proactively cache directory entries in the

USENIX Association 2019 USENIX Annual Technical Conference 127

Metadata Map Key Map Value Caching Operations Serving Extensions Invalidation Operations

Inode <nodeID, name> fuse_entry_param lookup, create, mkdir, mknod lookup unlink, rmdir, rename
Attrs <nodeID> fuse_attr_out getattr, lookup getattr setattr, unlink, rmdir
Symlink <nodeID> link path symlink, readlink readlink unlink
Dentry <nodeID> fuse_dirent opendir, readdir readdir releasedir, unlink, rmdir, rename
XAttrs <nodeID, label> xattr value open, getxattr, listxattr getattr, listxattr close, setxattr, removexattr

Table 4: Metadata can be cached in the kernel using eBPF maps by the user-space daemon and served by kernel extensions.

kernel by inserting them in a BPF map while serving opendir
requests to reduce transitions to user space. Alternatively,
similar to read-ahead optimization, proactive caching of sub-
sequent directory entries could be performed during the first
readdir call to the user-space daemon. Memory occupied by
cached entries could then be freed by the releasedir handler
in user space that deletes them from the map. Similarly, se-
curity labels on a file could be cached during the open call to
user space and served in the kernel by getxattr extensions.
Nonetheless, since eBPF maps consume kernel memory, de-
velopers must carefully manage caches and limit the number
of map entries to keep memory usage under check.

5.2 Passthrough I/O for stacking functionality

Many user file systems are stackable with a thin layer of
functionality that does not require complex processing in
the user-space. For example, LoggedFS [16] filters requests
that must be logged, logs them as needed, and then simply
forwards them to the lower file system. User-space union
file systems, such as MergerFS [20] determine the backend
host file in open and redirects I/O requests to it. BindFS [35]
mirrors another mount point with custom permissions checks.
Android sdcard daemon performs access permission checks
and emulates the case-insensitive behavior of FAT only in
metadata operations (e.g., lookup, open, etc.), but forwards
data I/O requests directly to the lower file system. For such
simple cases, the FUSE API proves to be too low-level and
incurs unnecessarily high overhead due to context switching.

With EXTFUSE, read/write I/O requests can take the fast
path and directly be forwarded to the lower (host) file system
without incurring any context-switching if the complex slow-
path user-space logic is not needed. Figure 4 shows how
the user-space daemon can install the lower file descriptor
in InodeMap while handling open() system call for notifying
the EXTFUSE driver to store a reference to the lower inode
kernel object. With the custom_filtering_logic(path) con-
dition, this can be done selectively; for example, if access
permission checks pass in Android sdcard daemon. Simi-
larly, BindFS and MergerFS can adopt EXTFUSE to avail
passthrough optimization. The read/write kernel extensions
can check in InodeMap to detect whether the target file is setup
for passthrough access. If found, EXTFUSE driver can be in-
structed with a special return code to directly forward the I/O
request to the lower file system with the corresponding lower
inode object as parameter. Figure 5 shows a template read

1 void handle_open(fuse_req_t req, fuse_ino_t ino,
2 const struct fuse_open_in *in) {
3 /* file represented by @ino inode num */
4 struct fuse_open_out out; char path[PATH_MAX];
5 int len, fd = open_file(ino, in->flags, path, &out);
6 if (fd > 0 && custom_filtering_logic(path)) {
7 + /* install fd in inode map for pasthru */
8 + imap_key_t key = out->fh;
9 + imap_val_t val = fd; /* lower fd */

10 + extfuse_insert_imap(&key, &val);
11 } }

Figure 4: FUSE daemon open handler in user space. With
EXTFUSE, lines 7-9 (+) enable passthrough access on the file.
1 int read_extension(extfuse_req_t req, fuse_ino_t ino,
2 const struct fuse_read_in *in) {
3 /* lookup in inode map, passthrough if exists */
4 imap_key_t key = in->fh;
5 if (!extfuse_lookup_imap(&key)) return UPCALL;
6 /* EXAMPLE: LoggedFS log operation */
7 log_op(req, ino, FUSE_READ, in, sizeof(*in));
8 return PASSTHRU; /* forward req to lower FS */
9 }

Figure 5: The EXTFUSE read kernel extension returns PASSTHRU to
forward request directly to the lower file system. Custom thin func-
tionality could further be pushed in the kernel; LoggedFS logging
function is shown as an example (see Figure 11).

extension. Kernel extensions can include additional logic or
checks before returning. For instance, LoggedFS read/write
extensions can filter and log operations, as needed §6.2.

