
Observed vs. Possible Provenance
Research Track

Tom Blount
University of Southampton

Adriane Chapman
University of Southampton

Michael Johnson
Max Planck Institute for Radio Astronomy

Bertram Ludäscher
University of Illinois Urbana-Champaign

Abstract
Provenance has been of interest to the Computer Science com-
munity for nearly two decades, with proposed uses ranging
from data authentication, to security auditing, to ensuring
trust in decision making processes. However, despite its en-
thusiastic uptake in the academic community, its adoption
elsewhere is often hindered by the cost of implementation.
In this paper we seek to alleviate some of these factors, and
propose the idea of possible provenance in which we relax
the constraint that provenance must be directly observed. We
categorise some existing approaches to gathering provenance
and compare the costs and benefits of each, and illustrate one
method for generating possible provenance in more detail
with a simple example: inferring the possible provenance of
a game of Connect Four. We then go on to discuss some of
the benefits and ramifications of this approach to gathering
provenance, and suggest some key next steps in advancing
this research.

1 Introduction

Provenance and its uses have been investigated as an interest-
ing area in Computer Science for nearly two decades [2]. In
2009, Cheney et al. describe the world of 2019 and the promi-
nence and usage of provenance within our digital systems [3].

However in actuality, while we have seen adoption of prove-
nance in the scientific domain, there has been a lower rate of
adoption than desired elsewhere. Provenance is often difficult,
expensive, or time-consuming to capture, particularly at scale
in a large, distributed, technology-heterogeneous organisation.
Many systems have been proposed to mitigate this, such as
through aiding the direct-capture process [24, 31] or recon-
structing this metadata after-the-fact [17]. However, despite
their successes, this problem still persists [18].

In this paper, we examine the ramifications of relaxing the
constraint that provenance must be observed, and present the
notion of possible provenance. Consider a well-understood
system, that is perhaps under-resourced, and as a result we

have a ‘snapshot’ of the system in its current state, and one
from several days (or weeks) ago, but with no audit logs to
connect the two. While we may not be able to reconstruct
the full chain of actions that led from one state to another,
by lifting the constraint that we must observe changes in
the system (either in situ or retrospectively), we can instead
build a model that shows the multiple paths by which these
changes may have occurred. Through this approach, we hope
to provide an alternative capture method for use-cases in
which possible provenance is acceptable, as well as a means
of supporting resource-allocation of direct-capture systems.

The contributions of this paper are:

1. to differentiate between the concepts of observed and
possible provenance, and categorise some of the existing
methodologies in this space and propose how others
could fit into this taxonomy in Section 2;

2. to show how possible provenance could work, in this
case, with an implementation using abduction and show
how these concepts work on a well-understood example
— Connect Four — in Section 3;

3. to compare costs and benefits between possible-
provenance approaches and observed-provenance in Sec-
tion 4; and

4. to identify the open problems and considerations for
future research in possible provenance in Section 5.

2 Provenance Capture

Provenance is used for a diverse range of applications, from
authentication of the origin of data and entities [21, 35], to
security auditing [14], to ensuring trust in decision making
processes [32]. Naturally, there have been a number of ap-
proaches towards categorising different types of provenance,
from the makeup of the metadata itself and whether (and if
so, how) it describes the contents of the data source and/or
the transformations that have been undergone [7], as well as

1



in regard to the type of artifact, entity, or concept that the
provenance is describing, and the ultimate purpose of the
provenance itself [28].

In this work, we expand upon some of these categorisations,
focusing on the methods of collection or (re)creation of the
provenance metadata. In particular, we describe the notion
of ‘possible’ provenance. Here, we deliberately relax the con-
straint that all provenance must be observed to be recorded.
As such, this opens the possibility of inferred (or implied)
provenance that can be constructed (or reconstructed) after
the fact, not from information recorded while the system was
running, but from contextual knowledge about the system
itself.

Following on from this, we categorise a number of dif-
ferent approaches to creating and/or collected provenance
metadata, both observed and possible, and describe each of
the categories we have witnessed with highlighting exam-
ples. A summary of this (informal) taxonomy is shown in
Figure 1. It should be noted that this is not a strict hierarchy
(and certainly not prescriptive), but instead a representation
of some of the observed features and approaches to metadata
collection.

2.1 Observed Provenance

Our first major category is that of ‘observed’ provenance; that
is, provenance that is recorded when a change to the system
(or underlying data) is directly observed in some fashion
or system events are recorded for later analysis. As such,
this can be thought of as the more ‘traditional’ approach to
provenance.

2.1.1 In-situ

The first category of observed provenance collection/creation
is that which is integrated closely with the system under obser-
vation, and observes key events as they happen. This is often
performed directly by the system to be observed. Alterna-
tively, third-party tools can be applied to the system, designed
to support the scientific and industrial workflow, and relieve
some of the burden of having to explicitly observe and record
provenance metadata as an additional format.

