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Modeling and Reasoning about DOM Events

Benjamin S. Lerner Matthew J. Carroll Dan P. Kimmel
Hannah Quay-de la Vallee Shriram Krishnamurthi

Brown University

Abstract
Web applications are fundamentally reactive. Code in a
web page runs in reaction to events, which are triggered
either by external stimuli or by other events. The DOM,
which specifies these behaviors, is therefore central to
the behavior of web applications. We define the first
formal model of event behavior in the DOM, with high
fidelity to the DOM specification. Our model is concise
and executable, and can therefore be used for testing and
verification. We have applied it in several settings: to
establish some intended meta-properties of the DOM, as
an oracle for testing the behavior of browsers (where it
found real errors), to demonstrate unwanted interactions
between extensions and validate corrections to them, and
to examine the impact of a web sandbox. The model
composes easily with models of other web components,
as a step toward full formal modeling of the web.

1 Introduction

Modern web applications are fluid collections of script
and markup that respond and adapt to user interaction.
Because their programming model differs from classic
desktop applications, the analysis of such programs is still
in its infancy. To date, most efforts have focused on indi-
vidual portions in isolation: huge progress has been made
in clarifying the semantics of JavaScript [10, 16, 17], in
modeling the tree structure of HTML [9], and in under-
standing the overall behavior of the browser as a runtime
environment [2, 5, 14, 15, 18]. But each of these ap-
proaches ignores the crucial element of reactivity: web
programming is fundamentally event-driven, and employs
a powerful mechanism for event propagation. Perhaps
counterintuitively, the JavaScript loaded in web applica-
tions is largely inert, and only executes when triggered
by events dispatching through the HTML structure in
which it resides. To paraphrase John Wheeler’s famous
dictum, “HTML tells events how to propagate, and events
tell HTML how to evolve.”

The ability to model web applications more accurately
has widespread appeal. Webapps are large codebases
in languages with (currently) poor support for modular-
ity: how can we assure ourselves that a program doesn’t
exhibit unintended behaviors? Many webapps include
semitrusted or untrusted content such as ads: how can
we ensure that a program is robust in the face of the
injected content’s activity? And for many web-like ap-
plications, foremost among them Firefox or Thunderbird,
users avidly install extensions that deliberately and deeply
modify the markup and script of the underlying program:
what assurance do we have that the composite program
will work correctly? Even current tools that do attempt to
model both the page structure and the code [3, 4, 6] are
hampered by state-space explosion, as without a precise
model the potential code paths grow beyond feasibility.

Instead, we propose a simple, executable, testable
model of event dispatch in web applications, in the style
of λJS [10, 11, 17]. Our model is engineered to hew
closely to the structure of the spec [13], to build con-
fidence in the model’s adequacy. For our purposes we
abstract JavaScript and model only those APIs dealing
with page structure or events; the model is easily extended
to include λJS directly. Likewise we represent the page
structure as a simple tree in a heap; again the model can be
extended with a richer tree representation [9] for further
precision.

Contributions
This paper makes the following concrete contributions:

1. A short, executable, and testable model of event dis-
patch (Section 4.2). Writing such a model clarifies
potential sources of confusion in the spec itself, pro-
vides an oracle against which implementations can
be tested, and provides a foundation for future pro-
gram analyses. As a case in point, systematically
testing small examples in our model revealed dis-
crepant behavior among the major browsers.
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2. Simple proofs (Section 4.1) that the model upholds
properties expected of the spec, such as precisely
how and when a script’s side effects can affect the
dispatching of current and subsequent events. Be-
cause the model closely resembles the spec, such
proofs lend confidence that the spec itself enjoys the
same properties; thus far such claims were merely
the intent of the lengthy, prose spec.

It also presents two initial applications of the model:

1. We examine two Thunderbird extensions to detect
a real conflict between them. The model is then
used to show that the fix (as implemented by one
extension author) currently suffices to correct the
bug, that another, simpler fix should be more robust,
and this simpler fix in turn reveals a bug in Gecko
(Section 4.3).

2. We re-examine the assumptions of ADsafe [1] in
light of event dispatch, to determine whether ADsafe
widgets may affect the control flow of their host
despite the ADsafe sandbox, and suggest directions
for more robust widgets (Section 4.4).

2 Web Program Control Flow Unpacked

An intuitive but incomplete model for programming web
pages is that of an asynchronous event loop. In this model,
events are triggered by user interaction, and event call-
backs have access to an object graph representing the
tree structure of the HTML, known as the Document Ob-
ject Model (DOM). The full definition of “the DOM” is,
however, spread over many specifications [12, 13, 19, 21,
among others], comprising far more than just this tree
structure. In reality, the DOM object graph is more inter-
connected than a mere tree and can be arbitrarily entan-
gled with the JavaScript heap; event callbacks are attached
directly to these DOM nodes; and while the event loop
itself is not available as a first-class entity through the
DOM, nodes may support APIs that implicitly cause fur-
ther events to be dispatched or that modify the document
structure.

In short, it is naïve to think of the execution of a
web program as merely an event loop alongside a tree-
structured data store. Rather, the structure of the docu-
ment influences the propagation of events, and the side
effects of events can modify the document. Understand-
ing web program behavior therefore requires modeling all
the subtleties of event dispatch through the DOM. Like
all portions of web-related programming, the event mech-
anisms were developed over time, resulting in historical
quirks and oddities. We explain the main features of event
dispatch in this section, and enunciate design goals for
our model to support, then develop our model of it in the
following section.

2.1 Event Dispatch in N Easy Stages
Static document structure, one event listener We
take as a running example a simple document fragment of
three nodes: 〈div〉〈p〉〈span/〉〈/p〉〈/div〉. In the simplest
case, suppose as the page loads we attach a single event
listener to the 〈span/〉:

spanNode.addEventListener("click",
function(event) { alert("In click"); });

This statement registers the function as a listener for
mouse “click” events only; any other event types are
ignored. When an event is dispatched to a particular
target, the listener on that target for that event type—if
there is one—is invoked. Thus a “click” event targeted at
the 〈span/〉 will yield the alert; a “keypress” event will
not, nor will a “click” event targeted at the 〈p/〉 node.

Note that scripts can construct new event objects pro-
grammatically and dispatch them to target nodes. These
events behave identically to browser-generated events,
with one caveat addressed later.

Design Goal 1’: Every node has a map of installed
listeners, keyed by event type. (To be refined)

Multiple listeners and the propagation path We now
expand the above model in two key ways. First, the
suggestively named addEventListener API can in fact
be used repeatedly, for the same node and the same event
type, to add multiple listeners for an event. These listeners
will be called in the order they were installed whenever
their triggering event is dispatched. This flexibility allows
for cleaner program structure: clicking on a form button,
say, might trigger both the display of new form fields and
the validation of existing ones; these disparate pieces of
functionality can now be in separate listeners rather than
one monolithic one.

Second, web programs frequently may respond to
events on several elements in the same way. One ap-
proach would be to install the same function as a listener
on each such element, but this is brittle if the page struc-
ture is later changed. Instead, a more robust approach
would install the listener once on the nearest common
ancestor of all the intended targets. To achieve this, event
dispatch will call listeners on each ancestor of the tar-
get node as well, known as the propagation path. Thus
adding a listener to the other two nodes in our example:

function listener(event) {
alert("At " + event.currentTarget.nodeName

+ " with actual target "
+ event.target.nodeName);

}
pNode.addEventListener("click", listener);
divNode.addEventListener("click", listener);
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and then clicking in the 〈span/〉 will trigger three alerts:
“In click”, “At p with actual target span”, and “At div with
actual target span” in that order: the event bubbles from
the target node through its ancestors to the root of the
document.1

For symmetry, programs may want to perform some
generic response before the event reaches the target node,
rather than only after. Accordingly, event dispatch in
fact defines a so-called capturing phase, where listen-
ers are called starting at the root and propagating down
to the target node. To install a capture-phase listener,
addEventListener takes a third, boolean useCapture
parameter: when true, the listener is for capturing; when
missing or false, the listener is for bubbling.

Event dispatch therefore comprises three phases: “cap-
ture”, from root to the target’s parent and running only
capture-phase listeners; “target”, at the target node and
running all listeners; and “bubble”, from the target’s par-
ent to the root and running only bubble-phase listeners.
The event parameter to each listener contains three fields
indicating the current eventPhase, the currentTarget,
and the intended target of the event. For our running ex-
ample, an event targeted at the 〈span/〉 will call listeners

1. On 〈div/〉 for phase capture, then

2. On 〈p/〉 for phase capture, then

3. On 〈span/〉 for phase target, then

4. On 〈p/〉 for phase bubble, then

5. On 〈div/〉 for phase bubble.

Design Goal 1”: Every node has a map of installed lis-
teners, keyed by event type and phase. (To be refined)

Design Goal 2: Dispatch takes as input a node and its
ancestor chain, which it will traverse twice.

Aborting event propagation It may be the case that a
capture- or target-phase listener completely handles an
event, and that the app has no need to propagate the event
further. The app could maintain some global flag and
have each listener check it and abort accordingly, but this
is tedious and error-prone. Instead, the event object can
be used to stop event propagation in two ways:

• event.stopPropagation() tells dispatch to termi-
nate as soon as all listeners on the current node com-
plete, regardless of whether listeners are installed on
future nodes of the propagation path. Thus calling
this in a target-phase listener on 〈span/〉 will abort
dispatch between steps 3 and 4 above.

1Additionally, for legacy reasons it also propagates to the global
window object; this detail does not substantially change any of our
subsequent modeling.

• event.stopImmediatePropagation() tells dis-
patch to terminate as soon as the current listener
returns, regardless of whether other listeners are in-
stalled on this or future nodes in the propagation
path. Thus calling this in a capture-phase listener on
〈p/〉 will abort dispatch in the middle of step 2, even
if there are more capture-phase listeners on 〈p/〉.

Design Goal 3: Dispatch can be aborted early.

Dynamic document structure: no effect! So far our
example listeners have had no side effects; in general,
however, they often do. This may interact oddly with
the informal definitions above: for instance, if a target-
phase listener removes the target node from the document,
what should the propagation path be? Several options
are possible; the currently specified behavior is that the
propagation path is fixed at the beginning of dispatch, and
is unmodified by changes in document structure. Thus
in our running example, regardless of whether nodes are
deleted, re-parented or otherwise modified, the five steps
listed are unaffected.

Design Goal 4: The ancestor chain input to Design
Goal 2 is immutable.

Dynamic listeners: some effect! We can now address
the last oversimplification, that event listeners are added
once and for all at the start of the program. In fact they can
be added and removed dynamically (using the analogous
removeEventListener API) throughout the program’s
execution. For example, a common idiom is the “run-
once” listener that removes itself the first time it runs:

function runOnce(event) {
node.removeEventListener("click", runOnce);
...

}
node.addEventListener("click", runOnce);

Such actions have a limited effect on the current dis-
patch: listeners added to (resp. removed from) a future
node in the propagation path will (resp. will not) be called
by the dispatch algorithm; listeners added to (resp. re-
moved from) the current or past nodes in the propagation
path will be ignored (resp. will still be called). More
intuitively, a refinement of the five steps above says that
dispatching an event to 〈span/〉 will:

1’. Determine the capture-phase listeners on 〈div/〉 and
run them, then

2’. Determine the capture-phase listeners on 〈p/〉 and
run them, then

3’. Determine the target-phase (i.e., all) listeners on
〈span/〉 and run them, then
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4’. Determine the bubble-phase listeners on 〈p/〉 and
run them, then

5’. Determine the bubble-phase listeners on 〈div/〉 and
run them.

Since the determination of the relevant listeners is lazily
computed in each step, dispatch will only notice added or
removed listeners that apply to later steps.

Design Goal 5: The listener map is mutable during
dispatch, but an immutable copy is made as each node
is reached.

Dealing with legacy “handlers” Unfortunately, the
mechanism explained so far—multiple listeners, cap-
turing and bubbling, and cancellation—was not the
first model proposed. Originally, authors could write
〈span onclick=“alert("In onclick");”/〉, and define
an event handler for the “click” event. There can be at
most one handler for a given event on a given node, which
takes the form of a bare JavaScript statement.

To incorporate this legacy handler mechanism into the
listener model above, handlers are implicitly wrapped
in function(event) { ... }2 and their return values
are post-processed to accommodate the ad-hoc nature
of legacy handler support. Handlers can be altered by
modifying the onclick content attribute or by modifying
the onclick property of the node:

node.setAttribute("onclick",
"alert(’New handler’);");

node.onclick =
function(event) { alert("New handler"); }

and for legacy compatibility, these mutations must not
affect the relative execution order of the handler and any
other “click” listeners.

Design Goal 1: Every node has a map of installed
listeners and handlers, keyed by event type and phase.

Default actions Finally, browsers implement a great
deal of functionality in response to events: clicking a link
will navigate the page, typing into a text box will modify
its contents, selecting one radio button will deselect the
others, and so forth. Such default actions behave mostly
like implicitly-installed listeners, with a few caveats. De-
fault actions are not prevented by stopPropagation
or stopImmediatePropagation; instead, listeners must
call preventDefault. Legacy handlers can return true
(or sometimes false) to achieve the same effect. Also, de-
fault actions are not run for programmatically constructed
events; these events are considered “untrusted” and can-
not be used to forge user interaction with the browser.

2The expert reader will note that some contortions are needed to
supply the right this object and scope to the handler.

The default action for many events is in fact to trigger
the dispatch of a new event: for example, the default ac-
tion of a “keydown” event will dispatch a new “keypress”
event; likewise, the default action for “mouseup” is to dis-
patch a “click” event and possibly a “doubleclick” event.
Note that these are new dispatches; any and all changes to
the document structure made by script-installed listeners
will be visible in the propagation path of these new events.

Design Goal 6: Events are equipped with a default
action which is the final handler of the dispatch.

2.2 Challenges
Analyzing the full control-flow of an application is diffi-
cult enough even in ideal settings when only one devel-
oper writes the complete program. Still, a whole-program
analysis is possible in principle, since the entirety of the
codebase is available for inspection. On the web, how-
ever, programmers frequently include code they did not
author. We consider two scenarios: the intentional inclu-
sion of third-party code such as ads, and the unforeseeable
injection of user-installed extensions.

2.2.1 Invited third-party code

A typical webapp may include ads sourced from vari-
ous third parties, a Twitter or blog feed, social network
sharing operations, and so on. These all take the form
of some user-visible UI, and nearly always include addi-
tional scripts to make the UI interactive. But such inclu-
sion can have several unpleasant side-effects. The obvious
security consequence, in the worst case when the webapp
takes no precautions, is that the inserted content runs
in the same JavaScript context as the webapp, with the
same permissions, and can inadvertently or maliciously
break the webapp. Fortunately, several frameworks exist
to mitigate such naïve mistakes: tools like ADsafe [1]
or Caja [20] attempt to sandbox the inserted content, iso-
lating it within a subtree of the surrounding document
and within a restricted JavaScript environment. But these
also have weaknesses in the face of DOM events, as we
discuss in Section 4.4.

2.2.2 Uninvited third-party code

Virtually every major browser now permits the installation
of extensions. These are specifically intended for users
to modify individual webapps or the browser itself. For
example, there are app- or site-specific extensions that,
say, supplant existing webmail auto-completion methods,
or replace ads with contacts, or customize the UI of a
particular newspaper or social networking site. While
these extensions are sometimes written by the creators
of the original application or site, in other cases they
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pre-dispatch dispatch-collect

dispatch-nextdispatch dispatch-default

pd-buildPath

pd->dispatch

collect:found
collect:none

capture->capture-collect
capture->target-collect
target->bubble-collect
bubble->bubble-collect

more-to-do
stop-prop/more-to-do

target->default
bubble->default

stop-prop/done-with-node
stop-immediate/abort

gethandler:found
finished-handler

return-from-handler
gethandler:none
finished-listener

Figure 1: The core reduction steps in our model, implementing the event dispatch state machine.

are written by third parties. Other browser extensions
personalize the browser’s whole look-and-feel. All these
extensions can be highly invasive to apps, and there is
no way for app authors to anticipate these modifications.
Instead, they must code defensively in all event listeners,
for which they need a model of what to defend against.

3 Modeling DOM Events

Having informally laid out how event dispatching works,
we are ready to model it precisely. We will first describe
the model itself, then explain how we account for its
relationship to the actual DOM specification. Design
goals 1, 3, and 6 are used to construct the model; the other
three express properties about that model that we prove in
Section 4.1. Section 5 presents extensions to the model.

3.1 Model Highlights
Because the DOM is essentially a large automaton that
determines what operations will execute next, we model
it using an operational semantics. In particular, because
of the ability to abort dispatch in subtle ways (see Design
Goal 3), we find it most effective to use the evaluation
context style of Felleisen and Hieb [8], which was initially
designed to model control operators (such as exceptions
and continuations) in regular programming languages and
is thus well suited for that purpose.

Our full model, which can be found at http://www.
cs.brown.edu/research/plt/dl/domsemantics/,
is 1200 lines of commented code. It is implemented using
the PLT Redex modeling language [7], which provides
programming environment support for models in the
Felleisen-Hieb style. Here we present the highlights that
will help the reader navigate that document.

3.1.1 Stages of a Dispatch

The Events spec defines the procedure for synchronously
dispatching a single event in careful detail, and the prose
is full of challenging nuances. Conceptually, however,
the spec defines a single event dispatch as an automaton
with five states. The states and their transitions, as named
in our model, are shown in Fig. 1; we discuss the key
transitions below. Our model identifies eight transitions,
with eighteen triggering conditions: a reasonable size,
given the many interacting features of event dispatch, and
certainly more concise than the original spec.

1. Determining the propagation path. Event dispatch
begins by determining the propagation path for the event:
the ancestors of the target node at the time dispatch is ini-
tiated. Our model builds this path in the pre-dispatch
state. The spec states that “once determined, the propa-
gation path must not be changed,” regardless of any page
mutations caused by listeners that are triggered during
dispatch (Design Goal 1). This is trivially maintained by
our model: every transition between the dispatch-next,
dispatch-collect and dispatch states (described be-
low) preserve the path without modification.

2. Determining the next listener. The flow of an event
dispatch may be truncated in one of three ways: after the
completion of the current listener, after the completion
of any remaining listeners on the current node and phase,
or the default action may be canceled. Further, some
events may skip the bubble phase entirely. When any
given listener completes execution, the dispatch algorithm
must check whether any of these truncations have been
signaled, and abort dispatch accordingly (Design Goal 3).
If none have, then dispatch proceeds to the next listener
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(listener #t L1)
(listener #t L2)

(listener #f L3)
(listener #f L4)

(listener #t L5)

Figure 2: Schematic representation of the model’s store. The store contains nodes connected in a tree structure (left).
Each node stores its name, attributes, pointers to its parent and children, and suites of event listeners, grouped by event
type (middle). Each suite contains three lists, one for each phase of dispatch; listeners for either 〈capture〉 or 〈bubble〉
phases also apply—in order—to the 〈target〉 phase (right). Each listener holds a pointer (Li) to its actual code.

for the current node and phase or, if no such listener exists,
begins collecting listeners for the next node (and possibly
phase) on the propagation path. Precisely identifying
these conditions is the crux of our model, which reifies
them as ten transitions out of the dispatch-next state.

3. Determining listeners for the current node and
phase. Perhaps one of the subtlest requirements of the
spec determines which listeners must be called when dis-
patch reaches a node on a propagation path—and not all
browsers currently get this right (see Section 4.2). As
noted in Section 2.1, the list of listeners for a given node
and phase is fixed only when dispatch reaches that node;
this step is accomplished by the dispatch-collect
model state (Design Goal 5). Unfortunately here the
spec conflates specification and representation: it implic-
itly assumes a flat list of the installed event listeners, and
must include qualifiers to predicate which listeners should
run. Our model avoids making assumptions about rep-
resentation, using a structure that exposes the semantic
intent (see Section 3.1.2 below), and merely copies the
relevant list of installed listeners for the current phase into
the dispatch context, thereby insuring that any changes
to the installed listeners on the current node and phase
will not take effect until a subsequent dispatch. (Still, any
modifications to listeners installed on nodes for phases
later in the current dispatch will be visible.) Accordingly,
the model’s transitions here are far clearer than the spec
they implement.

4. Executing a listener. Either transition from
dispatch-next to the dispatch state determines that a
given listener should be executed. The model then records
both the current listener and the remaining target nodes,
and begins executing the listener body. While in this state,

listeners may invoke additional, reentrant (“synchronous”)
event dispatches, may cancel the current event dispatch,
or generally may modify the DOM however they choose.
Once a dispatch context completes its listener body, it
transitions back to dispatch-next to determine the next
listener to call.

5. Default actions. When dispatch-next reaches the
end of the propagation path, or when the bubble phase
would begin but the current event does not bubble, the
algorithm must execute the default actions, if any, for
the given event and event target. We model this with a
dispatch-default state (Design Goal 6) and a meta-
function (not shown) to compute the relevant default
actions. This meta-function is the only portion of the
dispatch algorithm that inspects the detailed form of the
event and target; everything else is agnostic. A model
of the full HTML spec would supply this meta-function,
specializing the event dispatch mechanism to the events
applicable to HTML documents.

3.1.2 Representing Event Listener Lists

The precise storage for event listeners encodes several
requirements culled from disparate portions of the spec,
and embodies Design Goal 1. We give the precise type in
Fig. 3b, and explain its design in four stages.

First, the spec mandates that event listeners installed
for the same node, event type and dispatch phase must be
called in the order they were installed. Accordingly, every
node contains a map (LS) from event type and phase to a
vector of listeners.

Second, the spec elsewhere states listeners may be
installed for either 〈capture〉 and 〈target〉 phases, or
〈target〉 and 〈bubble〉 phases. At first glance, it
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seems that we might simply maintain separate lists for
〈capture〉- and 〈bubble〉-phase listeners, but that runs
afoul of the ordering requirement when dispatch reaches
the 〈target〉 phase. Instead, we must also maintain a
list of 〈target〉-phase listeners, and when adding a new
listener, we must update two lists in our map: this is
accomplished by the addListener meta-function.

Third, the spec requires that the triple of argu-
ments (〈eventType〉, 〈usesCapture〉, 〈listener〉) must
be unique within each node: while a given function may
be installed both as a capture-phase listener and as a
bubble-phase listener on the same node, subsequent in-
stallations will have no effect. In combination with the
previous requirement, one implicit consequence is that a
function may be called twice during the target phase;
though true, this is not immediately obvious from the spec
wording, but is evident from our rules.

Finally, the spec defines how event listeners may be
removed from a node: again, from both capture and
target phases, or from both target and bubble phases.
Thanks to the uniqueness requirement and our model-
ing of addEventListener, we know that a given listener
may be present twice in the target-phase list, so we must
record which target-phase listeners were also installed
on the capture phase, and which were not, or else we
might remove the wrong listener and violate the ordering
requirement. Consider the following program fragment:

node.addEventListener("click", true, f1);
node.addEventListener("click", true, f2);
node.addEventListener("click", false, f1);
node.removeEventListener("click", true, f1);

While it is intuitively clear that the call to
removeEventListener must remove f1 in the
capture phase, it must also remove the corresponding
f1 in the target phase, i.e., the first one.

Remark: In prior work [15], in which the first author
implemented the event dispatch algorithm, he read the
documentation for addEventListener too quickly; it is
excerpted in Fig. 3a. Note the emphasized text: in fact, the
specification is inconsistent in defining on which phases
listeners may be installed! By contrast, the meta-function
in Fig. 3b uses the useCapture flag exactly once, and
hence avoids and resolves this error.

The store as described here is redundant: the 〈target〉
list by itself contains sufficient information to produce
the spec-defined behavior. However, this redundancy is
intentional: it simplifies the determination of relevant
listeners (the dispatch-collect state earlier), empha-
sizes the “doubled” effect of addEventListener, and
indirectly encourages implementers to treat the model as
a specification rather than an implementation guide.

3.2 Modeling Challenge: Adequacy
Whenever researchers build a model of a system, they
must demonstrate why the model adequately represents
the system being examined, or else the model is of no
relevance. This is an inherently informal process, as the
system here is the prose of the specification; if the spec
were amenable to formal methods in the first place, there
would be no need for a formal model!

To simplify the case for our model’s adequacy, we
have annotated each paragraph of the spec with a link to
the relevant definitions and reduction rules of our model.
A reasonably knowledgeable reader could flip back and
forth between the spec and the model, and convince her-
self that the model faithfully represents the intent of the
spec. An excerpt of this is shown in Fig. 3, where we
show the spec’s definition for addEventListener and
the corresponding Redex metafunction that installs the
listener into our model.3

Of course, the DOM also lives through many imple-
mentations. We can therefore test our model to determine
whether it conforms to the behavior of actual implemen-
tations. We have begun doing so, and discuss the results
in Section 4.2. Ultimately, we have to choose between
modeling a specific browser or the spec; we have chosen
the latter, but the decisions we have made are localized
and can thus be altered to reflect one particular implemen-
tation, if desired.

4 Applications

We now demonstrate the utility of our model by discussing
its application in various settings.

4.1 Provable Properties of the Model
We concern ourselves here only with well-formed states
of the model: a finite statement/heap pair (S,H) is well-
formed if

1. There are no dangling pointers from S into H .
2. The heap is well-typed: Every heap location men-

tioned in S is used consistently either as a node or
as a listener.

3. There are no dangling pointers within H: the parents
and children of every node n must be present in H .

4. The nodes in the heap are tree-structured: No node
is its own ancestor, descendant or the child of two
distinct nodes.

5. For every listener (listener b L) or handler
(handler L), L points to a statement S′ and
(S′, H) is well-formed.

3The spec requirement that addEventListener be idempotent is
in fact defined elsewhere; that text in turn corresponds to the (elided)
addListenerHelper metafunction.
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addEventListener

Registers an event listener, depending
on the useCapture parameter, on the
capture phase of the DOM event flow or
its target and bubbling phases.

Parameters:

type of type DOMString: Spec-
ifies the Event.type associated
with the event for which the user
is registering.

listener of type EventListener:
. . .

useCapture of type boolean: If
true, useCapture indicates that
the user wishes to add the event
listener for the capture and tar-
get phases only, i.e., this event lis-
tener will not be triggered during
the bubbling phase. If false, the
event listener must only be trig-
gered during the target and bub-
bling phases.

(a) Excerpt from the specification of
addEventListener; emphasis added to
highlight self-inconsistencies.

P ∈ PHASE ::= 〈capture〉
∣∣ 〈target〉 ∣∣ 〈bubble〉

L ∈ LISTENER ::= listener S

S ∈ STMT ::= skip
∣∣ return bool

∣∣ S;S∣∣ stop-prop
∣∣ stop-immediate∣∣ prevent-default∣∣ addEventListener N T bool L∣∣ remEventListener N T bool L∣∣ debug-printstring

T ∈ EVTTYPE ::= "click"
∣∣ "keydown" ∣∣ · · ·

LS ∈ LMAP ::= (T × P ) ⇀ (
−−−−−→
bool × L)

N ∈ NODE ::= (node name LS . . .)

(define-metafunction DOM
[(addListener

LS string_type bool_useCapture L)
(addListenerHelper
(addListenerHelper
LS string_type target L)

string_type
,(if (term bool_useCapture)

(term capture)
(term bubble))

L)])

(b) Excerpt from our Redex model of addEventListener. Note that
the impact of the useCapture is defined exactly once, leaving no
room for self-inconsistency.

Figure 3: Defining and modeling addEventListener

We can now prove that our model upholds the invariants
stated in our Design Goals:

Theorem 1. Once computed, the event propagation path
is fixed for each dispatch. (Design Goal 4)

Proof sketch. By inspection of the reduction rules: every
rule between dispatch-next, dispatch-collect and
dispatch leaves the path unchanged. Rules leading to
dispatch-default vacuously leave the path unchanged,
since dispatch has passed the end of the path. The remain-
ing rules in pre-dispatch compute the path itself.

Theorem 2. During dispatch, once the event listener list
for a given node and phase is computed, it is unaffected by
calls to addEventListener or removeEventListener
in any invoked listeners. (Design Goal 5)

Proof sketch. This is the express purpose of
dispatch-collect: only it examines the store to
collect the currently installed listeners, and copies that list
into the dispatch-next context. All further reductions
from dispatch-next use the copy, and are unaware of
any changes in the store.

Theorem 3. Event dispatch is deterministic.

Proof sketch. By inspection of the reduction rules: the
left hand sides of the rules never overlap.

Additionally, we can prove several other key properties:

Lemma 1. Preservation of well-formedness: given
a well-formed (S,H) such that (S,H) → (S′, H ′),
(S′, H ′) is well-formed.

Lemma 2. Progress: a well-formed term is either
(skip, H) or it can take a step via (→).

Theorem 4. Termination: assuming all listeners and
handlers terminate, and do not recursively dispatch
events, every well-formed event dispatch completes:
((pre-dispatch locn () e), H) →∗ (skip, H ′).

Proof sketch. The propagation path of any node in a well-
formed state is finite, because the heap is finite and tree-
structured. Every transition from dispatch-next either
reduces the number of remaining listeners on the current
node, or the number of remaining nodes in the propaga-
tion path. Every transition out of dispatch-collect
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returns to dispatch-next in a single step. By assump-
tion, every listener or handler terminates (in our minimal
language this is trivial; in full JavaScript it is not), so ev-
ery transition to dispatch will return to dispatch-next
in finite time. Finally, again by assumption, the default
handlers run by dispatch-default terminate.

Theorem 5. Double dispatch (Design Goal 2): for every
node on a well-formed propagation path that is not the
target node, if dispatch is not stopped then that node will
be visited exactly twice, once for capture and once for
bubbling phases.

Proof sketch. Because the heap is tree-structured, and
by construction, every node in the propagation path
is distinct. By construction, pd->dispatch collects
listeners for the root node; all subsequent transitions
from dispatch-next to dispatch-collect collect
listeners for the remaining nodes on the path ex-
cept the target (capture->capture), then the target
(capture->target), then the path is traversed back-
ward (target->bubble and bubble->bubble). By im-
mutability of the path, every node visited in capture phase
is therefore visited again in bubble phase.

These properties are intuitively expected by the authors
of the dispatch spec, and formally hold of our model; the
adequacy of our model (Section 3.2) implies that these
properties do hold of the spec itself.

4.2 Finding Real-World Inconsistencies

Our proof of determinism, combined with the model’s ad-
equacy, is tantamount to stating that the spec is unambigu-
ous. We have not encountered any obvious ambiguities;
our reading of the spec assigned to every claim a spe-
cific interpretation (see Section 3.2). But we nevertheless
observe differing behavior on real browsers.

Erroneous Treatment of removeEventListener We
can use our model to randomly construct test cases, or
systematically generate a suite of related test cases, ob-
serve their behavior in the model, then translate the tests
to HTML and JavaScript and test existing browsers to see
if they match our expectations. We have been doing so,
and continue to test ever larger instances of the model
against browsers.

During testing, we have already found several diver-
gences between our model and real browsers, which fur-
ther revealed inconsistencies between major browsers
themselves. The simplest example appears in a systematic
suite checking the handling of removeEventListener.
These tests all use the same 〈div〉〈p〉〈span/〉〈/p〉〈/div〉
document, and install the following listeners:

var targetNode, targetCapture;
var triggerNode, triggerCapture;
function g(event) { alert("In g"); }
function f(event) {
targetNode.removeEventListener("click",

g, targetCapture);
}
triggerNode.addEventListener("click", f,

triggerCapture);
targetNode.addEventListener("click", g,

targetCapture);

In words, this installs listener f on triggerNode, either
for capture (triggerCapture = true) or not, that will
then remove g. It then installs listener g on targetNode
for capture or not (targetCapture). A systematic search
of all possible values of these four variables reveals that
when targetNode = triggerNode �= 〈span/〉 and
targetCapture = triggerCapture, browser behavior
differs. Chrome (v15 and v16), Safari (v5.0.1) and Fire-
fox (v3.6 through v8) will not execute g, while Internet
Explorer (v9) and Opera (v11) will.

Our model predicts the latter behavior is correct, but in
truth one of three situations may hold: IE, Opera and our
model may be right, or Chrome, Safari and Firefox may
be right, or all six may be wrong. Regardless, our model
simplifies making testable predictions about browsers.

Treatment of Legacy Handlers Another example
probes the corner cases surrounding setting and clear-
ing legacy handlers. Within a few minutes of generating
tests, we found examples where our model disagrees with
IE, Chrome and Firefox—and the browsers all disagree
with each other, too. Here, the events spec delegates re-
sponsibility to the HTML 5 spec itself, which defines how
the setting and clearing of handlers interacts with existing
listeners. Browsers, however, appear to have implemented
variations on the specified behavior. We have identified
two variations each for setting and clearing handlers; our
model can accommodate them by changing the setting
or clearing rule, without needing changes anywhere else.
Further testing is needed to decide which of these vari-
ations, if any, corresponds to each browser’s behavior.
More broadly, by continuing to run such tests, we hope to
build greater confidence in the quality of the model (and,
perhaps, improve the uniformity of browsers, too).

4.3 Detecting Real Extension Conflicts
One of the authors routinely uses extensions to customize
Thunderbird. One such extension is Nostalgy4, which pro-
vides several convenient hot keys for archiving messages
and navigating among folders. For example, pressing ‘S’

4http://http://code.google.com/p/nostalgy/
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(a) Nostalgy’s main interface: a folder selector in the status bar

(b) Thunderbird Conversation’s main interface: text boxes in the
conversation view for quick replies

Figure 4: Screenshots of the conflicting extensions’ UIs.

will save the current message. This is achieved by two
event listeners on the Thunderbird global window object:

function onNostalgyKeyPressCapture(event) {
// handle ESC key and cancellation

}
function onNostalgyKeyPress(event) {
// show folder selector and handle commands

}
window.addEventListener("keypress",

onNostalgyKeyPress, false);
window.addEventListener("keypress",

onNostalgyKeyPressCapture, true);

Implicit in this code is the assumption that all key
presses are intended to control Thunderbird, and not, say,
to input text. However, another extension, Thunderbird
Conversations5, redefines the email preview pane to show
a Gmail-like conversation view, complete with “quick
reply” boxes where the user can compose a response
without leaving the main window. This functionality is
implemented by the default actions of the quick-reply
〈textarea/〉 tags, along with a bubble-phase listener on
their grandparent 〈div/〉:

quickReplyDiv.addEventListener("keydown",
function convKeyDown(event) {
// ENTER=>send message, ESC=>cancel
event.stopPropagation();

});

5https://github.com/protz/GMail-Conversation-View/

At first glance, nothing in this code appears prob-
lematic; indeed, Conversations and Nostalgy are lis-
tening to two different events. However, our model
includes the fact that the default action of a “key-
down” event is to dispatch a “keypress” event, and
while Conversations does stopPropagation, it does not
preventDefault—which means that any key strokes
typed into the quick-reply box will effectively call
convKeyDown, onNostalgyKeyPressCapture and fi-
nally onNostalgyKeyPress. Consequently, typing a
word containing an ‘S’ will steal focus from editing the
message, and jump to Nostalgy’s “Save Message” UI!
And indeed, if we input the Thunderbird DOM and these
three event listeners into our model, it confirms that this
behavior is correct according to the event dispatch rules.

The author reported this bug to Conversations’ devel-
oper, who produced the following fix:

quickReplyDiv.addEventListener("keypress",
function convKeyPress(event)
{ event.stopPropagation(); });

quickReplyDiv.addEventListener("keyup",
function convKeyUp(event)
{ event.stopPropagation(); });

Adding these two listeners to our model shows
that event dispatch now calls convKeyDown,
onNostalgyKeyPressCapture, and convKeyPress,
and no longer calls onNostalgyKeyPress, thereby
avoiding the bug for now. However, some of Nostalgy’s
code still gets called, leaving open the potential for future
bugs. Examining the model, and recalling that Nostalgy
never expected to “see” keypress events due to text input,
notice that Nostalgy’s code is called only because the
“keypress” is dispatched, which occurs only because
of the “keydown” default action. A simpler, and more
robust, fix is therefore available to Conversations: adding
a call to preventDefault in convKeyDown would
prevent the dispatch of the “keypress” event in the first
place. Implementing this approach in our model confirms
that the “keypress” event is never fired. However,
implementing it in Conversations does not work, and
instead reveals a bug in Thunderbird: “keypress” events
appear to be dispatched regardless of whether the default
has been prevented or not, contrary to the spec.

Generalizing from this example, we can annotate
listeners in our model with provenance information,
and then query the model for whether there exist any
(eventType, targetNode) pairs for which dispatch will
cause control to flow from one extension’s listeners to
another’s. We anticipate that such queries will statically
yield other pairs of extensions whose behavior might con-
flict; for example, Conversations is known to be incompat-
ible with other hotkey-related extensions; this analysis can
reveal others, then pinpoint where bugfixes are needed.
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4.4 Event Propagation and Sandboxes

We have previously discussed the use of sandboxes to
protect webapps against invited third-party code. Such
sandboxed content, or “widgets” as they are often called,
should not be able to suborn the surrounding document,
and in fact, some successful efforts have proven the effec-
tiveness of these sandboxing techniques [17]. However,
there is a serious weakness in these proofs. The authors
caveat their results as applying only over the DOM por-
tion they model—which does not include events. While
the sandboxes may successfully prevent widgets from
calling DOM methods or executing arbitrary code, event
dispatch provides an indirect way for widgets to invoke
portions of the code of the webapp.

Specifically, because widgets present some form of
UI, they can be the target of user-generated events. As
a hypothetical example, a malicious widget might dis-
play what looks like a typing game. Because of the
event dispatch rules, those keystrokes can bubble out of
the widget and potentially invoke listeners higher in the
webapp’s document. The widget could selectively call
stopPropagation, filtering out unwanted letters, and
thereby forge an input to the webapp that the user did
not intend. Worse, even if the sandbox stopped all propa-
gation, it cannot prevent against listeners being invoked
during the capture phase, which means the widget is get-
ting to execute code as the program. To date, we know of
no modeling effort that attempts to prove that widgets are
sandboxed from conducting such a spoofing attack.

There are two possible approaches to protect against
this. First, a conscientious webapp developer can pro-
tect his application against such unwanted events with
defensive code that checks—in every event handler in
the propagation path of a widget—whether the target of
the event is in their own content or in the widget. Such
coding practices are onerous and fail-open: one missed
check could suffice for the attack to proceed. And yet,
hardening every event listener would preclude extensions
from integrating properly into the webapp, as any events
originating from their UI would summarily be ignored!
Second, the sandbox could decide that, because it cannot
truly protect against a malicious widget due to the capture
phase, it might choose to implement its own event dis-
patch model (as some libraries like jQuery6 do). In such
cases, the sandbox or library developer undertakes the
burden of establishing properties of their custom event
model. In either case, our DOM model would be use-
ful: in the former case, to determine what propagation
cases the surrounding page’s listeners are missing, and in
the latter case, by being a basis for formalizing and then
proving properties about the custom event model.

6http://jquery.com

5 Related and Future Work

We have already introduced most of the related work in
earlier sections of the paper. In particular, Featherweight
Firefox [5] and Featherweight DOM [9] present the first
formal models of a browser and of DOM tree update,
while Akhawe et al. [2] model some security-relevant
events but not their dispatch. This work sits between
the three and reasons about the reactive behavior of web
pages. There are several avenues for future improvement:

Keeping pace with moving standards While building
our model, we were made aware of the DOM4 draft
spec [21], which will supercede the Level 3 Events spec
we modeled. At this time, the draft is not complete enough
to model, though it is not intended to introduce substantive
changes. Our model should carry over nearly unchanged.

Incorporating JavaScript Fully To focus on the
DOM, we have represented JavaScript procedures with a
simplified statement language for manipulating listeners
and handlers (Fig. 2). This is sufficient for many practical
modeling purposes, but it fails to fully capture the effect
of JavaScript, which may be needed for some analyses.

Fortunately, this is easy to remedy. Our Redex model is
formulated such that it will be straightforward engineering
to incorporate the Redex model of λJS . In particular,
though presented as states here, the five steps of event
dispatch are modeled as contexts, which provides a great
deal of flexibility. λJS models all of JavaScript with
evaluation contexts [8], including one for function calls.
In essence, event dispatch is a baroque form of a calling
context, namely one that invokes multiple functions in
sequence based indirectly on the DOM and the current
event, rather than a simple function pointer. Our DOM
model will change slightly to incorporate a reified event
object, rather than just data carried in the dispatch-*
contexts; we foresee no technical hurdles here.

We can therefore enhance our model by discard-
ing the simplified statement language in favor of true
JavaScript statements. Doing so brings significant benefit
to JavaScript analyses as well. Without the structure pro-
vided by our model, an analysis of a JavaScript program
would necessarily miss many flows that are not caused by
explicit function calls in the program text.

Modeling the Document Tree Naturally, the precision
of analyses is limited by the precision of modeling the
document’s structure. We currently model the tree merely
as a set of nodes connected by pointers: nothing explicitly
records that the structure is a tree rather than an arbi-
trary graph. We have engineered our model such that it
should be possible, though likely not simple, to integrate
more powerful tree logics such as separation or context
logic [9], and thus improve the model’s overall precision.
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Iframes and nested documents Our model currently
assumes that there is only one document under considera-
tion. Consequently, event propagation (naturally) stops at
the document root. A richer model would incorporate a
notion of documents and their nesting within 〈iframe/〉
elements, and explicitly include a rule that terminates the
propagation path at the document root.

Additionally, because our model does not fully model
JavaScript, we do not model the window object, or in-
clude it as the first and last targets when constructing
propagation paths. This detail does not materially affect
our description of event dispatch, and is easy to include.

Non-tree-based dispatch We have focused in our
model on how event dispatch proceeds with tree-based
sources of events, as they dominate other event sources.
However, newer additions to the DOM also supply events
that are not dispatched along the tree. For example,
XMLHttpRequest responses, 〈audio/〉 and 〈video/〉 sta-
tus updates, and web workers all generate events as their
states change. To incorporate those into our model, we
need only create rules for each of them that construct their
specific propagation paths, bypassing pre-dispatch
and jumping directly to the dispatch-collect context.
From then on, dispatch proceeds as normal.
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Abstract

A web application often includes content from a va-
riety of origins. Securing such a mashup application
is challenging because origins often distrust each other
and wish to expose narrow interfaces to their private
code and data. Jigsaw is a new framework for isolat-
ing these mashup components. Jigsaw is an extension of
the JavaScript language that can be run inside standard
browsers using a Jigsaw-to-JavaScript compiler. Un-
like prior isolation schemes that require developers to
specify complex, error-prone policies, Jigsaw leverages
the well-understood public/private keywords from tradi-
tional object-oriented languages, making it easy for a do-
main to tag internal data as externally visible. Jigsaw
provides strong iframe-like isolation, but unlike previ-
ous approaches that use actual iframes as isolation con-
tainers, Jigsaw allows mutually distrusting code to run
inside the same frame; this allows scripts to share state
using synchronous method calls instead of asynchronous
message passing. Jigsaw also introduces a novel encap-
sulation mechanism called surrogates. Surrogates allow
domains to safely exchange objects by reference instead
of by value. This improves sharing efficiency by elimi-
nating cross-origin marshaling overhead.

1 Introduction

Unlike traditional desktop applications, web applications
are often mashups: applications that contain code from
different principals. These principals often have asym-
metrical trust relationships with each other. For example,
a page that generates localized news may receive data
from a news feed component and a map component; the
integrating page may want to isolate both components
from each other, and present them with an extremely nar-
row interface to the integrator’s state. As another exam-
ple, a social networking page might embed a third-party
application and an advertisement. The integrating page

may expose no interface to the advertisement. However,
if the developer of the third-party application has signed
a terms-of-use agreement, the integrating page may ex-
pose a relatively permissive interface to its local state.

Given the wide range of trust relationships that exist
between web principals, it is challenging for developers
to create secure mashups. Principals often want to share
with each another, but in explicit and controlled ways.
Unfortunately, JavaScript (the most popular client-side
scripting language) was not designed with mashup secu-
rity in mind. JavaScript is an extremely permissive lan-
guage with powerful reflection abilities but only crude
support for encapsulation.

1.1 Previous Approaches

Given the increasing popularity of web services (and
the deficiencies of JavaScript’s isolation mechanisms),
a variety of mashup isolation frameworks have emerged
from academia and industry. Unfortunately, these frame-
works are overly complex and present developers with
an unwieldy programming model. Many of these ap-
proaches [2, 11] force developers to use asynchronous,
pass-by-value channels for cross-principal communi-
cation. Asynchronous control flows can be difficult
for developers to write and understand, and automated
tools that convert synchronous control flows into asyn-
chronous ones can introduce subtle data races (§2.1).
Additionally, marshaling data over pass-by-value chan-
nels like postMessage() can introduce high serial-
ization overheads (§4.2).