6 Evaluation
To evaluate EXTFUSE, we answer the following questions:
• Baseline Performance. How does an EXTFUSE imple-

mentation of a file system perform when compared to its
in-kernel and FUSE implementations? (§6.1)

• Use cases. What kind of existing FUSE file systems can
benefit from EXTFUSE and what performance improve-
ments can they expect? (§6.2)

6.1 Performance
To measure the baseline performance of EXTFUSE, we
adopted the simple no-ops (null) stackable FUSE file sys-
tem called Stackfs [50]. This user-space daemon serves all
requests by forwarding them to the host (lower) file system. It
includes all recent FUSE optimizations (Table 5). We evaluate
Stackfs under all possible EXTFUSE configs listed in Table 5.
Each config represents a particular level of performance that
could potentially be achieved, for example, by caching meta-
data in the kernel or directly passing read/write requests
through the host file system for stacking functionality. To put
our results in context, we compare our results with EXT4 and

128 2019 USENIX Annual Technical Conference USENIX Association

Figure 6: Throughput(ops/sec) for EXT4 and FUSE/EXTFUSE Stackfs (w/ xattr) file systems under different configs (Table 5) as measured
by Random Read(RR)/Write(RW), Sequential Read(SR)/Write(SW) Filebench [48] data micro-workloads with IO Sizes between 4KB-1MB
and settings Nth: N threads, Nf: N files. We use the same workloads as in [50].

Figure 7: Number of file system request received by the daemon in
FUSE/EXTFUSE Stackfs (w/ xattr) under workloads in Figure 6.
Only a few relevant request types are shown.

Figure 8: Throughput(Ops/sec) for EXT4 and FUSE/EXTFUSE
Stackfs (w/ xattr) under different configs (Table 5) as measured
by Filebench [48] Creation(C), Deletion(D), Reading(R) metadata
micro-workloads on 4KB files and FileServer(F), WebServer(W)
macro-workloads with settings Nth:N threads, Nf:N files.

the optimized FUSE implementation of Stackfs (Opt).
Testbed. We use the same experiments and settings as in [50].
Specifically, we used EXT4 because of its popularity as the
host file system and ran benchmarks to evaluate. However,
since FUSE performance problems were reported to be more
prominent with a faster storage medium, we only carry out
our experiments with SSDs. We used a Samsung 850 EVO
250GB SSD installed on an Asus machine with Intel Quad-
Core i5-3550 3.3 GHz and 16GB RAM, running Ubuntu
16.04.3. Further, to minimize any variability, we formatted the

Config File System Optimizations

Opt [50] FUSE 128K Writes, Splice, WBCache, MltThrd
MDOpt EXTFUSE Opt + Caches lookup, attrs, xattrs
AllOpt EXTFUSE MDOpt + Pass R/W reqs through host FS

Table 5: Different Stackfs configs evaluated.

SSD before each experiment and disabled EXT4 lazy inode
initialization. To evaluate file systems that implement xattr
operations for handling security labels (e.g., in Android), our
implementation of Opt supports xattrs, and thus differs from
the implementation in [50].
Workloads. Our workload consists of Filebench [48] micro
and synthetic macro benchmarks to test each config with
metadata- and data-heavy operations across a wide range of
I/O sizes and parallelism settings. We measure the low-level
throughput (ops/sec). Our macro-benchmarks consist of a
synthetic file server and web server.
Micro Results. Figure 6 shows the results of micro workload
under different configs listed in Table 5.

Reads. Due to the default 128KB read-ahead feature of
FUSE, the sequential read throughput on a single file with a
single thread for all I/O sizes and under all Stackfs configs
remained the same. Multi-threading improved for the sequen-
tial read benchmark with 32 threads and 32 files. Only one
request was generated per thread for lookup and getattr op-
erations. Hence, metadata caching in MDOpt was not effective.
Since FUSE Opt performance is already at par with EXT4,
the passthrough feature in AllOpt was not utilized.

Unlike sequential reads, small random reads could not take
advantage of the read-ahead feature of FUSE. Additionally,
4KB reads are not spliced and incur data copying across user-
kernel boundary. With 32 threads operating on a single file,
the throughput improves due to multi-threading in Opt. How-
ever, degradation is observed with 4KB reads. AllOpt passes
all reads through EXT4, and hence offers near-native through-
put. In some cases, the performance was slightly better than

USENIX Association 2019 USENIX Annual Technical Conference 129

EXT4. We believe that this minor improvement is due to
double caching at the VFS layer. Due to a single request per
thread for metadata operations, no improvement was seen
with EXTFUSE metadata caching.

