
 | JULY 2013 | WWW.Usenix.org PAge 5

Monitor the Monitors
S e l e n a D e c k e l m a n n

A colleague asked: What tools do people use for monitoring the moni-
tors? His question was inspired by “Dead Man’s Snitch,” a web-based
tool that detects and reports out when a regularly scheduled job

hasn’t run. This got me thinking about all the kinds of systems teams set up
to detect silent failures. Most involve turning silence into noise.

When asked, friends had quite a few different names for these strategies: meta-monitoring,
the “everything’s ok” alarm, a “canary in the mine,” Dead Man’s Switch, heartbeat, watch-
dog, high availability response, and the entertainingly painful OOBETET (out-of-band-
end-to-end test).

You could divide that list up in a few different ways:

u	 Automated vs. manual execution

u	 Automated vs. manual response

u	 Destructive vs. non-destructive response

u	 Monitoring vs. monitoring of notification services

Classifying the strategies seems fairly simple. The Dead Man’s Switch is automated and
contains a destructive response, at least in the movies. An out-of-band-end-to-end test is
often manual both in execution and response, and non-destructive.

Definitions become a bit fuzzier, however, when we consider “monitoring vs. monitoring of
notification services”. For example, how do you ensure (within reason) that text message
alerts actually made it to the staff who can fix a problem?

This kind of testing seems to fall under “out of band” checks. These are verification
routines we don’t include in our primary monitoring systems, just in case the primary
systems aren’t available.

Teams have lots of informal—and sometimes formal—ways of managing these issues.
For example, when on-call switches over, the phone company may send an initial alert text
message to the new shift’s phone number.

In my first job out of college, our team sent out a test alarm at 9 a.m. every day to the on-
call team member, signaling that the paging service was still working. If you were on call
and didn’t receive the page, you knew to contact your manager to get things fixed as soon
as possible.

Critically, this kind of verification system is not fully automated. Instead, the system is
managed by training people to notice a simple signal (in this case, a disruption in a well-
known routine) and supplying instructions for exactly how to respond.

Much of the work involved in keeping formal out-of-band checks working and useful is in
documentation and training. When systems are designed for human intervention, there’s

selena Deckelmann is a major
contributor to PostgresQL and
a data architect at Mozilla.
she’s been involved with free
and open source software
since 1995 and began running

conferences for PostgresQL in 2007. in 2012,
she founded PyLadiesPDx, a portland chapter
of PyLadies. Deckelmann founded open source
Bridge and Postgres open, and she speaks
internationally about open source, databases,
and community. she is an advisor to the
Ada initiative, an organization dedicated to
increasing the participation of women in open
source and technology communities. You can
find her on twitter (@selenamarie) and on her
blog at chesnok.com. selena@chesnok.com

 | JULY 2013 | WWW.Usenix.org PAge 6

Monitor the Monitors

a temptation to not document the process fully because you
know a person must puzzle their way through responding to
the alarm anyway.

But there’s significant value in documenting even our informal
process. Training is much easier when you’ve got a document
to work from, and you can have some degree of assurance that
team members will run through steps to fix problems the same
way every time. If something changes, you know where to
document the change – in the written documentation. You may
find that the check and even the fix can be automated. And,
staged failures to test the procedure is a lot easier to manage
when you have a fix procedure to test.

So, take a few minutes and have a look at your team’s out-of-
band monitoring. What are the things that might fail silently?
Can you turn that silent failure into noise? How will your team
detect and respond? And then write it down!