Prior mashup frameworks also present developers with
complex, overly expansive APIs for policy specification.
For example, object views [11] require developers to de-
fine policy code that runs during each property access on
a shared object. Understanding how these filters com-
pose across large object graphs can be difficult. Sim-
ilarly, ConScript [12] policy files consist of arbitrary
JavaScript code. This allows Conscript policies to be
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extremely general, but as we demonstrate, such expres-
sive power is often unnecessary. In many cases, secure
mashups require only two policy primitives: a simple
yes-no mechanism for marking JavaScript state as exter-
nally sharable, and a simple grammar based on CSS and
regular expressions that constrains how untrusted code
can access browser resources like persistent storage and
the visual display.

1.2 Our Solution: Jigsaw

In this paper, we introduce Jigsaw, a new framework for
mashup isolation. Jigsaw allows JavaScript code from
mutually distrusting origins to selectively expose private
state. Jigsaw’s design was driven by four goals:

Isolation by default: In Jigsaw, an integrating script
includes guest code which may hail from a different
origin. The integrator has access to browser resources,
and the integrator can provide its guests with access to
some portion of those resources. However, by default, a
guest cannot generate network traffic, update the visual
display, receive GUI events, or access local storage.
Similarly, each principal’s JavaScript namespace is hid-
den from external code by default, and can be accessed
only via public interfaces that are explicitly defined by
the owning principal.

Efficient, synchronous sharing: Jigsaw eschews
asynchronous, pass-by-value sharing in favor of syn-
chronous, pass-by-reference sharing. Inspired by
traditional object-oriented languages like Java and C++,
Jigsaw code uses the public and private keywords
to indicate which data can be accessed by external
domains. When an object is shared outside its local
domain, Jigsaw automatically wraps the object in a
surrogate object that enforces public/private seman-
tics. By inspecting surrogates as they cross isolation
boundaries, Jigsaw can “unwrap” surrogates when
they return to their home domain, ensuring that each
domain accesses the raw version of a locally created
object. Jigsaw also ensures that only one surrogate
is created for each raw object. This guarantees that
reference-comparison == operations work as expected
for surrogates. Using surrogates, Jigsaw can place
mutually distrusting principals inside the same iframe
while providing iframe-style isolation and pass-by-
reference semantics. Since principals reside within
the same iframe, no postMessage() barrier must
be crossed, which allows for true synchronous interfaces.

Simplicity: Using deny-by-default policies for browser
resources like network access, and using the public
and private modifiers to govern access to JavaScript

namespaces, Jigsaw can express many popular types
of mashups—most require only a few lines of policy
code and the explicit definition of a few public interface
methods. In designing Jigsaw, we consciously avoided
more complex isolation schemes like information flow
control, object views [11], and ConScript [12]. While
these schemes are more expressive than Jigsaw, their
interfaces are unnecessarily complex for many of the
mashup patterns that are found in the wild.

Fail-safe legacy code: In most cases, regular JavaScript
code that has not been adapted for Jigsaw will work
as expected when used within a single domain. In all
cases, unmodified legacy code will fail safely (i.e.,
leak no data) when accessed by external domains.
Jigsaw prohibits some JavaScript features like dynamic
prototype manipulation, but these features are rarely
used by benevolent programs (and are potentially
exploitable by attackers) [1, 11]. Jigsaw makes few
changes to the core JavaScript language, and we believe
that these changes will be understandable by the average
programmer, since the changes make JavaScript’s object
model behave more like that of a traditional, class-based
OO language like C#. Jigsaw preserves many of the
language features that make JavaScript an easy-to-use
scripting language. For example, Jigsaw preserves
closures, first-class function objects, object literals, an
event-driven programming model, and pass-by-reference
semantics for all objects, not just those that are shared
within the same isolation domain.

2 Design

In Jigsaw, domains are entities that provide web content.
In the context of the same-origin policy, a Jigsaw do-
main corresponds to an origin, and we use the terms “do-
main” and “origin” interchangeably. A principal is an
instance of web content provided by a particular domain.
A principal may contain HTML, CSS, and JavaScript.
Note that some principals might contain only JavaScript,
e.g., a cryptographic library might only define JavaScript
functions to be invoked by external parties.

A user visits top-level web sites; each of these sites
can be an integrator principal. An integrator may include
another principal Pi by explicitly downloading content
from Pi’s origin. In turn, Pi may include another princi-
pal Pj . Figure 1 depicts the relationship between the user
and this hierarchy of client-side principals. When there
is an edge from Pi to Pj , we refer to Pi as the including
principal or parent, and Pj as the included principal or
child.
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Figure 1: An example of a principal hierarchy. The user visits
an integrator site that includes other principals. Each of those
principals may include additional principals.

2.1 Boxes

Jigsaw places each principal in an isolation container that
we call a box. Each box is associated with the following
resources:
• A JavaScript namespace containing application-

defined objects and functions.
• A DOM tree, which is a browser-defined data struc-

ture representing the HTML and CSS content be-
longing to the principal.

• An event loop, which captures mouse and keyboard
activity intended for that box.

• A rectangular visual region with a width, a height,
a location within the larger browser viewport, and a
z-axis value.

• A network connection, which allows the principal
to issue HTTP fetches for data.

• A local storage area, which stores cookies and im-
plements the DOM storage abstraction.

In some ways, a Jigsaw box resembles a traditional
iframe. Both provide a principal with a local JavaScript
namespace, DOM tree, event loop, and visual field.
However, Jigsaw boxes differ from iframes in three im-
portant ways.

First, if two iframes share the same origin, they
can directly access each other’s JavaScript names-
paces via frame references like window.parent and
window.parent.frames. A Jigsaw box does not
allow such unfettered cross-principal access. By default,
two boxes have no way to communicate with each other,
even if they belong to the same origin. This enables fault

//Download a script and place it inside a
//new box. The return value of the script
//is its principal object.
var p = Jigsaw.createBox(’http://x.com/box.js’,

{network: /(x|y)\.com/,
storage: true, dom: null});

//Call a public method defined by the box.
//The pass-by-reference of localData and
//result is made safe by the use of
//surrogates.
var result = p.f(localData);

Figure 2: An integrator creating and interacting with a box.
The box can exchange network traffic with servers from x.com
and y.com; it can also access its origin’s DOM storage, but it
cannot access the integrator’s DOM. Surrogates are explained
in Section 2.6.2.

isolation and privilege separation for different principals
that originate from the same domain. To allow cross-
box communication, each principal must explicitly de-
fine public functions on a principal object. By exchang-
ing principal objects with each other, boxes define the set
of external domains with which they communicate, and
the operations that these domains may invoke on private
state.

A second difference between iframes and Jigsaw
boxes is that boxes use nesting relationships to more
tightly constrain the resources of children. A page’s top-
most Jigsaw box is given a full visual field that is equiv-
alent to the entire browser viewport. The root box is also
given the maximal network permissions allowed by the
same-origin policy. By default, descendant boxes lack
access to non-computational browser resources. For ex-
ample, child boxes cannot issue network requests, and
they cannot access the visual field (and thus they can-
not receive GUI events from the user). A parent box
may delegate a region of its visual field to a child. Sim-
ilarly, a parent can grant a child box a portion of its net-
work permissions. In both cases, parent-child delegation
has monotonically increasing strictness, i.e., a parent can
never give a child a larger visual field or more network-
ing permissions than the parent has. Figure 2 shows an
example of how an integrator creates a new box. Note
that DOM storage ACLs are unique because the browser
gives each origin a local storage area. Thus, an integra-
tor can grant a child access to the child domain’s local
storage, or completely prohibit such accesses. However,
the integrator cannot directly expose its own local stor-
age to a child domain (although it can define a method
on its principal object that mediates access to its DOM
storage).

The final difference between iframes and boxes in-
volves communication channels. Applications in dif-
ferent iframes communicate with the asynchronous
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var x = 0; //Global variable

function increment(){
x++;

}

function f(){
alert(x);
increment();
alert(x);

}

//Create two tasks that fire every 100 ms.
setInterval(f, 100);
setInterval(f, 100);

Figure 3: In regular JavaScript, all code is given the illusion
of single-threaded execution. Thus, in this example, only one
version of f() can be executing at any given time. This means
that the alert() statements from a particular instance of f()
will always output two consecutive numbers.

function f(){
alert(x);
increment->(); //This version of f() now

//relinquishes the CPU!
alert(x);

}

Figure 4: If increment() is asynchronous and replaced with
a pseudo-synchronous continuation, a particular invocation of
f() may be swapped off of the processor without executing
atomically, allowing the other f() to execute fully, and caus-
ing the first one to output 0 and then 2. This would be impossi-
ble if the -> continuation operator provided true synchronous
semantics.

postMessage() call. postMessage() can only
transmit immutable strings; thus, passing large objects
across this channel can incur significant marshaling over-
head, and explicit message passing is needed to keep mir-
rored data structures synchronized between iframes. The
asynchronous nature of postMessage() also makes it
difficult to provide true synchronous RPC semantics. Al-
though tools exist to convert asynchronous function calls
into continuation-passing style (CPS) [18], CPS can in-
troduce data races that do not exist when function calls
are truly synchronous (see Figures 3 and 4). Ensuring
that such races do not exist requires the programmer to
explicitly reason about synchrony and use application-
level coordination mechanisms like locks.

Besides the performance and correctness challenges,
asynchronous iframe/postMessage architectures
are often ill-suited for many mashup designs. For exam-
ple, consider pure computational libraries. If an integra-
tor has some data that it wants to process using N calls to
a cryptographic library or an image manipulation library,
it is cumbersome for the integrator to set up a chain of

asynchronous callbacks that executes the (i + 1)th op-
eration when the ith operation has completed. A syn-
chronous programming model is much more natural.

There are also event-driven mashups that are ill-suited
for the asynchronous iframe/postMessage model.
For example, suppose that an integrator uses an external
library to sanitize AJAX data as it streams in. As chunks
of data arrive, the browser fires the XMLHttpRequest
callback multiple times. During each invocation, the in-
tegrator must pass the new AJAX data to the sanitiza-
tion library. However, if the sanitizer lives in a separate
iframe, the integrator cannot receive the sanitized data
immediately—instead, the integrator must buffer data
and wait for the sanitizer to asynchronously return the
scrubbed results. This introduces two sources of asyn-
chrony (the XMLHttpRequest handler and the sani-
tizer callback) when only one should be necessary (the
XMLHttpRequest handler).

A Jigsaw application can have multiple boxes, but all
of the boxes live in the same frame. As shown in Fig-
ure 2, this means that data can be passed synchronously
and by reference. As described later, Jigsaw code uses
the public and private modifiers to indicate which
methods and variables are accessible to external do-
mains. The Jigsaw runtime uses these modifiers to vali-
date cross-domain operations (§2.6.2).

A single Jigsaw application may contain multiple prin-
cipals that originate from the same domain. Jigsaw
places each of these principals in a separate box. These
principals interact with each other using the same pub-
lic interfaces that are used by principals from different
domains.

2.2 Principal Objects

A principal object defines the public functions and
variables that a domain exposes to untrusted code; to
communicate with an external domain, a box must
possess a reference to that domain’s principal ob-
ject. A principal can access its parent’s principal ob-
ject by calling Jigsaw.getParentPrincipal().
Similarly, the Jigsaw.principals array contains
principal objects for all of a box’s immediate chil-
dren. Jigsaw.getRootOriginPrincipal() re-
turns the principal object belonging to the highest-level
box from the caller’s origin. This ancestor can act as a
coordination point for all principals from that domain,
e.g., if the principals want to synchronize their writes to
DOM storage. Principal objects can be passed between
boxes like any other object.

2.3 The DOM Tree

Each Jigsaw box can potentially contain a DOM tree and
an associated visual field. If the box’s parent did not del-
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egate a visual field, Jigsaw sets the box’s DOM tree to
null, and prevents the child principal from adding DOM
nodes to it. Otherwise, the child may update its visual
field and receive GUI events for that field by modifying
the DOM tree in the standard way. Jigsaw ensures that
the visual updates respect the constraints defined by the
parent.

A visual field consists of a width, a height, a location
within the parent’s visual field, and a z-order. Parents
specify these parameters using CSS-style syntax. Thus, a
child can have a static visual geometry, or one that flows
in dynamic ways, e.g., to occupy a percentage of the par-
ent’s visual field, regardless of how the parent is resized.

Visual parameters are associated with each principal
object (e.g., principal.height). A parent can dy-
namically change a child’s visual field by writing to these
fields. If a child wants to change its visual field, it can
also try to write to these fields. However, the changes
must be validated by the parent. A child write to a vi-
sual field parameter fires a special Jigsaw event in the
parent called childVisualFieldRequest. If the
parent has registered a handler for this event, the handler
inspects the changes requested by the child. If the parent
approves the change, the handler returns true, otherwise
it returns false. Jigsaw will only implement the change if
the parent has defined such a handler, the handler returns
true, and the change would not place the child’s visual
field outside the one owned by the parent.

Similar to the Gazelle browser [24], Jigsaw requires
visually overlapping boxes to be opaque with respect to
each other. In other words, boxes cannot request trans-
parent blending of their overlapping visual region—the
box with the higher z-order occludes all others in the
stack. This prevents a malicious box from making it-
self transparent, creating a child box containing a victim
page, and then collecting GUI events that the user in-
tended to send to the victim box.

Even with these protections, a principal must still trust
its ancestors in the principal hierarchy. This is because a
malicious parent can virtualize a child’s runtime (§3) in
subversive ways, or not create a child at all. Jigsaw can
only guarantee that parents are protected from descen-
dants, and that sibling principal hierarchies are protected
from each other if the shared parent is non-malicious.

2.4 Network Access

A principal uses HTTP requests to communicate with
remote servers. The principal’s parent controls the set
of servers that are actually reachable. Like visual field
permissions, network privileges nest in a monotonically
restrictive way. The most expansive privilege is “*”,
which means that a principal can fetch any resource that
is allowed by the same-origin policy. Parents can also

restrict children to a limited set of accessible domains.
Parents can specify a group of related domains using a
straightforward wildcard syntax, e.g., *.foo.com or
cache.*.bar.com. As a syntactic shortcut, a parent
can specify the “self” domain to indicate that the child
can communicate with servers from the child’s origin.
Similarly, the “parent” token resolves to the parent’s ori-
gin.

2.5 Local Storage

In HTML5, the DOM storage abstraction allows each
origin to maintain a client-side key/value database. Each
database can be accessed only by JavaScript code from
the associated origin. Jigsaw partitions DOM storage in
the same way. If principals from different origins want to
exchange data from their respective DOM storage areas,
they must do so via public interface methods.

2.6 The JavaScript Namespace

In traditional JavaScript, objects are dictionaries that
map property strings to values. Using JavaScript’s
extremely permissive reflection interface, a program
can dynamically enumerate an object’s properties and
read, write, or delete those properties. Unlike standard
class-based languages like Java and C#, JavaScript uses
prototype-based inheritance. A prototype object is an
exemplar which defines the property names and default
property values for other instances of that object. By set-
ting an object’s proto property to the exemplar, the
object becomes an instance of the prototype’s class. By
setting the proto fields of prototype objects, one
creates inheritance hierarchies. By default, an object’s
property list is dynamic, so an instance of a particular
prototype can dynamically gain additional properties that
are not defined by the prototype. An object’s proto
field is just another property, meaning that an object’s
class can dynamically change as well.

These default reflection semantics are obviously un-
suited for cross-domain encapsulation. JavaScript does
allow a limited form of data hiding using closures, which
are functions that can access a hidden, non-reflectable
namespace. Unfortunately, closures are an imperfect
substrate for cross-domain sharing. They cannot be
shared across iframes, and within an iframe, each closure
has unfettered access to the DOM tree, event loop, and
network resources that belong to the enclosing frame.
Furthermore, closures are clumsy to program and main-
tain, since the hidden closure variables are implicitly ob-
scured via lexical scoping instead of explicitly marked
via a special keyword. Jigsaw provides simpler, stronger
encapsulation using boxes and the public/ private
keywords.
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function Ctor(x, y){
public this.x = -1;
private this.y = 42;
this.z = 100; //By default, a new

//field is private.
}

public Ctor.prototype.prop1 = "hi";
private Ctor.prototype.prop2 = "bye";
Ctor.prototype.prop3 = "aloha"; //Private

//by default

obj = {};
public obj.a = 0;
private obj.b = 1;
obj.c = 2; //Private by default.

Figure 5: Jigsaw code example (private-by-default property
visibility).

function Ctor(){}
private Ctor.prototype.x = 0;

obj = new Constructor();
obj.x = 42; //Succeeds: Private properties

//visible within the creating box.
public obj.x; //Fails: can’t override modifier

//specified by prototype

Figure 6: Jigsaw code example (visibility modifiers flow from
prototypes to instances).

2.6.1 Visibility modifiers

The public and private keywords allow a principal
to define which object properties are visible when an ob-
ject is shared across boxes. For example, if a principal
from domain X creates the following object . . .

var obj = {public x: "foo",
private y: "bar"};

. . . and passes it to domain Y , Y can access obj.x but
not obj.y. Note that “access” means the ability to read,
write, and delete a property.

The public/private keywords can be used any-
where a variable is declared. If a variable is declared
and no visibility modifier is specified, it is private by de-
fault, as shown in Figure 5. When code from domain X
enumerates the properties of an object from domain Y ,
private fields do not appear in the enumeration. Within
Y , private fields do show up in the enumeration.

As shown in Figure 6, public and private modifiers
“flow downward” from prototypes to instances, overrid-
ing any attempts by instance objects to reset the modi-
fiers. JavaScript allows object properties to be declared at
arbitrary moments, so during program execution, when
Jigsaw encounters a public or private statement, it
must dynamically check whether the statement satisfies
the visibility settings for the relevant prototype object.

When Jigsaw passes objects between boxes using sur-
rogates (§2.6.2), it never exposes object prototypes or
constructor functions. This prevents a wide class of ex-
ploits called prototype poisoning [1, 11] in which an at-
tacker dynamically modifies the inheritance chain for an
object and subverts the object’s intended implementa-
tion.

2.6.2 Surrogate Objects

Jigsaw uses surrogate objects to enforce public/private
semantics. When an object obj is passed between
boxes, e.g., when box X invokes a function on Y ’s
principal object and passes a local object obj as
an argument, Jigsaw wraps obj in a surrogate and
passes that surrogate, not the original object, to the
destination domain Y . To create the surrogate, Jig-
saw first creates an initially empty object. Then, for
each public property belonging to obj, Jigsaw adds
a getter/setter pair for a corresponding property on
the surrogate object. Getter/setters are a JavaScript
feature that allow an object to interpose on reads and
writes to a property. For obj’s surrogate, the getter
for property p returns createSurrogate(obj.p).
The setter for property p executes obj.p =
createSurrogate(newVal);.

The createSurrogate() function has several im-
portant features. First, createSurrogate() asso-
ciates at most one surrogate for each “raw” object. Thus,
calling createSurrogate(obj) multiple times on
the same object will always return the same surrogate ob-
ject. This ensures that the reference-compare == opera-
tor has the expected semantics for surrogates. For exam-
ple, if a box is passed two surrogates from two different
domains, and those surrogates refer to the same back-
ing object, then the surrogates will reference-compare as
equal.

Another important property of
createSurrogate() is that it does not always return
a surrogate object. For immutable, pass-by-value prim-
itive properties like numbers, createSurrogate()
returns the primitive value. More interestingly, if
a surrogate is being passed to its originating box,
createSurrogate() returns the backing object. In
the previous example, this means that if Y passes obj’s
surrogate back to X , Jigsaw will “unwrap” the surrogate
and hand the raw object back to X . This convenient
feature also helps == to work as expected, since boxes
do not need to worry about receiving a surrogate for a
local object that lacks reference equality with that local
object.

A final property of createSurrogate() is that
surrogate getter/setters invoke it lazily—if a surrogate
property is never accessed by external boxes, the sur-
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rogate will never call createSurrogate() for that
property. As we show in Section 4.2, this lazy evaluation
is beneficial when boxes share enormous object graphs
but only touch a fraction of the objects. Using lazy eval-
uation, Jigsaw never devotes computational resources to
protect objects that are shared but never accessed.

For each public method belonging to obj, the sur-
rogate defines a wrapper function whose this pointer
is bound to obj. Thus, even if external code assigns
the surrogate method to be a property on another object,
the method will always treat obj as its this pointer.
This prevents attacks in which a malicious box subverts
a method’s intended semantics by supplying an inappro-
priate this object.

When a surrogate function is invoked, it calls
createSurrogate() on all of its arguments before
passing those arguments to the underlying function. The
surrogate function also calls createSurrogate()
on the underlying function’s return value, and returns
that surrogate object to the original caller of the surro-
gate function.

In summary, surrogates automatically protect cross-
box data exchanges. Since principal objects are surro-
gates, and boxes can be accessed only via their principal
objects, Jigsaw ensures that all cross-box interactions re-
spect public/private semantics.

2.6.3 Predefined JavaScript Objects

The browser predefines a set of JavaScript objects that
live in each box’s JavaScript namespace. The most im-
portant predefined object is the DOM tree; others pro-
vide support for regular expressions, mathematical func-
tions, and so on. Jigsaw virtualizes the DOM tree in
each box (§3), redirecting the box’s DOM operations to
a Jigsaw-controlled data structure that performs security
checks before reflecting operations into the real DOM.
Jigsaw also ensures that constructor functions for glob-
ally shared built-in objects like regular expressions are
private and immutable. These safeguards prevent a ma-
licious box from arbitrarily manipulating the visual dis-
play, or redefining constructor functions that are used by
all boxes.

2.6.4 Cross-box Events

Box X may wish to register one of its functions as an
event handler in a different box Y . To do so, X sim-
ply passes the handler to Y via Y ’s public interface; Y
can then register the handler with the browser’s event en-
gine in the standard way. When the relevant event in Y
occurs, the browser executes the handler like any other.
However, the browser passes a scrubbed event object to
the handler. This event does not contain references to Y ’s
private-by-default JavaScript namespace. This prevents

information leakage via foreign event handlers. Like all
foreign methods, the handler executes in the JavaScript
context of the box that created it.

2.7 Client-side Communication Privileges

A parent can restrict the principal objects
that are visible to a child. By default, a
child can reference its parent’s principal ob-
ject (Jigsaw.getParentPrincipal()),
the principal objects of its own children (the
Jigsaw.principals array), and the princi-
pal objects of other boxes from its own domain
(Jigsaw.getSameDomainPrincipals()). Jig-
saw associates each principal with a unique id, and
a parent can restrict a child’s access to a subset of
principals ids.

2.8 Dropping Privileges

Jigsaw allows a box to voluntarily restrict the networking
privileges that it received from its parent. A box can also
relinquish the right to a visual field, or abandon the abil-
ity to write to DOM storage. Privilege can drop only in a
monotonically decreasing fashion. For example, if a par-
ent gives a child unrestricted network access, the child
cannot restrict its privileges to only foo.com and then
unrestrict itself.

2.9 Summary

Jigsaw provides a robust encapsulation technique for
cross-principal sharing. All data is accessible by refer-
ence, but all data is implicitly hidden from external par-
ties unless it is explicitly declared as public by the
owning principal. Parents define resource permissions
for the execution contexts of their children. Such per-
missions become monotonically stricter as the principal
nesting depth increases.

Jigsaw does enforce some restrictions on the stan-
dard JavaScript language. In particular, a surrogate
never exposes the prototype object or constructor func-
tion for the underlying object. Jigsaw also prevents
box code from tampering with the prototypes of global
built-in objects like Array. While this prevents boxes
from changing externally defined prototype chains, well-
written JavaScript code rarely uses such tricks, and al-
lowing such behavior allows malicious boxes to launch
prototype poisoning attacks [1, 11] against other boxes.
Despite these restrictions, Jigsaw preserves many fea-
tures of the standard JavaScript language. For exam-
ple, Jigsaw supports closures, first-class function objects,
object literals, an event-driven programming model, and
pass-by-reference semantics for all objects, not just those
shared within the same domain.
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3 Implementation

Our Jigsaw implementation consists of a Jigsaw-to-
JavaScript compiler and a client-side JavaScript library.
The compiler parses Jigsaw code using an ANTLR
toolchain [20]. A custom C# program adds static se-
curity checks to the resulting ASTs, and then translates
the modified ASTs to JavaScript code that a browser
can execute. The emitted JavaScript code also contains
the client-side Jigsaw library, which implements runtime
security checks and defines box management interfaces
like Jigsaw.createBox().

The rewriter modifies every object creation so that
each object receives a unique integer id. This al-
lows the Jigsaw library to maintain a mapping from
raw objects to the associated surrogates, ensuring that
createSurrogate() makes at most one surrogate
for each raw object.1

The rewriter also tags each object with the id of
its creating box (the Jigsaw library defines an internal
getCurrentBoxId() function to which the rewriter
can insert a call). This tag allows the Jigsaw library to
determine whether a surrogate is being passed to its orig-
inal box—if so, Jigsaw “unwraps” the surrogate, return-
ing the backing object instead of the surrogate (§2.6.2).
To allow createSurrogate() to determine the cur-
rently executing box context, the rewriter modifies all
function definitions such that on entry, a function pushes
its box id onto a stack, and on exit, a function pops the
stack.

The rewriter translates public and private prop-
erty declarations into operations on a per-object map of
visibility metadata. The rewriter assigns such a map to
each object at object creation time. Using property de-
scriptors [19], Jigsaw ensures that per-object metadata
is immutable and cannot be modified by a malicious or
buggy box.

The Jigsaw library is responsible for creating new
boxes. To do so, the library uses an eval() statement to
dynamically load the (rewritten) box code. However, the
eval() call is invoked within the context of a special
Jigsaw function that defines aliasing local variables for
standard global properties like window, document,
and so on. The Jigsaw-defined aliases implement a virtu-
alized browser environment that forces a box’s commu-
nication with the outside world to go through Jigsaw’s
security validation layer. For example, Jigsaw’s virtual
XMLHttpRequest object ensures that a box’s AJAX
requests satisfy the security policies defined by the box’s
parent. Similarly, the virtual DOM tree is backed by a
branch of the real DOM tree, but virtual operations are

1To prevent this data structure from hindering garbage collection,
Jigsaw requires weak maps, whose design is being finalized for the
next version of JavaScript [16].

not reflected into the real tree unless they satisfy the par-
ent box’s security policy. For dangerous functions like
eval(), and for sensitive internal Jigsaw functions, Jig-
saw creates null virtualizations that do nothing or throw
exceptions on access. As with all things JavaScript, there
are various subtleties in the virtualization process that we
elide due to space constraints.

Our current Jigsaw prototype implements the bulk of
the design from Section 2. The primary exception is full
DOM tree virtualization. This is still a work-in-progress
due to the complexity of the DOM interface.

4 Evaluation

Jigsaw’s goal is to provide an efficient, developer-
friendly isolation framework. In this section, we describe
our experiences with porting preexisting JavaScript li-
braries to Jigsaw; we then evaluate the performance of
the modified libraries. We show that porting legacy
code to Jigsaw is straightforward, that Jigsaw’s pass-by-
reference surrogates are much more efficient than pass-
by-value marshaling, and that Jigsaw’s dynamic secu-
rity checks are similar in performance to those of other
rewriting-based systems like Caja [15].

4.1 Porting Effort

We found that many preexisting JavaScript libraries al-
ready had an implicit notion of “public” and “private”;
thus, porting these libraries to Jigsaw primarily con-
sisted of making implicit visibility settings explicit via
the public and private keywords. For example, at
initialization time, many libraries add a single new ob-
ject to the global JavaScript namespace, and use that ob-
ject’s properties as the high-level interface to the library
code. This object serves as a de facto principal object (al-
though it has none of the security protections afforded by
Jigsaw). To port libraries like this to Jigsaw, we first de-
clared the de facto gateway object to be the Jigsaw prin-
cipal object for the library. We marked that object’s prop-
erties with the public keyword. We then identified the
public properties of other library objects with the help
of an instrumented version of the Jigsaw runtime. For
each surrogate that crossed a box boundary, the instru-
mented runtime logged the public and private properties
for the surrogate’s backing object; the runtime also mod-
ified each surrogate so that all foreign box accesses to
private properties on the backing object threw an imme-
diate exception instead of returning undefined.

The surrogate log and the fail-stop exceptions on pri-
vate property accesses made it easy to identify legacy
code properties that needed to be marked as public. Port-
ing was also simplified because we did not have to worry
about asynchronous control flows as in PostMash [2].
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Figure 7: When mutually distrusting domains must share
objects with each other, Jigsaw’s pass-by-reference surro-
gate mechanism is much faster than pass-by-value marshaling
(Depth: depth of shared object tree, ObjBr: Number of ob-
ject properties per object, FuncBr: Number of function prop-
erties per object).

We also did not need to explicitly insert object saniti-
zation calls—in contrast to Caja [15], which requires de-
velopers to invoke a tame() sanitization function wher-
ever an object crosses a trust boundary, Jigsaw automat-
ically creates surrogates when “raw” objects travel be-
tween boxes. We provide a more detailed comparison of
Jigsaw, PostMash, and Caja in Section 5.

4.2 Performance

In this section, we use microbenchmarks and Jigsaw-
modified applications to evaluate Jigsaw’s performance
overheads. All of the results were generated on a
Windows 7 PC with 4 GB of RAM and a dual-core 3.2
GHz processor. All web pages were executed in the
Firefox 8.0.1 browser.

Sharing overheads: In mashup frameworks that use
postMessage(), isolation containers share data by
asynchronously exchanging immutable strings. If con-
tainers wish to share more complex objects, each end-
point must implement a marshaling protocol that serial-
izes objects on sends and deserializes objects on receives.
The marshaling costs can be high, particularly if con-
tainers wish to share functions, since the recipient has to
dynamically compile each shared function’s source code
using eval().

When a sender passes an object to a recipient, the
sender actually shares an object graph that includes all
of the objects that are recursively reachable from the
root. Figure 7 depicts the sharing cost for synthetic ob-
ject graphs of various sizes. In these experiments, the
graphs were trees. The “Depth” metric corresponds to
the height of the tree. The “ObjBr” (object branch) met-
ric indicates how many of an object’s properties refer-
enced other objects; similarly, the “FuncBr” (function
branch) metric indicates how many properties pointed to
functions. Functions had no child objects or functions,
i.e., they were leaf nodes in the object tree.

0

5

10

15

JSON-RPC DOM-SQL AES encrypt Mousemove

Sl
ow

do
w

n 
fa

ct
or

 

Figure 8: Jigsaw’s extra security tests add between 0x–12x per-
formance overhead (the dotted line indicates a slowdown fac-
tor of 1, i.e., no slowdown). Jigsaw’s performance overheads
are similar to those [10, 22] of other rewriting-based mashup
frameworks like Caja [15].

As Figure 7 demonstrates, passing an object graph be-
tween isolation containers using surrogates has almost
zero overhead. When the root of an object graph is
passed across a box boundary, Jigsaw must create a
new surrogate object for it; however, the only cost is
an object creation (for the surrogate object itself) and
a function call for each public property on the back-
ing object (to create the getter/setter property descrip-
tors (§2.6.2)). In contrast, marshaling pass-by-value data
is much more expensive, since the entire object graph
must be traversed, serialized, and then deserialized, with
costly eval() operations on the receiver-side to recre-
ate shared functions. Note that the results in Figure 7 do
not include postMessage() overhead, i.e., the sender
and the receiver were in the same frame. Thus, these re-
sults are a conservative estimate of the marshaling costs
in a postMessage() system.

In Jigsaw, passing large object trees across isolation
barriers is efficient because surrogates are lazily created
when a box actually tries to access a foreign object.
Thus, at sharing time, initially only one surrogate
must be created for the root of the object graph. In
pass-by-value systems, once an object graph has been
recreated by the receiver, property accesses on the graph
are just as cheap as regular property access on locally
created objects. In contrast, accessing a property through
a Jigsaw surrogate introduces the overhead of invoking a
getter or setter. Such accesses are roughly 30 times more
expensive than a regular property access. However, we
believe that this cost is acceptable for three reasons.
First, it is only paid upon accessing external objects;
it is not paid for objects that are never accessed by
external domains, nor is it incurred when a box accesses
its locally declared objects. Second, since Jigsaw’s
initial sharing cost is O(1) in the size of the object
graph to share, Jigsaw reduces the initial sharing costs
of non-trivial graphs by multiple orders of magnitude
compared to a pass-by-value solution. Modern web
applications already have object graphs containing
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hundreds of thousands of objects [14], so for complex
mashups exchanging complex object graphs, the initial
sharing cost of pass-by-value will be unattractive due to
the computational latencies. Third, unlike pass-by-value
systems, surrogates allow mashups to communicate
synchronously using pass-by-reference semantics. This
makes developing mashups much easier, and makes
Jigsaw’s property access penalties easier to bear.

End-to-end performance: In addition to performing
checks during property accesses, Jigsaw must perform a
variety of bookkeeping tasks, e.g., assigning box ids and
object ids to newly created objects, and interposing on
accesses to virtualized browser resources to ensure that
boxes adhere to the security policies established by their
parents. Figure 8 shows the end-to-end performance
slowdown for several Jigsaw-enabled applications. The
slowdown is normalized with respect to the performance
of the baseline, non-Jigsaw-enabled applications. The
dotted line indicates a slowdown of 1, i.e., a situation in
which Jigsaw adds no performance overhead. We exam-
ined the following applications:
• JSON-RPC [9] is a JavaScript library that layers

an RPC protocol atop an AJAX connection. We
defined the performance of a JSON-RPC session
as the integrator-perceived completion rate of null
RPCs that performed no actions at a localhost RPC
server. Using a localhost server instead of a remote
one eliminated the impact of network delay and al-
lowed us to focus on Jigsaw’s CPU overhead.

• The DOM-SQL [3] library provides a SQL interface
to DOM storage. We defined the performance of
DOM-SQL as the number of rows that the integrator
could insert into a table per second. Each insertion
caused a synchronous write to DOM storage.

• The AES encryption function belongs to the Stan-
ford JavaScript crypto library [21]. Performance
was defined as the throughput with which the inte-
grator could feed plaintext to the library and receive
ciphertext.

• Mousemove is a simple benchmark library which
registers a handler for mouse movement in the in-
tegrator’s DOM. A human user moves the mouse
back and forth as quickly as possible, and the li-
brary increments a counter every time that its han-
dler fires. Performance was defined as the number
of times that the handler fired.

In the Jigsaw version of each application, the library code
was placed in a separate box from the integrator, and all
integrator-integratee communication took place through
a principal object or a virtualized DOM resource.

Figure 8 shows that Jigsaw’s security checks cause a 0-
12x slowdown. The slowdown is application-dependent.
For example, in the Mousemove test, the rate at which

the browser fired mouse handlers was slow enough that
Jigsaw’s security overhead was hidden. The JSON-RPC
test was similar, since the rate at which AJAX callbacks
fired was also slow enough to hide Jigsaw’s overhead. In
contrast, in the encryption test and the DOM-SQL test,
the applications were rarely blocked on external browser
activity. Instead, these programs executed many small,
application-defined functions. This incurred a lot of Jig-
saw bookkeeping overhead, since Jigsaw had to update
its internal call stack for each function invocation and
return (§3). Nevertheless, Jigsaw’s performance over-
heads were similar to those of other rewriting systems
like Caja [10, 22].

5 Related Work

There are many preexisting frameworks for securing
mashup applications. As we describe in more detail be-
low, these systems present very different programming
models to developers. At a high level, Jigsaw differs
from all of these systems due to its focus on providing
simple, efficient isolation mechanisms. Jigsaw is simple
because it defines a concise ACL language for browser
resources, a straightforward public/private distinc-
tion for JavaScript properties, and an automatic surro-
gate mechanism that transparently protects cross-domain
data exchanges while preserving synchronous function
call semantics. Jigsaw is efficient because its pass-by-
reference surrogates avoid the marshaling overhead that
afflicts pass-by-value systems.

ADsafe, FBJS, and Dojo Secure: ADsafe [6] and
Dojo Secure [25] use a language subsetting approach,
forcing guest code to be written in a restricted portion
of the larger JavaScript language. In contrast, Jigsaw al-
lows guest code to be written in a larger, more expres-
sive subset. This makes it easier for developers to port
legacy applications to Jigsaw (and write new Jigsaw ap-
plications from scratch). However, Jigsaw does pay a
performance penalty due to the dynamic security checks
that are required to secure the larger language subset.

FBJS [8] uses rewriting to prepend guest code
identifiers with a unique random prefix. This ef-
fectively isolates the guest code from the integrator.
FBJS allows guest code to interact with its parent
through a restricted, virtualized API, e.g., through calls
to a VirtDOMnode.getParentNode() method
instead of through direct accesses to the parent’s
DOMnode.parentNode property.

Broadly speaking, FBJS, ADsafe, and Dojo Secure
present a similar architectural model: strict guest isola-
tion with a narrow, predefined interface between isola-
tion containers. In contrast, Jigsaw allows principals to
define their own public interfaces.
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Caja: Like Jigsaw, Caja [15] is a rewriting system that
places scripts inside virtualized execution environments.
Caja defines a tame(obj) function that makes obj
safe to pass to untrusted JavaScript contexts. tame()
performs many of the security checks described in Sec-
tion 2.6.2. For example, it prevents dynamic proto-
type manipulation, and it ensures that methods cannot
be called with arbitrary this references.

Jigsaw differs from Caja in several important ways. In
Jigsaw, objects and their properties are invisible to ex-
ternal domains by default. Developers use the public
keyword to mark an interface as externally visible; visi-
bility annotations are defined as part of the interface dec-
laration. In contrast, Caja’s visibility metadata is man-
aged at interface sharing time instead of interface dec-
laration time. In Caja, programmers must remember to
invoke tame(obj) before obj is passed across an iso-
lation barrier. This makes a program’s security proper-
ties more difficult to understand, since developers can no
longer reason about how an object can be accessed with-
out inspecting all of the places at which the object crosses
an isolation boundary. In contrast, Jigsaw’s declaration-
time visibility modifiers provide clearer, more central-
ized indications of object access rights. Jigsaw’s sur-
rogate mechanism also provides automatic “taming” as
objects flow between boxes. This eliminates the devel-
oper burden of having to manually tame objects at shar-
ing time. It also guarantees that taming takes place all
of the time, regardless of whether the developer remem-
bered to tame an object.

Also note that Caja’s primary goal is to make it easy
for an integrating page to incorporate untrusted scripts—
guest-to-guest interactions are of secondary importance.
Thus, host-to-guest communication is straightforward,
but guest-to-guest interactions must be mediated by the
host. This requires the integrator to define and manage
a shared communication infrastructure. In contrast, Jig-
saw’s goal is to make it easy for arbitrary execution con-
texts to communicate through restricted interfaces. Us-
ing principal objects, any two contexts in Jigsaw can ex-
change information. Furthermore, the integrator is no
longer responsible for managing cross-script communi-
cation. Instead, each script implements its own cross-box
protocols.

Secure ECMAScript (SES): Secure ECMAScript
(SES) [17] uses newly standardized features of EC-
MAScript 5 [7] to provide Caja-like isolation without
requiring Caja-like rewriting and runtime virtualization.
By pushing dynamic security checks into the JavaScript
engine, SES can potentially offer dramatic reductions in
the costs of these checks. SES is still being formulated,
but once ECMAScript 5 becomes widespread, Jigsaw
can use SES techniques to implement its security abstrac-
tions.

Pass-by-value systems: Systems like PostMash [2]
use iframes as isolation containers, and implement cross-
domain communication using the asynchronous, pass-
by-value postMessage() call. Such isolation frame-
works have several drawbacks. First, there is signif-
icant marshaling overhead if domains share non-trivial
object graphs (§4.2). To avoid this penalty, domains can
keep local copies of object graphs and synchronize views
across iframes. However, this approach still requires fre-
quent exchanges of synchronization messages. In Post-
Mash, this message traffic induced a 60% performance
decrease in a Google Maps mashup [2].

A second drawback of these systems is that they rely
on an asynchronous channel for cross-domain commu-
nication. Asynchronous communication is an awkward
fit for many mashup applications; for example, it is ill-
suited for the integration of computationally intensive
modules that implement databases, cryptographic op-
erations, input sanitizers, image manipulation routines,
and so on. Rewriters can transform asynchronous oper-
ations into quasi-synchronous ones using continuation-
passing [11]. However, many programmers find it diffi-
cult to reason about continuations. Furthermore, contin-
uations can introduce subtle race conditions that are not
present in truly synchronous environments (§2.1).

Browsers give each iframe a separate execution thread.
Thus, iframe isolation does have the advantage that a par-
ent can make forward progress if a child is hung or com-
putationally intensive. In Jigsaw, each box resides within
the same iframe, so a misbehaving child can intentionally
or inadvertently perform a denial-of-service attack on its
parent. We do not view this as a major disadvantage of
Jigsaw, since modern browsers allow users to terminate
unresponsive scripts via a pop-up warning dialog.

Object views: Object views [11] let developers spec-
ify policy code that controls how objects are shared
across isolation boundaries. Policy code is written in
the full JavaScript language and is attached to view ob-
jects that mediate external access to private backing ob-
jects. This security model is very expressive, but we
believe that it is unnecessarily complex (and therefore
error-prone). Jigsaw’s public and privatemodifiers
present a more intuitive programming model, allowing
developers to express simple “yes-no” disclosure poli-
cies. In contrast, when a developer writes an object view
policy, she must reason about the execution context that
initiates an access request, and how context-specific fac-
tors should influence data exposure. Jigsaw’s visibility
identifiers act as explicit, declaration-time indications of
visibility policy.

IFC: Information flow control (IFC) systems like
Jif [13] assign security labels to variables, allowing de-
velopers to precisely specify the data that principals
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should be allowed to read or write. We eschewed an
IFC mashup architecture for two reasons. First, a well-
known problem with IFC is that programmers are loath
to generate the required security annotations. In contrast,
simple visibility modifiers like public and private
have not triggered a similar level of complaint. IFC-style
labels are also ill-suited for governing access to browser
resources. For example, it is difficult to use labels to ex-
press policies like “give a principal update rights to the
leftmost 30% of the visual display.” Jigsaw can easily
express such a policy using a simple CSS-style rule.

ConScript: ConScript [12] uses a modified browser
engine to enforce security. Integrators restrict the behav-
ior of guests by attaching policy code to key execution
points, e.g., the invocation of a function or the loading
of a new script. Like object view policies, ConScript
policies are written in arbitrary JavaScript and can be ex-
tremely expressive. However, as mentioned above, Jig-
saw strives to provide simple, developer-friendly secu-
rity policies, and we have found that in practice, Jigsaw’s
simpler policies are sufficient to express many kinds of
mashup architectures.

OMash: Like Jigsaw, OMash [5] allows each princi-
pal to define a public set of functions that other principals
can invoke. However, OMash does not have a private-
by-default visibility policy, nor does it wrap objects in
proxies before handing them to external domains. Thus,
public OMash functions expose an ostensibly narrow in-
terface, but their return values can expose sensitive data.
For example, the caller of a public OMash function can
perform arbitrary JavaScript reflection on the properties
of the returned object (and any other objects reachable
from that root). If the caller modifies any of this data, the
modifications will be visible in the data’s source domain.

MashupOS: MashupOS [23] provides a new set of
isolation abstractions for web browsers. In MashupOS,
a service instance is a browser-side analogue of a tradi-
tional OS process. Each instance gets a partitioned set of
hardware resources like CPU and memory, and commu-
nicates with other instances using asynchronous, pass-
by-value messages. Jigsaw eschews such a communi-
cation style in favor of synchronous, pass-by-reference
messaging. This necessitates a mechanism like surro-
gates (§2.6.2) for securely exchanging objects across iso-
lation boundaries.

CommonJS Modules: CommonJS [4] defines a mod-
ule system for JavaScript. CommonJS gives each library
a protected namespace and the ability to define external
interfaces. However, CommonJS namespaces are imple-
mented using closures. Thus, unlike Jigsaw boxes, Com-
monJS namespaces do not protect against attacks like
prototype poisoning [1, 11]. CommonJS also does not
provide strong notions of public and private data. Thus,

as in OMash, the return values from public functions can
inadvertently leak private module data.

6 Conclusion

Jigsaw is a new mashup framework for web applica-
tions. It allows mutually distrusting content providers to
define narrow public interfaces for their private client-
side state. Jigsaw strives to be developer-friendly, so
it eschews the complicated security policies of prior
mashup frameworks; instead, Jigsaw uses the public
and private keywords to mark data as externally vis-
ible or domain-private. Jigsaw’s security semantics are
thus easily understandable to programmers who are fa-
miliar with popular languages like Java that also use
public/private distinctions.

Prior mashup frameworks often isolate state using
iframes or iframe-like abstractions. These isolation
containers force domains to communicate using asyn-
chronous pass-by-value channels. In contrast, Jigsaw’s
novel surrogate mechanism allows domains to pass ob-
jects by reference using synchronous function calls. This
makes it easier for developers to reason about cross-
origin sharing, since accessing a locally defined object
or function looks no different than accessing an object
or function that has been shared by an external domain.
Pass-by-reference surrogates are also more efficient than
pass-by-value approaches because surrogates do not in-
cur marshaling overhead when they travel between do-
mains.