Writes. During sequential writes, the 128K big writes and
writeback caching in Opt allow the FUSE driver to batch small
writes (up to 128KB) together in the page cache to offer a
higher throughput. However, random writes are not batched.
As a result, more write requests are delivered to user space,
which negatively affects the throughput. Multiple threads on a
single file perform better for requests bigger than 4KB as they
are spliced. With EXTFUSE AllOpt, all writes are passed
through the EXT4 file system to offer improved performance.

Write throughput degrades severely for FUSE file systems
that support extended attributes because the VFS issues a
getxattr request before every write. Small I/O requests
perform worse as they require more write, which generate
more getxattr requests. Opt random writes generated 30x
fewer getxattr requests for 128KB compared to 4KB writes,
resulting in a 23% decrease in the throughput of 4KB writes.

In contrast, MDOpt caches the getxattr reply in the kernel
upon the first call, and serves subsequent getxattr requests
without incurring further transitions to user space. Figure 7
compares the number of requests received by the user-space
daemon in Opt and MDOpt. Caching replies reduced the over-
head for 4KB workload to less than 5%. Similar behavior was
observed with both sequential writes and random writes.
Macro Results. Figure 8 shows the results of macro-
workloads and synthetic server workloads emulated using
Filebench under various configs. Neither of the EXTFUSE
configs offer improvements over FUSE Opt under creation
and deletion workloads as these metadata-heavy workloads
created and deleted a number of files, respectively. This is
because no metadata caching could be utilized by MDOpt. Sim-
ilarly, no passthrough writes were utilized with AllOpt since
4KB files were created and closed in user space. In contrast,
the File and Web server workloads under EXTFUSE utilized
both metadata caching and passthrough access features and
improved performance. We saw a 47%, 89%, and 100% drop
in lookup, getattr, and getattr requests to user space un-
der MDOpt, respectively, when configured to cache up to 64K
for each type of request. AllOpt further enabled passthrough
read/write requests to offer near native throughput for both
macro reads and server workloads.
Real Workload We also evaluated EXTFUSE with two real
workloads, namely kernel decompression and compilation of
4.18.0 Linux kernel. We created three separate caches for
hosting lookup, getattr, and getxattr replies. Each cache
could host up to 64K entries, resulting in allocation of up to a
total of 50MB memory when fully populated.

The kernel compilation make tinyconfig; make -j4 ex-
periment on our test machine (see §6) reported a 5.2% drop in
compilation time, from 39.74 secs under FUSE Opt to 37.68
secs with EXTFUSE MDOpt, compared to 30.91 secs with

EXT4. This was due to over 75%, 99%, and 100% decrease
in lookup, getattr, and getxattr requests to user space,
respectively (Figure 9). getxattr replies were proactively
cached while handling open requests; thus, no transitions to
user space were observed for serving xattr requests. With
EXTFUSE AllOpt, the compilation time further dropped to
33.64 secs because of 100% reduction in read and write
requests to user space.

In contrast, the kernel decompression tar xf experiment
reported a 6.35% drop in the completion time, from 11.02
secs under FUSE Opt to 10.32 secs with EXTFUSE MDOpt,
compared to 5.27 secs with EXT4. With EXTFUSE AllOpt,
the decompression time further dropped to 8.67 secs due to
100% reduction in read and write requests to user space,
as shown in Figure 9. Nevertheless, reducing the number
of cached entries for metadata requests to 4K resulted in a
decompression time of 10.87 secs (25.3% increase) due to
3,555 more getattr requests to user space. This suggests
that developers must efficiently manage caches.

Figure 9: Linux kernel 4.18.0 untar (decompress) and compilation
time taken with StackFS under FUSE and EXTFUSE settings. Num-
ber of metadata and I/O requests are reduced with EXTFUSE.

6.2 Use cases
We ported four real-world stackable FUSE file systems,
namely LoggedFS, Android sdcard daemon, MergerFS,
and BindFS to EXTFUSE and enabled both metadata
caching §5.1 and passthrough I/O §5.2 optimizations.

File System Functionality Ext Loc

StackFS [50] No-ops File System 664
BindFS [35] Mirroring File System 792
Android sdcard [24] Perm checks & FAT Emu 928
MergerFS [20] Union File System 686
LoggedFS [16] Logging File System 748

Table 6: Lines of code (Loc) of kernel extensions required to adopt
EXTFUSE for existing FUSE file systems. We added support for
metadata caching as well as R/W passthrough.

