
Provenance-integrated parameter selection and optimization
in numerical simulations

Julia Kühnert
IANS/IPVS - University of Stuttgart

Dominik Göddeke
IANS - University of Stuttgart

Melanie Herschel
IPVS - University of Stuttgart

Abstract
Simulations based on partial differential equations (PDEs)
are used in a large variety of scenarios, that each come with
varying requirements, e.g., in terms of runtime or accuracy.
Different numerical approaches to approximate exact solu-
tions exist, that typically contain a multitude of parameters
that can be tailored to the problem at hand. We explore how
high-level provenance, i.e., provenance that is expensive to
capture in a single simulation, can be used to optimize such
parameters in future simulations for sufficiently similar prob-
lems. Our experiments on one of the key building blocks of
PDE simulations underline the potential of this approach.

1 Introduction

Many important application problems are modeled mathemat-
ically by partial differential equations (PDEs), i.e., sets of
equations describing the interaction and evolution of quanti-
ties and their derivatives. A prominent model problem is the
diffusion equation ∂tu+∆u = f with the Laplace operator
∆ = ∑

d
i=1 ∂2

i , which can be found as a submodel in, e.g., fluid
dynamics, structural mechanics, but also in the social sciences.
In general, solutions of PDEs cannot be expressed explicitly
as formulae, and hence numerical schemes must be employed
to express the problem at hand in computer-tractable form
and to compute (approximate) solutions.

Different applications typically lead to different require-
ments on the accuracy, memory consumption, and compu-
tation time of the simulation. In some cases, accuracy is of
utmost importance, for instance in safety-critical scenarios. In
other cases, runtime is the limiting resource, e.g., in weather
prediction or when real-time constraints have to be met.

The idea to log meta-data about executed programs, in-
cluding simulations, for various purposes is not new [3, 8]. In
particular, this holds for hardware-related data such as run-
time and memory consumption, which is typically used to
allocate resources for follow-up simulations with different
model parameters. In this paper, we focus on meta-data relat-
ing to the numerical schemes that are used in the simulation.

Here, logging of key indicators is also widespread, e.g., the
number of iterations or the temporal evolution of error indica-
tors to monitor the progression towards the solution. We refer
to such meta-data that can be logged alongside the regular
processing as low-level provenance.

In general, alternative numerical schemes to solve a PDE
model, as well as schemes for sub-problems such as the solu-
tion of linear equation systems, have certain characteristics
that directly or indirectly determine the computational cost.
The common practice today of choosing a suitable numerical
method for the problem at hand and setting the parameters
of the method in a way that the solution can be computed
efficiently is based on user experience. Incorporating meta-
data that quantify the behavior and performance of different
schemes under varying conditions to ultimately automate the
selection and parameterization process has received only lit-
tle attention. We use the term performance in a wide sense
here, encompassing runtime, accuracy, but also applicability.
Obtaining the desired meta-data can itself be quite costly, pos-
sibly necessitating expensive extra simulations for parameter
settings that are not covered before. We differentiate this new
kind of provenance from the previously mentioned loggable
provenance by calling it high-level provenance.

Our long-term goal is to feed provenance to a simulation
optimizer that determines a good execution strategy for a sim-
ulation. This resembles the optimization of database queries,
where an optimizer determines a physical query execution
plan for a declarative query by weighing different alternatives
for execution of the query against each other based on a cost
model. Similar to, e.g., [5, 7], the provenance is considered in
defining and adapting the cost model. However, in our setting,
the optimizer additionally has to weigh the cost of computing
high-level provenance against its potential benefit.
Contributions. We introduce the novel idea of using high-
level provenance for automated scheme selection and param-
eterization (Section 2). For a specific model problem, we
further introduce a first metric for high-level provenance (Sec-
tion 3). Our preliminary evaluation showcases that we can
rely on this metric to select parameters resulting in good

1



PDE

Execution 
optimizer

Simulation hardware & infrastructure

Execution

PDE 
solving 

based on 
optimizer 

plan
Low-level 

provenance 
capture

High-level 
provenance 

capture Discrete 
solution

Requirements

Provenance 
feedback

Figure 1: Overview of our general approach

performance for similar problems (Section 4).

2 General framework

Figure 1 depicts our general framework for automated scheme
selection and parameterization. It takes as input a PDE, possi-
ble performance requirements, and hardware characteristics.