Our evaluation shows that existing web applications
are easily ported to the Jigsaw framework. Our evalua-
tion also demonstrates that Jigsaw has similar or better
performance than prior mashup schemes.
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Abstract

Mapping user profiles across social network sites enables
sharing and interactions between social networks, which
enriches the social networking experience. Manual map-
ping for user profiles is a time consuming and tedious
task. In addition profile mapping algorithms are inaccu-
rate and are usually based on simple name or email string
matching. In this paper, we propose a Game With A
Purpose (GWAP) approach to solve the profile mapping
problem. The proposed approach leverages the game ap-
peal and social community to generate the profile map-
pings. We designed and implemented an online social
networking game (GameMapping), the game is fun and
is based on human verification. The game presents the
players with some profiles information, and uses human
computation and knowledge about the information be-
ing presented to map similar user profiles. The game
was modeled using incomplete information game the-
ory, and a proof of sequential equilibrium was provided.
To test the effectiveness of the mapping technique and
detection strategies, the game was implemented and de-
ployed on Facebook, MySpace and Twitter and the ex-
periments were performed on the real data collected from
users playing the game.

1 Introduction

Social network (SN) services have been one of the main
highlights of Web 2.0. Popular SN sites have attracted
millions of users, for example Facebook hosts over 500
million users. Different SNs provide users with different
sets of services and experiences, for example, Facebook
and MySpace allow users to creates photo albums, fan
clubs, and post feeds along with sharing all this content
with friends, Twitter provides users with the ability to
post short messages, and LinkedIn enables users to con-
nect with other users for professional purposes. To enjoy
these services, users endup creating accounts on differ-

ent sites, for example most Twitter users have a Face-
book account [14], and 64% of MySpace users have ac-
counts in Facebook [28]. With the increasing popularity
of SN connect services [18], this enabled users to connect
websites with their SN accounts and to share their opin-
ions and comments across networks. Leading SN sites
are moving towards meeting the user’s cross site interac-
tions demands [20]. Users are able to connect different
SN accounts and to share data across SNs, for instance, a
user could connect his Twitter feed to his Facebook status
such that his Facebook status will be updated automati-
cally whenever he updates his Twitter feed [3].

When users create new accounts on a site they will
spend time trying to rebuild their friendship connections
with users they know, to alleviate this task several sites
provide users with “import your friends” capability. For
example, Bob has an established account in Facebook,
and Bob heard from his friends about the video posting
services provided by MySpace, so Bob creates a new ac-
count in MySpace which offers him to import his friends
from Facebook. Using this functionality MySpace im-
ports profile attributes of Bob’s Facebook friends, and
attempts to locate users who have similar attributes in
MySpace (name, location, email hash, etc.) and recom-
mends to Bob to add them as friends in MySpace. This
approach is not effective in locating users with popular
names, or for users who don’t have matching attributes.
Studies have shown that users tend to enter false in-
formation in their profiles [30], which causes attribute
based matching approaches to generate inaccurate re-
sults [35, 39]. Furthermore, graph matching solutions are
computationally expensive and require the knowledge of
the complete graph of both networks [7, 8, 2]. Email
based matching is only available when users use a same
email across sites. A simple solution would be possible
if all sites use a federated identity such as OpenID [31],
however this technology is not popular among social net-
work users.

In this paper, we propose a Game With A Purpose
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approach to solve the profile mapping problem. The
proposed approach leverages the game appeal and so-
cial community to generate the profile mappings. We
designed and implemented an online social networking
game (GameMapping), the game is fun and is based on
human verification. GameMapping takes advantage of
people’s existing perceptual abilities and desire to be en-
tertained. The game will present the player with a user
from one social network, and a set of friends from an-
other social network, which represent the set of mapping
recommendations. The friends’ information is summa-
rized in a profile card which includes the profile photo,
name, age, location, etc. The player gets a small num-
ber of points for choosing one of the provided mappings,
this reinforces a sense of incremental individual success
in the game. The game also rewards social success by
awarding the player a large number of bonus points when
other users or friends agree to the player’s provided map-
pings. This proposed mechanism is similar to social buy-
ing, where buyers are offered discounts discount deals
(bonus) if they sign up for a deal in large masses [27].
Users will be allowed to invite their friends to play the
game in hope of gaining the large bonus points. Sim-
ilar games with a purpose have been successfully pro-
posed to aid in labeling and tagging images over the web
[33]. We also investigated several approaches for gen-
erating the set of mapping recommendations. The pro-
posed GameMapping game was analyzed using game
theory, to identify equilibrium under the current assump-
tions and point granting scheme to ensure that rational
players will provide accurate profile mappings to max-
imize their game score. We performed several experi-
ments to evaluate our approach on the game results, and
we compared it to attribute based mapping which is pre-
sented in the experimental section. The main contribu-
tions of the paper are summarized as follows:

• We proposed a Game With A Purpose approach for
solving the profile mapping problem as a game sup-
ported by social verification.

• We proved the equilibrium of the game scoring
mechanism using game theory to ensure that ratio-
nal players will provide accurate profile mappings
while playing the game.

• We implemented our game as an online social net-
working game in Facebook, MySpace and Twitter.
This implementation is a proof a concept and was
used to collect and perform experimental results.

The rest of this paper is organized as follows. Sec-
tion 2, provides an overview of Game With a Purpose
and social networks. Section 3, defines the problem of
profile mapping across sites. Section 4 describes how
the proposed game works, and gives game details that

include recommendation mechanism and the game the-
oretic proof. Section 5, describes the implementation of
game system and the experimental results. The related
work is discussed in Section 6, and Section 7 provides
the paper conclusion.

2 Preliminaries

2.1 Game With a Purpose
Games with a Purpose (GWAP) is a form of human com-
putation [33, 34], which gets humans to play enjoyable
games that are also productive tools. These games are
used in tasks that are hard for computers but easy for hu-
mans. For example, the ESP game [33] is a two-player
game used for labeling and tagging images over the web,
the game is setup to reward players providing the same
labels by giving them bonus points if their tags match.
Our goal is to design a GWAP to solve the profile map-
ping problem between social networks, by asking players
to map their friends in the different social networks. One
of the main challenges is the design of a points system
that rewards correctly identified profile mappings and to
maximize the reward for truthful rational players, and
minimize the reward of irrational players. Gaming on
social network platforms is becoming very popular with
games such as FarmVille in Facebook [13] hosting over
62 million monthly active users. Our proposed game can
easily be deployed on social network sites as an online
game, and if it is popular we estimate that most of the
account mappings can be properly discovered in a matter
of weeks.

2.2 Social Networks
Users and relationships between users are the core com-
ponents of social networks. Each user manages an on-
line personal profile, which usually includes information
such as the user’s name, birth date, address, contact in-
formation, emails, education, interests, photos, music,
videos, blogs, and many other items. Each user ui ∈ V
maintains a profile Pi, which is composed of N profile
attributes, {Ai

1, . . . ,A
i
N}. Each attribute is a name-value

pair (an,av), where an and av represent name and value
respectively. For example, a Facebook user profile in-
cludes attributes such as birthday, location, gender, re-
ligion, etc. Users are also able to post objects such as
photos, videos, and notes to their profiles to share with
other users.

Users are connected to a set of friends, using this no-
tion a social network can be modeled as an undirected
graph G(V,E), where the set of vertices V is the set of
users, and the set of edges E is the set of friendship re-
lationships between users. The edge (ui,u j) ∈ E implies

2
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that users ui and u j are friends. Using the graph based
model for social networks, we leverage the node net-
work structural properties to provide additional user at-
tributes. These attributes include several small world net-
work metrics such as: node degree centrality, between-
ness, hit rate, eigen values [24]. For a user ui, we are able
to compute M network metrics Bi = {Bi

1, . . . ,B
i
M}. Each

network attribute is similarly represented as a name-
value pair (bn,bv) that will be added to the user personal
profile attribute previously stated to constitute the user
profile P. The neighborhood of user u is the subgraph
Nu = (Vu,Eu), where Vu = {v|v ∈ V,(u,v) ∈ E} ∪ {u},
Eu = {(x,y)|x,y ∈Vu,(x,y) ∈ E}.

3 Problem Definition

The global profile mapping is defined as follows:

Definition 1 (Profile Mapping Problem). Given social
networks SNA and SNB, with social graphs GA = (VA,EA)
and GB = (VB,EB) respectively, find the set of profile
mappings M of the form (ui,u j) ∈ M where ui ∈ VA and
u j ∈VB belonging to the same user in both social graphs
GA and GB.

The problem of mapping data concepts between differ-
ent sites or platforms have been applied to multiple ar-
eas, such as: database schema matching [21, 29], web
search [10, 5], ontology mapping [9] and visualization
[12, 38]. The graph isomorphism is an NP-Complete
problem which involves finding one to one mappings
between vertices and edges of a pair of graphs [4, 16].
The subgraph isomorphism graph matching problems
has been proven to be NP-complete [15]. Furthermore,
when |VA| �= |VB| known as the inexact graph match-
ing problem, the complexity is proven in [1] to be NP-
complete. In addition, the inexact sub-graph matching
problem is NP-complete, and the largest common sub-
graph problem is also equivalent in complexity to the
later which is NP-complete. Several attribute, model, ob-
ject recognition and network based techniques were pro-
posed to provide heuristic approaches to solving graph
matching problems [7, 8, 2], these approaches are com-
putationally expensive, and require the knowledge of the
complete graphs GA and GB. In this paper, we pro-
pose solving the profile mapping problem by using hu-
man computation in the form of an online game.This ap-
proach has been used in [34, 33] to effectively map tags
to images. The main assumption is that with the correct
set of incentives, users would enjoy playing a game and
at the same time contribute to mapping profiles between
users in different networks.

Definition 2 (Local Profile Mapping Problem) Given a
user u who has identities ui and u j in social network SNA

and SNB respectively, and user’s local neighborhoods
N A

ui
, N B

u j
find the set of mappings Mu ⊆ M mappings

between profiles in Nui and Nu j .

Our proposed approach will leverage the individual and
social knowledge of social network users to provide map-
pings, and to provide mapping verifications which can
be then used to solve the local profile mapping prob-
lem. The local profile mapping problem does not require
knowledge of the whole social network graph, instead it
only requires knowledge of the neighborhood network.
Providing incentives to ensure the wide spread adoption
of the game would allow solving a large number of lo-
cal profile mappings, which enables the mapping of all
similar profiles in large social networks. In fact, this is
equivalent to the generalization of the subgraph isomor-
phism mappings of local networks to the maximum num-
ber of common subgraph problem in the global networks
[40]. In this paper we are interested in studying map-
pings between social networks user accounts like Face-
book, MySpace, and Twitter. Mapping profiles in so-
cial networks is applicable to identity management, and
is a step towards enabling cross site interactions between
users in different sites.

4 General Game Description

Our proposed game is called GameMapping. The ba-
sic idea is that players gain points by providing map-
pings of their friends’ profiles in multiple social net-
works. GameMapping allows players to map Facebook
and MySpace profiles, or Facebook and Twitter profiles.

In order to play the game the player needs to com-
plete an authentication stage that involves two social net-
work sites. We implement Facebook Connect, MyS-
paceID and TwitterID to enable the user to authenticate
into the corresponding social networks and to authorize
the GameMapping site access to the user’s profile and
friends list. This enables the GameMapping site to re-
trieve the user’s profile and neighborhood social graph
data which includes last name, first name, gender, age,
country, profile picture, friends list and mutual friend-
ships. This data enables our system to compute the
local neighborhood for the current player (N A

u ,N B
u ).

The user profile referred to as the focus user u f is pre-
sented to the player for mapping. The focus user u f
is selected from the neighborhood with the smaller size
(cardinality). Without loss of generality we assume
|N A

u | ≤ |N B
u |, where the focus user profile u f is se-

lected from neighborhood N A
u . The game computes the

recommended mappings profiles R from neighborhood
N B

u based on attribute and network distance metric. The
focus user and the computed recommendations are then
presented to the player. Figure 1, shows a screen shot

3
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of the game, where the focus user is in the center sur-
rounded by his possible best recommended mappings
displayed in a random order. The users’ profile pictures
are shown along with their profile information which in-
clude, age, gender, and location. Information about the
recommended mappings is presented to the user when
the mouse is moved over the photo. The player should
decide either to map the focus user to one of the rec-
ommended profiles or to skip if no map is present. The
player is given 40 seconds to make a decision about the
presented game data set, then a new game data set is pre-
sented. The game also presents top 10 players ordered by
the points earned. To motivate players into making cor-

Figure 1: The GameMapping Screen Shot

rect decisions of either mapping or skipping, the game
awards the player 10 points for any provided map, 100
bonus points if the provided map is confirmed by an-
other player, and 30 bonus points if a skip is confirmed
by another player. In order to maximize the points (re-
ward), a player should focus on providing the mappings
that will most probably be confirmed by other players.
When a player start the game, the player first plays the
game with the player own network data set. In other
words, the player maps friend’s profiles. After the player
is done mapping his local network, the player plays the
game with a game dataset that is randomly selected. It
ensures that players provide mappings towards multiple
local profile mappings and at the same time ensure the
game continuity. By motivating players to play multiple
data sets enables the game to provide mapping confirma-
tions as will be discussed in the game theoretic proof. In
addition, each game dataset represents a local mapping
problem, which when combined for multiple data sets re-
sults in the global mapping of the overall social network
graph.

4.1 Recommendation Generation
Given a player u who owns profiles ui and u j, and the
neighborhoods N A

u and N B
u the focus user u f is selected

randomly from the neighborhood that has the smaller
number of nodes, which we refer to as the focus network.
This design choice was made as the maximum number of
possible mappings is equal to min(|V A

u |, |V B
u |). Figure 2,

shows both neighborhoods and the focus user u f . Lets

 

 

  

  

Figure 2: Neighborhood and Focus User Recommenda-
tions.

assume the focus user u f is selected from N A
u . Given

the focus user the mapping recommendation is gener-
ated by ranking the user profiles in N B

u based on their
similarity to the focus user. The similarity between two
profiles is computed as a weighted sum of distances be-
tween the different user profile and network attributes.
The profile attributes include first name, last name, gen-
der, age and address. The network attributes include the
centrality, betweenness, hit rate, degree and eigen values
[6, 25]. We investigated several vector distances which
include the Chebychev and Minkowski distance for nu-
merical attributes, Cosine and Levenshtein distance for
nominal attributes, and the Euclidian distance for the nu-
merical attributes (i.e. age) and the Levenshtein distance
for nominal attributes (i.e. gender, name) [19]. The
weights of each attribute were computed based on a lin-
ear regression classifier trained using the knowledge col-
lected from our initial experiments [36, 37]. The rec-
ommendation set R is the sorted list of proposed user
profiles based on their computed similarity with the fo-
cus user. As indicated in Figure 1, the game presents
the user with the top 12 recommended mappings select
from the recommendation set R following the Top-k Fa-
gin’s algorithm [11]. The selected recommendations are
shuffled randomly then displayed in a clock-wise fashion
around the focus user. This randomization is required to
ensure that players put some effort in finding the possi-
ble profile mapping among the displayed 12 recommen-
dations. Moreover, by randomizing the recommendation
set R this would avoid possible collusion between dif-
ferent players as each player is presented with the same
12 recommendations but not in the same location on the
screen.

4
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4.2 Game Theoretic Analysis
In this game the players do not communicate and each
player does not know the action taken by other player.
The game can be modeled as a two player extensive game
with incomplete information. In this game the players are
provided with a focus user u f and a set of recommended
mappings R = {u1, . . . ,un,φ}. Each player has a set of
n+1 actions of the form ak = map(u f ,uk) where uk ∈ R.
Note, the action an+1 = map(u f ,φ), which is equivalent
to the skip(u f ). The set of actions A1 = A2 = A, and the
utility (δi) of player i is selected to satisfy the following
conditions:

• δ1 = δ2 = δ ,

• δ (ai,a j) = δ (a j,ai),

• δ (ai,ai)> δ (ai,a j) for all i �= j,

• δ (ai,ai)> δ (an+1,an+1) for all 1 ≤ i ≤ n

Player 1 

Player 2 

,  ,  ,  , ,  ,  ,  ,  ,  

   

   

      

 

 

Figure 3: Game tree with imperfect information.

Figure 3, shows the extensive game tree, where each
nodes represent players and edges represent player ac-
tions. The payoffs for players 1 and 2 are shown at the
terminal nodes. The values of h and l are chosen such
that h > l, this ensures that u(ai,ai) > u(ai,a j) for all
i �= j. This game is a coordination game in which each
player is trying to make the same choice as the other
player to maximize their utility.

Rational players intend to maximize their expected
game payoff. Note that the payoff from agreeing on a
map is higher than the payoff from agreeing on a skip
(h > l), this motivates rational players to try to find pos-
sible maps between the focus user and one of the rec-
ommendations and to skip if they can not find a suit-
able map. The Nash equilibrium is a commonly used
equilibrium notion that provides an equilibria such that
no player can profitably deviate from and enhance their
payoff with the belief that other players will not deviate
[26]. Referring to the game representation in table form
in Figure 4, The game has n+1 = |A| pure Nash equilib-
ria represented by the set S where S = {(ai,ai) : ai ∈ A},
that is strategy that would result in maximizing the user
payoff is when both users make the same action.

a1 a2 an… an+1
a1 (h,h) (l,l) (l,l)… (l,l)
a2 (l,l) (h,h) (l,l)… (l,l)
: (l,l) (l,l) (l,l)… (l,l)
an (l,l) (l,l) (h,h)… (l,l)
an+1 (l,l) (l,l) (l,l)… (m,m)

Player 1

Pl
ay

er
 2

Figure 4: Game Nash Equilibria Indicated in Grey.

Since the game has multiple equilibria it is still not
clear what action strategy with a rational player act upon.
Given that each player does not know the action taken by
the other player, the question that each player asks them-
selves is that given {u f ,R} “what would other players do
if they are presented with the same {u f ,R} ?” and by
the theory of focal points [22] players will usually co-
ordinate at points that in some sense stick out from the
others (focal points). A player game strategy can be de-
scribed based on the probability of selecting an action ai
from the action set A given the focus user and recommen-
dation set {u f ,R}. The probability p(ai|{u f ,R}) repre-
sents the probability of choosing an action ai conditioned
on the game parameters {u f ,R}, which can be repre-
sented as p(ai|{u f ,R}) = p(ai)× r(ai,{u f ,R}). Where

r(ai,{u f ,R}) =
p(ai,{u f ,R})

p(ai)×p({u f ,R})
is the relevance of action

ai to the set {u f ,R}. According to focal point analysis,
a rational player would choose the action that maximizes
the p(ai|{u f ,R}) which is the action that is most relevant
to the current {u f ,R} set, which is described as follows:

a∗ = argmax
ai∈A

p(ai)× r(ai,{u f ,R})

By choosing action a∗ players maximize their chance of
being matched by other players in the system and ulti-
mately gaining the payoff δ (a∗,a∗).

Assuming players are rational and they will choose the
action that is most relevant for the given focus user and
recommendation set, a dominant strategy that ensure that
players coordinate and maximize their expected utility is
attained when players follow the same actions selection
probability p(ai|{u f ,R}) [32]. This implies that players
will be motivated to provide a map when they recognize
a map and will prefer to choose skip if a map does not
exist.

5 Experiments and Results

5.1 Implementation Details
We implemented the GameMapping game as an online
game. The online game is functional on client browsers

5
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supporting Adobe Flash. The game communicates with
a centralized GameMapping server to exchange and re-
trieve data. The game server is responsible for retrieving
user profiles from social network sites, generating focus
user and recommendation data sets, and storing all the
mapping information. To support these features, we im-
plemented social web application tools and APIs in the
game server. Figure 5, depicts the architecture of our

GameMapping 
Server

Client
Social Network Sites

AJAX call to  
Game Server API

 XML

HTTPrequest to API

XML or JSON

OAuth based Authentication 
& Authorization

Figure 5: The Architecture of GameMapping

system. The game server connects to the each social net-
work site using social web application tools such as Face-
book Connect, MySpaceID, and TwitterID. These tools
allow our game server to interact with the APIs of each
social network site on behalf of game players. Facebook
Connect is based on OAuth 2.0 specification while MyS-
paceID and TwitterID are based on OAuth 1.0a speci-
fication. We also implemented social plugins such as
Like Button and Invitation to enhance the popularity and
adoption of our game through friend of friend invitations
and word of mouth. We implemented a polling mech-
anism to enable the retrieval of user’s profile informa-
tion, that is based on both server and client technologies
(Ajax).

5.2 Collusion and Irrational Behavior

It is possible that some players map non-mapping and
incorrect profiles intentionally. Based on the game the-
oretical discussion in Section 4.2, rational users are able
to maximize their payoff by selecting the correct actions
(map or skip). Irrational players are players who at-
tempt to play the game and provide inaccurate mappings
in hope of gaining high points or simply affecting our
mapping accuracy. Although our game system does not
provide a chatting feature, players might collude using
another communication channel such as AIM or MSN
chat, in order to provide the same inaccurate mappings to
the game. To prevent collusion among players, our game
displays randomly selected data sets to different players,
who are allowed to play each game data set only once.
Another irrational behavior is a player providing inac-
curate mappings continuously by guessing, and getting
l points for each provided map or skip. The game scor-
ing mechanism ensures that rational players converge to
a high score faster than guessing players.

In addition, we insert detection datasets into the nor-
mal game datasets to detect the irrational players. The
detection game datasets are normal dataset that do not
contain any correct mapping. If a player provides many
mappings for the detection game dataset, there is high
probability the player is an irrational player. We also
recorded the amount of time taken by players in making
each mapping to detect the irrational players and robots.
If a player is an irrational player or a robot, the player
might spend less time in each single mapping than ra-
tional players since the irrational players might provide
mappings without comparing profiles. The game pro-
vides a CAPTCHA if the response rate is above the nor-
mal rate to prevent robots from playing the game. Fi-
nally we applied mapping confirmation strategy. If an
irrational player provides inaccurate mappings, there is
a low chance the inaccurate mapping gets a confirming
map from other rational players.

5.3 Experiments

To evaluate our approach, we recruited participants
which have accounts in multiple social networks by invit-
ing users from MySpace and Twitter groups and apps
on Facebook. As an incentive to play the game, we
held a two week game competition to encourage users
to participate in our research and distributed 10 iTunes
gift cards to the top 10 players and an iPod Nano to the
top player. One hundred and twenty-four players agreed
to play the game, of which 80 where male, 32 female
and 12 did not indicate their gender. There were two
kinds of game the Facebook-MySpace (FB-MS) game
for mapping user profiles between Facebook and MyS-
pace and the Facebook-Twitter (FB-TW) game to map
Facebook to Twitter. The FB-MS game was played by
30 players, and 94 players registered and played the FB-
TW game. Perhaps users favored playing the FB-TW
game due to the increasing popularity of both Facebook
and Twitter. During the two weeks game competition,
we collected 38,532 Facebook profiles, 8,452 MySpace
profiles, 11,775 Twitter profiles and 7,411 profile map-
pings between user profiles. The collected profiles were
used to generate the game datasets which were presented
to the players to provide mappings between profiles in
different networks. The game presented the players with
a privacy consent that indicated that only the public infor-
mation will be shared with other players which included
the user’s first name, last name, and location.

For verification and experimental purposes we manu-
ally verified all the provided profile mappings provided
by the players using a simple verification web tool that
shows details of mapped user’s profiles with an inspec-
tion form. We designed the tool to generate comparison
results of last name, first name, age, and gender automat-

6
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(a) Mapping Accuracy
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(b) Skip Accuracy
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Figure 6: GameMapping Experimental Accuracy Results.

ically and we manually input the comparison result for
profile pictures and countries. For each profile mapping
we compared the profile pictures and categorized them
into one of 5 types which include, Same, Similar, Differ-
ent, Picture present only in one site, and None (picture is
not present). In case of address and location information,
geocoding distances were used to compare both profiles.
If the profile information was not enough to make a de-
cision, the inspectors visited profile page in each social
network site to compare both profiles.

5.4 Evaluation of Mapping results

We analyzed the number of player confirmations re-
quired for accurate profile mappings and skippings by
comparing the mappings provided by the players with
the mappings verified manually. Figure 6(a) presents the
mapping accuracy for different number of confirmations
for both kinds of games (FB-MS and FB-TW), as shown
the mapping accuracy increases as the number of confir-
mations increase. Note that, the mapping confirmation
plateau’s at 100% after 3 confirmations, which indicates
that we need at least 3 confirmations to support 100% ac-
curacy and 2 confirmations for 95% mapping accuracy.
Figure 6(b) presents the skipping accuracy, which fol-
lows a similar pattern as the mapping accuracy as it also
plateau’s at 100% accuracy after 3 player confirmations
for both FB-MS and FB-TW games. The FB-MS map-
ping and skipping results show a higher accuracy when
compared to the FB-TW case, this is because the FB-
MS dataset provides more user profile information to the
player such as gender, age, address and other attributes
that may help players in easily locating similar profiles
accurately. Further, the friend relationship of Facebook
and MySpace is based on mutual agreement and follow-
ing relationship of Twitter is not based on mutual agree-
ment. Therefore, the mutual agreement based relation-
ship provides more knowledge for friends and higher

accuracy. Figure 6(c) shows the over all confirmation
accuracy for both the map and skip cases, which also
plateau’s at 3 confirmations.

Figure 7(a) depicts the contribution of each profile at-
tribute in verified FB-MS mapping results. Six attributes
such as profile picture, first name, last name, gender, age,
and country were used in comparing the profiles in the
game. Note that, only 5.6% of users post exactly the
same profile picture and 96.4% of users do not use a same
profile picture (48.7% use similar pictures, 31.6% use
different pictures, 13.7% have a profile picture in only
one site, and 0.4% of the users do not have profile pic-
tures). This shows that players mapped the same profiles
based on other knowledge such as friendship information
even if the two profiles did not use the same profile pic-
tures. Last name and first name are important attributes
in attribute based mapping, our results show that 74.4%
of the users have the same last name and 72.8% users
have the same first name. Which indicates that if the
profile mapping is performed by comparing the name at-
tributes, we expect about 73% matching accuracy. In
other words, our game based mapping approach with
confirmation is able to detect profile mappings for none
matching profile names and provide a 27% improvement
over the name based mapping. If gender and age are
considered in attribute based mapping, the mapping re-
sult is not expected to increase as this usually missing
or is low quality. Figure 7(b) depicts the contribution
of each attribute in the verified FB-TW profile mapping
results. In Twitter, only four attributes are used to com-
pare the profiles in the game which include, profile pic-
ture, first name, last name, and country. The FB-TW
attributes show a pattern similar to the FB-MS attributes.
The minor difference is in the percentage of profiles that
use the same profile pictures, last name and first name,
where FB-TW shows higher percentages of similar pro-
file attributes. The reason might be Facebook and Twitter
are currently very popular sites. It makes many users to
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Figure 7: GameMapping Attribute and Photo Statistics

keep their profiles consistently up to date. In comparison
to the name based attribute mapping, the FB-TW shows
a 25% improvement in mapping accuracy. Figures 7(c)-
7(e), show the possible profile mappings with respect to
the same, similar and different profile photos, note that
some users had the same, similar and different profile
photos. The mapped user is indicated by the red circle.

To better understand how other network based ap-
proaches perform in matching the collected profile data.
We used the similarity flooding graph matching approach
[23], which matches profiles based on both profile at-
tributes and network neighborhood similarity. The algo-
rithm takes two labeled graphs (game data sets) as in-
put and produces as output a mapping between matching
profiles. We applied the collected game datasets to the
similarity flooding algorithm and the generated an aver-
age matching accuracy of 74%. This result is far less than
our proposed game mapping approach. The low accu-
racy generated by the similarity flooding approach could

be attributed to the low similarity between the mapping
neighborhoods which reduces the effectiveness of flood-
ing algorithm. As indicated in Figure 7(a) and 7(b) pro-
file attributes used in different social networks have a low
degree of similarity, users do not always provide correct
data or data is missing, attribute similarity is important in
similarity flooding as it is used in initialization and flood-
ing phases of the similarity flooding algorithm. In addi-
tion the neighborhood graph information for users in dif-
ferent social networks do not have considerable similar-
ity in friendship connections and neighborhoods which
tends to reduce the effectiveness of the flooding based
similarity. On the other hand, our proposed approach
provides higher accuracy due to the fact that player’s map
profiles not only based on the profile attributes but also
based on the player’s implicit knowledge about the pro-
files and on the reasoning behind of likelihood of map-
ping confirmation.

The game datasets are generated from the player’s net-
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Figure 8: GameMapping Experimental Results.

work, Friend of Friend (FOF) network, and other user’s
network data. Figure 8(a) depicts the average accuracy
of mapping results for different network types. For both
FB-MS and FB-TW games, the results show that the ac-
curacy of player network is lower than the accuracy of
FOF network. The results did not meet our expecta-
tion that the accuracy of player network is higher than
the accuracy of FOF network, which would be in turn
higher than the accuracy of other network, since the play-
ers have more knowledge about their friends. We in-
vestigated the whole process of the game to answer the
question why the accuracy of player network is lower
than the accuracy of FOF network. First, we found that
most players did not watch the video tutorial that is on
the game homepage before they started the game. It
made the players start the game without the knowledge
about the game. Second, the players first played the
game for their network dataset. Therefore, the players
learned how to play the game while they were making
incorrect or correct mappings on their network dataset.
Then, they were able to play better when they played on
the FOF network or other user’s network game datasets.
To confirm our discovered cause, we also investigated
the mapping data. Figure 8(b) depicts the accuracy of
knowledgeable players who knew how to play the game
before starting the game. The knowledgeable players
provided 100% accuracy on their network, 96.5% accu-
racy on FOF network, and 95.5% accuracy on other net-
works. It shows the players’ friend relation influence on
the accuracy of mapping results. The players provided
higher accuracy on their friend profile mappings than
unknown people’s profile mappings. In summary, the

game based profile mapping approach with confirmation
provides better mapping results when compared to sim-
ple attribute mapping approaches. It is able to generate
100% accurate profile mappings with 3 or more mapping
confirmations. Friend relation knowledge influences on
the accuracy of mappings for different network types.

5.5 Irrational Player Detection Evaluation

In the initial stage of game design, we considered the
irrational players and designed prevention and detection
strategies as described in Section 5.2. To identify the
irrational players, we calculated the mapping accuracy
distribution of players as presented in Figure 9.
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Figure 9: Accuracy Distribution of Players.
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In our game period, 69 players provide over 90% map-
ping accuracy (18 players provided 100% mapping accu-
racy), and 8 players provided less than 10% mapping ac-
curacy. We classify irrational players as either passive or
active irrational players. A passive irrational player is a
player that provides a small number of mapping which is
lower than the average mapping of all the game players
(105 mappings), and has an accuracy of 20% or less. On
the other hand, an irrational player is considered active
if he provides more than the average number of map-
pings and has an accuracy of 20% or less. Based on this
classification, we discovered 12 irrational players, with 9
passive and 3 active irrational players. The passive irra-
tional players provided 14 mappings on average, which
implies that most passive irrational players did not spend
much time in playing the game and left it shortly after
their registration stage. There might be several reasons
behind the reason for their low accuracy, one possible
reason is that they did not understand the game and de-
cided to test it out by providing random mappings. Ta-
ble 1 shows a summary of the results extracted from the
3 active irrational players. The player 1 spent on average

Irrational Mapping Accuracy Average
Player Time

Player 1 130 6,15% 7.00 sec
Player 2 551 3.62% 0.55 sec
Player 3 2643 1.05% 1.65 sec

Table 1: Active Attackers

7 seconds to map each profile and provided 130 map-
pings with 6.15% accuracy and the player 2 spent 0.55
seconds to map each profile and provided 551 mappings
with 3.62% accuracy. Both players have low accuracy
but it is evident that player 2 did not review the focus
user data or the recommend user profiles instead he pre-
ferred to randomly map or skip the presented user. All
the three players did play the detection game, and all of
them provided 0% mapping and skipping accuracy for
the detection game. Therefore, all the above 3 players
were detected by the detection game strategy. Another
detection strategy was based on comparing the average
mapping time, where the average mapping time of the
players who have accuracy above 90% was 6.7 seconds.
On the other hand, the average mapping time for the ir-
rational players was 3 seconds. This implies that rational
players spend about twice the time to map profiles when
compared to irrational players. Moreover, most mapping
results from the irrational players did not get a confirma-
tion, and they were not in the top 10 players.

6 Related Work

Mapping users account across social networks is an im-
portant task that will allow users and third party appli-
cations to interact across social networks. In this paper,
we divided our literature review to the following areas:
attribute matching, graph matching, and human compu-
tation using games.

Without a common identity management system be-
tween different sites, attribute matching techniques are
used to detect the same user in different sites by uti-
lizing user’s information. Wang et al. [35] proposed a
record comparison algorithm that detects deceptive crim-
inal identities using four personal attributes: name, date
of birth, social security number and address. It calcu-
lates the overall similarity score of personal attributes. If
the overall similarity score is higher than a pre-defined
threshold, two people are considered a matched people.
The authors also revealed that incomplete records with
many missing data could significantly increase the error
rate of the record comparison algorithm that is a common
limitation of many identity matching techniques using
only personal attributes. Jennifer et al. [39] showed that
combining social features with personal features could
improve the performance of criminal identity matching.
They artificially constructed incomplete datasets from a
complete datasets by randomly choosing a percentage
of person’s records and removing their data of birthday
or address values. Using this incomplete dataset with
a decision tree classification method, they found out if
the dataset had more missing values in personal iden-
tity attribute, the social contextual features significantly
increase the matching performance. This paper showed
how personal attributes and social features affect the per-
formance of the identity matching.

The graph matching problem was classified as one of
the most difficult problems. In fact, many categories of
graphs were classified as NP-compete problem in [16].
Exact subgraph matching problem, for example, where
the number of vertices in each subgraph is the same was
proven to be NP-complete by [15], however under cer-
tain constraints, where the subgraph is a tree in the big
forest graph, it was proven to be resolved in polynomial
time. In our paper, we consider the inexact subgraph
matching problem, where the number of vertices (nodes)
in each network subgraph is different, and this problem
was also proved to be NP-complete by [1]. In [23]
the other use a directed graph matching approach for
database schema matching consisting of similarity flood-
ing with a fixed point computation of similarity. In our
paper we represent the social networks with undirected
graphs.

Using human knowledge for computation while enter-
taining them is one of the increasing trends in the recent
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years. Most of the research applications of this technique
is in the image labeling problem that is described in [33],
where the authors created an image labeling game called
the ESP Game to take advantage of the powerful vision
sense and common knowledge of humans to achieve the
labeling. The ESP game is played by two players with-
out any information or link between each other but the
image being labeled, and they are asked to label objects
that are present in the image. Once the players agree
on an object that is present in the image they will be in-
troduced with another image and so on. Another good
game that used human common knowledge for seman-
tic annotation is PhotoSlap [17]. In PhotoSlap, the au-
thors based their idea on the ESP game and the popular
Snap card game, where the players flip cards contain-
ing random images, and slap each time they identify two
consecutive images of the same person. In addition, the
game supports the ob jection and trap actions to enforce
truthfulness, where the players are presented with a set of
images that they can set as traps (i.e. photos containing
similar faces/heads) at the beginning of the game. Once
a player slaps, the other players may ob ject to the truth-
fulness of the slap, which is verified by the traps defined
earlier in the game. Our idea is similar to the ESP and
PhotoSlap games in the way of using human knowledge
to map between user accounts using not only images, but
also profile attributes, such as: age, gender, first name,
last name and other attributes that might be helpful for a
human to make a mapping decision.

7 Conclusion

In this paper, we presented the Game With A Purpose
(GWAP) approach that solves the profile mapping prob-
lem. We provide two type of games: Facebook-MySpace
(FB-MS) game and Facebook-Twitter (FB-TW) game.
To detect irrational player who provide incorrect map-
ping intensionally, we also designed and applied an ir-
rational player detection strategies to our game system.
In our experiments, the proposed detection strategies de-
tected irrational players effectively. It discovers the ac-
tive irrational player spent 50% less time than rational
players for mapping and their most mapping results did
not get the agreement from other players. The evaluation
of mapping results show our proposed mapping approach
generate higher mapping accuracy (FB-MS: 27% im-
provement, FB-TW: 25% improvement) than the name
based mapping results. We also observed that users are
able to accurately map their friends, friend of friend and
other network profiles. Finally, we showed that accurate
mappings can be concluded if 3 or more rational players
agree on it. In the future, we will extend this work to
support other social networking sites, and to deploy the
game on these sites.
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1 Abstract
Platform-as-a-service (PaaS) systems, such as Google
App Engine (GAE), simplify web application develop-
ment and cloud deployment by providing developers
with complete software stacks: runtime systems and
scalable services accessible from well-defined APIs. Ex-
tant PaaS offerings are designed and specialized to sup-
port large numbers of concurrently executing web appli-
cations (multi-tier programs that encapsulate and inte-
grate business logic, user interface, and data persistence).
To enable this, PaaS systems impose a programming
model that places limits on available library support, ex-
ecution duration, data access, and data persistence. Al-
though successful and scalable for web services, such
support is not as amenable to online analytical processing
(OLAP), which have variable resource requirements and
require greater flexibility for ad-hoc query and data anal-
ysis. OLAP of web applications is key to understanding
how programs are used in live settings.
In this work, we empirically evaluate OLAP support

in the GAE public cloud, discuss its benefits, and limita-
tions. We then present an alternate approach, which com-
bines the scale of GAE with the flexibility of customiz-
able offline data analytics. To enable this, we build upon
and extend the AppScale PaaS – an open source private
cloud platform that is API-compatible with GAE. Our
approach couples GAE and AppScale to provide a hybrid
cloud that transparently shares data between public and
private platforms, and decouples public application exe-
cution from private analytics over the same datasets. Our
extensions to AppScale eliminate the restrictions GAE
imposes and integrates popular data analytic program-
ming models to provide a framework for complex ana-
lytics, testing, and debugging of live GAE applications
with low overhead and cost.

2 Introduction
Cloud computing has revolutionized how corporations
and consumers obtain compute and storage resources.

Infrastructure-as-a-service (IaaS) facilitates the rental of
virtually unlimited IT infrastructure on-demand with
high availability. Service providers, such as Amazon
AWS [1] and Rackspace [28], consolidate and share vast
resource pools across large numbers of users, who em-
ploy these resources on demand on a pay-per-use basis.
Customers provision virtual machines (VMs) via API
calls or browser portals, which they then configure, con-
nect, monitor, and manage manually according to their
software deployment needs.

Platform-as-a-service (PaaS) offerings, such as Mi-
crosoft Azure [2] and Google App Engine [16], automate
configuration, deployment, monitoring, and elasticity by
abstracting away the infrastructure through well-defined
APIs and a higher-level programming model. PaaS
providers restrict the behavior and operations (libraries,
functionality, and quota-limit execution) of hosted appli-
cations, both to simplify cloud application deployment,
and to facilitate scalable use of the platform by very large
numbers of concurrent users and applications. Google
App Engine (GAE), the system we focus on herein, cur-
rently supports over 7.5 billion page views per day across
over 500,000 active applications [15] as a result of their
platform’s design. As is the case for public IaaS systems,
public PaaS users pay only for the resources and services
they use.

A key functionality lacking from the original design
of PaaS systems is online analytics processing (OLAP).
OLAP enables application developers to model, analyze,
and identify patterns in their online web applications as
users access them. Such analysis helps developers tar-
get specific user behavior with software enhancements
(code/data optimization, improved user interfaces, bug
fixes, etc.) as well as applying said analysis for commer-
cial purposes (e.g. marketing and advertising). These
improvements and adaptations are crucial to building a
customer base, facilitating application longevity, and ul-
timately commercial success for a wide range of compa-
nies. In recognition of this need, PaaS systems are in-
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creasingly offering new services that facilitate OLAP ex-
ecution models by and for applications that execute over
them [17, 26, 3]. However, such support is still in its in-
fancy and is limited in flexibility, posing questions as to
what can be done within quota limits and how the service
connects with the online applications they analyze.
In this paper, we investigate the emerging support of

OLAP for GAE, identify its limitations, and its impact
on the cost and performance of applications in this set-
ting. We propose an alternate approach to OLAP, in the
form of a hybrid cloud consisting of a public cloud exe-
cuting the live web application or service and a remote
analytics cloud which shares application data. To en-
able this, we build upon and extend AppScale, an open
source PaaS offering that is API-compatible with GAE.
AppScale executes over a variety of infrastructures us-
ing VM-based application and component isolation. This
portability gives developers the freedom and flexibility
to explore, research, and tinker with the system level de-
tails of cloud platforms [9, 10, 22]. Our hybrid OLAP
solution provides multiple options for data transfer be-
tween the two clouds, facilitates deployment of the an-
alytics cloud over Amazon’s EC2 public cloud or an
on-premise cluster, and integrates the popular Hive dis-
tributed data warehousing technology to enable a wide
range of complex analytics applications to be performed
over live GAE datasets. By using a remote AppScale
cloud for analytics of live data, we are able to specialize
it for this execution model and avoid the quotas and re-
strictions of GAE, while maintaining the ease of use and
familiarity of the GAE platform.
In the sections that follow, we first provide background

on GAE and AppScale. We then describe the design and
implementation of our hybrid OLAP system. We follow
this with an evaluation of existing solutions for analyt-
ics, our Hive processing, and an analysis of the cost and
overhead of cross-cloud data synchronization. Finally,
we present related work and conclude.

3 Background

Google App Engine was released in 2008, with the goal
of allowing developers to run applications on Google’s
infrastructure via a fully managed and automatically
scaled system. While the first release only supported the
Python programming language, the GAE team has since
introduced support for the Java and Go languages. Ap-
plication developers can access a variety of different ser-
vices (cf., Table 1) via a set of well-defined APIs. The
API implementations in the GAE public cloud are opti-
mized for scalability, shared use, and fault tolerance. The
APIs that we focus on in this paper are the Datastore (for
data persistence), URL Fetch (for communication), and
Task Queues (for background processing).

Table 1: Google App Engine APIs.

Name Description
Datastore Schemaless object storage

Memcache Distributed caching service
Blobstore Storage of large files
Channel Long lived JavaScript connections
Images Simple image manipulation

Mail Receiving and sending email
Users Login services with Google accounts

Task Queues Background tasks
URL Fetch Resource fetching with HTTP request

XMPP XMPP-compatible messaging service

AppScale is an open source implementation of the
GAE APIs that was released in early 2009, enabling
users to run GAE applications on their local cluster or
over the Amazon EC2 public IaaS cloud. AppScale
implements the APIs in Table 1 using a combination
of open source technologies and custom software. It
provides a database-agnostic layer, which multiple dis-
parate database/datastore technologies (e.g. Cassandra,
HBase, Hypertable, MySQL cluster, and others) can plug
into [6]. It implements the Task Queue API by executing
a task on a background thread in the same application
server as the application instance that makes the request.
This support, though simple, is inherently inefficient and
not scalable, because it is neither distributed nor load-
balanced. Moreover, it does not share state between ap-
plication servers, which leads to incorrect application be-
havior when more than one application server is present.
We replace this API implementation as part of this work,
addressing this limitation.

3.1 App Engine Analytics Libraries
The Task Queue API facilitates the use of multiple, in-
dependent user-defined queues, each with a rate limit of
100 tasks per second (which can be increased in some
cases [16]) in GAE. A task consists of an application
URL, which is called by the system upon task dequeue.
A 200 HTTP response code (OK) indicates that the task
completes successfully. Other HTTP codes cause re-
enqueuing of the task for additional execution attempts.
The number of retries, a time delay, and a task name can
be optionally specified by developers as part of the task
when it is enqueued. Use of task names is important
to prevent the same task from being enqueued multiple
times (the lack of such measures can result in a task fork
bomb, in which a task is infinitely enqueued). One way
to circumvent the 10 minute time limit for a task is to
chain tasks, in which the initial task performs a portion
of the work, and enqueuing another task to resume where
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Figure 1: An example state machine in Fantasm.

it has left off. Tasks should be idempotent, or only per-
form side effects (e.g., updating shared, persistent data)
as the final operation – since any failure of a previous
statement will cause the task to be re-enqueued (poten-
tially updating shared state incorrectly).