As EXTFUSE allows file systems to retain their exist-
ing FUSE daemon code as the default slow path, adopting
EXTFUSE for real-world file systems is easy. On average,
we made less than 100 lines of changes to the existing FUSE
code to invoke EXTFUSE helper library functions for ma-
nipulating kernel extensions, including maps. We added ker-

130 2019 USENIX Annual Technical Conference USENIX Association

nel extensions to support metadata caching as well as I/O
passthrough. Overall, it required fewer than 1000 lines of new
code in the kernel Table 6. We now present detailed evalua-
tion of Android sdcard daemon and LoggedFS to present an
idea on expected performance improvements.
Android sdcard daemon. Starting version 3.0, Android in-
troduced the support for FUSE to allow a large part of in-
ternal storage (e.g., /data/media) to be mounted as external
FUSE-managed storage (called /sdcard). Being large in size,
/sdcard hosts user data, such as videos and photos as well
as any auxiliary Opaque Binary Blobs (OBB) needed by An-
droid apps. The FUSE daemon enforces permission checks in
metadata operations (e.g.,lookup, etc.) on files under /sdcard
to enable multi-user support and emulates case-insensitive
FAT functionality on the host (e.g., EXT4) file system. OBB
files are compressed archives and typically used by games
to host multiple small binaries (e.g. shade rs, textures) and
multimedia objects (e.g. images, etc.).

However, FUSE incurs high runtime performance over-
head. For instance, accessing OBB archive content through
the FUSE layer leads to high launch latency and CPU uti-
lization for gaming apps. Therefore, Android version 7.0
replaced sdcard daemon with with an in-kernel file system
called SDCardFS [24] to manage external storage. It is a wrap-
per (thin) stackable file system based on WrapFS [54] that
enforces permission checks and performs FAT emulation in
the kernel. As such, it imposes little to no overhead compared
to its user-space implementation. Nevertheless, it introduces
security risks and maintenance costs [12].

We ported Android sdcard FUSE daemon to EXTFUSE
framework. First, we leverage eBPF kernel helper functions
to push metadata checks into the kernel. For example, we
embed access permission check (Figure 10) in lookup kernel
extension to validate access before serving lookup replies
from the cache (Figure 3). Similar permission checks are
performed in the kernel to validate accesses to files under
/sdcard before serving cached getattr requests . We also
enabled passthrough on read/write using InodeMap.

We evaluated its performance on a 1GB RAM HiKey620
board [1] with two popular game apps containing OBB
files of different sizes. Our results show that under AllOpt
passthrough mode the app launch latency and the correspond-
ing peak CPU consumption reduces by over 90% and 80%,
respectively. Furthermore, we found that the larger the OBB
file, the more penalty is incurred by FUSE due to many more
small files in the OBB archive.

LoggedFS is a FUSE-based stackable user-space file system.
It logs every file system operation for monitoring purposes.
By default it writes to syslog buffer and logs all operations
(e.g., open, read, etc.). However, it can be configured to write
to a file or log selectively. Despite being a simple file system,
it has a very important use case. Unlike existing monitor-
ing mechanisms (e.g., Inotify [31]) that suffer from a host of
limitations [10], LoggedFS can reliably post all file system

App Stats CPU (%) Latency (ms)

Name OBB Size D P D P

Disney Palace Pets 5.1 374MB 20 2.9 2235 1766
Dead Effect 4 1.1GB 20.5 3.2 8895 4579

Table 7: App launch latency and peak CPU consumption of sdcard
daemon under default (D), and passthrough (P) settings on Android
for two popular games. In passthrough mode, the FUSE driver never
forwards read/write requests to user space, but always passes them
through the host (EXT4) file system. See Table 5 for config details.
1 bool check_caller_access_to_name(int64_t key, const char *name) {
2 /* define a shmap for hosting permissions */
3 int *val = extfuse_lookup_shmap(&key);
4 /* Always block security-sensitive files at root */
5 if (!val || *val == PERM_ROOT) return false;
6 /* special reserved files */
7 if (!strncasecmp(name, "autorun.inf", 11) ||
8 !strncasecmp(name, ".android_secure", 15) ||
9 !strncasecmp(name, "android_secure", 14))

10 return false;
11 return true;
12 }

Figure 10: Android sdcard permission checks EXTFUSE code.

events. Various apps, such as file system indexers, backup
tools, Cloud storage clients such as Dropbox, integrity check-
ers, and antivirus software subscribe to file system events for
efficiently tracking modifications to files.