Based on the input, the optimizer decides on the best way
to solve the PDE. The optimizer is intended to support or
even substitute experts. To allow for informed decisions, it in-
gests provenance from simulation runs, which are analyzed to
determine suited execution plans for future similar problems.

The execution component in Figure 1, with its sub-
components highlighted in blue, is at the core of this paper.
To solve the PDE, a specific scheme needs to be applied.
We focus on a common pattern such schemes follow: first
transform the PDE, possibly after linearization and applying
a time-stepping scheme, to a (series of) linear equation sys-
tem(s) Ax = b. The matrix A is large and sparse, which is
then exploited by iterative solvers. After reaching a certain
tolerance the computation stops with an approximate solution,
resulting in less computation compared to direct solvers. To
further improve iterative solvers, preconditioning linear equa-
tion systems can be used. Even when following this pattern,
there are numerous iterative solvers, preconditioners, or pa-
rameterizations to consider. This motivates the collection of
provenance of different computation steps during execution,
such that their performance characteristics can be derived.

We first consider low-level provenance. It comprises meta-
data about the execution that is cheap to determine, as it can
be simply logged alongside computations, e.g., general perfor-
mance and accuracy metrics and metrics characterizing spe-
cific numerical schemes. In addition, we introduce the notion
and use of high-level provenance that is based on character-
istics and new metrics for PDEs, linear equation systems, and
other computation steps, that we use to determine a model
for their varying cost and behavior. To make an analogy to
“classical” data provenance research [1], low-level provenance
resembles why-provenance as it captures performance metrics
that contribute to the overall performance – why-provenance

captures which tuples in a database contribute to the result of
a database query. Then, high-level provenance can be seen as
an analogy to how-provenance, as it reflects how the metrics
captured by low-level provenance impact the overall perfor-
mance – in databases, how-provenance tells how tuples part of
why-provenance combine to yield result tuples. The metrics
to be identified for high-level provenance are highly specific
for a chosen scheme, therefore, Section 3 focuses on high-
level provenance for a specific model problem. Also, they
are not necessarily by-products of the ordinary simulation
and thus are potentially expensive to compute. Consequently,
deciding to collect high-level provenance and scheduling this
computation is an interesting research problem by itself.

3 High-level provenance for a model problem

As a first proof of concept for the outlined approach, we con-
sider a specific model PDE problem, and differentiate between
low-level scheme parameters and their influence on the be-
havior of the scheme to determine good parameters for runs
of the PDE problem with different, previously not sampled
high-level model parameters.
Model problem. On a domain Ω = ]0,1[2, we consider

−α∂
2
xu−β∂

2
yu = f in Ω, u = 0 on ∂Ω

with model parameters α, β ∈ R. Such anisotropic Poisson
problems are prototypical for many elliptic PDEs and can be
found, as a sub-model, in many applications (cf. Section 1).
α and β determine the degree of anisotropy in the system.
For α = β, we have a homogeneous material in which the
modeled stationary diffusion process takes place, while for
β 6= α, the material has preferred directions, e.g., slate.
Discretization. Following the execution component in Sec-
tion 2, we cover Ω with an equidistant grid of spacing h > 0,
and apply second order centered finite differences. This re-
sults in a linear system Av= b for the discrete unknown values
vi that approximate the unknown continuous solution u in the
grid points. We choose powers of 1/2 for h, so that A quickly
becomes large. Also, A is symmetric, positive definite and
sparse, with only five entries per row independent of h. The
nonzero pattern of A is independent of the choice of α, β and
h, just the values of the nonzero matrix entries change. b is
chosen as Au for u(x,y) = (x(1− x)y(1− y))2.
Solver. Due to the properties of A, the conjugate gradient
method (CG, [4]) is a favorable scheme to solve the lin-
ear system. CG is an iterative method: in each iteration the
dimension of a basis of the solution space is increased by
one through a clever projection, and an approximate solu-
tion is formed in that basis. We denote the k-th iterate as
v(k). For the error e(k) = v(k)−A−1b, the bound ‖e(k)‖A ≤