GAE application developers are responsible for pro-
gram/task correctness when failures occur. This requires
that developers make proper use of task names and chain-
ing, and implement tasks that are idempotent. Doing
so for all but the most trivial of applications can be a
challenging undertaking for all but expert developers. To
address this limitation, there are libraries that provide a
layer of abstraction over the GAE task queue interface
and implementation. These libraries are Fantasm [14],
GAE Pipeline [26], and GAE MapReduce [17]. Each
automates naming and failure handling by saving inter-
mediate state via the Memcache and the Datastore APIs.
Fantasm, based on [18], employs a programming

model that is based on finite state machines (FSM). A
programmer describes a state machine via the YAML
markup language by identifying states, events, and ac-
tions. The initial state typically starts with a query to
the datastore, to gather input data for analysis. Fantasm
steps through the query and constructs a task for each en-
tity (datastore element) that the query processes in each
state. Optionally, there can be a fan-in state, which takes
multiple previous states and combines them via a reduc-
tion method. Figure 1 shows an example FSM. A limi-
tation of Fantasm is how it iterates through data. It does
not shard datasets, but instead, pages through a query se-
rially, leading to inefficient execution of state machines.

class WCUrl(pipeline.Pipeline):
def run(self, url):
r = urlfetch.fetch(url)
return len(r.data.split())

class Sum(pipeline.Pipeline):
def run(self, *values):
return sum(values)

class MySearchEngine(pipeline.Pipeline):
def run(self, *urls):
results = []
for u in urls:

# Do word count on each URL
results.append((yield WCUrl(u)))

yield Sum(*results) # Barrier waits

Figure 2: Code example of Pipeline parallellizing work.
The GAE Pipeline library facilitates chaining of tasks

into a workflow. Pipeline stages (tasks) yield for barrier
synchronization, at which point the output is unioned and
passed onto the next stage in the pipeline. Figure 2 shows
an example of parallel processing via Pipeline that counts
the number of unique words on multiple web pages. The
yield operator spawns background tasks, whose results
are combined and passed to the Sum operation. Imple-
menting similar code via just the Task Queue API is pos-
sible, but is more complicated for users.
The GAE MapReduce library performs parallel pro-

cessing and reductions across datasets. Mapper functions
operate on a particular kind of entity and reducer func-
tions operate on the output of mappers. Alternative input
readers (e.g. for use of Blobstore files) and sharding sup-
port is also available. The GAE MapReduce library uses
the Task Queue API for its implementation, as opposed
to using Google’s internal MapReduce infrastructure or
Hadoop, an open source implementation. Both are more
flexible than GAE MapReduce, and allow for a wider
range of analytics processing than this library. Currently,
a key limitation of GAE MapReduce is that all entities in
the Datastore are processed, even when they are not of
interest to the analysis.

Each of these abstractions for background processing
and data analytics in GAE introduce a new programming
model with its own learning curve. Moreover, analytics
processing on the dataset is intertwined with the applica-
tion, (that users use to produce/access the dataset) which
combines concerns, can introduce bugs, and can have ad-
verse affects on programmer productivity, user experi-
ence, and monetary cost of public cloud use. To address
these limitations, we investigate an alternate approach to
performing online data analytics for applications execut-
ing within GAE that employs a combination of GAE and
AppScale concurrently.
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4 Hybrid PaaS Support for Web Applica-
tion Data Analysis

In this work, we investigate how to combine two PaaS
systems together into a hybrid cloud platform that fa-
cilitates the simple and efficient execution of large-scale
analysis of live web application data. Our hybrid model
executes the web application on the GAE public cloud
platform, synchronizes the data between this applica-
tion/platform and a remote AppScale cloud, and facili-
tates analysis of the live application data using the GAE
analytics libraries, as well as other popular data process-
ing engines (e.g. Hadoop/Hive) using AppScale. Users
can deploy AppScale on a local, on-premise cluster, or
over Amazon EC2. In this section, we overview the two
primary components of our hybrid cloud system: the data
synchronization support and the analytics processing en-
gine. We then discuss our design decisions and how our
solution works within the restrictions of the GAE plat-
form.

4.1 Cross-Cloud Data Synchronization
The key to our approach to analytics of live web applica-
tions is the combined use of GAE and AppScale. Since
the two cloud platforms share a common API, applica-
tions that execute on one can also do so on the other,
without modification. This portability also extends to
the data model. That is, given the compatibility between
AppScale and GAE, we can move data between the two
different platforms for the same application. We note
that for vast datasets such an approach may not be feasi-
ble. However, it is feasible for a large number of GAE
applications today. The cross-platform portability facil-
itates and simplifies our data synchronization support,
and makes it easier for developers to write application
and analytics code, because the runtime, APIs, and code
deployment process is similar and familiar.
We consider two approaches to data synchronization:

bulk and incremental data transfer. For bulk transfer,
GAE currently provides tools as part of its software de-
velopment kit (SDK) to upload and download data into
and out of the GAE datastore en masse. We have ex-
tended AppScale with similar functionality. Our ex-
tensions provide the necessary authentication and data
ingress/egress support, as well as support for the GAE
Remote API [16], which enables remote access to an ap-
plication’s data in the datastore. The latter must be em-
ployed by any application for which hybrid analytics will
be used. Using the Remote API, a developer can specify
what data can be downloaded (the default is all). Bulk
download from, and upload to, is subject to GAE mone-
tary charges for public cloud use.

There are several limitations to bulk data transfer as a

mechanism for data synchronization between the two ap-
plication instances. First, in its current incarnation, trans-
fer is all or nothing (of the entities specified). As such,
we are able to only perform analytics off-line or post-
mortem if we are to copy the dataset once (the most in-
expensive approach). To perform analytics concurrently
with web application execution, we are forced to down-
load the same data repeatedly over time (as the appli-
cation changes it). This can be both costly and slow. Fi-
nally, the data upload/download tools from GAE are slow
and error prone, with frequent interruptions and data loss.

To address these limitations, we investigate an alter-
native approach to synchronizing data between GAE and
AppScale: incremental data transfer. To enable this, we
have developed a library for GAE applications that runs
transparently in both GAE and AppScale. Our incre-
mental data transfer library intercepts all destructive op-
erations (writes and deletes) and communicates them to
the AppScale analytics cloud. In our current prototype,
we do not support the limited form of transactions that
GAE applications can perform [13]. As part of our on-
going and future work, we are considering how to re-
flect committed transactional updates in the AppScale
analytics cloud. Developers specify the location of the
AppScale analytics cloud as part of their GAE applica-
tion configuration file. Since the library code executes as
part of the application in GAE, it must adhere to all of
the GAE platform restrictions. Furthermore, communi-
cation to the AppScale analytics cloud is subject to GAE
charges for public cloud use.

Our goal with this library is to avoid interruption or
impact on GAE web application performance and scale,
from the users’ perspective. We consider two forms of
synchronization with different consistency guarantees:
eventual consistency (EC) and best effort (BE). EC in-
cremental transfer uses the Task Queue API to update
the AppScale analytics cloud. Using this approach, the
library enqueues a background task in GAE upon each
destructive datastore operation. The task then uses the
URL Fetch library to synchronously transmit the updated
entity. In GAE, tasks are retried until they complete with-
out error. Thus, GAE and AppScale data replicas for the
application are eventually consistent, assuming that both
the GAE and AppScale platforms are available.

Our second approach, best effort (BE), for incremen-
tal transfer implements an asynchronous URL Fetch call
to the AppScale analytics cloud for the application upon
each destructive update. If this call fails, the GAE and
AppScale replicas will be inconsistent until the next time
the same entity is updated. The BE approach can im-
plement potentially fewer transfers since failed transfers
are not retried. This may impact the cost of hybrid cloud
analytics using our system. BE is useful for settings in
which perfect consistency is not needed.
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To maintain causal ordering across updates we employ
a logical clock (a Lamport clock [23]), ensuring that only
the latest value is reflected in the replicated dataset for
each entity. Using this approach, it is possible that at
any single point in time there may be an update missing
(still in flight due to retries in EC or failed in BE) in the
replicated dataset. We transmit entity updates as Protocol
Buffers, the GAE transfer format of Datastore entities.

4.2 Analytics Processing Engine within
AppScale

We next consider different implementations of the App-
Scale analytics processing engine. We first extend App-
Scale to support each of the three analytics libraries
that GAE supports, described in Section 3.1. We
start by replacing the TaskQueue API implementation
in AppScale, from a simple, imbalanced approach, to
a new software layer, similar to that for the Datastore
API implementation and transaction support [9], that is
implementation-agnostic and allows different task queue
implementations to be plugged in and experimented
with.
The GAE Task Queue API includes the functions:

AddTask(name, url, parameters)
DeleteTask(name)
PurgeQueue()

We emulate the GAE behavior of this API (that we in-
fer using the GAE SDK and by observing the behavior
of GAE applications) in our task queue software layer
within AppScale. Each task that is added to the queue
specifies a url that is a valid path (URL route) defined in
the application, to which a POST request can be made
using the parameters. The name argument ensures that
a task is only enqueued once given a unique identifier.
If a name is not supplied, a unique name is assigned to
it. The PurgeQueue operation will remove all tasks from
a queue, resetting it to an initial, empty state, whereas
DeleteTask will remove a named task if it is still en-
queued. Task execution code is within the application
itself (a relative path), or can be a fully remote location (a
full path). Successful execution of a task is indicated by
a HTTP 200 response code. The task queue implemen-
tation retries failed tasks up to a configurable number of
times, defaulting to ten attempts.

The AppScale Task Queue interface for plugging in
new messaging systems is as follows: This API includes
the functions:

EnqueueTask(app_name, url, parameters)
LocateTask(app_name, task_name)
AddTask(app_name, task_name)
AckTask(app_name, task_name, reenqueue)
PurgeQueue(app_name)

The AddTask function stores the given task name and
state in the system-wide datastore. Possible task states
are ‘running’, ‘completed’, or ‘failed’, and states can be
retrieved via LocateTask). AckTask tells the messaging
system whether the task should be re-enqueued, and if
it should be, the messaging system increments the retry
count associated with that task. Each function requires
the application name because AppScale supports mul-
tiple applications per cloud deployment, isolating such
communications.

Figure 3: Overview of RabbitMQ implementation in
AppScale.

Using the AppScale task queue software layer, we
plug-in the VMWare RabbitMQ [27] technology and im-
plement support for each of the GAE analytics libraries
(GAE MapReduce, GAE Pipeline, and Fantasm) de-
scribed in Section 3.1 on top of the Task Queue API. We
have chosen to integrate RabbitMQ due to its widespread
use and multiple useful features within a distributed
task queue implementation, including clustering, high
availability, durability, and elasticity. Figure 3 shows
the software architecture of RabbitMQ as a task queue
within AppScale (two nodes run a given application in
this figure). Each AppScale node that runs the appli-
cation (load-balanced application servers) runs a Rab-
bitMQ server. Each application server has a client that
can enqueue tasks or listen for assigned tasks (a call-
back thread) to or from the RabbitMQ server. We store
metadata about each task (name, state, etc.) in the sys-
tem in the cloud datastore. A worker thread consumes
tasks from the server. Upon doing so, it issues a POST
request to its localhost or full path/route (if specified),
which gets load-balanced across application servers run-
ning on the nodes. Tasks are distributed to workers in
a round-robin basis, and are retried upon failure. Rab-
bitMQ re-enqueues failed tasks and is fault tolerant.
In addition to the Task Queue, MapReduce, Pipeline,

and Fantasm APIs, we also consider a processing engine
that is popular for large-scale data analytics yet that is
not available in GAE. This processing engine employs a
combination ofMapReduce [12] (not to be confusedwith
GAEMapReduce, which exports different semantics and
behavioral restrictions) and a query processing engine
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that maps SQL statements to a workflow of MapReduce
operations. In this work, we employ Hadoop, an open
source implementation of a fully featured MapReduce
system, and Hive [29, 25, 20], an open source query pro-
cessing engine, similar in spirit to Pig and Sawzall. This
processing engine (Hive/Hadoop) provides users with
ad-hoc data querying capabilities that are processed us-
ing Hadoop, without requiring any knowledge about how
to write or chain MapReduce jobs. Moreover, using this
AppScale service, users can operate on data using the fa-
miliar syntax of SQL and perform large-scale, complex
data queries using Hadoop.

AppScale integrates multiple datastore technologies,
including Cassandra, Hypertable, and HBase [6, 7].
All of these datastores are distributed, scalable, fault-
tolerant, and provide column-oriented storage. Each
datastore provides a limited query language, with capa-
bilities similar to the GAE Datastore access model: en-
tities, stored as Protocol Buffers, are accessed via keys
and key ranges. We focus on the currently best perform-
ing datastore in this work, Cassandra [9].
Our extensions swap out the Hadoop File Sys-

tem (HDFS) in AppScale and replace it with Cassan-
draFS [5], an HDFS-compatible storage layer, that inter-
operates directly with Cassandra, with the added benefit
of having no single points of failure within its NameN-
ode process. Above CassandraFS, we deploy Hadoop;
above Hadoop, we deploy Hive. Developers can issue
Hive queries from the command line, a script issued on
any AppScale DB node [22], or via their applications
through a library, similar to the GAEMapReduce library
implementation in AppScale.
To enable this, we modified the datastore layout of

entities in the AppScale datastore. Previously, we em-
ployed a single column-family (table) for all kinds of
entities in an applications dataset. We shared tables
across multiple applications and we isolated datasets us-
ing namespaces prepended to the key names. In this
work, we store column-families for each kind of entity.
The serialization and deserialization between Hadoop,
CassandraFS, and Cassandra happens through a custom
interface, which enables Hadoop mappers and reducers
to read and write data from Cassandra. We extended
the AppScale Datastore API with a layer that translates
entities to/from Protocol Buffers. Our extensions elimi-
nate the extract-transform-load step of query processing
so that entities can be processed in place.
This support enables Hive queries to run SQL state-

ments which are partitioned into multiple mapper and
reducer phases. Hive compiles SQL statements into a se-
ries of connected map and reduce jobs. Analysts can per-
form queries that are automatically translated to mappers
and reducers, rather than manually writing these func-
tions and chaining them together. Take for example the

us-east-1 Northern Virginia, USA
eu-west-1 Dublin, Ireland
ap-southeast-1 Singapore
ap-northeast-1 Tokyo, Japan
sa-east-1 Sao Paulo, Brazil
us-west-1 Oregon, USA
us-west-2 California, USA

Table 2: EC2 Regions for Amazon Web Services.

task of getting the total count of entities of a certain kind.
A Hive query is as simple as:

SELECT COUNT(*) FROM appid_kind;

To to the same thing in GAE, the entities are paged
through and a counter incremented. Note that the Google
Query Language for GAE applications limits the num-
ber of entities in a single fetch operation to 1000. If
the dataset is large enough, then the developer must use
a background task or manually implement task queue
chaining. Another alternative approach is to use sharded
counters to keep a live count; multiple counter entities
are required if the increment must happen at a rate faster
than once per second. Both methods are foreign to many
developers and are far more complex and non-intuitive
than simple SQL Hive statements.

5 Evaluation

In this section, we evaluate multiple components of our
hybrid web application and analytics system. We first
start with an evaluation of the cross-cloud connectivity
within a hybrid cloud deployment. For this, we ana-
lyze the round-trip time (RTT) between a deployed GAE
application in Google datacenters and virtual machines
deployed globally across multiple regions and availabil-
ity zones of Amazon EC2. We next evaluate the per-
formance of the GAE libraries for analytics using the
GAE public cloud. We then evaluate the efficacy of our
extensions to the AppScale TaskQueue implementation.
Lastly, we show the efficiency of using the AppScale an-
alytic solution running Hive over Cassandra.

5.1 Cross Cloud Data Transfer
To evaluate the performance of cross-cloud data synchro-
nization between GAE and AppScale, we must first un-
derstand the connectivity rate between them for incre-
mental data transfer (cf Section 4.1). To measure this, we
deploy an application in the GAE public cloud that we
access remotely from multiple Amazon EC2 micro in-
stances in 16 different availability zones, spanning seven
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Figure 4: Experimental Setup for Measuring Round-trip
Time and Bandwidth Between a GAE Application and
VMs in Multiple EC2 Regions.

Figure 5: Round-trip Time Per Different Packet Size.

regions. Figure 2 shows the regions we consider, and
Figure 4 depicts our experimental setup.
Our experiment issues a HTTP POST request from the

EC2 instances, each with a data payload of a particular
size, a destination URL location, a unique identifier, and
the type of hybrid data synchronization to employ: even-
tually consistent (EC) or best effort (BE). The sizes we
consider are 1KB, 10KB, 100KB, and 1MB (the max-
imum allowed for GAE’s Datastore API). The EC2 in-
stances host a web server, which receives the data from
the GAE application (either from a task via EC or from
the application itself via BE) and records the current time
and request identifier. Figure 5 shows the average RTT
for different packet sizes, for each availability zone. The
data indicates that it is advantageous to batch updates
when possible since there is not a linear relationship be-
tween size and RTT, as sizes grow.
We next consider whether the geographical location

of the AppScale cloud (different EC2 regions) makes
a significant difference in the communication overhead
on data synchronization. To evaluate this, we consider
the average round-trip time (RTT) and bandwidth across
payload sizes to the GAE application for the different
regions (Figure 6). The US East region had the RTT

Figure 6: Round-trip Time and Bandwidth Between a
GAE Application and Different EC2 Regions.

with the highest bandwidth, by a factor of two. Both
US regions have the next best performing communica-
tion behavior. This data suggests that our GAE appli-
cation is hosted (geographically) in GAE in the Eastern
US. Locality to the application shows more than 2x the
bandwidth for the US East availability zone than other
zones (130KB versus 50KB to 80KB for other zones).
We investigated this further and found via traceroutes
and pings that the application was located near or around
New York. We also found with this experiment that
bandwidth over time is generally steady, with the excep-
tion of between the hours of 16:00 and 22:00 (figure not
shown). It may be possible to take advantage of such
information to place the AppScale cloud to enable more
efficient data synchronization.
We next investigated the task queue delay in GAE. We

are interested in whether the delay changes over time or
remains relatively consistent. We present this data in Fig-
ure 7, as points at each hour in the day (normalized to
Eastern Standard Time) that we connect using lines to
help visualize the trends. The left x-axis is RTT in sec-
onds for the region, and the right x-axis is the average
queue delay (in seconds) for the region. Queue delays do
vary but this variance (impact on RTT) is most percepti-
ble during the early evening hours in all regions.
Finally, we compare our two methods for synchroniza-

tion: EC and BE. EC uses a combination of the Task
Queue API and synchronous URLFetch API; the use of
the former ensures that all failed tasks are retried until
they are successful. BE uses asynchronous URLFetch
for all destructive updates and does not retry upon fail-
ures.
We ran the experiment for seven days and sent a to-

tal of 1195288 requests. Out of the 597644 packets
(half of the total packets) sent via the TaskQueue op-
tion, 11679 were duplicates (unnecessary transfers). The
asynchronous URLFetch experienced 10 duplicate pack-
ets suggesting the URLFetch API will retry in some
cases from within the lower layers of the API implemen-
tation as needed. We experienced no update loss using
EC and 5 updates lost for BE.

7



46 WebApps ’12: 3rd USENIX Conference on Web Application Development USENIX Association

Figure 7: Round-trip time from multiple regions to a deployed GAE application with task queue delay.

5.2 Benchmarks
We next consider the performance of five different and
popular analytics benchmarks: wordcount, join, grep,
aggregate, and subset aggregate. Wordcount counts the
number of times a unique word appears. Join takes two
separate tables and combines them based on a shared
field. Grep searches for a unique string for a particu-
lar substring. Aggregate gives the summation of a field
across a kind of entity, while subset aggregate does the
same, but for a portion of the entire dataset (one percent
for this benchmark). We implemented each benchmark
using the Fantasm, Pipeline, and MapReduce GAE li-
braries, as well as a Hive query.

5.3 Google App Engine Analytics
For the experiments in this section, we execute each
benchmark five times and present the average execution
time and standard deviation. We use the automatic GAE
scaling thresholds, and had billing enabled. We consid-
ered experiments with 100, 1000, 10000, and 100000 en-
tities in the datastore. We attempted even higher numbers
of entities, but the running time for each trial became in-
feasible to get complete results.
The tables in 3 shows the results for all of the bench-

marks. The Fantasm implementation shows a large la-
tency for a significant numbers of entities, and compared
to Pipeline, is 6X to 30X slower. This is due to the fact
that Fantasm’s execution model has a task for each en-
tity, so it must do paging through the query1. Pipeline,
by comparison, retrieves a maximum of 1000 entities at

1The Fantasm library, since the writing of this paper, has added the
ability to do batch fetches for better performance.

a time from the datastore, reducing the amount of time
spent querying the database. Pipeline does not see much
latency increases from 100 to 1000 entities, because both
require only a single fetch from the datastore, and the dif-
ference lays in the summation. MapReduce also deals in
batches, but the size of the batch depends on the number
of shards. When the number of entities went from 100 to
1000 for MapReduce, the growth in latency was over 5X
because the number of shards was one. 10000 entities,
on the other hand, had 10 shards, and therefore did more
work in parallel, seeing an increase in less than half the
time. Pipeline has an advantage because of its ability to
combine multiple entity values before doing a transac-
tional update to the datastore, whereas both MapReduce
and Fantasm are incrementing the datastore transaction-
ally for each entity. For the implementation, the counter
was sharded to ensure that there was high write through-
put for increments.

Pipeline shows less overhead for Grep as compared
to Aggregate (100-1000) because it uses half as many
Pipeline stages. In the aggregate Pipeline implementa-
tion, there was an initial Pipeline which does the query
fetches to the datastore, and another for incrementing the
datastore in parallel after combining values. Grep, by
comparison, does not need require combining or trans-
actional updates, as required for the counter update in
aggregate. Counter updates require reading the current
value, incrementing it, and storing it back. Aggregate
vs Grep MapReduce has a similar behavior to Pipeline
because each mapper does not require transactional up-
dates.

The Join benchmark combines two different entity
kinds to create a new table. The Join results show sim-
ilar trends as Aggregate and Grep. During the exper-
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100 1000 10000 100000
Fantasm 13.80± 1.61 110.29 ± 4.70 1148.24± 86.20 11334.59± 1047.57
Pipeline 2.46 ± 0.86 3.05 ± 0.32 11.08± 0.50 98.34 ± 3.82
MapReduce 9.34 ± 0.35 57.36 ± 8.96 104.56± 17.83 377.70± 63.35

Aggregate

100 1000 10000 100000
Fantasm 10.85± 0.77 121.21± 21.07 1819.86± 1175.19 10360.40± 396.56
Pipeline 2.40 ± 1.26 2.663 ± 0.51 9.77 ± 0.72 98.89± 13.76
MapReduce 2.73 ± 0.30 4.56 ± 0.09 24.05 ± 0.30 227.57± 20.76

Grep

100 1000 10000 100000
Fantasm 10.71 ± 1.22 109.83± 4.90 977.23± 80.34 10147.75± 1106.15
Pipeline 4.54 ± 2.34 14.48 ± 5.22 44.11± 12.57 159.96± 73.30
MapReduce 6.28 ± 1.43 40.18 ± 1.66 66.76± 10.92 256.40± 11.16

Join

100 1000 10000 100000
Fantasm 0.58 ± 0.30 3.54 ± 0.28 16.95± 1.34 78.28± 10.62
Pipeline 1.97 ± 0.05 2.04 ± 0.20 2.01 ± 0.09 3.81 ± 1.60
MapReduce 2.67 ± 0.24 5.42 ± 0.45 27.66± 1.74 237.75± 12.00

Subset

100 1000 10000 100000
Fantasm 12.22± 3.20 105.82 ± 8.45 1022.96± 72.85 10977.50± 1258.76
Pipeline 3.63 ± 0.74 4.97 ± 0.92 25.89± 8.92 222.14± 9.02
MapReduce 6.40 ± 0.96 42.70 ± 0.72 134.88± 9.59 840.71± 125.15

Wordcount

Table 3: Execution time in seconds for the benchmarks in GAE.

Figure 8: An identical benchmark run three times show-
ing variability in run time.

iments for Join, we experienced high variability in the
performance of both the Pipeline and Fantasm libraries.
Figure 8 shows a snapshot of three separate trials for
Fantasm, in which noticeable differences in processing
times occur. Multitenacy could be a primary reason for
the fluctuations, yet the exact reasons are unknown and
requires further study.

The Subset benchmarks queries a Subset of the entities
rather than the entire dataset. Here we see that Fantasm

does well, as this scenario was the primary reason for
developing the library according to its developers [14].
Pipeline performs best, once again, because of its ability
to batch the separate entities, and to not require separate
web requests to process individual entities as Fantasm
does. MapReduce suffers the most because it must map
the entire dataset even though only a Subset is of interest.
For wordcount, MapReduce experiences its largest in-

crease from 10000 to 100000 in this benchmark, which
was due to several retries because of transaction colli-
sions. The optimistic transaction support in GAE allows
for transactions to rollback if a newer transaction begins
before the previous one finishes. This is ideal for very
large scale deployments, where failures can happen and
locks could be left behind to be cleaned up after a timeout
has occurred. Yet it is also possible to bring the through-
put of a single entity to zero if there is too much con-
tention. The performance of the wordcount benchmark
can be improved by using sharded counters per word as
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opposed to the simple non-shared counter per word in
our implementation. Built-in backoff mechanisms in the
MapReduce library alleviates the initial contention, al-
lowing the job to complete.

5.4 AppScale Library Support
We next investigate the use of the GAE analytics libraries
over AppScale using the original Task Queue implemen-
tation in the GAE software development kit (SDK) and
our new implementation based on the RabbitMQ (RMQ)
distributed messaging system. We present only Pipeline
results here for brevity (the relative differences between
GAE and AppScale are similar). Table 4 shows the av-
erage time in seconds for the GAE applications execut-
ing over a 3 node Xen VM AppScale deployment. Each
VM had 7.5GBs of RAM and 4 cores, each clocked at
2.7GHz. Note, that for the GAE numbers, we do not
know the number of nodes/instances or the capability of
the underlying physical machines employed.
The left portion of the table shows the RMQ execu-

tion time in seconds for each message size. The right
portion of the table shows the SDK execution time in
seconds for each message size. The SDK implementa-
tion enqueues the tasks as a thread locally rather than
spreading out load between nodes. In addition, the SDK
spawns a thread for each task which posts its request to
the localhost. Tasks which originate from the local host
will never be run on another node. RabbitMQ, on the
other hand, spreads load between nodes, preventing any
single node from performing all tasks. We are unable
to run the 100K jobs using the SDK because the job fails
each time from a lack of fault tolerance. If for any reason
the node which enqueues the task fails, that task is lost
and not rerun again. RabbitMQ, however, will assign a
new client to handle the message, continuing on in the
face of client failures. For larger sized datasets we also
see a speedup because of the load distribution of tasks.

5.5 AppScale Hive Analytics
We next investigate the execution time of the GAE
benchmarks using the Hive/Hadoop system. Figure 5
presents the execution time for the previous benchmarks
using the Hive query language on a AppScale Cassan-
dra deployment. There was no discernible difference
between the sizes of the datasets, but rather the num-
ber of stages, where grep only needed a single map-
per phase, while the rest had both mapper and reducer
phases. While slower for smaller sizes than the GAE li-
brary solutions, the Hive solution is consistently faster
when dealing with larger quantities of entities (although
it has the same issue as the MapReduce library when
dealing with data subsets).

The Hive/Hadoop system in AppScale introduces a
constant startup overhead for each phase (map or reduce)
of approximately 10s. This overhead is the dominant fac-
tor in the performance. Once the startup has occurred,
each benchmark completes very quickly. The numbers
in the table include this overhead. Each of the bench-
marks use a single mapper and reducer phase except for
Grep. Our approach is significantly more efficient (en-
abling much larger and more complex queries) than per-
forming analytics using GAE. Moreover, our approach
significantly simplifies analytics program development.
Each of our GAE benchmarks requires approximately
100 lines each to implement their functionality. Using
our system, a developer can implement each of these
benchmarks using a single line with fewer than 50 char-
acters.

5.6 Monetary Cost
The cost of transferring data in GAE is dependent on two
primary metrics: bandwidth out which is billed at .12
USD per gigabyte, and frontend instances, at .08 USD
per hour. For low traffic applications, these costs can be
covered by the free quota. For higher traffic, it is pos-
sible to adjust two metrics to keep cost down; the first
is the maximum amount of time waiting before a new
application server is started (where it will be billed for
a minimum of 15 minutes), and the second is the num-
ber of idle instances that can exist (lowers latency to new
requests in exchange for higher frontend cost).
We can compress data and work in batches to lower

the bandwidth cost, seeing as how the additional latency
for sending updates is between 4 and 7 seconds on av-
erage for the largest possible entity of 1MB. The com-
pression execution time is added to frontend hour cost,
and the level of compression is very dependent on the
application’s data (images, for example, may already be
highly compressed). The average daily cost of the data
transfer was 12.41 USD for frontend hours, 1.03 USD
for datastore storage (went up over time), 2.55 USD for
bandwidth, and 15.63 USD for datastore access. As fu-
ture work, we are leveraging our findings to improve our
datastore wrapper to minimize cost while still maintain-
ing low latency overhead.
The cost for on-site analytics such as Fantasm and

Pipeline is based on datastore access, both for reading
the data which is needed for operation, and metadata for
tracking the current progress of a job. The other cost as-
sociated is the frontend instance hours. The cost for run-
ning Pipeline for wordcount on 100000 entities was 0.34
USD (not accounting for the free quota), where 0.056
USDwas frontend hours, 0.13USDwas datastore writes,
and 0.154 USD on datastore reads. The cost of datastore
writes is highly dependent on the number of indexed en-
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100 RMQ 1000 RMQ 10000 RMQ 100000 RMQ 100 SDK 1000 SDK 10000 SDK
Aggregate 3.02 5.72 183.93 610.12 3.77 6.14 N/A
Grep 5.37 16.90 205.53 862.36 6.11 28.88 260.03
Join 2.72 5.16 165.03 455.31 3.78 5.90 305.82
Subset 2.45 3.12 12.61 786.53 2.55 3.20 12.11
Wordcount 7.41 11.43 311.52 635.28 8.38 17.40 411.12

Table 4: Execution time in seconds for benchmarks using the Pipeline library on AppScale with RabbitMQ (RMQ)
and the SDK implementation.

100 1000 10000 100000
Aggregate 20.59 ± 1.41 21.14 ± 0.55 20.30 ± 0.88 20.94± 0.59
Grep 11.90 ± 1.32 11.00 ± 0.58 11.17 ± 1.30 10.69± 0.44
Join 20.52 ± 1.01 20.71 ± 0.84 20.43 ± 0.57 23.41± 0.64
Subset 19.93 ± 0.54 20.07 ± 1.34 20.26 ± 0.86 20.66± 0.45
Wordcount 21.73 ± 1.50 22.13 ± 1.51 22.19 ± 0.96 21.54± 0.95

Table 5: Execution time in seconds for benchmarks using Hive.

tities, and therefore if the entities have more properties,
the writes can multiply quickly as would cost (each index
write counts as a datastore write). In general, it is diffi-
cult to predict the cost of GAE analytics. Our approach
allows developers to perform analytics repeatedly with-
out being charged at the cost of data transfer.

Our other option for downloading the data is via bulk
transfer using tools provided by the SDK. We investi-
gated the use of such tools but we ran into difficulties
where exceptions arose and the connection would drop.
Multiple attempts were needed, driving cost up as much
to 5 to 6 times the cost of a daily experimental run (from
15 USD to 86 USD) before being able to complete a
full download of the data. It took 9520 seconds on av-
erage for the three successful downloads of a dataset of
202MB. This option is clearly not acceptable for hybrid
analytic clouds.

6 Related Work

OLAP and data warehousing systems have been around
since the 1970s [8], yet there is no system available for
GAE which is currently focused providing OLAP for ex-
ecuting web applications. AppScale, with its API com-
patibility and our extensions herein, brings OLAP capa-
bilities (as well as its testing and debugging) to this do-
main.

TyphoonAE is the only other framework which is ca-
pable of running GAE applications outside of GAE. Ty-
phoonAE however is a more efficient version of the
SDK (executes the system serially) and only supports
the Python language. AppScale and our work supports

Python, Java, and Go languages and is distributed and
scalable. TyphoonAE does not have the same facility as
AppScale to run analytics, as it does not support data-
stores capable of Hive support. Private PaaS offerings
such as Cloud Foundry [11] offer an open source alter-
native to many proprietary products and offer automatic
deployment and scaling of applications, yet do not sup-
port GAE APIs.

There are many cloud platforms which allows for an-
alytics to be run on large scale datasets. Amazon’s Elas-
tic MapReduce is one such service, where machines are
automatically setup to run jobs, along with customized
interfaces for tracking jobs [24]. The Mesos framework
is another cloud platform which can run a variety of pro-
cessing tools such as Hadoop and MPI, and does so with
a dynamically shared set of nodes [19]. Helios is yet an-
other framework that simplifies the application deploy-
ment process.
In [21], the authors measured data-intensive appli-

cations in multiple clouds including GAE, AWS, and
Azure. Their application was a variant of the TPC-W
benchmark, similar to an online bookstore. Our bench-
marks, by comparison, are analytics driven rather than
online processing. Furthermore, since the time of publi-
cation Google–as well as the other cloud providers–have
continuously improved functionality and added features.
Our work provides a new snapshot in time of the cur-
rent system, which has since come out of preview and
become a fully supported service.
Data replication across datacenters is a common

method for prevention of data loss and to enable disaster
recovery if needed. Currently GAE implements three-
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plus times replication across datacenters using a vari-
ant of the Paxos algorithm [4]. Extant solutions, such
as [30], however, are not applicable because of the re-
strictions imposed by the GAE runtime. To overcome
this limitation, we provide a library wrapper around de-
structive datastore operations, to asynchronously update
our remote AppScale analytic platform. As part of fu-
ture work, we are investigating how to provide disaster
recovery using our hybrid system.

7 Conclusion

Cloud computing has seen tremendous growth and wide
spread use recently. With such growth comes the need to
innovate new methods and techniques for which extant
solutions do not exist. Online analytics processing sys-
tems are such an offering for Google App Engine, where
current technology has focused on web application exe-
cution at scale and with isolation, and existing solutions
have operated within the restrictions imposed.
In this paper we have described, implemented, and

evaluated two systems for running analytics on GAE ap-
plication, running current libraries in AppScale through
the implementation of a distributed task queue, and the
ability to run SQL statements on cross-cloud replicated
data. Future work will carry forward our findings to opti-
mize cross-cloud data synchronization as well apply our
system to another use case: disaster recovery.
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Abstract 

 
Typical social networking functionalities such as feed following are known to be hard to scale. Different from the 
popular approach that sacrifices consistency for scalability, in this paper we describe, implement, and evaluate a 
method that can simultaneously achieve scalability and consistency in feed following applications built on shared-
nothing distributed systems. Timing and client-side processing are the keys to this approach. Assuming global time 
is available at all the clients and servers, the distributed servers publish a pre-agreed upon schedule based on which 
the continuously committed updates are periodically released for read. This opens up opportunities for caching and 
client-side processing, and leads to scalability improvements. This approach trades freshness for scalability. 

Following this approach, we build a twitter-style feed following application and evaluate it on a following network 
with about 200,000 users under synthetic workloads. The resulting system exhibits linear scalability in our experi-
ment. With 6 low-end cloud instances costing a total of no more than $1.2 per hour, we recorded a peak timeline 
query rate at about 10 million requests per day, under a fixed update rate of 1.6 million new tweets per day. The 
maximum staleness of the responses is 5 seconds. The performance achieved sufficiently verifies the feasibility of 
this approach, and provides an alternative to build small to medium size social networking applications on the cheap. 

 
1. Introduction 

Scalability has emerged as a significant challenge for 
the social networking web applications. If built with the 
traditional web application framework, even a small 
social network can be easily strained by a modest level 
of user interaction. The performance bottleneck usually 
locates at the back-end persistent data store, which is 
typically a relational database. Following the examples 
of Twitter and Facebook, many social networking web 
sites start to migrate their relational databases to various 
key-value stores, collectively branded as being 
"NoSQL". This approach indeed can scale to a larger 
workload, but always at the expense of a deliberate void 
of the consistency guarantee. 

What does consistency mean and entail in this context? 
Since many NoSQL advocates cite the Brewer’s Con-
jecture [8], also known as the CAP theorem, as the the-
oretical foundation to justify this trade-off, we naturally 
adopt the consistency definition used in its formal proof 
[18]. Used elsewhere, this type of consistency is also 
known as Atomicity [23], Linearizability [20], or One-
copy Serializability (1SR) [6]. This is different from the 
consistency as referred in the ACID properties of the 

database. To avoid further ambiguity, in this paper we 
regularly use the abbreviation 1SR to denote such con-
sistency, and unless noted otherwise, consistency al-
ways refers to 1SR in this paper. 

1SR provides the clients of a distributed system with an 
equivalent single processor view that allows them to 
reason the system behavior regardless of how many 
distributed servers are used to run the service, how geo-
graphically far apart they are from each other and from 
the clients, and how they are synchronized. Without 
1SR, the distributed system may exhibit odd behaviors 
that confuse the users. We therefore are interested in 
exploring the possibility of scaling the social network-
ing functionalities, especially the feed following appli-
cations, without violating 1SR. 

Given the formal CAP theorem proof this may seem 
impossible. But the proof itself is strictly precondi-
tioned on the asynchronous network model, where the 
only way to coordinate the distributed nodes is to pass 
messages across the network. Practical distributed sys-
tems usually have more tools in hand, and one of the 
tools is a reasonably synchronized and approximated 
global time. Indeed, the authors of the CAP theorem 
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proof used the second half of their paper to show that 
under a partially synchronous, or timing-based, distrib-
uted model [24], where global time is assumed to be 
available, CAP may indeed be simultaneously achieva-
ble most of the time, although in return we may have to 
give up some freshness, but not necessarily the latency. 

Unfortunately, this aspect of the CAP has not attracted 
sufficient attention from the industry nor from academ-
ic researchers. As early as 2008, Roy Fielding proposed 
a RESTful approach [15], which is distinctively timing-
based, for the known hard-to-scale feed following prob-
lem. But we are not aware of many real-world social 
networking web applications that are built this way, and 
to the best of our knowledge, no empirical or experi-
mental data are publicly available to verify its scalabil-
ity properties. 

In this paper we take Roy Fielding’s proposal as a start-
ing point, extrapolate it to shared-nothing distributed 
systems, and fine-tune its timing method for replication 
control. We then provide a formal description of the 
algorithm, prove its consistency property, and analyze 
its trade-offs. In order to gain insights on how much 
freshness we must give up to gain the level of scalabil-
ity currently provided by the NoSQL approach, we 
build a system and test its performance with the work-
loads similar to that used in a Yahoo! PNUTS based 
Twitter-like feed following experiment [27]. The server 
side of the system is fully implemented, but instead of 
writing and delivering client-side code to real browsers, 
we implement an emulated browser on the client side to 
facilitate performance testing. In our experiment, we set 
a fixed staleness limit of 5 seconds and an update rate 
of 19 new tweets per second. Due to the limitation of 
the test facility we used, we were not able to generate a 
query workload exceeding 40% of the PNUTS experi-
ment. But within this limitation our system exhibits 
linear scalability, up to 6 servers. 

The main contributions of this paper include: 

• A formal description of a timing-based replication 
control algorithm for the feed following problem 

• A proof of its consistency property 
• A working implementation built with lower per-

forming commodity virtual machines in the cloud 
• An experiment to thoroughly test its performance 

and trade-offs 
• A working example that demonstrates how fresh-

ness can be exchanged for better scalability 

With our approach, social networking applications are 
able to scale linearly to fairly high workloads with low-

end machines. In our implementation we take ad-
vantage of the relatively stable and familiar commodity 
web server hardware and software stacks, which over 
the years have gained wide adoption and the prices 
have dropped significantly. No additional expertise and 
training are required to operate these stacks, potentially 
saving the operating costs as well. We therefore dub 
this approach “the poor man’s social network.” Never-
theless, there is no real obstacle to apply the timing-
based approach to various NoSQL data stores. In our 
approach the relational databases are used mostly as 
simple key-value stores. We chose PostgreSQL in par-
ticular only to take advantage of its built-in triggers, 
procedural languages, and the transactional features not 
readily available from many key-value stores. But we 
anticipate that the same idea may be used by key-value 
stores as a base to develop more consistency features in 
addition to the eventual consistency. 

This paper consists of the following sections: we first 
introduce the feed following problem and argue for a 
different tradeoff strategy to the popular method. We 
then provide a formal algorithm to implement this al-
ternative in shared-nothing distributed systems and 
prove its correctness. After describing our implementa-
tion and experimental configurations, we present the 
results and the related work, then conclude the paper 
with discussions and future work.  

2. Feed Following 

2.1. Problem Statement 
 
Feed following is the type of social networking func-
tionality that layers on top of a following network con-
sisting of large numbers of feed consumers and feed 
producers. Each feed consumer follows a usually large 
and distinctive group of feed producers, and each pro-
ducer independently produces event items over the 
time. Now each of the consumers wants to query the n 
most recent event items produced by all the producers 
this particular consumer follows. Silberstein et al. give 
a more formal definition of the problem [28]. 

Twitter’s timeline application is a typical feed follow-
ing problem, where each event item is called a tweet. 
Many other social networking features may be modeled 
as variations of the feed following, and the “n most 
recent” predicate may also have many other flavors. 
But the common theme is that each feed following que-
ry can be quite personalized and distinctive from the 
others such that the query results for one consumer are 
of little or no use to another for the purpose of directly 
reusing the results to reduce the overall query load. 
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Moreover, even the newly produced query results may 
quickly become outdated for the same consumer. In 
order to provide the freshest possible response, a con-
sumer’s feed query result must be invalidated as soon 
as any of the followed producers posts a new event, and 
each producer’s new event must also invalidate all the 
current feed following query results for each of the con-
sumers that follow this producer. The large number of 
consumers also make it very expensive to maintain the 
materialized views for each of them. It is easy to see 
why the traditional scalability tools such as data parti-
tion, query and web caching, materialized view, and 
replication perform poorly in this type of problem. Sil-
berstein et al. provide a more thorough analysis on the 
difficulties to scale the feed following problem [27]. 

2.2. Trade Consistency For Scalability 
 
Popular NoSQL style applications are built under the 
assumption that consistency should be sacrificed to gain 
better scalability. To relax 1SR for feed following in a 
shared nothing, fully or partially replicated distributed 
environment, we may declare an event update success-
ful as soon as one of the replicas commits it locally and 
before this update finishes propagating to most or all 
the other replicas. By eliminating the consistency locks, 
the replicas become more independent and can work in 
a more paralleled manner. But as a result, the follower’s 
view becomes rather unpredictable. Even if a producer 
receives the confirmation of a successfully committed 
update, there is no guarantee when her followers can 
see this event. Some may see it shortly after, some oth-
ers may need to wait for an extended period of time 
before this new event shows up, and even those who 
have already seen it once may not see it in the subse-
quent queries. We want to emphasize that waiting to see 
the most recent updates is not the real issue here. The 
real problem is the unpredictable nature of the wait. 

Despite this, the consensus among the industry is that 
the users should be able to tolerate some lost events as 
long as they eventually show up. After all, unless the 
feed producers and the consumers are actively tracking 
and comparing their timelines, the temporarily lost 
events are not particularly noticeable. Moreover, many 
feed following applications such as Twitter do not al-
low editing; therefore eliminate the needs to reconcile 
the conflicting updates, as normally seen in an optimis-
tic approach like this. However the inconsistency be-
comes apparent when the following network starts to 
change, e.g., a consumer decides to stop following a 
producer. If this relationship update is to be committed 
the same way as above, then it is possible for the con-
sumer to continue receiving the event items from this 

producer even if this consumer has been notified of the 
successful unfollowing, simply because the unfollow 
update has not been propagated to the replica that pro-
cesses the feed following query. 

One approach to mitigate this problem is to slightly 
tighten up the eventual consistency model described 
above, to the “per-record timeline consistency”, as ex-
emplified by Yahoo!’s PNUTS [28]. This approach 
assigns a master replica for each record, then allows the 
application developer to specify what type of query to 
use: i.e., Read-any, Read-critical, or Read-latest. An 
update is not successful unless it is committed to the 
master copy, and a Read-latest query will always vali-
date against that record’s master copy to retrieve the 
most recently committed change, although a Read-any 
query will return any locally available data regardless 
of their validity. The assumption is that for those criti-
cal and consistency sensitive queries we should use 
Read-latest, which, although more expensive than the 
other two options, can at least provide some record-
level consistency guarantees. 

Nonetheless, this approach cannot prevent the incon-
sistency exposed by the retweets. A retweet is a 
standalone new tweet produced by a user who follows 
the original tweet producer. The retweet either includes 
the original tweet content by value or links to the origi-
nal by reference. By logic a retweet can only commit 
after the original tweet is committed, because there ex-
ists a conflicting feed query between these two updates. 
It is therefore rather confusing for a feed consumer to 
observe only the retweet but not the original if this con-
sumer follows both the original producer and the re-
tweeter, which is fairly common in closely knit social 
groups. This arouses suspicion of either voluntary re-
traction or censorship, although in fact is merely a 
symptom of the distributed inconsistency. 

As illustrated in figure 1, the retweet inconsistency may 
still happen in systems like PNUTS using either the 
Read-any or the Read-latest, as long as 1SR is not guar-
anteed. In the figure we assume Replica Ra is the mas-
ter copy for all tweets produced by user A, et al. When 
using Read-any to retrieve the feeds from Replica Rc, if 
the retweet from Rb propagates to Rc faster than the 
original tweet from Ra, we may observe the incon-
sistency at Rc. The probability of inconsistency may be 
lower if we use Read-latest, in which case all the feed 
queries must be routed to their master replicas. But in 
between these large number of independent and usually 
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(a) Read-any 

 

(b) Read-latest 

Figure 1. Retweet Inconsistency 

remote queries to the master copy, the logical sequence 
between the original tweet and its retweets may still be 
reversed, as shown in Figure 1(b). Furthermore, using 
Read-latest on all feed queries carries a steep perfor-
mance penalty, because we lose the benefits of replica-
tion and caching, leaving data partition the only per-
formance booster. 