We ported LoggedFS to EXTFUSE framework. Figure 11
shows the common logging code that is called from various
extensions, which serve requests in the kernel (e.g., read ex-
tension Figure 5). To evaluate its performance, we ran the
FileServer macro benchmark with synthetic a workload of
200,000 files and 50 threads from Filebench suite. We found
over 9% improvement in throughput under MDOpt compared
to FUSE Opt due to 53%, 99%, and 100% fewer lookup,
getattr, and getxattr requests to user space, respectively.
Figure 12 shows the results. AllOpt reported an additional
20% improvement by directly forwarding all read/write re-
quests to the host file system, offering near-native throughput.

1 void log_op(extfuse_req_t req, fuse_ino_t ino,
2 int op, const void *arg, int arglen) {
3 struct data { /* log record */
4 u32 op; u32 pid; u64 ts; u64 ino; char data[MAXLEN];};
5 /* example filter: only whitelisted UIDs in map */
6 u16 uid = bpf_get_current_uid_gid();
7 if (!extfuse_lookup_shmap(uid_wlist, &uid)) return;
8 /* log opcode, timestamp(ns) and requesting process */
9 data.opcode = op; data.ts = bpf_ktime_get_ns();

10 data.pid = bpf_get_current_pid_tgid(); data.ino = ino;
11 memcpy(data.data, arg, arglen);
12 /* submit to per-cpu mmap’d ring buffer */
13 u32 key = bpf_get_smp_processor_id();
14 bpf_perf_event_output(req, &buf, &key, &data, sizeof(data));
15 }

Figure 11: LoggedFS kernel extension that logs requests.

7 Discussion
Future use cases. Given negligible overhead of EXTFUSE
and direct passthrough access to the host file system for stack-
ing incremental functionality, multiple app-defined “thin” file
system functions (e.g., security checks, logging, etc.) can be

USENIX Association 2019 USENIX Annual Technical Conference 131

Figure 12: LoggedFS performance measured by Filebench File-
Server benchmark under EXT4, FUSE, and EXTFUSE. Fewer meta-
data and I/O requests were delivered to user space with EXTFUSE.

stacked with low overhead, which otherwise would have been
very expensive in user space with FUSE.
Safety. EXTFUSE sandboxes untrusted user extensions to
guarantee safety. For example, the eBPF runtime allows
access to only a few, simple non-blocking kernel helper func-
tions. Map data structures are of fixed size. Extensions are
not allowed to allocate memory or directly perform any I/O
operations. Even so, EXTFUSE offers significant perfor-
mance boost across a number of use cases §6.2 by offloading
simple logic in the kernel. Nevertheless, with EXTFUSE,
user file systems can retain their existing slow-path logic for
performing complex operations, such as encryption in user
space. Future work can extend the EXTFUSE framework to
take advantage of existing generic in-kernel services such as
VFS encryption and compression APIs to even serve requests
that require such complex operations entirely in the kernel.

8 Related Work
Here, we compare our work with related existing research.
User File System Frameworks. There exists a number of
frameworks to develop user file systems. A number of user
file systems have been implemented using NFS loopback
servers [19]. UserFS [14] exports generic VFS-like file
system requests to the user space through a file descriptor.
Arla [53] is an AFS client system that lets apps implement
a file system by sending messages through a device file in-
terface /dev/xfs0. Coda file system [42] exported a simi-
lar interface through /dev/cfs0. NetBSD provides Pass-to-
Userspace Framework FileSystem (PUFFS). Mazières et al.
proposed a C++ toolkit that exposes a NFS-like interface for
allowing file systems to be implemented in user space [33].
UFO [3] is a global file system implemented in user space by
introducing a specialized layer between the apps and the OS
that intercepts file system calls.
Extensible Systems. Past works have explored the idea of let-
ting apps extend system services at runtime to meet their per-
formance and functionality needs. SPIN [6] and VINO [43]
allow apps to safely insert kernel extensions. SPIN uses a
type-safe language runtime, whereas VINO uses software
fault isolation to provide safety. ExoKernel [13] is another
OS design that lets apps define their functionality. Systems
such as ASHs [17, 51] and Plexus [15] introduced the con-
cept of network stack extension handlers inserted into the

kernel. SLIC [18] extends services in monolithic OS using
interposition to enable incremental functionality and compo-
sition. SLIC assumes that extensions are trusted. EXTFUSE
is a framework that allows user file systems to add “thin” ex-
tensions in the kernel that serve as specialized interposition
layers to support both in-kernel and user space processing to
co-exist in monolithic OSes.
eBPF. EXTFUSE is not the first system to use eBPF for safe
extensibility. eXpress DataPath (XDP) [27] allows apps to
insert eBPF hooks in the kernel for faster packet process-
ing and filtering. Amit et al. proposed Hyperupcalls [4] as
eBPF helper functions for guest VMs that are executed by
the hypervisor. More recently, SandFS [7] uses eBPF to pro-
vide an extensible file system sandboxing framework. Like
EXTFUSE, it also allows unprivileged apps to insert custom
security checks into the kernel.