2
(√

cond2(A)−1√
cond2(A)+1

)k

‖e(0)‖A holds in the energy norm, with the

condition number cond2(A) = ‖A‖2‖A−1‖2. The latter is a

2



measure for the sensitivity of A with respect to small varia-
tions in the data, and due to the bound, also a performance
indicator in terms of convergence speed. Computing A−1 is
even more expensive than solving the original system, as in
general, A−1 is much denser than A, i.e., it has much more
nonzero entries. For our model problem, the condition number
depends on the quotient of the model parameters α and β. We
thus obtain a computable characteristic of the model parame-
ters for high-level provenance without computing cond2(A).
Preconditioning. To counteract the influence of the condi-
tion number on the convergence speed, preconditioning can be
applied in each iteration of the CG algorithm, so that it effec-
tively solves the system PAv = Pb. Obviously, for P≈ A−1,
the system becomes trivial, but computing A−1 is infeasi-
ble. We use the dual threshold incomplete LU preconditioner
(ILUT) introduced by Saad [6], which approximates the lower
and upper triangular factors L̃ ≈ L and Ũ ≈ U of the LU
factorization A = LU . We can write A = L̃Ũ +F for some
remainder matrix F that is not stored. Then, in each itera-
tion of the CG algorithm, two auxiliary triangular systems
have to be solved, which is easily achieved by forward and
backward substitution. Also, a dropping strategy determines
which entries are used for the incomplete LU factorization,
and which entries are ignored, i.e., placed virtually in F . In
the ILUT preconditioner the dropping strategy depends on
two parameters, the drop-tolerance τ and the fill-in p. In a
first step the drop-tolerance τ is multiplied with the average
magnitude of the current row i of A, resulting in the relative
drop-tolerance τi. During the factorization all elements that
are smaller than this relative drop-tolerance τi are replaced
by zero. In a second step only the p largest elements in the
row of L and U are kept in addition to the diagonal element.
A small drop-tolerance τ and a big fill-in p therefore result in
a high amount of nonzero entries in the preconditioner, and
consequently high costs to compute it a priori, and to apply
it in each CG iteration. In our experiments, we use the ILUT
implementation from the Eigen library [2], which does not
use p, but rather a fill-factor, which relates to the fill-in p by
p = nonzeros(A)·fill-factor

n +1.
As τ and p influence L̃ and Ũ in a highly nonlinear fashion,

it is in general impossible to determine these scheme param-
eters a priori. Bad choices may lead to too dense and thus
too expensive factors, even though the CG solver would then
converge rapidly. It may also happen that the preconditioned
system PA is no longer symmetric positive definite, causing
CG to fail. An optimized selection of the parameters is there-
fore essential, and typically involves careful balancing of all
related costs, and the improvement of the convergence speed.
Provenance. We log the model parameters α and β, the
scheme parameters τ and fill-factor, as well as the number of
needed iterations, the solution time of the CG method, the
assembly time of the ILUT preconditioner, the number of
nonzeros in the ILUT preconditioner, the tolerance, and oth-
ers. To detect solver failure, we prescribe a maximum number

of iterations, θit . In successful configurations, the CG solver
terminates upon reaching an absolute tolerance of θtol . The
anisotropy parameters serve as a high-level metric on the
difficulty of the problem. Together with the other low-level
data we can predict the simulation performance including the
required computation time. The number of nonzeros in the
ILUT preconditioner give us a metric on the preconditioner
storage and application costs. With the parameters for the
ILUT preconditioner we can adapt the computation in time,
accuracy and storage.