The Read-critical query, which “returns a version of the 
record that is strictly newer than, or the same as the 
required version” [28], provides little help in the above 
scenario. This is because in the per-record timeline con-
sistency, the record’s version is specified locally by its 
master copy. It is not a global version, therefore affords 
no meaningfully comparison between the versions of 
two different records, e.g., a tweet and its retweet. It is 
tempting to devise a sophisticated global versioning 
scheme to determine the sequence of all the updates, 
but this already implies 1SR. From the CAP theorem 
proof we already know that if a distributed system re-
lies solely on the message passing to implement 1SR, 
then it is hard bounded by the CAP compromise and 
cannot scale well reliably. A more promising approach 
would be to explore beyond the asynchronous network 
model and more specifically, to exploit global time, 
which does not depend on the message passing exclu-
sively. In the next section we discuss how this approach 
trades freshness for scalability. 

 
2.3. Trade Freshness For Scalability 
 
Freshness is oftentimes unnecessarily entangled with 
1SR. For example, Vogels defines the strong consisten-
cy as being always guaranteeing the freshness and 1SR. 
But in its first degree of relaxation, the weak consisten-
cy allows a period of “inconsistency window” during 
which an update is not guaranteed to be always availa-
ble to all queries [30], “not always” being the keyword. 
During the “inconsistency window” such weak con-
sistency fails not only the freshness test but also the 
1SR test. Such a categorization overlooks an intermedi-
ate level of distributed database system behavior which 
guarantees to return the 1SR responses, although they 
may be stale. Such systems indeed exist, e.g., a log-
shipping based master-slave replication system where 
all the updates are processed at the master but all the 
queries go to the slave. The query results always lag 
behind the freshest state at the master, but the system is 
nevertheless 1SR. 

We further argue that absolute freshness is not even 
worth pursuing in a web based system, because even 
the freshest query results still need to be transported 
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across the web to the clients, yet the web latency is not 
negligible. When the clients receive the results, they 
may have already turned stale, therefore from the holis-
tic system view it seems rather unnecessary to guaran-
tee the absolute freshness within the boundary of the 
database servers. Indeed, users of the web applications 
intuitively feel the latency and understand its effects. 
When using high-volume transactional systems such as 
the online bidding or stock exchange web applications, 
the users are acutely aware that the quote prices shown 
on the screens are not real-time but with delays built in. 
Moreover, not every system demands high levels of 
freshness anyway. Most social networking applications 
are not meant to be real-time point-to-point messaging 
systems, therefore some delays is tolerable and even 
expected. 

We also note the differences between staleness and 
latency. Latency characterizes the speed of the request-
response process, while staleness characterizes the re-
cency quality of the data carried by the response. From 
the end user’s point of view, latency always adds fur-
ther staleness to the response, but not vice versa. Web 
users with short attention spans have fairly low toler-
ance for unresponsive web services, but not necessarily 
for staleness. Given a choice, faster responses carrying 
slightly more stale information should be much pre-
ferred than the opposite. 

We now explain why freshness may be traded for 
scalability. We draw an analogy between this tradeoff 
and the mass transit system. When driving our own 
cars, we can freely choose the departure times and the 
destinations. But when using the mass transit systems, 
we must time our activities according to the published 
schedules, travel only to the vicinities of the bus stops, 
and make transfers between different transit lines by 
ourselves. Bus riders lose the flexibility to travel at-
will, but gain overall efficiency and economic benefits 
by sharing resources. Such benefits are especially sig-
nificant in metropolitan areas where not only the oppor-
tunity for sharing is higher but also the transportation 
resources are under much heavier loads and are much 
more congested. 

Caching is the web’s way to share resources. The web 
is built with the caching facilities at its core to address 
the scalability issues. But as explained in section 2.1, 
the current way of building feed following applications 
is not attuned for taking full advantage of the web cach-
es. This is because such a system is built to accommo-
date the private-car style of usage, striving to provide 
the personalized response accurately and consistently at 
the time when the system executes that particular re-

quest. Caching is less effective because the queries are 
not only highly personalized, but also extremely 
ephemeral. 

A mass transit style of feed-following system may im-
prove the situation on two fronts. First, it may address 
the ephemeral issue by only executing queries with 
accuracy and consistency guarantee by a pre-agreed 
upon schedule, e.g., every 5 seconds. In a mass transit 
system all the passengers arriving at the station before 
the scheduled departure time must wait for the next bus. 
By the same logic, if enhanced with this improvement, 
all queries submitted to the servers between 1:05:30PM 
and 1:05:35PM will be immediately responded, but 
with the results that are accurate and consistent only as 
of 1:05:30PM. Conceptually this enhancement allows 
the queries received within this period all be executed 
against the same database snapshot taken at 1:05:30PM 
rather than against a moving target. We have built in no 
more than 5 seconds’ staleness in all responses, yet the 
latencies are not necessarily higher. Due to effective 
caching and reusing, this approach may even signifi-
cantly lower the response latency. However, the system 
works differently on updates. For example, if an update 
is received at 1:05:33PM, it will be committed as soon 
as the system permits, but the committed result will not 
be available for queries until the next scheduled time 
point, e.g., 1:05:35PM.   

On the other hand, much like the mass transit system 
that will not board and drop off riders at any location, 
the server may also decline to execute personalized feed 
following queries. Instead, it may analyze and reorgan-
ize these queries, break them down into multiple steps, 
and only execute the commonly shared queries on the 
server. In case of the feed following, one exemplary 
common query useful for all users is the “time map” 
query, which tells us which feed producers have created 
new events during the past scheduled intervals. With 
such information at hand, the feed followers themselves 
can combine and match to produce their own personal-
ized event lists on the client side. This is analogous to 
bus riders making transfers by themselves. Note that 
such an approach is only feasible when the queries are 
against the same database snapshot. Querying against 
changing database states cannot be reorganized correct-
ly in this manner. In other words, this enhancement is 
preconditioned on the prior one. 

In our approach a large portion of the processing is 
therefore offloaded to the clients, shifting the system 
from a thin client system to a fat client system. This is 
quite different from the NoSQL approach where the 
distributed servers still attempt to process all query 
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loads from the start to the end albeit abandoning the 
1SR guarantee. In the next section we will formalize the 
algorithm and prove its correctness with respect to 1SR. 

3. Replication Control and Its Correctness 

We adopt the lazy-master style partial replication strat-
egy for this distributed system. In particular, a concep-
tual centralized master database is naively and horizon-
tally partitioned into multiple smaller physical database 
servers based on the producer id. A new tweet is routed 
to its own partition server according to the producer id 
and then committed there. Each partition server main-
tains a “time map”. This is a materialized view that 
documents which producers allocated to this server 
have tweeted in the current scheduled interval. This 
view must be synchronously maintained within the 
same atomic update transaction boundary for a new 
tweet. In practice we also maintain multiple combined 
views that cover larger granularity of the time intervals. 

A client, upon receiving a timeline query, first checks 
global time and then determines by itself the most re-
cently scheduled release time. Imagine we have taken a 
conceptual full database snapshot at this particular re-
lease time. This is the database state against which this 
particular timeline query needs to be executed. The 
client then must make sure it has synchronized its local 
partial data with this snapshot before executing the 
timeline queries. Note the web architecture mandates 
that a server cannot initiate connection to the clients. 
This determines the lazy nature of our replication strat-
egy. That is, an update is committed at the master copy 
but not atomically propagated to all the caches and the 
clients. We allow the partial database replicas to lag 
behind the master until they are used for queries, by 
which time they must catch up to the scheduled snap-
shot. 

We now give the formal definition of the scheduled 
releasing mechanism. For any given time t > t0, where t0 
is the initial database time, there exists one and only 
one time period [ti, ti+Δti), such that for t ∈ [ti, ti+Δti) 
and Δti=O(ΔtL), where ΔtL is the network latency or a 
tolerable time interval, any query issued at t will be 
responded with the same result as if the query is exe-
cuted at ti. We require the staleness limit to be much 
larger than the network latency, because from the user’s 
point of view the network latency is automatically add-
ed to the staleness of every response, therefore we can-
not promise the staleness to be less than that. Larger 
staleness limit will also have positive effects on the 
scalability. 

We require the releasing schedules be defined a priori. 
At any given time after a web client initializes itself, it 
should already know the corresponding time intervals 
without having to contact the server again to find out. 
We also require the time intervals defined in absolute 
time and all the web clients reasonably synchronized to 
a NTP server to guarantee limited time skews among 
the replicas and the server. This is in line with the par-
tially synchronous distributed model and eliminates the 
unnecessary web and database operations. 

The replication control algorithm is described in the 
following. The pseudo code is depicted in Figure 2. In 
our algorithm, an update is routed to the corresponding 
master database partition server allocated for that pro-
ducer, and executed in an ACID manner, e.g., using the 
strict two-phase locking (2PL) protocol. The queries 
executed at the clients are against their explicitly 
scheduled snapshot, and we require the clients to syn-
chronize to that snapshot with the master database be-
fore the execution. This is similar to the multi-version 
mixed method described in [6] or the snapshot isolation 
protocols [4] with one important distinction. In our 
method the snapshots are chosen a priori and inde-
pendently from the database states and the timing of the 
queries. 

Upon: submit of a read-only transaction T to client at time t 
1:  assign T the timestamp ti, the starting time of its sched-
uled time interval  
2:  if local database is not synced to the snapshot at ti: 
3:    request from all the master partitions the writesets up 
to [ti-1, ti-1+Δti-1) 
4:    sync local database the snapshot at ti 
5:  execute T at the local database 
6:  return result 
 
Upon: submit of an update transaction T to client 
7:  forward T to the master 
 
Upon: submit of an update transaction T to a master partition 
8:  atomically request necessary shared and exclusive locks 
9:  wait until all locks are granted 
10: execute T at master partition, record commit time t 
11: for all the materialized views Vi covering t: 
12:   update Vi to reflect the writeset of T 
13: release locks of T 
14: return ok 
 
Upon: submit of a request to a master partition for writeset 
for time interval [tn, tn+Δtn) 
15: for all the materialized views Vi on this partition: 
12:   if Vi is for [tn, tn+Δtn): 
13:     return writeset in Vi 

 
Figure 2. Replication control algorithm. 

Conceptually the scheduled releasing introduced here 
enforces a new transactional state to the database. Tra-
ditionally we assume once an update is committed its 
changes are immediately visible to all the other active 
transactions. We revoke this assumption and define a 
“QUERY VISIBLE” state after “COMMITTED”, as 
shown in Figure 3. The changes made by an update are 
still immediately visible to other updates once commit-
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ted, but are visible to active queries only when they 
reach the “QUERY VISIBLE” state. 

 

Figure 3. Update visibility and serial execution. 

In comparison, if we use the mixed protocol or snapshot 
isolation, Query 1 in Figure 3 would be able to see Up-
date 2 because it starts after Update 2 commits. But this 
would require a new version or snapshot being created 
for each committed update, and each of them may need 
to be individually propagated to all the replicas. In our 
protocol, Update 2 is invisible to Query 1, because it 
becomes visible to queries after the latter starts. Query 
2, on the other hand, can see both updates. The sched-
uled release time interval is independent from the query 
load. When the query load becomes heavier, more up-
dates become visible at each scheduled release, but the 
number of snapshots to be propagated per time unit 
remains the same. On the other hand, if both updates in 
Figure 3 write to the same data item, the data written by 
Update 2 is lost in our protocol because no query ever 
sees it. We simply assume these updates represent the 
intermediate states, which despite being committed, the 
clients don’t care to know. Further, since we did not 
relax the irrevocability aspect of the COMMITTED 
state, the ACID property of the database still holds. 

Proving the 1SR property of this protocol is a two-step 
process. We first show that there exists a one-copy 
equivalence of this protocol. We then show this one-
copy equivalence is serializable. Due to the scheduled 
release and the master-replica differentiation between 
the update-query transactions, executing queries on the 
client-side replicas introduces no data contention, and 
the network latency is masked by the timestamps. We 
can easily see that any query executed on the client is 
equal to the execution of the same transactions on a 
single copy master database. As for the single copy 
execution equivalence, since the updates are executed 
in strict ACID manner on each partition, there exists a 
serial execution of the updates on the same partition, 
and they are serialized by the sequence of their commit 
times. Since global time exists across all partitions, 

there also exists a global serialization, ordered by the 
global time and segmented by the scheduled releasing. 
By definition all queries can be moved to the start of 
their time intervals, and their relative ordering does not 
matter because there’s no update transaction in be-
tween. Therefore the single copy execution equivalence 
is serializable, and the replication control protocol is 1-
copy serializable. As an example, the transactions 
shown in Figure 2 can be serialized in this order: Query 
1 <t Update 2 <t Update 1 <t Query2. 

4. Implementation 

We implemented a twitter-like feed following applica-
tion prototype. The server side was fully implemented 
with Python/Django and PostgreSQL. We chose Post-
greSQL as the backend database because of its mature 
support for the time travel functionalities, which goes 
back to its origin. The scheduled releasing, time map, 
and related functionalities were implemented with trig-
gers and programmed in PL/pgSQL. Nonetheless, the 
database was queried primarily as a key-value store. 

The client-side functionalities could have been fully 
implemented in Javascript and client side database, but 
we were concerned about how to evaluate the system 
performance. At the time of the experiment, our Ama-
zon account only allowed up to 100 instances running 
at the same time, but we potentially needed thousands 
of real browsers running in parallel to generate the de-
sired workload. We eventually decided to first imple-
ment a simplified emulated browser in Python/Django 
and PostgreSQL. 

We picked the maximum staleness level at 5 seconds. 
But for those followers who didn’t follow many active 
producers, it would have taken them numerous 5-
second time map queries to gather the 20 most recent 
tweets. We therefore also implemented time maps for 
the following larger granularities to speed up the time 
map query: 30 seconds, 3 minutes, 15 minutes, 1 hour, 
4 hours. Accordingly, we also added slightly more ma-
terialized view maintenance work when committing 
each new tweet. If a client is not able to gather suffi-
cient tweets from a time map query, it will attempt an 
earlier time map at either the same or larger granularity 
level if it’s available. 

5. Evaluation 

To better evaluate our implementation we must gener-
ate more realistic social networking workloads. At-
tempting to compare our implementation with the Ya-
hoo! PNUTS system, we used the same zipfan parame-
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ters as used in that experiment [28]. Both the social 
network and the synthetic workload were generated 
with Yahoo! Cloud Serving Benchmark [10], and Table 
1 lists the parameters used in both experiments. 

Since our implementation relies heavily on the clients 
being able to programmatically interpret the workload 
and the server responses and do local calculations as 
well as database operations, we need large number of 
machines and computing power to emulate the client-
side processing. The only viable test environment 
seemed to be the computing cloud. We therefore set up 
our test environment in Amazon EC2.  

Table 1. Comparing workload parameters with the Ya-
hoo! PNUTS experiment [25] 

 PNUTS This 
Number of producers 67,921 67882 
Number of consumers 200,000 196,283 

Consumers per producer 
Average 15.0 13.38 
Zipf parameter 0.39 0.39 

Producers per consumer 
Average 5.1 4.63 
Zipf parameter 0.62 0.62 

Per-producer rate 
Average 1/hour 1/hour 
Zipf parameter 0.57 0.57 

Per-consumer rate 
Average 5.8/hour varied 
Zipf parameter 0.62 0.62 

 

 

Figure 4. Experiment configuration 

Figure 4 schematically shows the multi-layer server 
configuration deployed to conduct the experiment. On 
the bottom layer we deployed a small number of low-
end servers, initially up to 20 small instances 
(m1.small) then upgraded to 3 to 6 high-CPU medium 

instances (c1.medium). The reason we upgraded was 
because even at the maximum number (100) of total 
instances we still were not able to generate sufficient 
client-side processing power to drive up to 40% of the 
query load in the Yahoo! PNUTS experiment. We 
therefore decided to move more virtual machines to 
simulate the clients rather than further increasing the 
server numbers. These low-end servers also run their 
local memcached service. Directly above the servers 
were up to 88 high performance instances (high-CPU 
extra large instance, or c1.xlarge) used to simulate the 
client-side processing. These emulated browser ma-
chines then shared up to 2 high-performance instances 
(m2.2xlarge, or high-memory double extra large in-
stance) running standalone memcached server to simu-
late the web caching. We then ran HAProxy on one 
c1.xlarge instance to evenly distribute the workloads to 
these emulated browsers, and had two c1.xlarge in-
stances, both running httperf and autobench, to drive 
the workload and run benchmarking, one for the update 
load and another for the query load. All these instances 
also had collectd installed and had various statistics 
reported back to our cloud service control panel. 

Much like the other web applications, social networking 
applications’ query load vastly dominates their update 
load. If the Yahoo! PNUTS experiment workload is any 
indication, the query load exceeds 99% of the total re-
quests. 

In our experiment, however, we decided to use a fixed 
update load at 19 requests per second, only slightly 
higher than the average update load in the PNUTS ex-
periment. We then slowly drove up the query load until 
any server returned a 500 code. Figure 5 shows the lin-
ear scalability observed when the number of the servers 
was increased from 3 to 6. Figure 6 depicts the latency-
load relations under different server configurations. 
Beyond 6 servers, the client-side simulation became the 
bottleneck and no meaningful data could be obtained. 
The linear scalability property is further supported by 
the following observations: 

First, we observed extremely high cache hit rates, often-
times exceeded several thousands to one, at the 
standalone memcached servers deployed to simulate the 
web caches, as shown in Figure 7. This indicated the 
success of the mass transit style approach we employed 
to build the feed following applications. The changes of 
the cache hit rate corresponded nicely to the scheduled 
releasing times, increased during the intervals, and had 
sudden dips at the release time points when newly re-
leased data caused cache misses. 
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Figure 5. Peak query rates vs. number of servers under 
the query/update combined workload 

 

Figure 6. Latency vs. query load, with constant update 
load at 19 updates per second. 

Secondly, at the local memcached service inside the 
server, we also observed fairly good, but not much as 
high, cache hit rates, at approximately 2 to 1 to 4 to 1. 
This indicated that the distributed system overall fared 
pretty well in not bothering to contact the origin server 

unless absolutely necessary. This is in line with the 
principle of the web architecture and the web caching. 

Finally, we observed that when the query load in-
creased, the CPU load increased much faster at the em-
ulated browsers than at the servers, as shown in Figure 
8 and 9. This illustrated the strength of this approach, 
which distributed a larger portion of the increasing pro-
cessing load to the clients than absorbed by the servers. 
This was the source of the favorable scalability proper-
ties at display in this experiment. 

6. Related Work 

Partitioning, replication, and caching are time-tested 
and battle-hardened strategies to scale web applications 
as well as the databases that drive these applications. 
Unwilling to voluntarily give up on consistency, re-
searchers typically rely on consistency guaranteeing 
network communication protocols to implement these 
strategies. Examples include the multicast total ordering 
as used in Postgres-R [21], RSI-PC as used in Ganymed 
[26], the total ordering certifier as used in Tashkent and 
related designs [13][22][7], Pub/Sub as used in Ferdi-
nand [17], and the deterministic total pre-ordering [29]. 
Their performance is in theory upper-bounded by the 
centralized service implementing these protocols, and 
in some cases also by that of the snapshot isolation [4]. 
In contrast, our design differs fundamentally from these 
systems in terms of the distributed system model. Rely-
ing on global time, we managed to eliminate all central-
ized services and more efficiently implement the parti-
tioning, replication, and caching. At the partition level, 
our design may also be considered a much simplified 
special case of the snapshot isolation, where not matter 
how high the query load is, only one snapshot is taken 
for each scheduled release interval.  

Recognizing the CAP tradeoff [18], NoSQL systems 
like Dynamo [12], MongoDB [25], CouchDB [11], and 
Cassandra [2] etc. conscientiously sacrifice 1SR for 
better scalability, but the inconsistency exposed thereaf-
ter is undesirable even for non-critical web services 
such as social networks. More recent NoSQL systems 
such as PNUTS [9] slightly tighten this up but are still 
lacking. Different from these systems, our design guar-
antees 1SR by design. Performance wise, since our de-
sign pushes a larger portion of the increased load to the 
clients, we anticipate performance advantages under 
higher load. Such advantages are inherently true even 
compared to much faster systems that move all data to 
the in-memory distributed cache, for the same reasons 
that more highways and faster cars do not diminish the 
advantages of the mass transit systems. 
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Figure 7. Cache operations at the standalone memcached server 

  

Figure 8. CPU load of a server 

 

Figure 9. CPU load of an emulated browser 

Trading staleness for scalability isn’t a new idea, but 
the previous systems didn’t attempt to preserve 1SR 
[1][16][19][5]. Our approach is the first known to us 
that guarantees 1SR under this tradeoff. 

This paper is primarily inspired by Roy Fielding’s blog 
post on RESTful feed following [15], and much of the 
experimental verification is adopted from the Yahoo! 
PNUTS experiment [27]. Fielding’s approach is distinc-
tively timing-based, but he did not elaborate on the the-
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oretical foundation, the replication control algorithm, 
the freshness-scalability tradeoff involved, and the da-
tabase partitioning, replication, and caching details. His 
implementation is based on a single centralized server, 
while ours is based on shared-nothing distributed sys-
tems. Nevertheless, his emphasis on the RESTful de-
sign [14] and the web architecture [3] reminds us that 
scalability is not a pure database endeavor but requires 
a holistic view of the system. 

7. Discussions and Future Work 

Because the server side scalability is known to be the 
primary bottleneck for the current social networking 
applications, in this paper we evaluate this new ap-
proach mainly from the server’s perspective. We have 
not delved into its detailed effects on the real web 
browsers. But as an indicator, we have observed a peak 
client load of approximately 2 queries per second per 
client with cloud instances running the emulated 
browsers. When running a real browser on a physical 
machine the result may be slightly different due to vari-
ous factors including the absence of the hypervisor iso-
lation and the cloud CPU throttling, the real browsers’ 
performance differences, and their implementations of 
the client-side database. This will be the topic for fur-
ther research, but in general we are optimistic that the 
clients’ processing capability should not pose an intrac-
table bottleneck. This is because in our approach the 
same-client queries beyond the rate of once per 5 se-
conds do not require additional client and server pro-
cessing. The browser will simply respond with the 
same, client cached response generated for an earlier 
request. If the higher query rate is caused by more cli-
ents initiating queries concurrently, these additional 
clients also bring in more processing power to counter-
balance the increased client side processing needs. 

Another practical concern for this approach is the wide 
adoption of the mobile devices as the social networking 
clients. While the processing capabilities of these de-
vices may be continuously improving, the network 
bandwidth provided for these devices is harder to reach 
a satisfying level. For these non-performing clients, it is 
still possible to tier the web services such that many 
emulated browsers we used in the experiment can be 
deployed at the edge of the web (e.g., CDN) and re-
purposed as proxy servers for them. At least in theory 
this does not alter the linear scalability property of this 
approach. 

The third practical concern is the implementation of 
global time. In our experiment all clients and servers 
frequently synchronized their local times with authori-

tative time sources using ntpd. The small time skews 
resulting in this approach did not pose a problem for the 
duration of our experiment. Even if the clients lag far 
behind the servers, the system performance should not 
decline significantly if sufficient web cache is provided. 
Nevertheless, in practice the assumption may be too 
strong for all the clients and servers to always maintain 
global time. In a follow-up research we relax this condi-
tion to only requiring all the servers to be properly syn-
chronized. The client must send one extra request to 
detect the global server time before any timeline request 
can be processed. Under such relaxation, we can still 
show that the consistency guarantee and the linear 
scalability property are largely maintained. 

Finally, we also noticed a potential problem with the 
load balancing. We employed a naïve database parti-
tioning strategy but have not built any load elasticity 
and protection. Under such circumstances, even if all 
the other servers were way below their capacities, if one 
partition server encountered aberrant load spike and 
crashed, the whole system would crash. This issue may 
be addressed in the future work. We also expect to fur-
ther this research by experimenting with different stale-
ness levels to investigate their impacts on scalability, 
and extending load generation capabilities to further 
verify the linear scalability property. 

To summarize, in this paper we describe, implement, 
and evaluate a novel method that can simultaneously 
achieve scalability and consistency in feed following 
applications built on shared-nothing distributed sys-
tems. In our experiments the servers scaled linearly, and 
sustained sufficiently high workloads to be of practical 
use for small to medium size social networks. The cost 
of running 6 low-end servers was fairly reasonable for 
the performance and the capacity they delivered.  

We also demonstrate for the first time the feasibility of 
a new design pattern that consistently trades freshness 
for better scalability. This is achieved by assuming the 
availability of global time in a shared nothing distribut-
ed system, timing the queries with a pre-published re-
lease schedule, pushing much of the personalized query 
workload to the clients, and more efficiently partition-
ing, replicating, and caching.  
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Abstract

Partitioning data over multiple storage servers is an attrac-
tive way to increase throughput for web-like workloads.
However, there is often no one partitioning that yields
good performance for all queries, and it can be challeng-
ing for the web developer to determine how best to execute
queries over partitioned data.

This paper presents DIXIE, a SQL query planner, opti-
mizer, and executor for databases horizontally partitioned
over multiple servers. DIXIE focuses on increasing inter-
query parallel speedup by involving as few servers as pos-
sible in each query. One way it does this is by support-
ing tables with multiple copies partitioned on different
columns, in order to expand the set of queries that can be
satisified from a single server. DIXIE automatically trans-
forms SQL queries to execute over a partitioned database,
using a cost model and plan generator that exploit multiple
table copies.

We evaluate DIXIE on a database and query stream
taken from Wikipedia, partitioned across ten MySQL
servers. By adding one copy of a 13 MB table and us-
ing DIXIE’s query optimizer, we achieve a throughput
improvement of 3.2X over a single optimized partitioning
of each table and 8.5X over the same data on a single
server. On specific queries DIXIE with table copies in-
creases throughput linearly with the number of servers,
while the best single-table-copy partitioning achieves little
scaling. For a large class of joins, which traditional wis-
dom suggests requires tables partitioned on the join keys,
DIXIE can find higher-performance plans using other par-
titionings.

1 Introduction

High-traffic web sites are typically built from multiple web
servers which store state in a shared database. This archi-
tecture places the performance bottleneck at the database.
When a single database server’s performance is not suffi-

cient, web sites typically partition data tables horizontally
over a cluster of servers.

There are two main approaches to executing queries
on partitioned databases. For large analytic workloads
(OLAP), the approach is to maximize parallelism within
each query by spreading the query’s work over all
servers [11, 17]. In contrast, the typical goal for workloads
with many small queries (OLTP) is to choose a partitioning
that allows most queries to execute at just a single server;
the result is parallelism among a large set of concurrent
queries. Queries that do not align well with the partitioning
must be sent to all servers. Many systems have addressed
the problem of how to choose good partitionings for these
workloads [2, 4, 7, 19].

Some workloads, however, execute small queries but do
not partition cleanly, as different queries access the same
table on different columns. For example, one query in a
workload may access a users table using the id column,
while another accesses the table with the username col-
umn. No single partitioning will allow both queries to be
sent to just one server; as a result the workload does not
cleanly partition. Workloads that cleanly partition allow
capacity to scale as servers are added. In contrast, queries
that restrict on columns other than the partition column do
not scale well, since each such query must be sent to all
servers.

This paper suggests the use of table copies partitioned
on different columns, in order to allow more queries in a
workload to partition cleanly. This idea is related to the
pre-joined projections of tables used in column stores [20,
23, 29] to increase intra-query parallelism, but here our
goal is to increase inter-query parallelism.

In order to exploit partitioned data, including table
copies, this paper presents the DIXIE query planner. DIXIE
focuses on small queries that can execute on a subset of
the servers if the right table copies are available. It ad-
dresses an intermediate ground between the whole-table
queries of OLAP workloads and the straightforward clean
partitioning of some OLTP workloads.
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Figure 1: Web site architecture. Front-end web servers running
application code issue queries to a cluster of database servers.
The users table is copied and partitioned, once by user name and
once by ID.

DIXIE uses two key ideas. First, for small queries the
overhead at the server may be larger than the data han-
dling cost; these queries do not benefit from distributing
the work of an individual query among many servers. As
an example, on our experimental MySQL setup, a simple
query that retrieves no rows consumes almost as much
server CPU as a query that retrieves one row. As a re-
sult, cluster throughput can be dominated by the resources
wasted due to overhead if small queries are sent to all
servers. In the extreme, sending each query to all servers
in an N-server cluster may result in 1/N the throughput of
sending each query to one server.

Second, DIXIE’s optimizer uses a novel cost model
which appropriately weights query overhead against the
costs of data retrieval. For example, DIXIE may prefer a
plan that retrieves more rows than another plan, but from
fewer servers, if it predicts that the the reduction in over-
head from the latter plan outweighs the per-row cost of the
former.

We have implemented DIXIE as a layer that runs on each
client and intercepts SQL queries; see Figure 1. Applica-
tions which use DIXIE can be written as if for one database
with a single copy of each table. We have evaluated it on
a cluster of ten servers with a traced Wikipedia workload
and with synthetic benchmarks. With appropriately chosen
table copies, DIXIE provides 3.2X higher throughput for
the Wikipedia workload than the best single-table-copy
partitioning.

2 Problem

The following example illustrates costs when executing
queries over a partitioned database. Consider a simple
case with a users table, containing id, group, name,
and address columns. The id column is unique, and
the table will be range partitioned over ten servers using

some column which we will choose. Assume we would
like to issue the following query:

Q1: SELECT * FROM users WHERE id = ?

Executing many concurrent queries choosing id values
randomly and uniformly, if we send each query to only one
of the ten servers one would certainly expect a throughput
higher than if the query was sent to all servers. However,
it is unclear exactly how much these costs would differ,
since in the ten server case nine of the servers do not need
to retrieve or send back any rows.

The cost on the server of executing a simple query like
the one above that returns zero data is 90% of the server
CPU time of executing a query which returns a small
amount of data: 0.36 ms vs. 0.4 ms (these numbers are
server processing costs only, they do not include client or
network transit time). Section 8 describes the experimental
setup. This shows that requesting a row, even if there is no
data to read and transfer back to the client, incurs a very
significant cost. A profile of the MySQL server shows that
the cost consists of optimizing the query, doing a lookup
in the btree index, and preparing the response and sending
it to the client. On a system executing many concurrent
queries, we measure a 9.1X increase in overall throughput
if each query is sent to one server instead of ten.

Thus this query would would incur much less cost if the
table were range partitioned by id, and requests could be
sent to one server, as opposed to partitioning on some other
column, requiring requests to be sent to all ten servers.

Unfortunately, a single partitioning of a table does not
always suffice. Many applications issue queries which ac-
cess the same table restricting on different columns. Anal-
ysis of Wikipedia shows that for a table which comprised
50% of the overall workload, half the queries on that table
restricted on one column, half on another. This pattern
also occurs in social networking applications with many-
to-many relationships [19]. Consider a different query:

Q2: SELECT * FROM users WHERE group = ?

Partitioning on the id column would cause Q2 to go
to all servers, while partitioning on the group column
would cause Q1 to go to all servers. There is no way to
cleanly partition this table for both queries.

Storing multiple copies of the users table partitioned
in different ways can solve this problem. If we create two
copies of the users table, one partitioned on id and the
other on group, we can efficiently execute both Q1 and
Q2. The cost is a doubling of storage space and a doubling
in the cost of updates. For workloads dominated by reads
the tradeoff may be worthwhile.

With more ways to access a table, query planning be-
comes more complicated. A smart query optimizer should
choose plans which avoid unnecessary lookups, given the
appropriate table copies. Properly optimizing these work-
loads is not just a matter of directing a single query to

2
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Figure 2: DIXIE’s design. There may be many web servers talk-
ing to the database server cluster, and thus many instances of
DIXIE.

the single appropriate partition. Web applications issue
complex queries which often have many potential plans
and require accessing multiple servers. For instance, the
existence of table copies might affect the table order used
in a join, or whether to execute a join by pushing down
the query into the servers. The problem DIXIE solves is
the selection of plans for executing queries on databases
with multiple partitioned copies of tables, with a goal of
increasing total multi-client throughput by (among other
considerations) decreasing query overhead.

3 Overview and System Model

DIXIE is a query planner intended to operate within a clus-
tered database system. DIXIE takes as input SQL queries
written for a single database, plans and executes them
on the cluster, and returns rows to the client. Some other
mechanism in the overall clustered database handles trans-
actions, if necessary. DIXIE relies on each server in the
cluster taking care of local planning and optimization, leav-
ing DIXIE with the task of deciding how to divide the work
of each query among the servers.

The key insight behind DIXIE is to reduce the number
of servers involved in executing a query by using copies
of tables partitioned on different columns, thus improving
throughput when there are many concurrent queries. The
challenge lies in a choosing a good plan to efficiently use
server CPU resources.

Figure 2 shows the architecture of DIXIE. The web
application on each front-end web server generates SQL
queries intended for a single database server and passes
them to the local DIXIE library. DIXIE parses each query,
and then the planner generates a set of candidate plans for

the query. The query optimizer evaluates the cost of each
plan, chooses the plan with the minimum predicted cost,
and sends this plan to the executor. The executor follows
the plan by sending requests to the cluster of database
servers (perhaps in multiple rounds), filtering and aggre-
gating the retrieved rows, and returning the results to the
application. Queries generated by the web application are
queries and the requests generated by DIXIE to the back-
end database servers are dqueries.

The developer provides DIXIE with a partitioning
schema. This schema identifies the copies of each table
and the column and set of ranges by which each copy is
partitioned. All copies use range partitioning. DIXIE adds
measured selectivity estimates for each column in each
table to the schema.

Table copies are referred to by the table name and par-
titioning key. In the application shown in Figure 1 in Sec-
tion 1, the users table has two copies, one partitioned
on username and one partitioned on id.

DIXIE’s goal is to increase total throughput for work-
loads with many independent concurrent queries, each of
which involves only a small fraction on the database. This
goal is consistent with the needs of many web applica-
tions. Web applications must retrieve data quickly to ren-
der HTML pages for a user, and so developers often expect
to serve the working set of data from memory. DIXIE’s
cost estimates assume that most rows are retrieved from
memory instead of disk, and that each column used for
partitioning has a local index on each server, so that the
cost of looking up any row is roughly the same. DIXIE also
assumes that applications only issue equality join queries
on a small number of tables. These assumptions are con-
sistent with the design of Wikipedia, for example, which
does not execute joins on more than three tables, and of
Pinax [24], an open source suite of social network appli-
cations. Extending DIXIE’s cost model to handle work-
loads which frequently retrieve data on disk is future work.
DIXIE handles a select-project-join subset of SQL.

Adding copies of tables can reduce the costs of read
queries at the expense of increasing the cost of write
queries – writes must be executed on all table copies. For-
tunately the applications we examined have very low write
rates – by one account Wikipedia’s write rate is 8% [6] and
based on a snapshot of MySQL global variables provided
by the Wikipedia database administrator on 7/11/2011,
the write rate was as low as 1.7% (including all INSERT,
UPDATE, and DELETE statements). DIXIE is a read query
optimizer; but we examine the throughput effect on the
server of writing to multiple table copies in Section 8,
and show that in a synthetic workload on ten servers with
write rates as high as 80% the benefit to reads outweighs
the added expense of writing to two copies.

Choosing an appropriate set of table copies and parti-
tions is important for good performance of a partitioned

3
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SELECT *
FROM blogs, comments
WHERE blogs.author = ’Bob’
AND comments.user = ’Alice’
AND blogs.id = comments.object

Figure 3: Q3, Alice’s comments on Bob’s blog posts.

database, but is outside the scope of this work; DIXIE
requires that the developer establish a range partitioning
beforehand. Our experience shows that potential partition-
ing keys are columns frequently mentioned in the WHERE
clause of queries. A subset of DIXIE’s techniques would
work with another partitioning method like hash partition-
ing, but in that case DIXIE would not be able to optimize
range queries.

4 Query Planning

DIXIE generates a set of plans corresponding to different
ways to execute the original query. It estimates the cost
of each plan using a cost model, and then executes the
lowest cost plan. DIXIE generates plans similar in style to
a traditional distributed query optimizer such as R* [17],
with a few key differences. First, DIXIE rewrites the appli-
cation SQL query into many SQL dqueries; essentially it
transforms nodes and subtrees in the query plan into SQL
statements which can be issued to the RDBMS backend
servers. A DIXIE query plan is a description of steps to
take to execute a query. Second, DIXIE incorporates parti-
tionings of table copies, so it generates plans with different
table copies that issue dqueries to subsets of the servers.

As an example, Figure 3 shows a query which retrieves
all of Bob’s blog posts on which Alice has written a com-
ment. DIXIE will decompose this SQL query into smaller
dqueries for each table (or combination of tables) in the
query. We assume a partitioned database over N servers
with the blogs table partitioned on the author column
and the comments table partitioned on the user col-
umn. One of the plans DIXIE generates for the example
query retrieves all of Bob’s blogs using the author ta-
ble copy, then retrieves all of Alice’s comments on Bob’s
blogs using the user table copy restricting by the blog ids
returned in the first step, and finally assembles the results
in the client to return to the application. If the tables had
copies partitioned on the join keys, it would also generate
a plan which sent the join to every server and unioned the
results (a pushdown join).

DIXIE goes through four stages to generate a set of
plans: rewriting the query to separate and group the clauses
in the predicate by table, creating different join orders,
assigning table copies, and narrowing the set of partitions.
The planner generates a step, which explains how to access

a table, for each table in the query. Each step has a SQL
statement to execute on the table, a specific table copy for
the table in the step, a list of partitions to which to send the
request, a description of what values need to be filled in
from previous steps, and what values to save from this step
to fill in the next one. A pushdown join step will mention
multiple tables.

After DIXIE chooses the generated plan with the lowest
estimated cost, its executor saves the results of each step
in a temporary table both to fill in the next step and to
compute the final result. The query plan specifies which
dqueries the executor should send in what order (or in
parallel), what data the executor should save, how it should
substitute data into the next query, and how to reconstruct
the results at the end.

4.1 Query Rewriting
DIXIE seeks to create plans which push down projections
and filters into the servers to reduce the amount of data
returned to the client. To do this it rewrites each query into
queries on each table. If tables have partitionings on join
keys, DIXIE will also generate plans that execute the entire
join in the database servers (or parts of the join tree in the
servers), which we describe in the next section.

Consider a SELECT query which uses one table:

Q4: SELECT * FROM T WHERE T.a=X
AND (T.b=Y OR T.c=Z)

DIXIE needs to generate a set of dqueries for this query,
with each dquery accessing a single table, perhaps on a sin-
gle partition. To decide what partition(s) a query must use,
DIXIE observes that an AND must run on the intersection
of the sets of partitions needed by the ANDed expressions,
and that an OR must run on the union. To ease this anal-
ysis, DIXIE flattens a query’s predicate into disjunctive
normal form, an OR of ANDs. DIXIE would rearrange
Q4’s predicate thus:

WHERE (T.a=X AND T.b=Y)
OR (T.a=X AND T.c=Z)

DIXIE will create one dquery which retrieves X and Y,
and another which can be executed in parallel retrieving X
and Z. The results must be unioned together. DIXIE will
use the partitioning scheme to determine which partitions
should execute each part of the query.

4.2 Join Orderings
DIXIE’s current implementation considers all possible join
orderings, and creates a plan for each, with each step ac-
cessing one table. DIXIE also generates pushdown joins
by combining every prefix of the sequence of tables in a
join ordering, and creating a plan where the first step of
the plan is a pushdown join dquery on the tables in the
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1 SELECT * FROM blogs WHERE author=’Bob’
2 SELECT * FROM comments

WHERE user=’Alice’ AND object=?

1 SELECT * FROM comments
WHERE user=’Alice’

2 SELECT * FROM blogs
WHERE author=’Bob’ AND id=?

Table 1: Set of plans for the query in Figure 3.

1 SELECT * FROM blogs,comments
WHERE blogs.id=comments.object
AND author=’Bob’ AND user=’Alice’

Table 2: Additional pushdown join plan for the query in Figure 3,
with blogs.id and comments.object table copies.

prefix. DIXIE also considers all possible combinations of
table copies. If T is the set of tables in the query and there
are ct table copies for table t ∈ T , the original size of the
set of plans is:

|T | ∗ |T |!∗∏
t∈T

ct

DIXIE discards any plan with a pushdown join step
where there are not matching table copies partitioned on
the join keys. For the query in Figure 3 the planner would
create the following set of table orderings:
(blogs,comments),(comments,blogs)
From that it would generate the two plans shown in

Table 1, requesting rows from blogs and comments
in different orders. The pushdown join plan is invalid
with the current set of table copies, blogs.author and
comments.user, so DIXIE would prune this plan.

If we had blogs.id and comments.object ta-
ble copies, DIXIE would generate sixteen plans, using all
combinations of the new table copies, join orderings, and
prefixes. In particular, it would generate the pushdown join
plan shown in Table 2.

4.3 Assigning Partitions

Every plan is a sequence of steps, one for each table or
combination of tables. DIXIE converts this into a sequence
of execution steps. An execution step is a SQL query, a ta-
ble copy for each table in the query, and a set of partitions.
The planner can narrow the set of partitions based on the
table copies and expressions in each step; for example, in
the plan where the planner used a copy of table blogs
partitioned on author, the first step of the first plan in
Table 1 could send a dquery only to the partition where
blogs.author = ’Bob’. The set of partitions for

each step might be further narrowed in the executor, de-
pending on values that are retrieved and substituted from
previous steps. Each execution step also contains instruc-
tions on what column values from the results of the pre-
vious dqueries to substitute into this step’s dqueries, by
storing expressions which refer to another table. For ex-
ample, step two of the first plan in Table 1 would store
an expression indicating that the comments.object
clause required data from the blogs.id values that are
retrieved in the first step. DIXIE would then convert this
into an IN expression. Substitution is done during execu-
tion. If a step does not require data from any other step, it
can be executed in parallel with other steps.

Table 3 shows a set of three plans that DIXIE would
generate for Q3 in Figure 3. This table shows the SQL
to be issued in the dquery in each step of each plan in
the left column. Plans 1 and 2 have two steps each, Plan
3 has one. None of these plans have steps which can be
executed in parallel. The middle column uses B, C, and
R to represent the intermediate storage for the results as
the steps are executed. The second steps of Plans 1 and
2 use B.id and C.object as placeholders for values
returned in the previous steps, which it substitutes into
these dqueries during execution. The right column has
four parts for each step, and for the purposes of planning
we limit our explanation to the first two: the table copy
(or copies) used in the step and the partitions to which to
send the dquery in the step. We will discuss nr and ns in
Section 5 when explaining optimization.

Step one of Plan 1 can be sent to just the partition with
Bob’s blogs, p1, and step two can go just to the partition
with Alice’s comments, p0, independent of the results re-
turned in step one since we intersect the sets of partitions
for ANDs. Plan 3 must execute a dquery for every partition
because it is not using the table copies which partition on
columns used in the most restrictive clauses. DIXIE gener-
ates more plans for this query, but these are the three most
likely to have the smallest cost, because they use table
copies partitioned on columns mentioned in the query.

All of the queries Wikipedia and Pinax issued are simple
enough that DIXIE’s query planner can efficiently generate
a plan for every combination of order of tables in the join
and possible table copy. In the applications we examined
no query ever joined across more than three tables and no
table had more than three copies. However, the number of
plans generated is exponential in the size of the number of
tables in the query, and existing pruning techniques could
be used to reduce the number of plans considered [21].

5 Cost Model

DIXIE predicts the cost of each generated plan using a cost
model designed to estimate server CPU time, and chooses
the lowest cost plan for execution. DIXIE models the cost

5
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Table Copy
Query Steps Partitions

nr, ns
Plan 1:
SELECT * author
FROM blogs → B p1
WHERE author = ’Bob’ 20, 1
SELECT *
FROM comments → C user
WHERE user = ’Alice’ p0
AND object IN (B.id) 1, 1
Plan 2:
SELECT * user
FROM comments → C p0
WHERE user = ’Alice’ 10, 1
SELECT *
FROM blogs → B author
WHERE author = ’Bob’ p1
AND id IN (C.object) 1, 1
Plan 3:
SELECT * id,
FROM blogs,comments object
WHERE author = ’Bob’ p0, ..., pN
AND user = ’Alice’ → R 1, N
AND blogs.id
=comments.object

Table 3: Candidate query plans generated by DIXIE for the query
in Figure 3

of a plan by summing the costs of each step in the plan, and
estimates the cost of a step by summing the query overhead
and the row retrieval costs in that step. Minimizing CPU
time, rather than elapsed time, is appropriate to the goal
of inter-query parallelism.

coststep = costr ∗nr + costs ∗ns

Query overhead, costs, is the cost of sending one dquery
to one server. costr is the cost of data retrieval for one row,
which includes reading data from memory and sending
it over the network. nr is the number of rows sent over
the network to the client, which we assume is close to
the number of rows read in the server since most data
retrieval is index lookups. Since all rows are indexed and
in memory, row retrieval costs do not include any disk
I/O costs. DIXIE’s optimizer computes cost per step as the
sum of the row retrieval cost per row times the number of
rows read in the step and the cost of receiving a query at
the server times the number of dqueries sent in the step,
and the total query cost as the sum of the cost of its steps.
It is irrelevant to cost estimation whether the steps in the
plan were executed in parallel or sequentially, since we
are interested in minimizing overall server CPU time.