FUSE. File System Translator (FiST) [55] is a tool for
simplifying the development of stackable file system. It pro-
vides boilerplate template code and allows developers to only
implement the core functionality of the file system. FiST
does not offer safety and reliability as offered by user space
file system implementation. Additionally, it requires learning
a slightly simplified file system language that describes the
operation of the stackable file system. Furthermore, it only
applies to stackable file systems.

Narayan et al. [34] combined in-kernel stackable FiST
driver with FUSE to offload data from I/O requests to user
space to apply complex functionality logic and pass processed
results to the lower file system. Their approach is only ap-
plicable to stackable file systems. They further rely on static
per-file policies based on extended attributes labels to en-
able or disable certain functionality. In contrast, EXTFUSE
downloads and safely executes thin extensions from user file
systems in the kernel that encapsulate their rich and special-
ized logic to serve requests in the kernel and skip unnecessary
user-kernel switching.

9 Conclusion
We propose the idea of extensible user file systems and present
the design and architecture of EXTFUSE, an extension frame-
work for FUSE file system. EXTFUSE allows FUSE file
systems to define “thin” extensions along with auxiliary data
structures for specialized handling of low-level requests in
the kernel while retaining their existing complex logic in user
space. EXTFUSE provides familiar FUSE-like APIs and ab-
stractions for easy adoption. We demonstrate its practical
usefulness, suitability for adoption, and performance benefits
by porting and evaluating existing FUSE implementations.

10 Acknowledgments
We thank our shepherd, Dan Williams, and all anonymous
reviewers for their feedback, which improved the content
of this paper. This work was funded in part by NSF CPS
program Award #1446801, and a gift from Microsoft Corp.

132 2019 USENIX Annual Technical Conference USENIX Association

References
[1] 96boards. Hikey (lemaker) development boards, May 2019.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for unix development. pages 93–112, 1986.

[3] Albert D Alexandrov, Maximilian Ibel, Klaus E Schauser, and Chris J
Scheiman. Extending the operating system at the user level: the
Ufo global file system. In Proceedings of the 1997 USENIX Annual
Technical Conference (ATC), pages 6–6, Anaheim, California, January
1997.

[4] Nadav Amit and Michael Wei. The design and implementation of
hyperupcalls. In Proceedings of the 2017 USENIX Annual Technical
Conference (ATC), pages 97–112, Boston, MA, July 2018.

[5] Starr Andersen and Vincent Abella. Changes to Functionality in
Windows XP Service Pack 2, Part 3: Memory Protection Technolo-
gies, 2004. https://technet.microsoft.com/en-us/library/
bb457155.aspx.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety and
Performance in the SPIN Operating System. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP), Copper
Mountain, CO, December 1995.

[7] Ashish Bijlani and Umakishore Ramachandran. A lightweight and
fine-grained file system sandboxing framework. In Proceedings of
the 9th Asia-Pacific Workshop on Systems (APSys), Jeju Island, South
Korea, August 2018.

[8] Ceph. Ceph kernel client, April 2018. https://github.com/ceph/
ceph-client.

[9] Open ZFS Community. ZFS on Linux. https://zfsonlinux.org,
April 2018.

[10] J. Corbet. Superblock watch for fsnotify, April 2017.

[11] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante. Wayback: A
user-level versioning file system for linux. In Proceedings of the 2004
USENIX Annual Technical Conference (ATC), pages 27–27, Boston,
MA, June–July 2004.

[12] Exploit Database. Android - sdcardfs changes current->fs without
proper locking, 2019.

[13] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exoker-
nel: An Operating System Architecture for Application-Level Resource
Management. In Proceedings of the 15th ACM Symposium on Oper-
ating Systems Principles (SOSP), Copper Mountain, CO, December
1995.

[14] Jeremy Fitzhardinge. Userfs, March 2018. http://www.goop.org/
~jeremy/userfs/.

[15] Marc E. Fiuczynski and Briyan N. Bershad. An Extensible Protocol
Architecture for Application-Specific Networking. In Proceedings of
the 1996 USENIX Annual Technical Conference (ATC), San Diego, CA,
January 1996.

[16] R. Flament. LoggedFS - Filesystem monitoring with Fuse, March
2018. https://rflament.github.io/loggedfs/.

[17] Gregory R. Ganger, Dawson R. Engler, M. Frans Kaashoek, Hec-
tor M. Briceño, Russell Hunt, and Thomas Pinckney. Fast and Flexible
Application-level Networking on Exokernel Systems. ACM Transac-
tions on Computer Systems (TOCS), 20(1):49–83, 2002.