4 Experimental evaluation

We fix h= 1/128, leading to n= 16129 unknowns. We report
results for θtol = 10−14 and θit = 1000. They are representa-
tive of results we also obtained for different problem dimen-
sions and θtol . The considered anisotropies, i.e., α = 1 and
β ∈ {10−7,10−6, . . . ,107}, span a wide range of applications,
e.g., diffusive processes in practically relevant porous me-
dia. In our experiments, we focus on the preconditioner, and
explore the performance characteristics for drop-tolerances
τ ∈ {10−16,10−14, . . . ,104} and integers between 0 and 10
for the fill-factors. We do not explore all parameter combina-
tions further that lead to more than ten nonzero entries per
row in the preconditioner, to emulate memory limitations of
twice the requirements for the system matrix.
Categories of Convergence. Figure 2a shows iterations over
total time (ILUT assembly plus CG solver), exemplarily for
β = 106. We observe similar patterns as long as the anisotropy
is large enough, i.e., β /∈ [10−1,101]. Each data point in the
plot corresponds to a different parameter combination, and we
can identify three categories: Category 1 contains the sought
‘sweet spots’, while category 3 contains all cases that reached
θit iterations without convergence. Clearly, having a configu-
ration ending up in this category is undesirable, as it fails to
solve the problem. In category 2, all configurations require
127 iterations, which matches the baseline when not applying
preconditioning, in other words, the effort associated with
constructing and applying the preconditioner is wasted. The
number of nonzeros (the storage cost for the preconditioner)
varies from moderate (78 000) for category 1, to comparable
to a diagonal preconditioner (16 129) for category 2, to ex-
cessive (158 571) for category 3. In terms of the envisioned
optimizer, we aim for category 1 and exclusion of category 3.
Patterns in the ILUT parameters. To find configurations
that avoid category 3 or ideally yield category 1, we study
the influence of ILUT parameters in more detail. Figure 2b
shows that τ is not suitable for separating the identified cate-
gories. In contrast, Figure 2c shows that the fill-factors allow
to distinguish categories 1 and 3, meaning that we can avoid
non-converging parameter settings by excluding fill-factors
below 3, while the optimum in this set of experiments is
reached for a fill-factor of 9.
ILUT parameters for a new problem. While the previous

3



(a) Iterations w.r.t. time (b) Drop-tolerances w.r.t. time (c) Fill-factors w.r.t. time

Figure 2: Iterations (a), drop-tolerances (b), and fill-factors with respect to time when setting β = 106

experiments provided indications for the optimizer to avoid
category 3, we now evaluate if a set of ‘good’ parameters for
a certain degree of anisotropy is also beneficial for similar
anisotropies, i.e., for problem instances that have not been
simulated before. Figure 3 illustrates the results for β = 107

and β = 105, where the coloring of the parameter settings
has been carried over from the previous experiments. We see
that our approach of employing high-level provenance works
remarkably well, as the three categories identified for β = 106

are the same for β = 105 and β = 107, and we can immedi-
ately start with an arbitrary choice from the first category. A
more detailed analysis (not shown) reveals that the optima
are different for different β values, but this only affects the
ordering within each category. Also, for β = 105, more pa-
rameter configurations of category 1 were pruned by our limit
on the storage cost for the preconditioner. The transgression
is minor and thus those parameters would also be suitable.

(a) Iterations w.r.t. time for β = 107

(b) Iterations w.r.t. time for β = 105

Figure 3: Iterations plotted over time for β values in the neigh-
borhood of β = 106. Categories colored according to β = 106

5 Summary and Future work

We found an approach to the parameter selection for the ILUT
preconditioner based on the level of anisotropy. The acquisi-
tion of knowledge requires so far a complete simulation for
every parameter and is therefore not practical. We want to
further investigate the idea of computing only a few iteration
steps to distinguish between the categories. The next steps
include modifications of our model problem with regards to
different boundary values and an extension to different iter-
ative solvers. Afterwards, we will focus on the simulation
optimizer that steers high-level provenance computation and
determines a good execution based on the gathered data. Fi-
nally, to devise a more general solution, further investigation
on metrics and their combination for a variety of differential
equations is necessary to determine which high-level prove-
nance to collect.

Acknowlegements. Funded by Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy – EXC 2075 – 390740016.

References
[1] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in databases:

Why, how, and where. Found. Trends Databases, 1(4):379–474, 2009.

[2] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[3] M. Herschel, R. Diestelkämper, and H. Ben Lahmar. A survey on provenance:
What for? what form? what from? The VLDB Journal, 26(6):881–906, 2017.

[4] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solv-
ing linear systems. Journal of Research of the National Bureau of Standards,
49(6), 1952.

[5] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned
query optimizer. Proceedings of the VLDB Endowment (PVLDB), 12(11):1705–
1718, 2019.

[6] Yousef Saad. Ilut: A dual threshold incomplete lu factorization. Numerical linear
algebra with applications, 1(4):387–402, 1994.

[7] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO -
db2’s learning optimizer. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 19–28, 2001.

[8] Young-Kyoon Suh and Ki Yong Lee. A survey of simulation provenance systems:
modeling, capturing, querying, visualization, and advanced utilization. Human-
centric Computing and Information Sciences, 8:27, 2018.

4


	Introduction
	General framework
	High-level provenance for a model problem
	Experimental evaluation
	Summary and Future work