Costs are only used to compare one plan against another,
so DIXIE’s actual formula assumes costs is 1 and scales

costr. Section 8 shows how to determine costr and costs.
DIXIE uses table size and selectivity of the expressions in
the query to estimate nr, a proxy for the number of rows
that might be read in the server. It uses the cost functions
below to estimate nr, the number of rows retrieved, and ns,
the number of servers queried, for each step step.

selectivity(s) = ∏
c∈s

1
|dkc|

nr = table sizes ∗ selectivity(step)

ns =
∣∣partitionsstep

∣∣

To compute selectivity, DIXIE stores the number of rows
in each table and dkc, the number of distinct values in each
column. DIXIE could be extended to support histograms
of values and dynamically updating selectivity statistics,
by periodically querying the tables and rewriting the parti-
tioning plan. We leave this to future work. The selectivity
function shown assumes a WHERE clause with only ANDs,
so it can multiply the selectivity of the different columns
mentioned in the query.

Table 3 shows three plans for the query shown in Fig-
ure 3. Assume the statistics in the partitioning plan predict
that Bob has authored twenty blog posts, Alice has writ-
ten ten comments, and Alice has commented once on one
of Bob’s blogs. Then the optimizer would assign costs
according to the formula described above, as shown in
Table 3. The total costs for Plans 1, 2, and 3 are as follows:

cost(Plan 1) = 21∗ costr +2∗ costs
cost(Plan 2) = 11∗ costr +2∗ costs
cost(Plan 3) = costr +N ∗ costs

6 Query Executor

The executor takes a query plan as input and sends
dqueries for each step in the plan to a set of backend
database servers. The executor executes independent steps
in parallel, and steps which require data from another step
in sequence. DIXIE assumes that dqueries request small
enough amounts of data that the executor can temporarily
store the results from each step in the client. The execu-
tor substitutes results to fill in the next step of the plan
with values retrieved from the previous steps’ dqueries.
For example, in Plan 1 in Table 3, the executor would
insert blog post.id values from step one into the
comments.object clause in step two.

The executor can often reduce the number of dqueries
it issues by further narrowing the set of servers required to
satisfy a step’s request. This means that the cost initially
assigned to a step by the optimizer may not be correct.
For example, the returned values from the first step of a
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join may all be on one partition, meaning the executor will
only need to send one dquery for the second step to one
server, reducing the query overhead and thus reducing the
total cost. The optimizer has no way of knowing this at the
time when it chooses a plan for execution, and so there are
cases where it will not select the optimal plan.

The executor uses an in-memory database to store the
intermediate results and to combine them to return the
final result to the client. This produces correct results be-
cause DIXIE will always obtain a superset of the results
required from a table in the join. As it executes dqueries,
the executor populates subtables for every logical table in
the dquery (not one per table copy). After completion, it
uses the in-memory database to execute the original query
on the subtables and return the results to the client.

7 Implementation

We have implemented a prototype of DIXIE in Java. It
accepts SQL queries and produces dqueries which it ex-
ecutes on a cluster of MySQL databases. DIXIE expects
table copies to be stored as different tables in the MySQL
databases. The prototype uses JSQLParser [14] to create
an intermediate representation of each SQL query. JSQL-
Parser is incomplete, so we altered JSQLParser to handle
IN, INSERT, DELETE, and UPDATE queries.

We tested the effectiveness of DIXIE using queries gen-
erated by Wikipedia and an open source suite of social web
applications called Pinax [24], including profiles, friends,
blogs, microblogging, comments, and bookmarks.

We implemented a simple partitioner which recom-
mends partitions by parsing a log of application queries
and counting columns and values mentioned in WHERE
clauses. The simple partitioner then generates a partition-
ing plan with those columns split on ranges to evenly dis-
tribute query traffic to each partition. We found DIXIE to
be useful in testing different partitioning schemes without
changing application code.

DIXIE keeps static counts of number of rows, partition-
ing plans, table copies, and distinct key counts for each
table, for use by its query optimizer. These are stored in
configuration files which are read on start up once and
not updated. A mechanism to update these configuration
files on the fly as table copies are added and deleted or as
table counts change could be implemented by regularly re-
reading the files and updating in-memory data structures
to use the new configuration and statistics.

DIXIE’s executor saves intermediate results in a per-
thread in-memory database, HSQLDB [13]. DIXIE then
executes the original query against this in-memory
database. An alternate implementation would have been
to construct the response on the fly as results are returned
from each partition and each step, but using an in-memory

database allowed us to handle a useful subset of SQL with-
out having to write optmized code to iterate over and re-
construct results. In the applications we examined, DIXIE
never needed to execute a plan which read a large portion
of a table into the client, but in a future version DIXIE will
do so by requesting tables in chunks.

DIXIE is designed to address the problem of scaling
reads. To simulate the costs added by writes, we execute
writes sequentially in the client to each table copy, without
any serialization between clients. In our experiments, con-
current writes to the same row could cause table copies to
become out of sync. We believe this is acceptable since the
purpose of this work is to measure the performance impact
of added writes in the database servers. The application de-
veloper can use existing mechanisms for distributed trans-
actions to manage writes to table copies; this could change
what might have been single partition write transactions
into distributed write transactions with DIXIE.

8 Evaluation

This section demonstrates DIXIE’s ability to automatically
exploit table copies to improve database throughput on a
realistic web workload. The improvement increases with
the number of servers, and is a factor of three compared
to the best single-table-copy performance on ten servers
and a factor of 8.5 over a single server. This section also
explores the factors that DIXIE weighs when choosing
among query plans and examines the accuracy of its cost
prediction model.

8.1 Workloads and Experimental Setup
Database Workloads. The workload used in Section 8.2
models the Wikipedia web site: it uses a subset of a
Wikipedia English database dump from 2008 [1] parti-
tioned across 10 servers (the original Wikipedia database
is not partitioned), a trace of HTTP Wikipedia re-
quests [27], and a simulator which generates SQL queries
from those requests [6]. The simulator uses the Wikipedia
data, published statistics about caching in the application
layers, and information from the Wikipedia database ad-
ministrator to generate an accurate workload. The total
database including indexes is 36 GB in size, but the 2008
workload only ends up using a subset of the data that fits
in memory. We verify on read workloads that the servers
are not using the disk. There are 100K rows in the page
table, 1.5M rows in the text table, and 1.5M rows in the
revision table (the most heavily queried tables). A ma-
jority of Wikipedia queries use the page table, restricting
on the page.title or page.id columns. Figure 4
shows the schema of the page and revision tables.
INSERT, UPDATE, and DELETE queries are 5% of the

overall workload, consistent with information provided by
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page (id, namespace, title, ...)
revision (id, page, text_id, ...)

Figure 4: Partial Wikipedia page and revision table schemas.

the current Wikipedia database administrator. Writes are
not transactional: the client sends independent writes to
each server that needs to be updated. For example, when
writing a table with multiple copies, the client sends a
separate write to update each of the copies. The rest of the
evaluation uses synthetic queries and data constructed to
explore specific questions. Every column is indexed.

Hardware. All experiments run on Amazon EC2. Each
database server is a “small instance” (one CPU core and
1.7GB of RAM). Experiments use ten servers unless indi-
cated otherwise. Three “large” instances (each with five
CPU cores and 12GB of RAM) generate client requests.
The clients are fast enough that throughput is limited by
the database servers in all experiments. All machines are in
the same availability zone, so they are geographically close
to each other. Each database server is running MySQL
5.1.44 on GNU/Linux, and all data is stored using the Inn-
oDB storage engine. MySQL is set up with a 50MB query
cache, 8 threads, and a 700 MB InnoDB buffer pool. This
is sufficient for the working set of Wikipedia data in the
workload, because the majority of the database is the text
of Wikipedia pages, many of them not accessed.

Runtime Measurement. Before each experiment,
DIXIE’s planner and optimizer generate traces of plans
from application SQL traces. During each experiment,
multiple client threads run DIXIE’s executor with a plan
trace as input; the executor sends dqueries to servers and
performs post-processing on the client. We pre-generate
plans in order to reduce the client resources needed at ex-
periment time to saturate the database servers. Planning
and optimization take an average of 0.17ms per query.

Throughput is measured as the total number of appli-
cation queries per second completed by all clients for a
time period of 300 seconds, beginning 30 seconds after the
clients start, and ending 30 seconds before stopping the
clients. The traces are long enough that the clients are busy
during the duration of measurement. Before measurement,
a read-only version of each trace file is run all the way
through the system to warm up the database cache and the
operating system file cache, so that during the experiment
the databases minimally use the disk.

8.2 Wikipedia

Wikipedia’s 2008 workload benefits from both partitioning
the data over multiple servers and from using more than
one table partioning. Figure 5 shows the change in overall
throughput for the same workload over 1, 2, 5, and 10
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Figure 5: Throughput (queries per second) of the Wikipedia
workload with 1, 2, 5, and 10 servers. The patterned red bars
correspond to the best setup with only one copy of each table
(this setup partitions the page table by page.id). The solid green
bars correspond to a setup with an extra copy of the page table,
partitioned by page.title.

partitions, with and without an extra table copy. The best
partitioning with only one copy per table, which partitions
the page table by page.id, yields a total of 7400 QPS
(application queries per second) across ten partitions (see
Figure 5, 10P). In this partitioning, 25% of all Wikipedia
queries generate dqueries to all partitions. Adding a copy
of the page table partitioned on page.title reduces
this number to close to zero, and increases overall through-
put to 23347 QPS, a 3.2X increase. DIXIE automatically
exploits the table copy to achieve this increase.

In order that the data fit in server memory, the one and
two partition cases use a dataset with only 10K rows in the
page table. With one partition, it is better to have only
one copy of each table to avoid extra writes. The benefit of
the extra table copy increases with the number of partitions
because sending a query to one partition instead of N frees
N − 1 query overhead’s worth of CPU time for use by
other queries.

To help explain the details of how the added table copy
helps, we can divide the read-only portion of the Wikipedia
query workload into three parts:

Single table, single-partition queries. These queries
access a single table restricting on a column used as a
partitioning key. These queries can be sent to one server.

Single table, multi-partition queries. These queries
only access one table, but not on any partition key, so they
must be sent to all partitions.

Multi-step queries. These are join queries which re-
quire accessing two or more tables. They can be executed
either as a single pushdown join (which in this workload
must be sent to all servers) or in multiple steps. Each step
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SELECT * FROM page
A WHERE page.id = i

SELECT * FROM page
B WHERE page.title = t

SELECT * FROM page,revision
WHERE page.namespace = 0

C AND page.title = t
AND revision.id = page.latest
AND page.id = revision.page
INSERT INTO page

D VALUES (co, c1, ... cn)

Table 4: Examples of Wikipedia page table queries.

is either a pushdown join on a subset of the tables in the
join or a set of lookups on a single table, which can be
modeled as a single-table query.

We will focus on queries that use the page table, which
are affected by the addition of the page.title table
copy. 50% of queries use the page table; examples of
each type of these queries are shown in Table 4. Queries A
and B are single table queries. Query A is a single-partition
query, since it can be sent to the single partition containing
the appropriate page.id value. Query B is originally a
multi-partition query. Query C is a multi-step query which
is executed as a pushdown join query and must be sent to
all servers, and Query D inserts a row into the page table.

With the addition of a page.title table copy, Query
B generates a dquery to one server instead of dqueries to
all, reducing query overhead by a factor of ten. Query C re-
quires DIXIE to choose between a pushdown join and join-
ing in the client. In this workload DIXIE always chooses
the latter. The next section shows how DIXIE makes that
choice depending on the selectivity of the columns men-
tioned in the query.

Adding table copies can impose a penalty: writes must
update all copies. Figure 6 shows the difference in through-
put when adding a page.title table copy and increas-
ing the percentage of writes. When writes are at 0%, using
the page.title table copy to direct each query to one
partition instead of all partitions achieves a 9.1X improve-
ment in throughput. Throughput improvement decreases
as the workload contains a higher percentage of writes.
The table shows results from a benchmark with a mix of
Queries B and D on the page table partitioned over ten
servers, randomly and uniformly reading and inserting
page rows.

8.3 Query Planning

For some join queries, DIXIE must choose between two
plans: a two-step join and a pushdown join. To illustrate
this choice, we examine Plans 1 and 3 from Table 3, which
DIXIE generates from the application query in Figure 7.
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Figure 6: Throughput (queries per second) of a workload execut-
ing a combination of queries B and D in Table 4 on ten database
servers. One line corresponds to a setup which partitions the page
table only on page.id, and the second line corresponds to a setup
with an extra copy of the page table, partitioned by page.title.
The first setup sends reads to all ten servers and writes to one,
the second setup reads from one server and writes to two.

SELECT *
FROM blogs, comments
WHERE blogs.author = ’Bob’
AND comments.user = ’Alice’
AND blogs.id = comments.object

Figure 7: Alice’s comments on Bob’s blog posts.

If an optimizer were to mainly consider row retrieval
cost, it would select Plan 3, the pushdown join, since it
retrieves the fewest rows. The plan describes an execution
which contacts all servers, but sends at most one or two
rows back to the client.

Plan 1 contacts two servers in two steps: first to get
Bob’s blog posts, then to get Alice’s comments on Bob’s
posts. Plan 1 requires sending back unnecessary rows in
step one because it sends back all of Bob’s blog posts,
even though Alice only commented on one or two.

Figure 8 shows the throughputs for these plans with ten
servers, varying the amount of data returned in step one
of Plan 1 by increasing the number of blog posts per user.
There are 1000 users and ten comments per user. A row in
the blog posts table is approximately 900 bytes, and a row
in the comments table is approximately 700 bytes. Queries
use different values for “Alice” and “Bob” in Figure 7. The
graph also shows DIXIE’s cost predictions, based on the
formula described in Section 5, inverted and scaled up to
be in the same range as the measured QPS for comparison.

Figure 8 shows that if the query retrieves few enough
rows in step one, the system can achieve a higher through-
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Figure 8: Throughput (queries per second) retrieved from ten
database servers and DIXIE’s predicted cost for each query plan.

put with Plan 1 which sends dqueries to only two servers
and retrieves more rows, than with Plan 3, which sends
dqueries to all servers while retrieving fewer results. Using
Plan 1 instead of Plan 3 when there are only ten blog posts
per user gives a 4.2x improvement in throughput. This
number would increase with more servers. When there
are 145 rows returned per author Plan 1 is equivalent in
throughput to Plan 3.

Since DIXIE’s predicted query costs for the two plans
cross shortly after 145 rows, it will usually choose the best
plan. Its ability to do so depends on its having reasonable
estimates for query overhead and row retrieval time. The
next section investigates these two factors.

8.4 Cost Model
To test the accuracy of DIXIE’s query cost models (de-
scribed in Section 5) and measure the cost of per-query
overhead, we set up a controlled set of experiments using
one database based on the synthetic workloads. We varied
the number of rows retrieved, the row size, and the percent-
age of queries sent to all shards. By varying the number of
rows retrieved we can derive a ratio of query overhead to
row retrieval time for a single server. We show that query
overhead is independent of the size of the rows retrieved.

Setup. The database is on one Amazon EC2 as de-
scribed in Section 8.1. In each experiment the database
has one table of 100K rows, with nine either 15, 150, or
255 character columns. Each column has a different num-
ber of distinct keys, and as such a different number of rows
returned when querying on that column. Every column has
an index and each table fits in memory.

Workload. Throughput is measured by running as
many client threads as necessary to saturate the database
server (in these experiments 16), each generating and issu-
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Figure 9: Measurement of milliseconds spent executing a query
on a single EC2 MySQL server, varying the number of rows per
query and bytes per row using multiple clients.

ing queries of the form:

SELECT * FROM table1 WHERE c5 = ?

We vary the number of rows retrieved by the queries in a
run by changing the restricted column in the query. Within
a run each client thread issues a sequence of queries re-
questing a random existing value from one column (ex-
cept for the run that measures retrieving zero rows), with
a uniform distribution. The overall throughput of a run as
measured in queries per millisecond is a sum of each client
thread’s throughput, measured as a sum of queries issued
divided by the number of milliseconds in the run.

Figure 9 shows the time per query measured as 1/qps
where qps is the throughput in queries per second, as a
function of the number of rows returned by the query. This
graph shows how total per-query processing time increases
as the number of rows retrieved increases for different row
sizes. This graph is fit by lines of the form tq = to +nr ∗ tr,
where tq is the total time of the query, to is query overhead,
nr is the number of rows retrieved per query, and tr is the
time to retrieve one row. On our experimental setup, for
150 byte rows, we measure query overhead as 0.45ms and
the time to retrieve one row as 0.011ms. For 1700 byte
rows, query overhead was .43ms and the time to retrieve a
row was .022, and for 2700 byte rows the numbers were
0.5ms and .033ms. DIXIE only uses one value for costr,
but this experiment shows that costr varies for row size.
Including metrics in the configuration files on the average
size of rows in a table and using this in the cost formula
would help DIXIE produce better query plans.

Using the formula in Section 5, DIXIE would estimate
the cost of retrieving 20 rows from one server as .88, and
retrieving 20 rows from two servers as 1.32, a 50% in-
crease. Retrieving 100 rows from two servers instead of
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Rows Returned Servers DIXIE’s Cost Time
20 1 .88 .95ms
20 2 1.32 1.37ms
100 1 2.64 2.67ms
100 2 3.08 3.24ms

Table 5: DIXIE plan cost estimation vs. actual time.

one server would be 16.7% higher. Table 5 shows the dif-
ference between DIXIE’s plan costs and experimentally
validated plan costs, in milliseconds. The actual time to
request 20 rows from one server is .95ms and from two
servers is 1.37ms, a 44% increase, and for 100 rows it is a
21% higher.

Query overhead is the MySQL server allocating re-
sources to parse the query, obtain read table locks, and
check indices or table metadata to determine if it has rows
which match the query.

Since the per-row cost is roughly one twentieth the per-
query overhead, DIXIE uses a costr of 0.05 in the formula
described in Section 5. So in the blogs and comments
query in Figure 7, DIXIE would choose to execute the two-
step join plan as long as selectivity statistics indicated that
there were less than 162 blog posts per author. Note that
for the purposes of showing how costs change according
to column selectivity we are ignoring Plan 2, which DIXIE
would also consider. This is 12% off from the measured
optimal switchover point, shown in Figure 8, which is 145
blog posts per author.

9 Related Work

DIXIE relies on a large body of research describing how to
build parallel databases and query optimizers. This section
includes the most closely related systems.

DIXIE operates on horizontally partitioned databases
on a shared-nothing architecture [22]. The benefits of this
design were demonstrated in systems like Gamma [8], Ter-
adata [26], and Tandem [12]. A number of more recent
databases exploit horizontal partitioning. H-Store [15],
Microsoft’s Cloud SQL Server [3], and Google Megas-
tore [10] are main-memory partitioned databases. These
systems either prefer or require applications to execute
queries which only touch a single partition, and do not de-
scribe how to efficiently execute queries that might require
spanning partitions.

C-Store [23] and its successor Vertica [29] store copies
of table columns partitioned on different columns. C-
Store’s query planner and optimizer consider which copies
of a column to use in answering a query; its focus is paral-
lelizing single queries that examine large amounts of data.
Vertica has a sophisticated query optimizer which works
over partitioned data on multiple servers, but its optimizer

is also designed for large analytic queries, and chooses to
favor colocated joins (what we call pushdown joins) where
possible [28]. DIXIE relies on the fact that web application
queries are often simple, selective, and use a small number
of tables in joins. As shown in this work, there are queries
where colocated joins are less efficient for these queries
than other plans that DIXIE would choose.

The fractured mirrors work [20] presents the idea of
storing tables in different formats on different disks to
minimize disk seeks, but the authors do not consider par-
titions, or speak to the costs involved in distributed query
execution and how this affects the choice of query plans.

Other work has made the point that social networks do
not partition well, and suggested replication solutions [19,
18]. This work relies on network-style clustering in the
data, and aims to put users on the same servers as their
friends. DIXIE makes no such assumptions.

Schism [7] chooses good partitioning and replication
arrangements with the goal of ensuring that transactions
need never involve more than one server. Schism doesn’t
quantify the cost of query overhead or describe how to
do query planning and optimization. [2] also investigates
partition choice, focusing on warehouse datasets.

In the field of query optimization many systems have
addressed how to execute distributed queries. The query
optimizer in Orchestra [25], a peer-to-peer database built
on a distributed hash table, estimates a plan’s cost by con-
sidering the cost at the slowest node or link used in each
plan stage, which will ultimately optimize for latency but
not throughput.

Distributed INGRES [9] has a distributed query opti-
mizer, but like the other systems mentioned above, it op-
timizes for reduced latency and parallelism. R* [17] is a
distributed query optimizer which seeks to minimize to-
tal resources consumed, like DIXIE, but does not support
the idea of table partitioning, so table access methods are
limited. Most of these systems use replication for fault
tolerance; none take advantage of table copies on different
range partitions to execute plans that minimize machine
accesses.

Kossman noted that when estimating costs of a query,
communication costs including fixed per-message costs
must be considered [16], and discusses choosing which
replica of a table to use when executing a query. This
paper extends upon that work by noting that in certain
web workloads, this cost is the dominant cost of execution,
and also proposing a new way of minimizing it.

Evaluation of Bubba [5] showed that when the system
is CPU-bottlenecked, declustering degrades performance
due to startup and communication costs, which are part
of query overhead. DIXIE applies a similar idea to web
application workloads, but goes beyond this to motivate
keeping many copies of the data, and to use query over-
head in the query optimizer to determine cost.
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10 Conclusion

Due to the high cost of issuing unnecessary queries in
a clustered database, and since web applications often
have workloads which do not cleanly partition, developers
should use multiple copies of tables partitioned on dif-
ferent columns. DIXIE is a query planner, optimizer, and
executor for such a database. DIXIE can execute applica-
tion SQL queries written for a single database against a
partitioned database with multiple partitionings of tables
without any additional code by the application developer.
DIXIE chooses plans which have high throughput by using
per-query server overhead as a dominant factor in calcu-
lating query costs.
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Abstract
Gibraltar is a new framework for exposing hardware devices
to web pages. Gibraltar’s fundamental insight is that Java-
Script’s AJAX facility can be used as a hardware access pro-
tocol. Instead of relying on the browser to mediate device in-
teractions, Gibraltar sandboxes the browser and uses a small
device server to handle hardware requests. The server uses
native code to interact with devices, and it exports a stan-
dard web server interface on the localhost. To access hard-
ware, web pages send device commands to the server using
HTTP requests; the server returns hardware data via HTTP
responses.

Using a client-side JavaScript library, we build a simple
yet powerful device API atop this HTTP transfer protocol.
The API is particularly useful to developers of mobile web
pages, since mobile platforms like cell phones have an in-
creasingly wide array of sensors that, prior to Gibraltar, were
only accessible via native code plugins or the limited, incon-
sistent APIs provided by HTML5. Our implementation of
Gibraltar on Android shows that Gibraltar provides stronger
security guarantees than HTML5; furthermore, it shows that
HTTP is responsive enough to support interactive web pages
that perform frequent hardware accesses. Gibraltar also sup-
ports an HTML5 compatibility layer that implements the
HTML5 interface but provides Gibraltar’s stronger security.

1. Introduction
Web browsers provide an increasingly rich execution plat-
form. Unfortunately, browsers have been slow to expose
low-level hardware devices to JavaScript [8], the most pop-
ular client-side scripting language. This limitation has be-
come particularly acute as sensor-rich devices like phones
and tablets have exploded in popularity. A huge marketplace
has arisen for mobile applications that leverage data from
accelerometers, microphones, GPS units, and other sensors.
Phones also have increasingly powerful computational and
storage devices. For example, graphics processors (GPUs)
are already prevalent on phones, and using removable stor-
age devices like SD cards, modern phones can access up to
64GB of persistent data.

Because JavaScript has traditionally lacked access to
such hardware, web developers who wanted to write device-
aware applications were faced with two unpleasant choices:
learn a new plugin technology like Flash which is not sup-
ported by all browsers, or learn a platform’s native applica-

tion language (e.g, the Win32 API for Windows machines,
or Java for Android). Both choices limit the portability of
the resulting applications. Furthermore, moving to native
code eliminates a key benefit of the web delivery model—
applications need not be installed, but merely navigated to.

1.1 A Partial Solution
To remedy these problems, the new HTML5 specifica-
tion [10] introduces several ways for JavaScript to access
hardware. At a high-level, the interfaces expose devices as
special objects embedded in the JavaScript runtime. For
example, the <input> tag [24] can reflect a web cam ob-
ject into a page’s JavaScript namespace; the page reads or
writes hardware data by manipulating the properties of the
object. Similarly, HTML5 exposes geolocation data through
the navigator.geolocation object [27]. Browsers imple-
ment the object by accessing GPS devices, or network cards
that triangulate signals from wireless access points.

Given all of this, there are two distinct models for creat-
ing device-aware web pages:
• Applications can be written using native code or plug-

ins, and gain the performance that results from running
close to the bare metal. However, users must explicitly
install the applications, and the applications can only run
on platforms that support their native execution environ-
ment.

• Alternatively, applications can be written using cross-
platform HTML5 and JavaScript. Such applications do
not require explicit installation, since users just navigate
to the application’s URL using their browser. However,
as shown in the example above, HTML5 uses an incon-
sistent set of APIs to name and query each device, mak-
ing it difficult to write generic code. Furthermore, by ex-
posing devices through extensions of the JavaScript inter-
preter, the entire JavaScript runtime becomes a threat sur-
face for a malicious web page trying to access unautho-
rized hardware—once a web page has compromised the
browser, nothing stands between it and the user’s devices.
Unfortunately, modern browsers are large, complex, and
have many exploitable vulnerabilities [4, 30, 34]. On mo-
bile devices, browsers represent a key infection vector for
malicious pages that steal SMS information [21], SD card
data [23], and other private user information.

Ideally, we want the best of both worlds—device-aware,
cross-platform web pages that require no installation, but
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whose security does not depend on a huge trusted computing
base like a browser.

1.2 Our Solution: Gibraltar
Our new system, called Gibraltar, uses HTTP as a hardware
access protocol. Web pages access devices by issuing AJAX
requests to a device server, a simple native code applica-
tion which runs in a separate process on the local machine
and exports a web server interface on the localhost domain.
If a hardware request is authorized, the device server per-
forms the specified operation and returns any data using a
standard HTTP response. Users authorize individual web do-
mains to access each hardware device, and the device server
authenticates each AJAX request by ensuring that the refer-
rer field [7] represents an authorized domain.

Unlike HTML5, Gibraltar does not require the browser
to be fully trusted. Indeed, in Gibraltar, the browser is sand-
boxed and incapable of accessing most devices. However,
a corrupted or malicious browser can send AJAX requests
to the device server which contain snooped referrer fields
from authorized user requests. To limit these attacks, Gibral-
tar uses capability tokens and sensor widgets [12]. Before a
web page can access hardware, it must fetch a token from
the device server. The page must tag subsequent hardware
requests with the fresh capability.

To prevent a malicious browser from surreptitiously re-
questing capabilities from the device server, Gibraltar em-
ploys sensor widgets. Sensor widgets are ambient GUI el-
ements like system tray icons that indicate which hardware
devices are currently in use, and which web pages are using
them. Sensor widgets help a user to detect discrepancies be-
tween the set of devices that she expects to be in use, and
the set of devices that are actually in use. Thus, sensor wid-
gets allow a user to detect when a compromised browser is
issuing hardware requests that the user did not initiate.

Using these mechanisms, a compromised browser in
Gibraltar has limited abilities to independently access hard-
ware (§5). However, a malicious browser is still the con-
duit for HTTP traffic, so it can snoop on data that the user
has legitimately fetched and send that data to remote hosts.
Gibraltar does not stop these kinds of attacks. However,
Gibraltar is complementary to information flow systems like
TightLip [39] that can prevent such leaks.

1.3 Advantages of Gibraltar
Gibraltar’s device protocol has four primary advantages:
• Ease of Deployment: Gibraltar allows device-aware pro-

grams to be shipped as web applications that do not need
to be installed. The device server does need to be in-
stalled, but it can ship alongside the browser and be in-
stalled at the same time that the browser itself is installed.

• Security: Compared to HTML5-style approaches which
expose hardware by extending the JavaScript interpreter,
Gibraltar has a much smaller attack surface. Gibraltar’s
HTTP protocol is a narrow waist for hardware accesses,

and the device server is much simpler than a full-blown
web browser; for example, our device server for Android
phones is only 7613 lines of strongly typed Java code,
instead of the million-plus lines of C++ code found in
popular web browsers. Using capability tokens and sen-
sor widgets, Gibraltar can also prevent (or at least detect)
many attacks from malicious web pages and browsers.
HTML5 cannot stop or detect any of these attacks.

• Usability: An HTTP device protocol provides a uniform
naming scheme for disparate devices, and makes it easy
for pages to access non-local devices. For example, a
page running on a user’s desktop machine may want to
interact with sensors on the user’s mobile phone. If a
Gibraltar device server runs on the phone, the page can
access the remote hardware using the same interface that
it uses for local hardware—the only difference is that the
device server is no longer in the localhost domain.

• Backwards Compatibility: It is straightforward to map
HTML5 device commands to Gibraltar calls. Thus, to run
a preexisting HTML5 application atop Gibraltar, a devel-
oper can simply include a translation library that converts
HTML5 calls to Gibraltar calls but preserves Gibraltar’s
security advantages. The library can use Mugshot-style
interpositioning [19] to intercept the HTML5 calls.

Since Gibraltar uses HTTP to transport hardware data, a key
question is whether this channel has sufficient bandwidth
and responsiveness to support real device-driven applica-
tions. To answer this question, we wrote a device server for
Android mobile phones, and modified four non-trivial appli-
cations to use the Gibraltar API. Our evaluation shows that
Gibraltar is fast enough to support real-time programs like
games that require efficient access to hardware data.

2. Design
Gibraltar uses privilege separation [29] to provide a web
page with hardware access. The web page, and the enclosing
browser which executes the page’s code, are both untrusted.
Gibraltar places the browser in a sandbox which prevents
direct access to Gibraltar-mediated devices. The small, na-
tive code device server resides in a separate process from the
browser, and executes hardware requests on behalf of the
page, exchanging data with the page via HTTP.

As shown in Figure 1, a Gibraltar-enabled page includes
a JavaScript file called hardware.js. This library imple-
ments the public Gibraltar API. hardware.js fetches au-
thentication tokens as described in Section 2.1, and trans-
lates page-initiated hardware requests into AJAX fetches as
described in Section 3. hardware.js also receives and de-
serializes the responses. Note that hardware.js is merely a
convenience library that makes it easier to program against
Gibraltar’s raw AJAX protocol; Gibraltar does not trust
hardware.js, and it does not rely on hardware.js to en-
force the security properties described in Section 5.
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Figure 1. Gibraltar Architecture.

Note that the device server resides in the localhost do-
main, whereas the Gibraltar-enabled page emanates from a
different, external origin. By default, the same-origin pol-
icy would prevent the hardware.js in the web page from
fetching cross-origin data from the localhost server. How-
ever, using the Access-Control-Allow-Origin HTTP
header [37], the device server can instruct the browser to
allow the cross-origin Gibraltar fetches. This header is sup-
ported by modern browsers like IE9 and Firefox 4+. In
older browsers, hardware.js communicates with the de-
vice server using an invisible frame with a localhost origin;
this frame exchanges Gibraltar data with the regular applica-
tion frame using postMessage(). Similarly, Gibraltar can
use a remote-origin frame to deal with off-platform devices.

2.1 Authenticating Hardware Requests
In Gibraltar, device management consists of three tasks:
manifest authorization, session establishment, and session
teardown. Figure 2 provides the relevant pseudocode in the
device server. We discuss this code in more detail below.

Manifest authorization: On mobile devices like Android,
users authorize individual applications to access specific
hardware devices. Similarly, in Gibraltar, users authorize
individual web domains like cnn.com to access individual
hardware devices. When a page contacts the device server
for the first time, the page includes a device manifest in its
HTTP request. The manifest is simply a list of devices that
the page wishes to access. The device server presents this
manifest to the user and asks whether she wishes to grant
the specified access permissions to the page’s domain. If
so, the device server stores these permissions in a database.
Subsequent page requests for devices in the manifest will not

void handle_request(req){
resp = new AJAXResponse();
switch(req.type){

case OPEN_SESSION:
if(!active_tokens.contains(req.referrer)){

resp.result = "TOKEN:" + makeNewToken();
active_tokens[req.referrer] = resp.result;

}
break;

case DEVICE_CMD:
if(!authorized_domains[req.device].contains(

req.referrer) ||
(active_tokens[req.referrer] == null) ||
(active_tokens[req.referrer] != req.token)){
resp.result = "ACCESS DENIED";

}else{
resp.result = access_hardware(req.device,

req.cmd);
sensor_widgets.alert(req.referrer,

req.device);
}
break;

case CLOSE_SESSION:
if(active_tokens[req.referrer] == req.token)

active_tokens.delete(req.referrer);
break;

}
sendResponse(resp);

}

Figure 2. Pseudocode for device server.

require explicit user action, but if the page requests access
to a new device, the user must approve the new permission.

Session management: Since Gibraltar hardware requests
are expressed as HTTP fetches, a natural way for the de-
vice server to authenticate a request is to inspect its refer-
rer field [7]. This is a standard HTTP field which indicates
the URL (and thus the domain) of the page which gener-
ated the request. Unfortunately, a misbehaving browser can
subvert this authentication scheme by examining which do-
mains successfully receive hardware data, and then gener-
ating fake requests containing these snooped referrer fields.
This is essentially a replay attack on a weak authenticator.

To prevent these replay attacks, the device server grants
a capability token to each authorized web domain. Before
a page in domain trusted.com can access hardware, it
must send a session establishment message to the device
server. The device server examines the referrer of the HTTP
message and checks whether the domain has already been
granted a token. If not,1 the server generates a unique token,
stores the mapping between the domain and that token, and
sends the token to the page. Later, when the page sends an
actual hardware request, it includes the capability token in
its AJAX message. If the token does not match the mapping
found in the device server’s table, the server ignores the
hardware request.

1 We restrict each domain to a single token for security reasons that we
describe in Section 5.1. However, this restriction does not prevent a do-
main from opening multiple device-aware web pages on a client—the
pages can inform each other of the domain’s token using the JavaScript
postMessage() API.
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A page sends a session teardown message to the device
server when it no longer needs to access hardware, e.g., be-
cause the user wants to navigate to a different page. Upon
receipt of the teardown message, the server deletes the rele-
vant domain/token mapping. hardware.js can detect when
a page is about to unload by registering a handler for the
JavaScript unload event.

Sensor widgets: Given this capability scheme, a misbehav-
ing browser that can only spoof referrers cannot fraudulently
access hardware—the browser must also steal another do-
main’s token, or retrieve a new one from the device server.
As we discuss in Section 5, cross-domain token stealing
is difficult if the browser uses memory isolation to parti-
tion domains. However, nothing prevents a browser from au-
tonomously downloading a new security token in the back-
ground under the guise of an authorized domain, and then
using this token in its AJAX requests. To prevent this at-
tack, we use sensor widgets [12], which are ambient GUI
elements like system tray icons that glow, make a noise, or
otherwise indicate when a particular hardware device is in
use. Sensor widgets also indicate the domains which are cur-
rently accessing hardware. Thus, if the browser tries to au-
tonomously access hardware using a valid token, the activity
will trigger the sensor widgets, alerting the user to a hard-
ware request that she did not initiate.

The sensor widgets are implemented within the device
server, not the browser. However, the browser can try to
elude the widgets in several ways. In Section 5, we provide
a fuller analysis of Gibraltar’s security properties.

2.2 The Gibraltar API
Figure 3 lists the client-side Gibraltar API. Before a web
page can issue hardware commands, it must get a new capa-
bility token via createSession(). Then, it must send its
device manifest to the device server via requestAccess().
The device server presents the manifest to the user and asks
her to validate the requested hardware permissions.

2.2.1 Sensor API
To provide access to sensors like cameras, accelerometers,
and GPS units, Gibraltar provides a one-shot query inter-
face and a continuous query interface. In keeping with Java-
Script’s event-driven programming model, singleQuery()
and continuousQuery() accept an application-defined
callback which Gibraltar invokes when the hardware data
has arrived. The functions also accept the name of the de-
vice to query, and a device-specific params value which
controls sensor-specific properties like the audio sampling
bitrate. continuousQuery() takes an additional parameter
representing the query frequency.

Different devices will define different formats for the
params object, and different formats for the returned device
data. However, much like USB devices, Gibraltar devices
fall into a small set of well-defined classes such as storage

devices, audio devices, and video devices. Thus, web pages
can program against generic Gibraltar interfaces to each
class; the device server and hardware.js can encapsulate
any device-specific eccentricities.

Figure 3 also describes a sensor management interface.
The power controls allow a page to shut off devices that it
does not need; the device server ensures that a device is left
on if at least one application still needs it. sensorAdded()
and sensorRemoved() let applications register callbacks
which Gibraltar fires when devices arrive or leave. These
events are useful for off-platform devices like Bluetooth
headsets and Nike+ shoe sensors [22].

2.2.2 Processor API
Multi-core processors and programmable GPUs are already
available on desktops, and they are starting to ship on mobile
devices. To let web pages access these extra cores, Gibraltar
exports a simple multi-processor computing model inspired
by OpenCL [13], a new specification for programming het-
erogeneous processors.

A Gibraltar kernel represents a computational task to
run on a core. Kernels are restricted to executing two types
of predefined functions. Primitive functions are geometric,
trigonometric, or comparator operations. Gibraltar’s primi-
tive functions are similar to those of OpenCL. Built-in func-
tions are higher-level functions that we have identified as
particularly useful for processing hardware data. Examples
of such functions are FFT transforms and matrix operations.

A web page passes a kernel to Gibraltar by calling
enqueueKernel(). To execute a parallel vector compu-
tation with that kernel, the page calls setKernelData()

with a vector of arguments; Gibraltar will instantiate a new
copy of the kernel for each argument and run the kernels in
parallel. A web page can also create a computation pipeline
by calling enqueueKernel() multiple times with the same
or different kernel. Gibraltar will chain the kernels’ inputs
and outputs in the order that the kernels were passed to
enqueueKernel(). The page sets the input data for the
pipeline by passing a scalar value to setKernelData().

Once an application has configured its kernels, it calls
executeKernels() to start the computation. Gibraltar dis-
tributes the kernels to the various cores in the system, coordi-
nates cross-kernel communication, and fires an application-
provided callback when the computation finishes.

2.2.3 Storage API
The final set of calls in Figure 3 provide a key/value stor-
age interface. The namespace is partitioned by web domain
and by storage device; a web domain can only access data
that resides in its partitions. To support removable storage
devices, Gibraltar fires connection and disconnection events
like it does for off-platform sensors like Bluetooth headsets.

HTML5 DOM storage [11] also provides a key-value
store. However, DOM storage is limited to non-removable
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Call Description
createSession() Get a capability token from the device server.

destroySession() Relinquish a capability token.
requestAccess(manifest) Ask for permission to access certain devices.

singleQuery(name, params) Get a single sensor sample.
continuousQuery(name, params, period) Start periodic fetch of sensor samples.

startSensor(name) Turn on a sensor.
stopSensor(name) Turn off a sensor.
sensorAdded(name) Upcall fired when a sensor is added.

sensorRemoved(name) Upcall fired when a sensor is removed.
getSensorList() Get available sensors.

enqueueKernel(kernel) Queue a computation kernel for execution.
setKernelData(parameters) Set the input data for the computation pipeline.

executeKernels() Run the queued kernels on the input data.
put(storename,key,value) Put value by key.

get(storename,key) Get value by key.

Figure 3. Summary of hardware.js API. All calls implicitly require a security token and callback function.

media, and it does not explicitly expose the individual de-
vices which are used for the underlying stable storage.

2.3 Remote device access
As we mentioned earlier, some devices may reside off-
platform. If those devices run a Gibraltar server which ac-
cepts external connections, a web page can seamlessly ac-
cess those devices using the same interface that it uses for
local ones. This capability enables many interesting appli-
cations. For example, in Section 6, we evaluate a game that
runs on a desktop machine but uses a mobile phone with
an accelerometer as a motion-sensitive controller. In this ex-
ample, the web page runs on the desktop machine, but the
device server runs on the phone.

A device server accepts connections from localhost
clients by default (subject to the authentication rules de-
scribed in Section 2.1). For security reasons, a device server
should reject connections from arbitrary remote clients.
Thus, users must explicitly whitelist each external IP ad-
dress or dynamic DNS name [35] that wishes to communi-
cate with a device server. This is accomplished in a fashion
similar to how the user authorizes device manifests (§2.1).

2.4 Sandboxing the Browser
Gibraltar is agnostic about the mechanism that prevents the
browser from accessing Gibraltar devices. For example, mo-
bile platforms like Android, iOS, and the Windows Phone
provide device ACLs that makes it easy to prohibit appli-
cations from accessing forbidden hardware. Gibraltar is also
compatible with other isolation techniques like hardware vir-
tualization or binary rewriting.

3. Implementation
Client-side Library: hardware.js encodes device re-
quests using a simple XML string. Each request contains

a security token, an action to perform, the target device, and
optional device-specific parameters. For example, a request
to record microphone data includes a parameter that rep-
resents the recording duration. Device responses are also
encoded using XML. The response specifies whether the re-
quest succeeded, and any data associated with the operation.
The device server encodes binary data in Base64 format so
that hardware.js can represent data as JavaScript strings.

Android Device Server: On Android 2.2, we implemented
the device manager as a servlet for the i-jetty web server [2].
A servlet is a Java software module that a web server in-
vokes to handle certain URL requests. The Gibraltar servlet
handles all requests for Gibraltar device URLs. The servlet
performs the authentication checks described in Section 2.1,
accesses hardware using native code, and returns the seri-
alized results. We refer to our Android implementation of
Gibraltar as GibDroid.

The GibDroid device server has different probing poli-
cies for low throughput sensors and high throughput sensors.
For low throughput devices like cameras, GibDroid accesses
the sensor on demand. For devices like accelerometers that
have a high data rate, the GibDroid server continuously pulls
data into a circular buffer. When a page queries the sensor,
the device server returns the entire buffer, allowing multi-
ple data points to be fetched in a single HTTP round trip.
Currently, GibDroid provides access to accelerometers, GPS
units, cameras (both single pictures and streaming video),
microphones, local storage, and native computation kernels.

Before a web page can receive hardware data from the
device server, it must engage in a TCP handshake with the
server and send an HTTP header. For devices with high
data rates like accelerometers and video cameras, creating an
HTTP session for each data request can hurt performance,
even with sample batching. Thus, GibDroid allows the de-
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Figure 4. GibDroid uses the Android notification bar to
hold sensor widgets.

vice server to use Comet-style [3] data pushes. In this ap-
proach, hardware.js establishes a persistent HTTP con-
nection with the device server using a “forever frame.” Un-
like a standard frame, whose HTML size is declared in the
HTTP response by the server, a forever frame has an indefi-
nite size, and the server loads it incrementally, immediately
pushing a new HTML chunk whenever new device data ar-
rives. Each chunk is a dynamically generated piece of Java-
Script code; the code contains a string variable representing
the new hardware data, and a function call which invokes
an application-defined handler. Forever frames are widely
supported by desktop browsers, but currently unsupported
by many mobile browsers. Thus, the device server reverts to
request-response for mobile browsers.

GibDroid can stream accelerometer data and video frames
using Comet data pushes. To handle video, our current im-
plementation uses data URIs [18] to write Base64-encoded
data to an <image> tag2. Many current browsers limit data
URIs to 32 KB data; thus, data URIs are only appropriate for
sending previews of larger video images. Our current Gib-
Droid implementation displays video frames with a pixel
resolution of 530 by 380. The device server uses Android’s
setPreviewCallback() call to access preview-quality im-
ages from the underlying video camera.

GibDroid supports the execution of kernel functions.
However, our evaluation Android phone does not have sec-
ondary processing cores. Therefore, GibDroid kernels run
in separate Java threads that time-slice the single processor
with other applications.

As shown in Figure 4, GibDroid places sensor widgets
in the standard notification bar that exists in all Android
phones. The notification bar is a convenient place to put the
widgets because users are already accustomed to periodi-
cally scanning this area for program updates. We are still
experimenting with the visual presentation for the widgets,
so Figure 4 represents a work-in-progress.