[18] Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, and
Thomas E. Anderson. Slic: An extensibility system for commod-
ity operating systems. In Proceedings of the 1998 USENIX Annual
Technical Conference (ATC), New Orleans, Louisiana, June 1998.

[19] David K Gifford, Pierre Jouvelot, Mark A Sheldon, et al. Semantic file
systems. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), pages 16–25, Pacific Grove, CA, October
1991.

[20] A Featureful Union Filesystem, March 2018. https://github.com/
trapexit/mergerfs.

[21] LibFuse | GitHub. Without ‘default_permissions‘, cached permis-
sions are only checked on first access, 2018. https://github.com/
libfuse/libfuse/issues/15.

[22] Gluster. libgfapi, April 2018. http://staged-gluster-
docs.readthedocs.io/en/release3.7.0beta1/Features/
libgfapi/.

[23] Gnu hurd, April 2018. www.gnu.org/software/hurd/hurd.html.

[24] Storage | Android Open Source Project, September 2018. https:
//source.android.com/devices/storage/.

[25] John H Hartman and John K Ousterhout. Performance measurements
of a multiprocessor sprite kernel. In Proceedings of the Summer
1990 USENIX Annual Technical Conference (ATC), pages 279–288,
Anaheim, CA, 1990.

[26] eBPF: extended Berkley Packet Filter, 2017. https://www.iovisor.
org/technology/ebpf.

[27] IOVisor. Xdp - io visor project, May 2019.

[28] Shun Ishiguro, Jun Murakami, Yoshihiro Oyama, and Osamu Tatebe.
Optimizing local file accesses for fuse-based distributed storage. In
High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, pages 760–765, 2012.

[29] Antti Kantee. puffs-pass-to-userspace framework file system. In Pro-
ceedings of the Asian BSD Conference (AsiaBSDCon), Tokyo, Japan,
March 2007.

[30] Jochen Liedtke. Improving ipc by kernel design. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles (SOSP),
pages 175–188, Asheville, NC, December 1993.

[31] Robert Love. Kernel korner: Intro to inotify. Linux Journal, 2005:8,
2005.

[32] Ali José Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and David
Mazières. Replication, history, and grafting in the ori file system.
In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), Farmington, PA, November 2013.

[33] David Mazières. A Toolkit for User-Level File Systems. In Proceed-
ings of the 2001 USENIX Annual Technical Conference (ATC), pages
261–274, June 2001.

[34] S. Narayan, R. K. Mehta, and J. A. Chandy. User space storage system
stack modules with file level control. In Proceedings of the Linux
Symposium, pages 189–196, Ottawa, Canada, July 2010.

[35] Martin Pärtel. bindfs, 2018. https://bindfs.org.

[36] PaX Team. PaX address space layout randomization (ASLR), 2003.
https://pax.grsecurity.net/docs/aslr.txt.

[37] Rogério Pontes, Dorian Burihabwa, Francisco Maia, João Paulo, Vale-
rio Schiavoni, Pascal Felber, Hugues Mercier, and Rui Oliveira. Safefs:
A modular architecture for secure user-space file systems: One fuse
to rule them all. In Proceedings of the 10th ACM International on
Systems and Storage Conference, pages 9:1–9:12, Haifa, Israel, May
2017.

[38] Nikolaus Rath. List of fuse file systems, 2011. https://github.
com/libfuse/libfuse/wiki/Filesystems.

[39] Nicholas Rauth. A network filesystem client to connect to SSH servers,
April 2018. https://github.com/libfuse/sshfs.

[40] Gluster, April 2018. http://gluster.org.

[41] Kai Ren and Garth Gibson. Tablefs: Enhancing metadata efficiency
in the local file system. In Proceedings of the 2013 USENIX Annual
Technical Conference (ATC), pages 145–156, San Jose, CA, June 2013.

USENIX Association 2019 USENIX Annual Technical Conference 133

https://technet.microsoft.com/en-us/library/bb457155.aspx
https://technet.microsoft.com/en-us/library/bb457155.aspx
https://github.com/ceph/ceph-client
https://github.com/ceph/ceph-client
https://zfsonlinux.org
http:// www.goop.org/~jeremy/userfs/
http:// www.goop.org/~jeremy/userfs/
https://rflament.github.io/loggedfs/
https://github.com/trapexit/mergerfs
https://github.com/trapexit/mergerfs
https://github.com/libfuse/libfuse/issues/15
https://github.com/libfuse/libfuse/issues/15
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
http://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Features/libgfapi/
www.gnu.org/software/hurd/hurd.html
https://source.android.com/devices/storage/
https://source.android.com/devices/storage/
https://www.iovisor.org/technology/ebpf
https://www.iovisor.org/technology/ebpf
https://bindfs.org
https://pax.grsecurity.net/docs/aslr.txt
https://github.com/libfuse/libfuse/wiki/Filesystems
https://github.com/libfuse/libfuse/wiki/Filesystems
https://github.com/libfuse/sshfs
http://gluster.org

[42] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A highly
available file system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, April 1990.