2 In the next version of Gibraltar, hardware.js will write video frames to
the bitmap of an HTML5 Canvas object [10].

Windows PC Device Server: We also wrote a device server
for Windows PCs. This device server, written in C#, cur-
rently only provides access to the hard disk, but it is the tar-
get of active development. In Section 6.1, we use this device
server to compare Gibraltar’s performance on a multi-core
machine to that of HTML5.

4. Applications
In this section, we describe four new applications which
use the Gibraltar API to access hardware. We evaluate the
performance of these applications in Section 6.

Our first application is a mapping tool similar to Map-
Quest [17]. This web page uses GPS data to determine the
user’s current location. It also uses Gibraltar’s storage APIs
to load cached maps tiles. More specifically, we assume that
the phone’s operating system prefetches map tiles, similar
to how the Songo framework prefetches mobile ads [14].
The operating system stores the map tiles in the file sys-
tem; for each cached tile, the OS adds the key/value pair
(tileId,fileSystemLocation) to the mapping appli-
cation’s Gibraltar storage area. When the map application
loads, it determines the user’s current location and calcu-
lates the set of tiles to fetch. For each tile, it consults the
tile index in Gibraltar storage to determine if the tile resides
locally. If it does, the page loads the tile using an <img> tag
with a file:// origin; otherwise, the page uses a http://
origin to fetch the image from the remote tile server.

The popular native phone application Shazam! identi-
fies songs that are playing in the user’s current environment.
Shazam! does this by capturing microphone data and apply-
ing audio fingerprint algorithms. Inspired by Shazam!, we
built Gibraltar Sound, a web application that captures a short
sound clip and classifies it as music, conversation, typing,
or other ambient sound. To classify sounds, we used Mel-
frequency cepstrums (MFCC) for feature extraction, and
Gaussian Mixture Models (GMM) for inference [16]. We
implemented MFCC and GMM as native built-in kernels.

Our final applications leverage Gibraltar’s ability to ac-
cess off-platform devices. These pages load on a desktop
machine’s browser, but use Gibraltar to turn a mobile phone
into a game controller. The first application, Gibraltar Paint,
is a simple painting program in which user gestures with the
phone are converted into brush strokes on a virtual canvas.
Gestures are detected using the phone’s accelerometer.

We also modified a JavaScript version of Pacman [15]
to use a Gibraltar-enabled phone as a controller for a game
loaded on the desktop browser—tilting the phone in a direc-
tion will cause Pacman to move in that direction. HTML5
cannot support the latter two applications because it lacks an
API for remote device access.

5. Security
Any mechanism for providing hardware data to web pages
must grapple with two questions. First, can it ensure that
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each device request was initiated by the user instead of a mis-
behaving browser? Second, once the hardware data has been
delivered to browser, can the system prevent the browser
from modifying or leaking that data in unauthorized ways?
Gibraltar only addresses the first question, but it is comple-
mentary to systems that address the second. In Section 5.1,
we describe the situations in which Gibraltar can and cannot
prevent fraudulent hardware access. In Section 5.2, we de-
scribe how Gibraltar can be integrated with a taint tracking
system to minimize unintended data leakage.

5.1 Authenticating Hardware Requests
In Gibraltar, there are five kinds of security principals: the
user, the Gibraltar device server, the underlying operating
system, web pages, and the web browser. Gibraltar does
not trust the last two principals. More specifically, Gibral-
tar’s security goal is to prevent unauthorized web pages
from accessing hardware data, and faulty web browsers
from autonomously fetching such data. Gibraltar assumes
that the OS properly sandboxes the browser, and that the
OS prevents the browser from directly accessing Gibraltar-
mediated hardware; Gibraltar is agnostic to the particular
sandboxing mechanism that is used, e.g., binary rewriting,
virtual machines, or OS-enforced device ACLs provided by
platforms like Android and iOS. Gibraltar assumes that the
device server is implemented correctly, that the user can
inform the device server of authorized web sites without in-
terference, and that the operating system prevents the web
browser from directly tampering with the device server.
Thus, the only way that a faulty web page or browser can
access hardware is by subverting the AJAX device protocol.

As shown in Figure 2, the device server will only respond
to a hardware request if the request has an authorized refer-
rer field and a valid authentication token; furthermore, the
authorized domain cannot have another open session involv-
ing a different token. Thus, Gibraltar’s security with respect
to device D can be evaluated in the context of three parame-
ters: whether the attacker can fake referrer fields, whether the
attacker can steal tokens from domains authorized to access
D, and whether the user currently has a legitimate, active
frame belonging to a legitimately authorized domain. Fig-
ure 5(a) provides concrete threat examples that correspond
to whether an attacker can fake referrers or steal tokens.

Figure 5(b) shows Gibraltar’s attack resilience when the
user does not have an authorized frame open. Figure 5(c)
shows the attacker’s power when the user has opened an au-
thorized frame. In both cases, we see that an attacker can-
not fraudulently access hardware if he cannot fake referrer
fields. If the attacker can fake referrer fields, then his abil-
ity to fraudulently access device D depends on whether the
user has already opened a frame for a domain that is au-
thorized to access D. If no such frame is open, the attacker
can successfully fetch an authentication token from the de-
vice server, since the domain will not have an outstanding to-
ken in circulation. The attacker’s first hardware request will

pass the device server’s authentication tests, since the refer-
rer will be authorized and the token will be valid. However,
the device server will trigger the appropriate sensor widget
for D, indicating the (spoofed) trusted domain that is access-
ing that device. At this point, the user can realize that she has
not legitimately opened a frame in that domain, and she can
shut down her browser or take other remediating steps. Al-
though the browser has gained limited access to hardware
data, Gibraltar can work in concert with a taint tracking sys-
tem to prevent the data from being externalized (§5.2).

Now suppose that the attacker can fake referrer fields,
and the user does have an authorized frame open (this is the
right column of Figure 5(c)). If the browser uses a Gazelle-
style architecture [36] and strongly isolates the attacker page
from the authorized page, the attacker cannot inspect the
token in the authorized page. Thus, the attacker must request
a new token from the device server. However, the server will
refuse this request because the domain in the referrer field
will already have a token.

If the attacker can steal tokens and fake referrers, and the
user already has an authorized frame open, then nothing pre-
vents the attacker from opportunistically hiding his hardware
requests within the background traffic from the legitimately
authorized frame. Although current browsers do provide a
modicum of domain isolation (e.g., via IE’s process-per-tab
model, or Chrome’s process-per-site-instance model [31]),
commercial browsers do not implement Gazelle-strength
isolation. However, browsers are continually moving to-
wards stronger isolation models, so we believe that soon,
cross-frame token stealing will be impossible.

Gibraltar assumes that the operating system correctly
routes packets to the device server. Thus, the device server
can reject arbitrary connections from off-platform entities
by verifying that the source in each AJAX request has a
localhost IP address. If a user wants to associate a device
server with a web page that resides off-platform, she must
whitelist the external IP address, or notify the device server
and the web page of a shared secret which enables the de-
vice server to detect trusted external clients. For example,
the client web page might generate a random number and
include this number in the first AJAX request that it sends
to the device server. When the server receives this request, it
can present the nonce to the user for verification.

Malicious local applications that are not web pages can
also try to access hardware by contacting the device server.
Sensor widgets provide some defense, but using tools like
Linux’s lsof or Windows’ Process Explorer, the device
server can simply reject localhost connections from pro-
grams that are not hosted within a web browser.

5.2 Securing Returned Device Data
The browser acts as the conduit for all AJAX exchanges, and
it can arbitrarily inspect the JavaScript runtimes inside each
page. Thus, once the browser has received hardware data
(either because a user legitimately fetched it, or because the
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The browser is uncompromised, but an A malicious page subverts a monolithic,
authorized page in one tab willingly shares single-process browser, allowing it to steal
its token with an attacker page in another a token from another authorized tab that
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(a) Example attacker scenarios.

Cannot fake referrer Can fake referrer

Cannot steal token

Attack prevented (attacker cannot create Attack detected (attacker can spoof referrer
an authorized referrer for its hardware field from trusted domain and get a new token,
request). but sensor widgets alert user to the fact

that trusted domain X is accessing hardware
but the user hasn’t opened a page from X).
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Attack prevented (attacker cannot create Attack detected (no legitimately authorized page
an authorized referrer for its hardware exists from which the attacker can steal a
request). token; thus, attacker is forced to download

a new token as above, and is detected by
the sensor widgets).

(b) Gibraltar attack resilience (no legitimately authorized page is running).

Cannot fake referrer Can fake referrer

Cannot steal token
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so device server rejects the new token request).
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Attack prevented (attacker cannot create Attack succeeds (attacker can steal token from
an authorized referrer for its hardware X’s page and put X in its referrer field,
request). effectively masquerading as X).

(c) Gibraltar attack resilience (a legitimately authorized page from domain X is running).

Figure 5. Gibraltar security properties.

browser stole/fetched a token and acquired the data itself),
neither Gibraltar nor HTML5 can prevent the browser from
arbitrarily inspecting, modifying, or disseminating the data.

Suppose that, through clever engineering, the browser
cannot be subverted by malicious web pages. Further sup-
pose that the browser is trusted not to fake referrer fields,
steal tokens from authorized domains, or otherwise subvert
the Gibraltar access controls. Even in these situations, ma-
licious web pages can still leak hardware data to remote
servers. For example, suppose that the user has authorized
domain x.com to access hardware, but not y.com. The same-
origin policy ostensibly prevents JavaScript running on
http://x.com/index.html from sending data to y.com’s
domain. However, this security policy is easily circumvented
in practice. For example, the JavaScript in x.com’s page
can read the user’s GPS data and create an iframe with

a URL like http://y.com/page.index?lat=LAT DATA

long=LON DATA. By loading the frame, the browser implic-
itly sends the GPS data to y.com’s web server.

If the browser is trusted, it can prevent such leakage by
tracking the information flow between Gibraltar AJAX re-
quests and externalized data objects like iframe URLs. This
is similar to what TaintDroid [6] does, although TaintDroid
tracks data flow through a Java VM instead of a browser.

If the browser is untrusted, we can place the taint tracking
infrastructure outside of the browser, e.g., in the underlying
operating system. However, regardless of where the taint
tracker resides, it must allow the user to whitelist certain
pairs of domains and hardware data. For example, suppose
that the user has authorized only x.com to access the GPS
unit. Whenever the data flow system detects that GPS data is
about to hit the network, it must ensure that the endpoint
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resides in x.com’s domain, e.g., by doing a reverse DNS
lookup on the endpoint’s IP address.

If the taint system performs that check, it can prevent
data from directly leaking to unauthorized domains. How-
ever, a full security suite requires both a taint tracker and
Gibraltar, since a taint tracker alone cannot prevent several
damaging attacks. For example, if only a taint tracker is
present, a misbehaving browser could send hardware data
to an authorized domain even if the user is not currently
viewing a page in that domain. Such persistent snooping
is problematic because it lets the authorized domain build
a huge database of contextual information about the user,
even though the user only intended for that data to be col-
lected when she was actually browsing a web page from
that domain. As shown in Figure 5(b), Gibraltar detects this
attack if the user has not opened a page for an authorized
domain. This is because the browser cannot surreptitiously
stream data without triggering a sensor widget. However, if
the user does have an authorized page open, and is running a
browser with weak memory isolation, Gibraltar cannot stop
the stolen token attacks shown in the bottom-right corner of
Figure 5(c). Note that HTML5 cannot stop any of these at-
tacks, since it lacks sensor widgets or a method for assigning
device ACLs to web pages.

Note that taint tracking and whitelists cannot prevent
all kinds of information leakage. For example, a malicious
browser can post sensitive data to a whitelisted site using a
format that the site does not treat as sensitive. For example,
user data could be encoded as a comment in a web forum.
When combined with cross-site request forgery (CSRF), an
attacker may be able to download the exfiltrated user data.
Gibraltar is compatible with approaches for stopping CSRF
attacks (e.g., [25, 33]).

6. Evaluation
In this section, we ask two fundamental questions about
Gibraltar’s performance. First, is an HTTP channel fast
enough to support high frequency sensors and interactive
applications? Second, is Gibraltar competitive with HTML5
in terms of performance?

As described in Section 3, we wrote device servers for
two platforms. The first server runs on Android 2.2 phones,
and we tested it on two handsets: a Nexus One with 512 MB
of RAM and a 1 GHz Qualcomm Snapdragon processor,
and a Droid X with 512 MB of RAM and a 1 GHz Texas
Instruments OMAP processor. We also wrote a device server
for Windows PCs. We tested that server on a Windows 7
machine with 4 GB of RAM and an Intel Core2 processor
with two 2.66 GHz cores.

6.1 Access Latency
Multi-core machines: We define a device’s access latency
as the amount of time that a client perceives a synchronous
device operation to take. Figure 6 shows access latencies
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Figure 6. Read and write latencies to the hard disk on the
dual-core desktop machine.

for the hard disk on the dual-core desktop machine. Each
bar represents the average of 250 trials, with each read or
write involving 1 KB of data. HTML5 disk accesses were
implemented using the DOM storage API [11], whereas
Gibraltar disk accesses were handled by the device server
and accessed a partitioned region of the local file system
owned by the device server. All reads targeted prior write
addresses, meaning that the reads should hit in the block
cache inside the device server or the HTML5 browser.

The absolute latencies for Gibraltar’s disk accesses are
small on both Firefox 3.6 and IE8. For example, a Gibraltar-
enabled page on IE8 can read 1 KB of data with a latency
of 0.62 ms; on Firefox, the page can perform a similar read
with 2.58 ms of latency. While Gibraltar’s read performance
is worse than that of HTML5, it is more than sufficient to
support common use cases for local storage, such as caching
user data to avoid fetching it over a slow network.

For disk writes on both browsers, Gibraltar is more
than five times faster than HTML5. This is because the
Gibraltar device server asynchronously writes back data,
whereas Firefox and IE have a write-through policy. Switch-
ing Gibraltar to a write-through policy would result in sim-
ilar performance to HTML5, since the primary overhead
would be mechanical disk latencies, not HTTP overhead.

Single-core machines: Our desktop machine had a dual-
core processor, meaning that the device server and the web
browser rarely had to contend for a core. In particular, once
the device server had invoked a send() system call to trans-
fer device data to the browser, the OS could usually swap
the browser immediately onto one of the two cores. On a
single core machine, the browser might have to wait for a
non-trivial amount of time, since multiple processes besides
the browser are competing for a single core.

Figure 7 depicts access latencies to the Null device on
the Droid X phone (the Null device immediately returns
an empty message). By using setsocketopt() to disable
the TCP Nagle algorithm, we prod TCP into sending small
packets immediately instead of trying to aggregate several
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Figure 8. Nexus One access latencies (mobile browser ac-
cessing local hardware). Note that the y-axis is log-scale.

small packets into one large one. This decreases the average
access latency from 87 ms to 78 ms; it also decreases the
standard deviation from 34 ms to 25 ms. By raising the
priority of the device server thread and the receiving browser
thread, we can further decrease the latency to 67 ± 18 ms.
However, the raw performance is still worse than in the
dual-core case due to scheduling jitter. For example, looking
at single-core results for individual trials, we saw access
latencies as low as 29 ms, and as high as 144 ms.

Multi-core processors are already pervasive on desktop
systems, and new mobile phones and tablets like the LG Op-
timus 2X have dual-core processors. Thus, we expect that
scheduling jitter will soon become a non-issue for Gibraltar.
In the rest of this section, we provide additional evaluation
results using the single-core Nexus One phone. We show
that even on a single-core machine, Gibraltar is fast enough
to support interactive applications.

Accessing Sensors on the Nexus One: Figure 8 depicts the
access latency for various devices on the Nexus One phone.
The accelerometer and the GPS unit are the sensors that
applications query at the fastest rate. Figure 8 shows that
the accelerometer can be queried 9.4 times a second, and the
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Figure 9. Nexus One access latencies (desktop browser ac-
cessing phone hardware). Top-bar numbers for accelerom-
eter represent improvements in sample frequency; top-bar
numbers for video represent frame rates.

GPS unit can be queried 6.6 times a second. As we discuss
in Section 6.4, these sampling rates are sufficient to support
games and interactive mapping applications.

Accessing the camera or the microphone through Gibral-
tar is much more expensive than accessing the accelerome-
ter. However, most of the latency arises from the inherently
expensive initialization costs for those devices. For exam-
ple, GibDroid adds 160 ms to the inherent cost of sampling
10 seconds of audio data, and 560 ms to the inherent cost of
taking a picture. In both cases, the bulk of Gibraltar’s over-
head came from the Base64 encoding that the device server
must perform before it can send binary data to the applica-
tion.

The results in Figure 8 used the request-response version
of the Gibraltar protocol. On browsers that support forever
frames (§3), Gibraltar can use server-push techniques to de-
crease client-perceived access latencies to devices. Figure 9
quantifies this improvement for desktop browsers accessing
phone hardware over a wireless connection. For example,
for video on Firefox, frame access latencies decreased from
126 ms to 83 ms; this improved the streaming rate for live
video from 8 frames per second to 12. For the accelerometer,
access latencies decreased from 173 ms to 22 ms, allowing
the client to fetch accelerometer readings at a rate of 45 Hz.
This was close to the native hardware limit of 50 Hz. Note,
however, that the performance gains in both cases arose not
just from the server-push technique, but from the fact that the
device server and the web browser ran on different machines
(and thus different processors). This ameliorated some of the
scheduling jitter that arises when the device server and the
browser run on the same core.

6.2 Sampling Throughput
Low access latencies improve the freshness of the data that
the client receives. However, the client may still be unable to
receive data at the native sampling frequency. Thus, the de-
vice server continuously gathers information from high data
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rate devices like the accelerometer and the GPS unit. When
the server gets a read request for such a device, it returns all
of the data that has accumulated since the last query. Thus,
an application can analyze the entire data stream even if it
cannot access every sample at the native data rate.

Figure 10 depicts GibDroid’s sampling throughput using
the built-in Android browser to access phone hardware. Each
bar represents the maximum number of data samples acces-
sible per second to a native application, a Gibraltar page
using an inner iframe (§2), and a Gibraltar page in which
the outer iframe directly issues AJAX requests. Through-
put degradation was less than 5% for all devices. Figure 10
also shows that cross-frame postMessage() overhead was
minimal. Note that the accelerometer throughput was greater
than the Null device throughput because GibDroid batched
multiple accelerometer samples per HTTP response.

6.3 Power
On mobile devices, minimizing power consumption is ex-
tremely important. To measure Gibraltar’s impact on bat-
tery life, we attached a Monsoon Power Monitor [20] to the
Nexus One. The Monsoon acted as an energy source while
simultaneously measuring how much power it transferred to

the phone. We set the phone’s screen brightness to the mini-
mum setting and enabled the phone’s “airplane mode” when
running tests that did not involve radios.

Figure 11 shows power consumption in several different
scenarios. The first bar depicts the power consumption for an
idle device server. Running an idle server costs 337 mW, and
this is essentially the base cost of having the phone turned
on. Continuously querying the accelerometer in a native
application requires 411 mW. In contrast, using GibDroid
to continuously query the device costs 803 mW; however,
this cost includes the power spent by the server and the
browser. By comparison, making a phone call requires 773
mW, and actively browsing the Internet uses over 1W. Thus,
we believe that Gibraltar’s power usage is similar to that of
other mobile applications.

6.4 Applications
For the final part of our evaluation, we examined the per-
formance of the four Gibraltar-enabled applications that we
described in Section 4. We evaluated all four applications on
the GibDroid platform.

Our map application took an average of 64 ms to load a
cached map tile, but 372 ms to fetch one from the Internet.
This result is not surprising, since accessing local storage
should be faster than pulling data across the wide area.

For our audio classification application, the key perfor-
mance metric is how long the classification takes. For a 52
KB WAV file representing 10 seconds of data, feature ex-
traction took approximately 6 seconds, and classification of
the result took 1.5 seconds. These experiments used a Java-
Script implementation of the classification algorithms. For
larger audio files, the application could use Gibraltar’s na-
tive computation kernels to boost performance.

We evaluated Paint and Pacman by running them on a
Chrome desktop browser which communicated with Gib-
Droid through a USB cable. Paint was able to sense 9.83 mo-
tions per second; this number is an application-level latency
that includes the Gibraltar access latency and the overhead
of updating the HTML Canvas object. Pacman had similar
performance. In both cases, the phone was able to control
the application with no user-perceived delay. We plan to run
further tests over a wireless network which allows the phone
to be untethered from the desktop.

7. Related Work
In Section 1, we described the disadvantages of using native
code plugins like Flash to provide hardware access to web
pages. We also described why HTML5 is a step in the right
direction, but not a complete solution.

Like Gibraltar, Maverick [32] provides web pages with
hardware access. Maverick lets web developers write USB
drivers using JavaScript or NaCl. Maverick sandboxes each
untrusted page and USB driver; the components exchange
messages through the trusted Maverick kernel. Maverick dif-
fers from Gibraltar in three key ways. First, Maverick is lim-
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ited to the USB interface, whereas Gibraltar’s client-side Ja-
vaScript library can layer arbitrary hardware protocols atop
HTTP. Second, unlike USB, HTTP provides straightforward
support for off-platform devices. Third, Maverick does not
have mechanisms like sensor widgets that detect misbehav-
ing applications. Thus, Maverick cannot prevent buggy or
malicious pages from using the driver infrastructure in ways
that the user did not intend. Maverick does have better per-
formance than the current implementation of Gibraltar since
Maverick provides IPC via native code NaCl channels in-
stead of via standard HTTP over TCP. However, with ker-
nel support for fast-path localhost-to-localhost TCP connec-
tions, and/or NIC support for offloading TCP-related compu-
tations to hardware, we believe that Gibraltars performance
can approach that of Maverick.

PhoneGap [26] is a framework for building cross-plat-
form, device-aware mobile applications. A PhoneGap ap-
plication consists of JavaScript, HTML, CSS, and a bun-
dled chrome-less browser whose JavaScript runtime has
been extended to export hardware interfaces. Like Gibraltar,
PhoneGap allows developers to write device-aware applica-
tions using the traditional web stack. Compared to Gibraltar,
PhoneGap has three limitations. First, PhoneGap’s hardware
interface is philosophically equivalent to the HTML5 inter-
face, and thus has similar drawbacks with respect to inter-
face and security. Second, a PhoneGap program is a native
application and must be explicitly installed, unlike a Gibral-
tar web page. Third, PhoneGap applications run within the
file:// protocol, not the http:// protocol. Thus, unlike
Gibraltar web pages, PhoneGap programs are not restricted
by the same domain policy. This allows a PhoneGap pro-
gram to load multiple frames from multiple domains and
manipulate their data in ways that would fail in the http://
context and violate the security assumptions of the remote
domains.

In Palm’s webOS [1], applications are written in Java-
Script, HTML, and CSS. However, these programs are not
web applications in the standard sense—they rely on we-
bOS’ special runtime, and they will not execute inside actual
web browsers. The webOS runtime is a customized version
of the popular WebKit browser engine. It exposes HTML5-
style device interfaces to applications, and thus suffers from
the problems that we discussed in prior sections.

Microkernel browsers like OP [9] and Gazelle [36] re-
structure the browser into multiple untrusted modules that
exchange messages through a small, trusted kernel. Gibral-
tar’s device server is somewhat like a trusted microkernel
which mediates hardware access. However, previous micro-
kernel browsers do not change the hardware interface ex-
posed to web pages, since these browsers use off-the-shelf
JavaScript runtimes that export the HTML5 interface.

Several projects from the sensor network community ex-
pose hardware data using web protocols [5, 28, 38]. How-
ever, these systems do not address the security challenge of

authenticating hardware requests that emanate from poten-
tially untrustworthy browsers. Gibraltar also exports a richer
interface for device querying and management.
8. Conclusions
Gibraltar’s key insight is that web pages can access hard-
ware devices by treating them like web servers. Gibraltar
sandboxes the browser, shifts authority for device accesses
to a small, native code device server, and forces the browser
to access hardware via HTTP. Using this privilege separa-
tion and sensor widgets, Gibraltar provides better security
than HTML5; the resulting API is also easier to program
against. Experiments show that the HTTP device protocol
is fast enough to support real, interactive applications that
make frequent hardware accesses.
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LIBERATED: A fully in-browser client and server
web application debug and test environment

Derrell Lipman
University of Massachusetts Lowell

Abstract

Traditional web-based client-server application devel-
opment has been accomplished in two separate pieces:
the frontend portion which runs on the client machine has
been written in HTML and JavaScript; and the backend
portion which runs on the server machine has been writ-
ten in PHP, ASP.net, or some other “server-side” lan-
guage which typically interfaces to a database. The skill
sets required for these two pieces are different.

In this paper, I demonstrate a new methodology
for web-based client-server application development, in
which a simulated server is built into the browser envi-
ronment to run the backend code. This allows the fron-
tend to issue requests to the backend, and the developer
to step, using a debugger, directly from frontend code into
backend code, and to debug and test both the frontend
and backend portions. Once working, that backend code
is moved to a real server. Since the application-specific
code has been tested in the simulated environment, it is
unlikely that bugs will be encountered at the server that
did not exist in the simulated environment.

I have implemented this methodology and used it for
development of a live application. All of the code is open
source.

1 Introduction

Web-based client-server applications can be difficult
to test and debug. Disparate development environments
on the client and server sides, distinct skill sets for each,
and a network that precludes easy synchronous debug-
ging all impede debugging at the client side. Some-
times, the server environment provides little debugging
and testing infrastructure.

I will describe here an architecture and framework
that allows writing both the frontend code that runs on
the client machine (i.e., in the browser) and the backend
code that typically runs on a server machine, in a single
language. Furthermore, this architecture allows debug-

ging and testing the entire application, both frontend and
backend, within the browser environment. Once the ap-
plication is tested, the backend portion of the code can
be moved to the production server where it operates with
little, if any, additional debugging.

1.1 Typical web application development

There are many skill sets required to implement a
modern web application. On the client side, initially, the
user interface must be defined. A visual designer, in con-
junction with a human-factors engineer, may determine
what features should appear in the interface, and how to
best organize them for ease of use and an attractive de-
sign.

The language used to write the user interface code is
most typically JavaScript [6]. There need be at least
a small amount of HTML to load the JavaScript code.
Many applications are written using a JavaScript frame-
work such as jQuery, ExtJS, or qooxdoo. Developers
must therefore be fluent with both the language and the
framework.

Debugging is generally accomplished using a debug-
ger provided by the browser, or a plug-in to the browser.

The backend software includes the web server and
database engine. Recent statistics [7] show that PHP and
ASP.NET are the most popular languages for writing the
backend code. Each provides a mechanism for receiving
requests in the agreed upon application communication
protocol (encoding) from the frontend. These languages
also provide a means of communicating with a separate
database server, or to an embedded database.

The application-specific backend code, or “business
logic,” is usually initiated by a web server which may
or may not provide mechanisms for easy debugging of
the application code. When a debugger is not available,
the developer must rely on print or log statements to
ascertain the code location of problems.

With the differing coding language and operating en-
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vironment comes unique debugging methodologies. The
skill sets required for debugging at the client and server
are different, so any debugging session may require the
availability of multiple people. Making debugging even
more difficult is the asynchronous nature of the client-
server interaction. Request messages are sent via the
transport, and at some future time, response messages
are returned. This separation of client and server means
that it is not possible to use a debugger at the browser to
step into code which is running on the server, nor even set
a breakpoint that would allow stopping at the server-side
handler for a key or button press at the user interface.

1.2 Research question

With the afore-mentioned problems in mind, I ask:

Is it feasible to design an architecture and framework
for client-server application implementation that allows:

1. all application development to be accomplished pri-
marily in a single language;

2. application frontend and backend code to be tested
and debugged within the browser environment; and

3. debugged and tested application-specific backend
code to be moved, unchanged, from the browser en-
vironment to the real server environment, and to run
there?

In order to accomplish this, we first need a lan-
guage that can be used both in the browser and on the
server. For cross-browser use, the only viable choice is
JavaScript. We therefore need a JavaScript implemen-
tation of the backend code that could run both in the
browser and on the server, which can talk to whatever
server-side database is to be used. The desired architec-
ture is depicted in Figure 1.

Additionally, we need some form of abstraction that
encompasses the set of database operations that are
performed. The mechanism must map to a particu-
lar database on the server, and to a simulation of the
database in the browser.

Two new questions arise out of such an architecture:

1. How much of a compromise does this architecture
impose, i.e., what common facilities become un-
available or more difficult to use?

2. Does this new architecture create new problems of
its own?

2 Introducing LIBERATED

LIBERATED is an architecture and JavaScript library
upon which full web applications can be built. LIB-
ERATED allows a web application to be debugged and
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Figure 1: Desired architecture

tested, fully within the browser environment. Once all
code is working, that same code can be moved to a real
server, and run there. LIBERATED truly lives up to its
name, liberating the developer from many of the hassles
of traditional web application debugging.

LIBERATED is extensible. At present, it provides the
following components:

• Database abstraction, used by an application
• Mapping from the database abstraction to the App

Engine datastore
• Mapping from the database abstraction to SQLite1

• Mapping from the database abstraction to a simu-
lated database which runs in the browser

• JSON-RPC Version 2.0 server
• Web server interface for App Engine
• Web server interface for the Jetty web server2

• Transport simulator to talk to an in-browser web
server

• Hooks into the qooxdoo JavaScript framework, to
allow use of the transport simulator in addition to
its standard transports3

The following sections will discuss the overall archi-
tecture of LIBERATED and provide additional details
of important components.

2.1 Architecture

In the backend, when using LIBERATED, an appli-
cation’s “business logic” code interacts with the database

1http://sqlite.org
2http://jetty.codehaus.org/jetty/
3http://qooxdoo.org (pronounced [’kuksdu:])
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using a database abstraction provided by LIBERATED.
Using the database abstraction allows the actual database
to be real or simulated. A real database is the App En-
gine datastore, SQLite, MySql, etc, whereas a simulated
database runs in the browser. Similarly, the backend re-
ceives requests from the frontend via a transport that
can be either real, communicating across a network, or
simulated, communicating solely within the browser.

LIBERATED handles requests which arrive via the
selected transport. With a real web server such as pro-
vided by App Engine or Jetty, requests arrive via the
HTTP protocol. When requests arrive via the simulated
transport, they are placed on a queue, and handled in se-
quence from there, by a simulated web server.

The web server, whether real or simulated, determines
which handler should process a request. A handler for
the JSON-RPC server is currently implemented. Others,
such as for REST could be added.

2.2 Development environment

The JavaScript framework upon which LIBERATED
is implemented is qooxdoo. The qooxdoo framework
provides a traditional class-based object programming
model, and a wealth of additional functionality including
classes to assist communicating over a network. There is
nothing qooxdoo-specific, however, to this technology,
and LIBERATED can be used in a non-qooxdoo-based
application.

2.3 Database abstraction

In a common SQL-accessed relational database, data
is organized into tables with names that identify the type
of data that is stored in the table. A table contains rows
of data, each with a common set of columns or fields.
Each row is uniquely identified by a key value contained
in one or more of its columns.

The database abstraction in LIBERATED is built
upon a class called liberated.dbif.Entity. Each
“table” can be thought of as being defined as a sep-
arate subclass of liberated.dbif.Entity. An in-
stance of one of those subclasses, referred to as an en-
tity, represents a row from that table. Each subclass of
liberated.dbif.Entity defines a unique entity type.
liberated.dbif.Entity contains a method for reg-

istering the properties (like column names and types)
which are members of each entity of that entity type.

To add a new object to the database, an entity of
the proper subclass of liberated.dbif.Entity is in-
stantiated, its property values set, and its put() mem-
ber method called. When instantiating the subclass, the
key field(s) of the entity type can be provided, to re-
trieve a specific existing object from the database. The
liberated.dbif.Entity.query() function is used

to retrieve specified sets of objects of an entity type from
the database.

At present, relationships among entity types must be
maintained by the application. Future plans include im-
provements in this area.

2.4 JSON-RPC server

The JSON-RPC server accepts incoming requests and
returns responses in the format specified by the JSON-
RPC Version 2.0 standard. [3] Remote procedure call
methods are registered as a tuple consisting of the name
of the method, a function that implements the remotely-
accessible method, and an array that lists the names of
the parameters. The latter allows requests to use either
positional parameters or named parameters.

3 Example use of LIBERATED

To demonstrate, in part, how LIBERATED is used,
consider a database entity which implements a counter.
This simple entity type is shown in Listing 1.

Listing 1: Entity type definition for a simple counter

1 qx.Class.define("example.ObjCounter",
2 {
3 extend : liberated.dbif.Entity ,
4

5 construct : function(id)
6 {
7 // Pre -initialize field data
8 this.setData ({ "count" : 0 });
9

10 // Call the superclass constructor
11 this.base(arguments , "counter", id);
12 },
13

14 defer : function ()
15 {
16 var Entity = liberated.dbif.Entity;
17

18 // Register the entity type
19 Entity.registerEntityType(
20 example.ObjCounter ,
21 "counter");
22

23 // Register the properties
24 Entity.registerPropertyTypes (
25 "counter",
26 {
27 "id" : "String",
28 "count" : "Integer"
29 },
30 "id");
31 }
32 });

The key field for this entity type is a string, referred
to as id. As soon as this class has been loaded, the
defer() function is called, which registers the entity
type, so it is immediately available for use once the
entire application has been loaded. The name of this
class (example.ObjCounter) and the entity type name
(“counter”) are provided in the entity type registration, as
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shown on lines 19–21. This entity type has two proper-
ties: the counter’s id and its count, which are registered
on lines 24–30.

When a new object of this class is instantiated, default
data is provided for the count field: it is initialized to
zero, by line 8.

Listing 2 shows how remote procedure calls are imple-
mented. Line 6 begins the registration of the remote pro-
cedure named “countPlusOne”. Line 7 maps that name
to the countPlusOne method which begins at line 13.
Line 8 shows the list of parameters that are expected or
allowed to be passed to the “countPlusOne” RPC. In this
case, a single parameter, a counter ID, is expected.

Listing 2: RPC to increment a counter

1 qx.Mixin.define("example.MCounter",
2 {
3 construct : function ()
4 {
5 // Register the ’countPlusOne ’ RPC
6 this.registerService("countPlusOne",
7 this.countPlusOne ,
8 [ "counterId" ]);
9 },

10

11 members :
12 {
13 countPlusOne : function(counter)
14 {
15 var counterObj;
16 var counterDataObj;
17

18 liberated.dbif.Entity.asTransaction(
19 function ()
20 {
21 // Get the counter object
22 counterObj =
23 new example.ObjCounter(counter);
24

25 // Get the application data
26 counterDataObj =
27 counterObj.getData ();
28

29 // Increment the count
30 counterDataObj.count ++;
31

32 // Write it back to the database
33 counterObj.put();
34

35 }, [], this);
36

37 // Return new counter value
38 return counterDataObj.count;
39 }
40 }
41 });

The implementation of countPlusOne() begins a
database transaction to ensure that all manipulation of the
database is accomplished based on a consistent database
state. The function passed as the first parameter to
asTransaction() will be called once a transaction has
been established. When that function completes, the
transaction will be ended.

The function to be run as a transaction begins at line
19. It first obtains the current counter object based on the
specified counter ID, at line 22, and then retrieves that

object’s data map, at line 26. The data map contains the
values of the two fields in this entity type (id and count).

The count field is incremented, and then the counter
object is written back to the database with line 33.

The return value of this function, the counter’s new
value, is returned by asTransaction() after ending the
transaction.

4 Discussion

One of the clear benefits of the LIBERATED archi-
tecture is that key portions of debugging and testing can
be easier to handle than with traditional client-server ap-
plications. In this section, I will discuss some techniques
that are now available, and our experience using them.

4.1 Debugging

The frontend and backend are traditionally initially de-
bugged in isolation. They are often written in differ-
ent languages, may be developed by different teams, and
may not be able to run on the same machine. The inter-
face between them may be implemented solely to a ser-
vice API specification, with little ability for the frontend
and backend to interact until both are nearly completed.
There is often no easy way to use a single debugger to
step through the code. It may be possible to have sep-
arate frontend and backend debuggers, but some server
environments do not provide any easy means of debug-
ging, and developers resort to print or log statements
in the code.

With an application developed with LIBERATED,
debugging of frontend and backend code need not be ac-
complished in isolation, both are written in the same lan-
guage, and the service API can be exercised easily during
development. This allows early and iterative debugging
during the development process. The developer can use
a debugger running in the browser to step from frontend
code into backend code, or set breakpoints in backend
code and then interact with the user interface to cause a
request to be sent to the backend... and immediately have
the debugger stop at that breakpoint.

4.2 Debugging Experience

During the course of developing the App Inventor
Community Gallery, a complete application built upon
LIBERATED, the LIBERATED architecture time and
again proved itself to be a highly efficient and easy to use
development and debugging environment. Instead of de-
veloping the frontend and backend code in isolation, we
implemented and tested new user interface features and
any corresponding backend changes concurrently. With
LIBERATED, when new code doesn’t work as intended,
our typical debug cycle is:
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1. Set a breakpoint in the remote procedure call imple-
mentation in the backend code. Run the program.

2. If the breakpoint in the RPC is hit, review the re-
ceived parameters to ensure they are as expected.
Step through the RPC implementation, noting vari-
able changes, return values from functions, etc., un-
til the problem is identified.

3. If the breakpoint in the RPC implementation is not
hit, this indicates that there is likely a problem in
the way the RPC is called. Set a breakpoint in the
new frontend code, where the remote procedure call
is initiated.

4. Run the program again, and at the breakpoint, en-
sure that the proper remote procedure call is be-
ing requested, and that the parameters have the ex-
pected values. If not, fix the problem, and repeat the
process.

5. If, upon running the program in the previous step,
the breakpoint is not hit, normal frontend debugging
procedures are used to ascertain where the code is
faulty.

5 Related work

I have been unable to find any literature or related
projects which accomplish all of my goals set forth in
Section 1.2. Although there is work in progress on the
various sub-pieces described here, there appear to be
none that would allow an application to be written in a
single language, debugged and tested in the browser, and
allow debugged, tested code to then be moved to the real
server. Significant work which encompasses or relates to
portions of my goals is described here.

5.1 Server-side JavaScript

The three JavaScript engines in common use are V8,
used in the Chrome browser; SpiderMonkey, embedded
in a number of Mozilla products; and Rhino, an imple-
mentation of JavaScript written in Java, also from the
Mozilla Foundation. Each engine allows adding script-
ing to an application, so it is easy to build products
around the engine. A plethora of such products have
shown up in the last few years [8].

5.2 Web standard database interfaces

Work is progressing on a standard database interface
for local storage of data at the browser. The proposal
gaining acceptance for a browser database interface is In-
dexed Database API [5]. The Indexed Database API pro-
vides a programmatic database interface somewhat sim-
ilar to the database abstraction in LIBERATED. Once it
is widely available, the Indexed Database API could be

used for an improved client-side simulated database in
LIBERATED.

5.3 Reducing the distinction between
client and server

The problem of different languages for client and
server development is being tackled in different ways by
various projects. The following sections describe some
current work in progress.

5.3.1 Google Web Toolkit

Google’s answer to unifying the client and server lan-
guages for web application development is called the
Google Web Toolkit [1]. GWT allows the developer to
write client-side code in Java, which is then translated
into JavaScript to run in the browser. GWT is essen-
tially backend-agnostic. GWT allows writing frontend
applications in Java, and optionally also writing backend
applications in Java, to accomplish the language unifica-
tion.

5.3.2 Plain Old Webserver

Plain Old Webserver (POW) is a browser add-on that
provides a web server that runs in the browser. The server
“uses Server Side Javascript (SJS), PHP, Perl, Python
or Ruby to deliver dynamic content.” [4] Using Plain
Old Webserver allows cross-platform, consistent access
to a single server implementation. It runs on Firefox, on
Linux, Mac, or Windows. It does not, however, provide
the ability to step from frontend code into backend code.

5.3.3 Wakanda

Wakanda [2] provides a datastore and HTTP server, a
Studio to visually design both the user interface and the
data models which define how the datastore is organized,
and a high-integrated code editor. It also provides the
communications mechanism between frontend and back-
end, and data binding of user interface components to
the datastore. The server-side language is JavaScript.
Wakanda comes close to meeting the requirements of
my research question, but it lacks LIBERATED’s crit-
ical ability to debug round trip operations, e.g., to trace
into backend code upon initiation of a request via a fron-
tend user action. It is also not fully cross-platform. The
Wakanda Studio works only on Mac OS X and Windows,
not on Linux. (The Wakanda Server, however, does run
on Linux.)

6 Conclusions

The implementation of LIBERATED shows that an
architecture that meets my research questions from Sec-
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tion 1.2 is feasible. LIBERATED allows both the fron-
tend and backend of the application to be coded in
JavaScript. With the simulated server running the back-
end code in the browser, all of the code can be debugged
purely within the browser, with no need for an external
server to run the backend code. Breakpoints can be set in
backend code, within the browser, or the developer can
step directly from frontend code into backend code. Fi-
nally, as has been shown with the Google App Engine
and Jetty/SQLite interfaces of LIBERATED, the work-
ing application-specific backend code can be moved to a
real server environment and run there.

The answers to my follow-up questions in Section 1.2
are not as clear cut, however.

6.1 Compromises of this approach

Although the architechture of LIBERATED is easy
to work with and accomplishes the goals set out by my
research question, a number of open issues remain, and
it is yet to be determined how much impact these might
have. These mostly pertain to the database abstraction.
To wit:

• Testing a large web app often requires a substantial
database. The current simulation database in LIB-
ERATED is not adequate for complete testing of an
application.

• LIBERATED does not yet provide for automated
operations based on relations between entities.

• The complete set of property types which an ap-
plication may use is defined by LIBERATED. The
target database may allow other types.

• Some datastores, e.g., Google App Engine, do not
require a pre-defined schema, but LIBERATED re-
quires one.

6.2 New problems of this approach

There have been few new problems seen as a result of
using this approach. The most obvious one is that server-
side JavaScript is still young, and plentiful libraries of
code are not yet available. Even now, though, Node.js
is building a large library of code, easily require()’d
(included) from custom code.4 As server-side JavaScript
matures, it appears likely that this problem may simply
evaporate.

7 Recommendations

LIBERATED is a working implementation that is be-
ing used in a significant application. There is ample re-
lated and continuation work that can be done, however.

4http://nodejs.org/

The most urgent need is a rigorous evaluation of the
benefits of LIBERATED vs. one or more traditional de-
velopment paradigms. At present, my conclusions are
based only on the development of App Inventor Gallery
by one team of developers.

Additionally, there are some obvious improvements
that can be made.

• Relationships between objects in LIBERATED are
ad hoc, maintained exclusively by the application.
Object relationships should be defined in the LIB-
ERATED database abstraction, allowing for such
things as automatic retrieval of related records or
cascading deletes.

• The simulation database driver could use the
HTML5 Indexed Database for a more capable sim-
ulated database.

• Query operators other than “and” should be sup-
ported.
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Abstract
Running on billions of today’s computing devices,

JavaScript has become a ubiquitous platform for deploy-
ing web applications. Unfortunately, an application de-
veloper who wishes to include a third-party script must
enter into an implicit trust relationship with the third-
party—granting it unmediated access to its entire appli-
cation content.

In this paper, we present js.js, a JavaScript interpreter
(which runs in JavaScript) that allows an application to
execute a third-party script inside a completely isolated,
sandboxed environment. An application can, at runtime,
create and interact with the objects, properties, and meth-
ods available from within the sandboxed environment,
giving it complete control over the third-party script. js.js
supports the full range of the JavaScript language, is
compatible with major browsers, and is resilient to at-
tacks from malicious scripts.

We conduct a performance evaluation quantifying the
overhead of using js.js and present an example of using
js.js to execute Twitter’s Tweet Button API.

1 Introduction

The web has undoubtedly become one of the most
dominant application deployment platforms. Thanks to
its wide support from today’s consumer devices—from
desktops and laptops to tablets and smartphones—the
web’s scripting language, JavaScript, is available on bil-
lions of devices.

One problem facing a web application developer is
the implicit trust of including third-party scripts. A
third-party script is a JavaScript file included from a
party other than the application owner. Examples of
commonly used third-party scripts are Google Analytics,
Facebook’s Like button, Twitter’s Tweet buttons, and ad-
vertising platforms. When including one of these third-
party scripts, the application is trusting the third-party

script to execute only what is expected of it. The third-
party, however, has full access to the application. It could
redirect the page, modify the DOM, or insert malware.

An application owner could download the third-party
script and serve it from his or her own servers. This
at least ensures that the script being run by the applica-
tion hasn’t been modified without the application owner
knowing. However, this is not always possible with
dynamically-generated scripts (e.g., advertisements), and
it still doesn’t ensure that the third-party script is not ma-
licious. Third-party services often compress their code
(e.g., using the closure compiler), producing a large soup
of JavaScript that can make it very difficult for a human
or static analyzer to verify its behavior. Alternatively,
the application could include the third-party scripts in an
iframe, but iframes still have privileges (e.g., alerts, redi-
rection, etc.) that the application might want to disallow.
It also requires cumbersome inter-iframe messaging for
communication.