[43] Margo Seltzer, Yasuhiro Endo, Christopher Small, and Keith A Smith.
An introduction to the architecture of the vino kernel. Technical report,
Technical Report 34-94, Harvard Computer Center for Research in
Computing Technology, October 1994.

[44] Helgi Sigurbjarnarson, Petur O. Ragnarsson, Juncheng Yang, Ymir
Vigfusson, and Mahesh Balakrishnan. Enabling space elasticity in
storage systems. In Proceedings of the 9th ACM International on
Systems and Storage Conference, pages 6:1–6:11, Haifa, Israel, June
2016.

[45] David C Steere, James J Kistler, and Mahadev Satyanarayanan. Effi-
cient user-level file cache management on the sun vnode interface. In
Proceedings of the Summer 1990 USENIX Annual Technical Confer-
ence (ATC), Anaheim, CA, 1990.

[46] Swaminathan Sundararaman, Laxman Visampalli, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Refuse to Crash with Re-
FUSE. In Proceedings of the 6th European Conference on Computer
Systems (EuroSys), Salzburg, Austria, April 2011.

[47] M. Szeredi and N.Rauth. Fuse - filesystems in userspace, 2018. https:
//github.com/libfuse/libfuse.

[48] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A
flexible framework for file system benchmarking. ;login: The USENIX
Magazine, 41(1):6–12, March 2016.

[49] Ungureanu, Cristian and Atkin, Benjamin and Aranya, Akshat and
Gokhale, Salil and Rago, Stephen and Całkowski, Grzegorz and Dub-
nicki, Cezary and Bohra, Aniruddha. HydraFS: A High-throughput
File System for the HYDRAstor Content-addressable Storage System.
In 10th USENIX Conference on File and Storage Technologies (FAST)
(FAST 10), pages 17–17, San Jose, California, February 2010.

[50] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To
FUSE or Not to FUSE: Performance of User-Space File Systems. In
15th USENIX Conference on File and Storage Technologies (FAST)
(FAST 17), Santa Clara, CA, February 2017.

[51] Deborah A. Wallach, Dawson R. Engler, and M. Frans Kaashoek.
ASHs: Application-Specific Handlers for High-Performance Messag-
ing. In Proceedings of the 7th ACM SIGCOMM, Palo Alto, CA, August
1996.

[52] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 307–320, Seattle,
WA, November 2006.

[53] Assar Westerlund and Johan Danielsson. Arla: a free afs client. In
Proceedings of the 1998 USENIX Annual Technical Conference (ATC),
pages 32–32, New Orleans, Louisiana, June 1998.

[54] E. Zadok, I. Bădulescu, and A. Shender. Extending File Systems Using
Stackable Templates". In Proceedings of the 1999 USENIX Annual
Technical Conference (ATC), pages 57–70, June 1999.

[55] E. Zadok and J. Nieh. FiST: A Language for Stackable File Systems.
In Proceedings of the 2000 USENIX Annual Technical Conference
(ATC), June 2000.

[56] Erez Zadok, Sean Callanan, Abhishek Rai, Gopalan Sivathanu, and
Avishay Traeger. Efficient and safe execution of user-level code in the
kernel. In Parallel and Distributed Processing Symposium 19th IEEE
International, pages 8–8, 2005.

[57] ZFS-FUSE, April 2018. https://github.com/zfs-fuse/zfs-
fuse.

134 2019 USENIX Annual Technical Conference USENIX Association

https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://github.com/zfs-fuse/zfs-fuse
https://github.com/zfs-fuse/zfs-fuse

	Introduction
	Background and Extended Motivation
	FUSE
	Generality vs Specialization

	Design
	Overview
	Goals and Challenges
	eBPF
	Architecture
	ExtFUSE APIs and Abstractions
	Workflow

	Implementation
	Optimizations
	Customized in-kernel metadata caching
	Passthrough I/O for stacking functionality

	Evaluation
	Performance
	Use cases

	Discussion
	Related Work
	Conclusion
	Acknowledgments