Static analyzers can be used to rewrite third-party
JavaScript [16, 9, 2, 17] before it gets executed. This is
often used on small, user-submitted widgets to guaran-
tee their safety, but doesn’t provide flexible, fine-grained
control over the third-party script’s privileges, and there-
fore, are not applicable to large, third-party libraries.
Other approaches extend the browser itself to provide
security mechanisms for third-party scripts [12]. While
a nice approach, adopting a new standard in all major
browsers is difficult and breaks backwards-compatibility.

In this paper, we present js.js, a JavaScript interpreter
that runs on top of JavaScript. It allows site operators
to mediate access to a page’s internals by executing a
third-party script inside a secure sandbox. We created a
prototype js.js implementation by compiling the Spider-
Monkey [3] JavaScript engine to LLVM [11] and then
translating it to JavaScript using Emscripten [20]. The
implementation is used to demonstrate the js.js API se-
curity features and benchmark performance on the Sun-
Spider benchmark suite [4].

1
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Figure 1: js.js architecture for example application

2 Design

The design goals for js.js are as follows:
• Fine-grained control: Rather than course-grained

control, e.g., disallowing all DOM access, an appli-
cation should have fine-grained control over what
actions a third-party script can perform.

• Full JavaScript Support: The full JavaScript lan-
guage should be supported, including with and eval,
which are impossible to support with static analysis.

• Browser Compatibility: All major browsers
should be supported without plugins or modifica-
tions.

• Resilient to attacks: Resilient to possible attacks
such as page redirection, spin loops, and memory
exhaustion.

With these goals in mind, the js.js API has been de-
signed to be very generic, similar in structure to the Spi-
derMonkey API. Rather than being specific to a web en-
vironment, the js.js API can be used to bind any kind of
global object inside the sandbox space. Initially, a sand-
boxed script has no access to any global variables ex-
cept for JavaScript built-in types (e.g., Array, Date, and
String), but the application can add additional names. In
the web environment, these include global names like
window and document. The js.js API allows an applica-
tion, for example, to add a global name called alert that,
when called inside the sandbox, calls a native JavaScript
function. This way, the application using js.js has com-
plete control over the sandboxed script since the only
access the sandbox has to the outside is through these
user defined methods. Thus these methods must give the
script access only to the elements that the user allows.

Figure 1 shows an example application architecture
using js.js. The Mediator is a JavaScript application that
uses the js.js library to execute a third-party script in a
sandbox. The Virtual DOM is comprised of the usual
web-specific global variables that a script expects, but
instead of referring directly to the browser, the media-

var src = "nativeAdd (17, 2.4);";

var jsObjs = JSJS.Init();

function nativeAdd(d1 , d2) {

return d1 + d2;

}

var dblType = JSJS.Types.double;

var wrappedNativeFunc = JSJS.wrapFunction ({

func: nativeAdd ,

args: [dblType , dblType],

returns: dblType });

JSJS.DefineFunction(jsObjs.cx , jsObjs.glob ,

"nativeAdd", wrappedNativeFunc , 2, 0);

var rval = JSJS.EvaluateScript(jsObjs.cx ,

jsObjs.glob , src);

// Convert result to native value

var d = rval && JSJS.ValueToNumber(jsObjs.cx

, rval);

Figure 2: Example of binding a native function to the
global object space of a sandboxed script.

tor intercepts all access, such that it can allow or reject
requests.

The js.js API aims to be easy to use and flexible. The
example in Figure 2 demonstrates using the API to bind
to the sandboxed environment, a global function called
nativeAdd that accepts two numbers as arguments and re-
turns the sum. Init initializes a sandboxed environment
with standard JavaScript classes and an empty global ob-
ject. wrapFunction is a helper function that allows an
application to specify expected types of a function call.
If the wrong types are passed to the function, an error is
triggered in the sandbox space, which will result in an
error handler being called in native space, allowing ap-
plications to detect sandboxed errors. DefineFunction
binds the wrapped function to a name in the global ob-
ject space of the sandbox, EvaluateScript executes
the script, and ValueToNumber converts the result of
evaluating the expression to a native number.

In addition to primitive types like bool, int, and dou-
ble, the js.js API also includes helper functions for bind-
ing more complex types like objects, arrays, and func-
tions to the sandboxed space. With the js.js API, an ap-
plication can expose whatever functionality of the DOM
it wants to a sandboxed script. It can also be used to run
user-submitted scripts in a secure way, even providing a
custom application-specific API to its users. Currently,
creating this virtualized DOM is fairly complex. As fu-
ture work, we wish to extend the js.js API to make it eas-
ier to use by allowing the user to easily setup white/black
lists of browser elements, sites, etc.

2
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Fine-Grained Full JS Page Spin Loop / Memory Suspend /
DOM Control Support Redirection Terminate Exhaustion Resume

Direct Include
iframe
Web Worker
Static
Static + Runtime
js.js

Figure 3: Table of related work and the attack vectors which they can protect against or support ( ) and those that
they cannot ( ). “Static” refers to purely static techniques such as ADsafe and Gatekeeper, while “Static + Runtime”
refers to techniques such as Caja and WebSandbox.

The power of eval and with make them difficult to ex-
ecute securely. For example, malicious code can use eval
to disable or circumvent any protections that have been
added through JavaScript code. Thus, most other tech-
niques either completely prohibit using them or provide
some limited version. However, the powerful sandbox-
ing of scripts that js.js employs means that even eval and
with can be executed securely as they can still only ac-
cess the protected Virtual DOM.

Since js.js contains a full JavaScript interpreter (a
compiled version of SpiderMonkey in our prototype im-
plementation), it supports all variants of JavaScript that
the interpreter supports. The js.js API allows an applica-
tion to specify what version of the JavaScript language to
use, anywhere from 1.0 to 1.8. Since an application can
bind any name to the sandboxed space, full DOM sup-
port can be emulated. In addition, js.js is currently com-
patible with Google Chrome 7+, Firefox 4+, and Safari
5.1+. Because it requires Typed Array support, js.js will
not support Internet Explorer until version 10 (currently
in development) is released.

Another benefit of having the interpreter in JavaScript
is that js.js has full execution and environmental control
of sandboxed scripts. Thus it is relatively simple for js.js
to prevent scripts staying in infinite loops or consuming
large quantities of memory by placing optional checks
inside the interpreter loop. This kind of protection is typ-
ically not possible in a normal protection system given
the nature of JavaScript.

As seen in Figure 3, js.js is the only technique to meet
all of our desired goals. A more detailed discussion of
related work can be found in Section 6.

3 Implementation

Our initial prototype implementation of the js.js runtime
has been created by compiling the SpiderMonkey [3]
JavaScript interpreter to LLVM [11] bytecode using the
Clang compiler and then using Emscripten [20] to trans-

late the LLVM bytecode to JavaScript.
Emscripten works by translating each LLVM instruc-

tion into a line of JavaScript. Typed Arrays (a browser
standard) allows Emscripten to emulate the native stack
and heap, such that loads and stores can be translated to
simple array accesses. When possible, Emscripten trans-
lates operations to native JavaScript operations. For ex-
ample, an add operation is translated into a JavaScript
add operation. An LLVM function call is translated into
a JavaScript function call. It also has its own version of a
libc implementation. By doing this, the translated output
can achieve good performance.

SpiderMonkey comprises about 300,000 lines of C
and C++. A lot of our implementation effort was spent
patching SpiderMonkey so that it compiles into LLVM
bytecode that is compatible with Emscripten’s translator.
Due to JavaScript’s inability to execute inline assembly,
the JIT capabilities of SpiderMonkey were disabled. We
also contributed patches to Emscripten for corner cases
that it had previously not encountered. We then wrote the
js.js API wrapper around the resulting interpreter. Thus
the js.js API greatly resembles SpiderMonkey’s JSAPI.

The translated SpiderMonkey shared library
(libjs.js) is 365,000 lines of JavaScript and 14MB
in size. After closure compiling (libjs.min.js), it
is 6900 lines and 3MB in size. After gzipping (which
all browsers support), it is 594KB. Our wrapper API is
about 1000 lines of code. The compiled SpiderMonkey
library is available under the Mozilla Public License,
while the rest (wrapper script and build scripts) are
available under a BSD License. The library can be found
at https://github.com/jterrace/js.js.

4 Demo Application

To give an example of running a third-party script using
js.js, this section describes how to run Twitter’s Tweet
Button inside js.js. Twitter makes a script available for
embedding a button on an application’s website. Nor-

3
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mally, an application loads Twitter’s script directly from
platform.twitter.com/widgets.js. Instead, we serve the
unmodified widget code from our own server, as this ver-
sion is confirmed to work with js.js, and use js.js to inter-
pret it.

The Twitter widget script is 47KB of complicated,
closure-compiled JavaScript. It expects to be running in-
side a web page with full access to the DOM. The basic
flow of the script is as follows: a large amount of boil-
erplate code runs first that checks browser compatibility,
the DOM is searched for <a> elements that match the
twitter class selector, and each match is replaced with
a new <iframe> element containing the Twitter button.
Given that it spans a large portion of the DOM API, it
is a good representative example of third-party scripts.
Supporting this in js.js involved all of the following func-
tionality:
• Binding many global objects to the sandbox space

that the browser compatibility code checks for, such
as location, screen, navigator, and window

along with many of their properties and functions.
• Allowing the sandboxed code to bind to event han-

dlers such as DOMContentLoaded, the <iframe>

onload event, and the message event handler (used
for inter-iframe communication).

• Many document utility functions such as
getElementsByTagName, getElementById,
and createElement.

• Wrapping real DOM elements with sandbox-space
objects that provide functions like getAttribute

and setAttribute, returning the real DOM ele-
ment attributes when necessary.

When providing these objects, methods, functions,
and handlers, we only provided the sandboxed code with
just enough functionality that it can achieve its goal—
creating a Twitter button—without allowing it access to
any other unnecessary functionality. This demo script
can be found at http://jterrace.github.com/js.
js/twitter/.

5 Evaluation

We evaluate the js.js prototype implementation with both
microbenchmarks of its API functions as well as with the
SunSpider JavaScript Benchmark Suite [4]. The evalua-
tion platform is a Macbook Pro with a 2.4 GHz P8600
and 4GB of RAM. The native tests were performed us-
ing SpiderMonkey (tag 20111220) with the JIT disabled.
The js.js runtime was compiled from SpiderMonkey (tag
20110927) using clang and LLVM version 3.0, and Em-
scripten version 2.0.

Figure 4 shows the mean time (across ten executions)
required to execute the startup and shutdown routines for
the js.js runtime as well as the time required to evaluate

Function Time (ms)

libjs.min.js load 84.9
NewRuntime 25.2
NewContext 35.8
GlobalClassInit 15.5
StandardClassesInit 60.1
Execute 1+1 70.6
DestroyContext 33.3
DestroyRuntime 1.8

Figure 4: Mean (across 10 executions) runtime for vari-
ous js.js initialization and execution procedures.

a simple 1+1 expression. The overhead of creating the
runtime environment to start executing a script is not an
expensive cost.

Figure 5 shows the SunSpider benchmark results for
js.js in both Chrome and Firefox. For Chrome, most
benchmarks fall in the 100x to 200x slowdown range,
while Firefox lags behind in some benchmarks. This
slowdown is due to a combination of inefficiency in
the Emscripten compiler and the overhead of running
JavaScript within JavaScript. Further efforts to improve
the Emscripten compiler, along with manual optimiza-
tion of the resulting JavaScript, could result in even bet-
ter performance. However, this level of overhead could
be acceptable to protect websites from untrusted third-
party scripts. Trusted JavaScript code can still run na-
tively alongside js.js protected code, especially effective
if js.js is running in a Web Worker1 The majority of the
execution time is spent in js.js’s main interpreter loop, a
very large function that Emscriptenm, and JIT compilers
in browsers, do not do very well at optimizing. We are
currently working on ways to improve the performance
of this function.

Also note that although the performance overhead of
running js.js is high, other implementations of the js.js
API could improve performance. For example, an imple-
mentation of the API could be built with Native Client [6]
or incorporated directly into future versions of browsers,
with the pure JavaScript implementation being used as a
fallback if no faster implementations are available.

6 Related Work

iframes have been widely adopted because of the flexi-
bility they provide for sandboxing third-party pages. An
iframe allows each third-party script to have its own page

1Note that since the DOM API is synchronous and Web Workers are
asynchronous, a blocking mechanism, such as the HTML5 file-system
API, would have to be used.
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Figure 5: Relative Slowdown of js.js running the Sunspider benchmark in Google Chrome and Firefox 9. The median
of ten runs of each benchmark is shown, with error bars corresponding to the minimum and maximum.

and the cross-origin policy prevents it from accessing
the DOM outside of where it originates, however this
approach has not fared well because today’s web pages
are complex and limiting a third-party’s access to a sin-
gle fixed-size iframe is not flexible enough. In addi-
tion, cross-iframe messaging is cumbersome—requiring
established message-passing protocols between parties.
iframes also don’t prevent page redirection, window
alerts, browser denial-of-service (via spin-loop), and
memory exhaustion.

There has been a lot of work [17, 15, 14, 9, 1, 7] in
the area of static javascript analysis of third-party scripts
to restrict content and enforce security policies. These
implementations typically restrict the way the JavaScript
language features are used. They enforce these restric-
tions by using static analysis techniques to check the
parameters passed to the various functions used by the
script. Since much of the policy enforcement is done
statically, these solutions typically have good runtime
performance. However, it is very hard to determine the
security aspects of such parameters by plain parameter
checking unless one does a very robust execution trac-
ing at runtime. For example, GateKeeper [9] employs
a parameter checking model, but they cannot check the
safety of the complex but useful functions, such as eval,
setTimeout etc., whose parameters need to be passed to
the JavaScript parser. In the cases of FBJS [1] and AD-
safe [17], untrusted scripts are allowed to make calls to
an access-controlled DOM interface, which again sup-
ports a very restricted version of Javascript and many
of these access control checks are not sound. The cost

in employing a restricted JavaScript subset is that some
scripts may not conform to the subset, requiring they be
ported.

Many recent techniques [16, 2, 8, 18] have taken
the approach of transforming untrusted JavaScript code
dynamically to interpose runtime policy enforcement
checks. These works try to cover the many diverse
ways in which a malicious code may subvert static pol-
icy enforcement checks. But even these policies re-
strict features of JavaScript (e.g., eval and with) or
some functions that eschew redefinition as in Browser-
Shield [18]. WebSandbox [2], for example, adopts a
parameter checking model to verify the parameters be-
ing passed, but additionally creates a virtualized environ-
ment for third-party scripts in which the variables have
a different namespace than what is visible to the native
engine. However, the arguments of functions like eval,
when generated dynamically, would bypass such instru-
mentation. Since the execution is still done on the native
JavaScript engine, eval cannot be safely executed in the
WebSandbox approach.

The Google Caja project [16] enforces security poli-
cies using a mixture of static and runtime techniques.
Caja provides a compiler that transforms (cajoles) the
third-party script into a milder version with less capabil-
ity, i.e., it restricts the way a script might use the DOM
API or various JavaScript constructs such as with and
eval. This is done by verifying that the script adheres to
the required security policy using static analysis. Where
it cannot confirm that the script is well behaved, it will
annotate the application with runtime checks. In con-
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trast, access to the DOM with js.js is unavailable by de-
fault and has to be explicitly allowed for the third-party
script to be able to access a DOM object. This negates the
need for changing the script source or restricting the way
the third-party applications use JavaScript APIs. Instead,
js.js captures the accesses to DOM objects using call-
backs and enforces a security policy at runtime. js.js also
allows for pausing or terminating the execution of run-
away scripts while Caja cannot handle this issue (without
solving the halting problem). Caja also requires server-
side execution, while js.js is client-side only.

The recent introduction of Web Workers [5] has en-
abled a way of sandboxing third-party scripts, but to an
extreme extent. A Web Worker prevents not just a ma-
licious third-party script but any third-party script from
accessing the DOM at all. A script running in a Web
Worker essentially runs in parallel to the application UI
and hence can be killed at any time by the parent ap-
plication that forks it, preventing loop attacks. But the
forked worker has very limited functionality, having to
communicate with the parent through message-passing.
This requires rewriting third-party scripts, decreasing its
usability.

AdJail [13], has less restriction on JavaScript function-
ality and adopts access control mechanisms to regulate
the access to host objects. But the access control model
applied in this case is not flexible enough to dictate how
the object is used once a third-party script validates ac-
cess to it. Our approach gives such flexibility by letting
site operators build wrappers to functions that pose a se-
curity risk.

A different approach is for the website owner to ask
the underlying browser to enforce the owner’s policies
on any third-party JavaScript content, leaving the en-
forcement entirely to the browser’s discretion. Using
this method, a wide variety of fine-grained security poli-
cies can be enforced with low overhead as illustrated
in Content Security Policies [19], BEEP [10] and Con-
script [12]. Such a collaborative approach seems sound
in the long term but today’s browsers do not agree on a
standard for publisher-browser collaboration, resulting in
a large gap in near-term protection from malicious third-
party scripts.

7 Conclusion

We have created the js.js API and runtime which al-
lows for controlled and secure execution of untrusted
JavaScript code. Our initial prototype implementa-
tion has been created by compiling the SpiderMonkey
JavaScript engine to JavaScript. We then implemented
the js.js API in JavaScript as a wrapper around the Spi-
derMonkey API. Using this API, we show secure execu-
tion of Twitter’s Tweet Button and we evaluate the per-

formance overhead of running JavaScript in JavaScript
by evaluating on the SunSpider benchmark suite. In the
future, we hope to both increase the performance of js.js
as well as show its security potential on increasingly in-
teresting examples.
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Abstract

Twitter has become a persistent part of our digital lives,
connecting us not only to our individual audiences but
also to an entire landscape of applications built for the
web. While much has been done to support the Twit-
ter ecosystem outside of Twitter, little has been done
within Twitter to power those same applications. This
work introduces a service called Aperator, which sup-
ports application-specific actionable commands through
tweets. This ability creates several interesting opportuni-
ties for both end-users and application developers build-
ing on the Twitter platform. For example, the action-
able command capability allows a link that a Twitter user
shares with his followers to be directly added to any of
the user’s connected link sharing networks, such as Deli-
cious or Read it Later. The client side of this system has
a console for end-users to sign up and provide their login
credentials for various web services that our system sup-
ports: Delicious, Foursquare, Read it Later, Foursquare
etc. The system’s backend has two cron jobs that run
every minute to: (a) retrieve and parse tweets from a
specific twitter account and store them in a command
form in a MySQL database, and (b) execute the unex-
ecuted commands found in the users tweets. This paper
describes the concept, implementation, and results from
an experimental study of this new application.

1 Introduction

Since its launch in 2006, Twitter has become one of the
most important social properties on the web, trailing only
Facebook and YouTube in terms of traffic [1]. Beyond
the popularity of its own service, however, Twitter has
also promoted the growth and engagement of third party
websites through its API. As of May 2011, there are over
660k developers building applications on the Twitter API
and over 900k operating applications [5]. The Twit-
ter API has four major offerings: Twitter for Websites

enables visitors at third party sites to make use of ba-
sic Twitter functionalities like following and tweeting on
third party sites; the Search API provides query-access to
recent Tweets; the REST API provides a way for devel-
opers to access user data and execute most of the main
functionality of the Twitter service; lastly, the Streaming
API permits an uninterrupted connection to the Twitter
Firehose for developers to make use of data-sets.

Generally speaking, consumer web applications pre-
dominantly use the REST API and do so in three pri-
mary ways: to publicize user activity on the Twitter net-
work (e.g. Foursquare, Quora), to stream user activity
(e.g. Summify), or to operate their own Twitter client
(e.g. TweetDeck). But the service that this paper de-
scribes represents a new mode for relating consumer web
applications to Twitter.

The motivation for this approach is that although to-
day’s social web is great for sharing [8, 9], with so many
apps it can be hard to connect what we share in one net-
work to our presence on others. Moreover, for those who
spend most of their time on only the major networks, it
can be difficult to keep up with their audience on others
[7]. Some networks today do provide limited interactiv-
ity through automatic forwarding of all user updates to
a few other networks, as shown in Figure 1.1. But in-
stead of either forwarding all updates from one network
to the others or needing to log in and post on multiple
networks, what if a user had the ability to selectively post
from one network to all the other networks that the user
cares about? Aperator [2, 3] realizes this vision by en-
abling users to operate real commands on a set of differ-
ent web apps just by tweeting.

1.1 Contributions
Aperator demonstrates a new means of posting, which
creates numerous benefits including:

• A method for granular cross-network posting:
Cross-network posting is currently possible from
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Twitter to Facebook and from Foursquare to Twit-
ter, among others. But this form of cross-network
posting is automatic and applies to all posts or none
at all. The selective nature of aperator commands
makes cross-network posting granular.

• A solution to make multi-network online presences
more convenient for users: Although users may
maintain several presences across a variety of web
properties, it can be difficult to actively contribute
on all of them. Generally and not at all surprisingly,
users spend most of their time on larger networks
like Facebook and Twitter as opposed to smaller
networks like Delicious or Read it Later. Since
aperator enables users to post content on some of
those smaller networks from Twitter, it makes the
multi-network presence more plausible.

• A way to increase engagement for third party ap-
plications: By making posting on third party appli-
cations as simple as tweeting, users can broadcast
to multiple networks through one single interface.
Thus, aperator can boost engagement on third party
applications as another avenue for posting.

• A new platform for application development: Since
users can interact with third party applications
through the Twitter interface, aperator demonstrates
the possibility of purely back-end applications. As
an example, we created a prototype for such an ap-
plication built on top of the aperator platform. The
application, called “sms”, provided the basic func-
tionality of a group text messaging application from
Twitter by using Twilio’s service. Users could sign
up by logging into aperator and editing their sms
settings, which entailed adding or editing groups of
numbers. If users wanted to send a text message to
the members of their sms-groups, they would tweet:
“@aperator sms #GROUPNAME Message”.

Although increasing connectivity among different web
applications in itself is not a new idea, Aperator’s key
contribution is in demonstrating what this system can
enable. Aperator can be seen as a first step towards a
TwitterOS, and using Twitter to provide some interesting
features and services as discussed below.

First, there is a familiar and easy to use interface and
you can access it from a wide range of clients. As a
result, we did not develop a separate stand-alone shell-
client on aperator.com and instead let users interface di-
rectly through Twitter.

Second, when users start using aperator services ex-
tensively and more features are developed by third-party
developers using aperator as a platform, then user’s com-
mand history will be publicly available for innovating a

Figure 1: Partial interactivity among different social net-
work applications

Figure 2: Aperator allows users to tweet selectively to
audiences on different networks

variety of new services. For example, users can bene-
fit from searching and finding out how their fellow users
are using various sequence of commands to accomplish
some particular task. While there are privacy concerns to
be addressed, the presence of such a platform can create
new possibilities for technical innovations.

Third, while Twitter already permits in-tweet com-
mands for cross-posting to LinkedIn and Facebook, this
capability stems from coordinated relationships between
Twitter and other applications. Aperator democratizes
this capability, making cross-posting simple even for or-
ganizations that are smaller than Facebook or LinkedIn.
Additionally, Aperator commands have the potential
to execute more sophisticated operations than posting,
while Twitter’s current model for cross-posting seems ill-
poised to do so.

It should be noted that Aperator is not a ‘tweeting from
the command line’ application like Twidge, Twitter CLI
etc; it is effectively accessible from any Twitter client.
Also, since Aperator is not a client interface, the recent
moves by Twitter to discourage third party Twitter client
developments in favor of consistent user experience [6]
is not at odds with our approach.

1.2 Approach
Aperator [2] is a platform for making tweets actionable
on third party web applications. By tweeting to the
@aperator account, users are able to post content on web
applications like Facebook, Foursquare, Delicious and

2
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Read it Later, as illustrated in Figure 2. Just as a com-
mand line connects its users to applications on their oper-
ating system, Aperator connects its users (through Twit-
ter) to applications on the social web. And like the com-
mand line, Aperator operates with a strict syntax, even
as it enables powerful capabilities through a simple in-
terface. The syntax currently supports four commands:

1. Link submission to Delicious: “@aperator delicious
www.example.com [optional text]”.

2. Link submission to Read it Later: “@aperator ril
www.example.com [optional text]”.

3. Post a status update on Facebook: “@aperator fb
This is a status update”.

4. Check-in on Foursquare: “@aperator 4sq Example
Location”.

In the absence of a revenue source to pay for users’
texting, the sms app has not been featured in the pub-
lic release of Aperator, but it does demonstrate a poten-
tially powerful model. Building the sms application was
greatly simplified since the user interface was almost en-
tirely located on Twitter – the only exception was the
group set-up page, on which users created groups and
specified the names and numbers of its members. This
shows that application developers can build mostly back-
end applications that require little to no front-end inter-
face since the end-users tweets have been shown to be
sufficient as a means for user input.

This paper is organized as follows: Section 2 describes
the client-side and back-end architecture of Aperator.
The implementation details, challenges, and limitations
are elaborated in Section 3. Initial performance results
from a small-scale functionality test of the system is re-
ported in Section 4. Section 5 discusses the potential
of app-specific command execution capability and future
extensions, followed by conclusions drawn in Section 6.

2 Architecture

2.1 Client-side design
To get started on the service, users are required to sign
up with their Twitter credentials. After Twitter authen-
tication, users are redirected to aperator’s signup page,
where they also create their own Aperator login creden-
tials. When users are logged in, they are presented with
a visual display of aperators “Lexicon”, which lists the
available applications that can be connected alongside
their associated command-syntax, like in Figure 3.

In order to start using any of the four apps that are
currently supported by aperator – Foursquare, Delicious,
Facebook and Read it Later – users first connect them to

Figure 3: Signup screen with a list of supported web apps

Aperator. For users wishing to connect aperator to their
Foursquare or Facebook accounts, users follow a connect
button to either apps’ oAuth 2.0 authentication process,
which upon verification, will redirect the user back to
Aperator. But because Delicious and Read it Later utilize
HTTP-Auth, Aperator stores users login credentials for
these services. Therefore, when users choose to connect
either of these two services to aperator, they are taken to
a connect page. Upon successful connection, users are
redirected back to the aperator home screen.

After users have connected aperator to any of the avail-
able apps, they can reconnect to an app if they changed
their login credentials or if they happened to inadver-
tently revoke access to aperator. To reflect the ability
to reconnect an app with different login credentials, what
was previously labeled a “connect” button is now labeled
for connected users as “reconnect.”

2.2 Back-end design
While the end-user interface occurs almost entirely on
Twitter’s cross-platform properties after signup, the im-
plementation and core of the system runs on the services
server, which runs as an Amazon Web Services instance.
The back-end processes involve two main parts: storing
tweet-commands and executing commands that have not
been executed.

Tweets are stored through two cron processes that
run every minute, called stream1.php and stream2.php.
Both processes are identical but for a sleep cycle in
stream2.php which lasts 30 seconds. This way, tweets
are captured from Twitter twice every minute – nearly
every 30 seconds. The frequency of tweet-capturing can
be increased as the service’s adoption grows. Although
Twitter does not release a formal rate-limit for the Search

3
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API, the risks of being throttled seem to advise a conser-
vative approach to tweet queries.

It should be noted that using the Streaming API is
more conducive to the demands of this application since
it allows developers to maintain long-lasting connections
to the Twitter Firehose. In future releases, the Stream-
ing API should be utilized since it would relinquish the
need to run multiple cron processes and concerns about
rate-limiting. However, given the prototype nature of the
current version, we presently capture tweet-commands
using the Search API.

The following snippet demonstrates the cURL re-
sponse used to query the Search API:
curl http://search.twitter.com/search.json?q=\%

40aperator&include_entities=true

The search is specifically for all @mentions of @aper-
ator, specifying tweet-entities as the return type. Speci-
fying “include entitites=true” in the request asks Twitter
to include the expanded URL of links that Twitter has
converted to the t.co link-shortened format. This request
to Twitter returns a JSON response:

{"result_type":"recent"},

"profile_image_url":"...., ....,

"text":" @aperator ril http://t.co/gzPGiehI",

"to_user":"aperator",

"to_user_id":427607438,

"to_user_id_str":"427607438",

"to_user_name":"Aperator",

"created_at":"Wed, 11 Jan 2012 19:27:43 +0000",

"from_user":"pzakin", ....

The JSON specifies the constituent elements of a tweet
object, e.g. “to user name” and “text”, and is easily
parsed. From here, the “from user” property of the tweet
is checked against a MySQL table of Aperator users in
order to make sure that tweets from non-users will not be
processed. Assuming that the tweet comes from a reg-
istered user and that the app specified is valid, the com-
mand is stored in a MySQL table. The second half of
the implementation consists of a process that executes
commands that are yet to be executed. This process
is managed by a cron job that runs each minute. To
maximize for speed of execution–i.e., limiting the lag
between catching the tweet from the Twitter Search re-
sponse and its execution–the execution process operates
inside a while loop, which iterates not less frequently
than every five seconds. Upon execution, the command is
designated as executed and ignored by the executing pro-
cess in the future. Figure 4 shows the overall architecture
and the processes that constitute the aperator system.

3 Implementation

The client console was developed using basic HTML,
CSS and Javascript–the latter of which was mostly im-
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Figure 4: Aperator architecture

plemented using the javascript framework, jQuery. The
back-end was built on a LAMP stack that was hosted on
an EC2 instance from Amazon Web Services. As has al-
ready been described, the system itself was powered pri-
marily by the Twitter API, which connected the aperator
application to users’ tweets.

Although our current initial prototype uses the Search
API, the use of Streaming API and even the REST API
are also feasible. The Streaming API represents the best
method for accessing @mentions of @aperator because
it streams tweets almost instantaneously. We chose to use
the Search API in the current prototype merely to avoid
potential complications with maintaining a long-standing
HTTP connection. Additionally, we opted against the
REST API because of its requirement for authenticated
use of the API.

3.1 Limitations

Although the Search and Streaming APIs can rapidly
stream @mentions of @aperator, both cannot access
@mentions coming from private users. Therefore, Twit-
ter users who maintain a private account viewable only
to their followers are presently unable to use the service.

Going forward, we have considered improving our
current implementation by utilizing the Streaming API
to catch @mentions of @aperator instantaneously. Ad-
ditionally, to provide service access to Twitter users with
private accounts, we will add a process utilizing the
REST API that should run in parallel to our Streaming
API connection. Since the REST API requires authenti-
cation, private @mentions will be retrievable as long as
we require users to follow @aperator when they sign up,
which can be easily added to our signup process.

Additionally, the current implementation for checking
in on Foursquare merely “shouts” a venue name. We do
not specify a ‘venue id’ that would enable a traditional
Foursquare check-in. In order to retrieve a ‘venue id’, we
would need to specify latitude and longitude coordinates.
In fact, this should be possible since users can add their
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location to their tweets. Unfortunately, at this time, the
Tweet entities returned by the Search API have returned
“NULL” values for the “geo” field that otherwise should
specify the needed coordinates. Until this issue has been
resolved by Twitter, we are unable to check-in users to
registered Foursquare locations.

3.2 Challenges
Besides the issues discussed regarding the Foursquare
client, it is worth mentioning some other challenges and
the workarounds we undertook to help coordinate access
to Delicious and Read it Later in a user-friendly way.

First, Twitter shortens all links to the t.co wrapper for-
mat. When links are added to Read it Later or Delicious,
it is important that they are translated back to an ex-
panded URL. Otherwise, users viewing their saved links
would fail to recognize the destinations of their links.
Since Twitter provides an “expanded url” field in their
JSON response to search queries, we use it so that when
the expanded url is valid, the delicious request adds the
expanded URL rather than the t.co shortened link.

Lastly, the Delicious API requires a “description” pa-
rameter for link-submission. In order to provide a mean-
ingful description, we decided to scrape its “<title>” tag
from its DOM structure. The code we used for that pur-
pose is given below:

function scrapeTitle($url)

{ $file = file_get_contents($url);

preg_match(’/<title>(.*)<\/title>/i’,

$file, $title);

$description = trim($title[1]);

return urlencode($description);}

4 Evaluation

4.1 Deployment
The service website [2] was formally opened up to users
on January 2, 2012 for experimentation and testing.
Since then, 47 users have signed up for the service and
82 commands have been issued from Twitter, as shown
in Figure 5. Although the adoption has been slow in the
absence of promotional efforts on our part for this non-
commercial service, our focus has been on testing and
improving the system functionality as opposed to enlarg-
ing user base. Going forward, it will be important to
reach out to Twitter users and adapt the service based on
user feedback. Increasing the number of applications and
services that users can connect to from Aperator will also
be explored in the future.

4.2 Performance
We evaluate the performance of the system by measuring
the execution time of commands issued to Aperator from
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Figure 5: Cumulative growth in tweets sent to Aperator
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Figure 6: Histogram of the execution time of 30 com-
mands for different web apps

user tweets. Each time a user submits a tweet, we record
the time at which the tweet was created as well as the
time at which the command was executed. Thus, execu-
tion time measures the time taken from a tweet post on
Twitter to its execution for posting on another network.
Based on a sample of 30 tweets, with execution times
ranging from 20 seconds to 94 seconds, we found the
mean execution time to be 44.23 seconds. The estima-
tion of execution times for tweets of different third-party
services is shown in Table 1.

Figure 6 shows a more granular picture of the distribu-
tion of execution times for tweet commands operated on
by Aperator for different applications. The performance
figures show that Delicious and Read it Later commands
have relatively slower execution because both implemen-
tations entail an additional process of scraping titles for
submitted links, which we’ve detailed before.

5 Discussions

Despite the presence of APIs across the vast majority of
popular web services, the flow of data generally moves
towards the larger networks as smaller networks publi-
cize activity to a greater audience. In a sense, Aperator is
a serious step towards moving more data from the larger
networks to the smaller ones–which in effect, amounts
merely to the ability to post content from a larger net-
work to a smaller one. Because users spend more time
on larger networks, Aperator effectively lowers the bar-
riers to engagement that plague smaller networks.

While we currently support commands only coming
from Twitter, it is possible and perhaps advantageous to
replicate the Aperator service for Facebook. Sending
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Table 1: Command Execution Time Statistics
Application Mean (secs) Std. Dev. (secs)
Delicious 50.25 20.58

Read It Later 43.4 21.72
Facebook 44.29 24.02

Foursquare 36.2 10.98

commands to third party web applications from Face-
book would work quite similarly to the Twitter imple-
mentation. Users would merely update their status with
specific commands for third party web applications. Ad-
mittedly, this would require a syntax adjustment because
Facebook does not support user-to-application communi-
cation. Thus, to specify an Aperator command in Face-
book, we plan on introducing a syntax such as: “## deli-
cious www.example.com”.

5.1 Related Developments
Increasing connectivity among different web applica-
tions is not a unique idea, even though Aperator is in
many ways a unique implementation. IFTTT [4], for ex-
ample, works with a host of different applications to au-
tomate actions between different services. For instance,
if one uploads a file to her dropbox folder, IFTTT might
send a tweet or a text message or post a status update
on any number of services etc. The range of “recipes”
permitted by IFTTT is extremely compelling when con-
sidering the potential benefits of inter-app synergy.

IFTTT has become a popular service in a new cate-
gory of applications we might well call “API plumbing,”
but it certainly need not be the last. Aperator differs from
IFTTT in the granularity of control it offers and the dy-
namism with which users can specify executable com-
mands directly as tweets. There is tremendous potential
to improve and rethink the relationships between differ-
ent apps: synergy paves the way for new, unexplored ex-
periences in the consumer web. Some of those experi-
ences that deserve further exploration are presented next.

5.2 Future Use-cases
Facebook and Twitter have popularized the idea of sign-
ing up for web services using their respective login cre-
dentials. Supporting Facebook and Twitter authentica-
tion on third party applications expands the reach of their
networks and for the benefit of third party properties,
simplifies the authentication process and increases en-
gagement. One of the ways in which Aperator increases
the accessibility of third party web applications might
very well be in authentication. Instead of signing up with
Facebook or Twitter, users could simply tweet: @aper-
ator install APPNAME. Once again, the analogy of the
command line serves inspiration well. For just as “yum

install emacs” provides a simple model for package in-
stallation on the command line, “@aperator install APP-
NAME” could provide an easier way for users to register
on third party web applications as Aperator funnels au-
thentication tokens in a pipeline from Facebook or Twit-
ter to another application.

Right now, the Twitter presence of web applications
amounts to little more than a stream of updates and an-
nouncements. But through Aperator, applications can
begin to have actionable presences inside of a network.
The suggestion, begged by the use-case, may be that
Twitter could function in parallel to HTTP as an applica-
tion medium. There is some truth, then, to the words of
Paul Graham, the founder of Y Combinator, who wrote:
“Successful new protocols are rare... So any new pro-
tocol is a big deal. Each one of those protocols has
spawned many successful companies. Twitter will too.”

Following such thoughts, a package installer for web
applications is just the tip of the iceberg when it comes to
new apps that can be developed on the Aperator platform.

6 Conclusions

This work introduces a new idea and an initial sys-
tem prototype for a service, called Aperator, which sup-
ports application-specific actionable commands through
tweets. Aperator facilitates granular cross-network post-
ing and increases user convenience, thus opening up av-
enues for greater social utility and interactivity across
web services. We review several benefits of this approach
for both end-users and third-party applications, provide
an architecture for enabling such services, report on ini-
tial performance results, and outline several potentially
interesting extensions of this system.

References
[1] Alexa. http://www.alexa.com.

[2] Aperator. http://www.aperator.com.

[3] Aperator Demo. http://www.youtube.com/watch?v=tBzqShO29Xw.

[4] IFTTT. http://ifttt.com/.

[5] Twitter. http://www.twitter.com.

[6] BROWN, M. Twitter Clamps Down On Third
Party Clients. Wired [online], 14 March 2011.
http://www.wired.com/epicenter/2011/03/twitter-third-party-
clients/all/1.

[7] BRUNO GONCALVES, NICOLA PERRA, A. V. Valida-
tion of Dunbar’s number in Twitter conversations, May 2011.
arXiv:1105.5170v2.

[8] KRISHNAMURTHY, B., GILL, P., AND ARLITT, M. A few chirps
about twitter. In Proceedings of the first workshop on Online social
networks (2008), WOSN ’08, pp. 19–24.

[9] KWAK, H., LEE, C., PARK, H., AND MOON, S. What is Twit-
ter, a social network or a news media? In Proc. of the 19th int’l
conference on World wide web (2010), WWW, pp. 591–600.

6



USENIX Association  WebApps ’12: 3rd USENIX Conference on Web Application Development 107

Don’t Repeat Yourself: Automatically Synthesizing Client-side Validation
Code for Web Applications

Nazari Skrupsky Maliheh Monshizadeh Prithvi Bisht Timothy Hinrichs
V.N. Venkatakrishnan Lenore Zuck

Department of Computer Science
University of Illinois at Chicago

Abstract
We outline the groundwork for a new software devel-

opment approach where developers author the server-
side application logic and rely on tools to automati-
cally synthesize the corresponding client-side applica-
tion logic. Our approach uses program analysis tech-
niques to extract a logical specification from the server
and synthesizes client code from that specification. Our
implementation (WAVES) synthesizes interactive client
interfaces that include asynchronous callbacks whose
performance and coverage rival that of manually written
clients, while ensuring that no new security vulnerabili-
ties are introduced.

1 Introduction

Current practices in mainstream web development iso-
late the construction of the client component of an appli-
cation from the server component. These practices are
a byproduct of the fact that the client component is of-
ten written using a different programming language and
platform (HTML and JavaScript in a web browser) than
the server (e.g., PHP, Java, ASP), therefore necessitating
developers with different skill sets. Independent devel-
opment is problematic when the client and server share
application logic. In this paper, we are concerned with
a specific kind of application logic shared by the client
and server: the input validation logic. Performing input
validation on the client improves the user experience be-
cause of immediate feedback about errors, and if the val-
idation is entirely self-contained on the client, it reduces
network and server load. Performing input validation on
the server is necessary for security, since a malicious user
can otherwise bypass the client validation and supply in-
valid data to the server [2]. Necessarily then the client
and the server must implement the same input validation
logic if the application is to give users the interactive ex-
perience they expect, while ensuring the security of the
application.

In this paper, we pursue a new methodology that aims
to improve the development process and achieve a higher
level of consistency. In our approach, web developers au-
thor the server side input validation of a web application,
and WAVES automatically synthesizes the input valida-
tion for the client. If the input validation must change,
the developer changes the server-side code and reruns
WAVES. The benefits of our approach include:

• Development efficiency. Developers no longer repeat
themselves— client validation code is automatically
synthesized.

• Greater compatibility and code efficiency. The po-
tential for validation mismatches between client and
server is reduced, because developers can specify all
validation checks in server code and use tools to gener-
ate equivalent validation code optimized for the client.

• Improved security. Our approach allows the develop-
ment team to spend more time on the server side com-
ponent, and encourages the specification of all valida-
tion checks in the server code itself.

Our implementation of WAVES uses program anal-
ysis techniques to automatically extract a logical rep-
resentation of the input validation checks on the server
and then synthesizes efficient client-side input valida-
tion routines. Of particular note is that WAVES gen-
erates code for validation checks that involve server-side
state and utilize asynchronous requests (AJAX) to per-
form the required validation. The high-level challenges
that WAVES addresses include:

• Inference of server-side constraints. The server-side
validation may be performed in terms of server-side
variables within deeply nested control flows of the ap-
plication. The server-side constraints must be extracted
and expressed in terms of the form fields.

• Validation involving the server. Some validation may
involve server-side state for a variety of reasons.

1
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2 Our Approach
WAVES (Web Application Validation Extraction and
Synthesis), incorporates client side validation in applica-
tions in the following four conceptually distinct phases.

(1) Server analysis. WAVES first extracts the input
validation constraints enforced by the server using dy-
namic program analysis. The key insight is that when
the server is given an input it accepts, that input is pro-
cessed along a success path. WAVES captures a se-
quence of if-statements along this path, which contains
all the input validation constraints. With the execution
trace, WAVES then rewrites the if-statements in terms of
the original form field inputs and produces a list of poten-
tial input validation constraints. It then analyzes each one
to determine if it is truly an input validation constraint—
one that when falsified causes the server to reject the in-
put. WAVES then identifies which constraints are de-
pendent on the server’s environment (the dynamic con-
straints) and which are not (the static constraints).

(2) Client-side code generation. Next, WAVES
synthesizes client-side code to check the extracted con-
straints each time the user changes the value of a form
field. Static constraints can be checked directly by
JavaScript code, but dynamic constraints can only be
checked by the server. So for each form field, WAVES
generates client side code that first checks if any static
constraints are violated and if not sends a message via
AJAX to the server asking if any of the dynamic con-
straints are violated.

(3) Server-side code generation. The asynchronous
messages sent by the client to check the dynamic con-
straints for a form field can only be responded to by
special-purpose server-side code. (The original code as-
sumes the user provided values for all form fields, but the
clients asynchronous messages aim to check constraints
even before the user completes the form.) Thus, to gen-
erate the proper server code that permits dynamic con-
straint checking on the client, WAVES performs code
slicing on the server code to create an AJAX stub.

(4) Integration. After code generation, the client is
augmented with event handlers that properly invoke the
generated code and inform the user of errors. Server-side
integration requires only uploading the generated AJAX
stub code to the server’s application directory.

3 Evaluation
We implemented WAVES for web applications written
in PHP and clients written in HTML/JavaScript. Our im-
plementation builds on Kaluza [4] (an SMT solver), and
Pixy [3] (a tool for PHP dependency analysis).

To evaluate our approach we selected one form from
each of the three medium to large and popular PHP ap-
plications. For each selected form, we first manually an-

Application Ideal WAVES Existing
B2Evolution 10+1 7+1 0
WeBid 17+8 16+6 0
WebSubRev 5+1 4+1 5+0

Table 1: WAVES synthesized 83% constraints successfully.

alyzed the server-side code and identified the constraints
being checked — we call this the “ideal” synthesis and
use it to assess the effectiveness of WAVES. For each
application, Column 2 of Table 1 shows the ideal num-
ber of constraints (static + dynamic). As shown in the
next column, WAVES was able to synthesize over 83%
of the constraints identified by the ideal synthesis.

We also compared the code WAVES synthesized with
code written manually by application developers. The
third application in our test suite, WebSubRev, already
had client-side validation. For this form, the server-side
code checked 6 constraints (Column 1 Table 1), and the
developer written client-side code checked 5 constraints
(all of which were static). WAVES generated 4 static
constraints and 1 dynamic constraint, therefore synthe-
sizing 80% of the static constraints and 100% of the dy-
namic constraints. (The reason WAVES missed one con-
straint was due to a limitation of Kaluza.) We refer the
interested reader to a more detailed technical report [1]
that provides an in-depth treatment of issues involved in
realizing WAVES as well as experimental data created
for our tool.

4 Conclusion
The novel approach to developing web applications re-
ported in this paper allows the developer to improve se-
curity (without sacrificing client interactivity) by focus-
ing on hardening the server-side input validation. Our ex-
perimental results indicate that automated synthesis can
result in highly interactive web applications, and the syn-
thesized checks rival human-generated code in coverage
and expressiveness.
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