Some of these methods attempt to secure the necessary
provenance data automatically, with as little intrusion into
the workflow as possible; others rely on some form of user
annotation to highlight the key parts of the system, or some
explicit command, in order to cut down on the volume of data
generated.

There are a number of systems that have been developed
with the intention of supporting the adoption and use of
provenance, and as such are capable of embedding prove-
nance directly into their notebook system and/or workflow.
For example, there have been a number of different frame-
works proposed to ease the collection of provenance in scien-

tific workflows [1, 20, 31] with the use of notebooks such as
Wrattler [26], incorporated into the design process through
UML2PROV [29, 30] or integrated into existing data-analysis
systems such as Imolytics [34] and Apache Spark [8, 12, 33].

Another method of gathering in-situ provenance is to anal-
yse the system directly, as it runs, and capture the key events
that relate to provenance of actions and/or data. noWorkflow
is a tool that automatically generates provenance from Python
scripts with no additional input from the user or interruption
to the workflow [22, 27]. Similar tools exist for other data-
oriented language, such as RDataTracker [15, 16].

Alternatively this process can be shifted to a lower level,
instead observing the containing system (e.g. the operating
system), such as the method described by Pasquier et al.. This
supports kernel-level observation of system events for the
purposes of generating provenance information that can later
be used for security-audits and intrusion detection [24, 25].

2.1.2 Post-hoc

Post-hoc provenance generation refers to situations in which
events are recorded in some fashion as the system runs, but
the associated provenance is not created until after-the-fact;
as such, this is often the domain of third-party supporting
tools.

The most straightforward approach is often to generate the
provenance information by recreating the data from a log of
a user’s recorded actions within the system or workflow. For
example, De Nies et al. use commit-logs from version-control
system git to create the associated provenance metadata [5].
Packer et al. go on to extend this work and apply it to the
popular git platform GitHub, and incorporate the platform’s
project-management tools (such as issue-tracking informa-
tion) into the generate provenance record [23].

Other direct methods of provenance capture eschew instru-
mentation, and rely upon playback by performing program
slicing of recorded executions. PROV2R operates at a system-
level to record provenance, in part to directly alleviate some
of the design-load on systems by making use of existing
operating-system events [32].

In addition, McPhillips et al. use contextual system infor-
mation (such as that embedded in directory structures and
naming conventions), enabled by user-annotated computation
blocks, to retroactively create the relevant metadata [19].

2.2 Possible Provenance

We now turn to our second major category, and what we term
‘possible’ provenance: provenance metadata produced without
the constraint that the actions impacting the system must be
directly observed.

2



automatic [22, 24, 29]

annotated [8, 12, 15]

replay [32]

logs [5, 23]

contextual [19]

post-hoc

in-situ

uncertain [4, 10, 11]

machine learning [13, 17]

abductive reasoninginferred

possible

observed

provenance

Figure 1: Dendrite diagram showing different means of collecting, generating, or inferring provenance metadata

2.2.1 Uncertain

This form of provenance can be provided with an explicitly
attached measure of uncertainty; even though a particular
event was unobserved, it may be possible to assume that it
occurred with some probability.

Huang and Fox focus on knowledge provenance and ex-
plore uncertainty in terms of things that cannot be objectively
measured but nevertheless have a bearing on the validity of
provenance; they model both uncertainty in relation to trust
of relationships and uncertainty of truth of facts [10]. De Nies
et al. go on to extend this and provide a framework for repre-
senting this information in W3C Prov format [4].

2.2.2 Inferred

Inferred provenance describes the reconstruction of the prove-
nance metadata not from logs of the system itself, but inferred
based on the (likely) behaviour of the users or the rules un-
derlying the system.

Magliacane has worked on a methodology for reconstruct-
ing provenance after-the-fact using machine-learning [17].
In this work they make use of deep reasoning to assess the
most likely provenance of files in a shared-folder environ-
ment and demonstrate this working favourable in a small
pilot. Kodagoda et al. use a similar approach in an attempt
to infer the reasoning provenance (the cognitive actions) of
users attempting to solve a task, using machine learning over
low-level interaction logs [13]. Likewise, they report similar
promising results on an initial test.

Another means of theoretically inferring provenance infor-
mation from incomplete data is the use of abductive reasoning
to logically expand upon the set of possible states that could
be reached when following an abstract representation of the

rules governing a particular system. However, in contrast to
the use of machine learning, rather than necessarily making a
judgement about which possible provenance set is the most
likely correct one, all can be presented as candidates or col-
lapsed into an abstraction. To the best of our knowledge, this
approach has not yet been put into practice; therefore, in §3
we demonstrate an example of this type of reasoning in greater
detail.

3 Possible Provenance Example

As an illustrative example of how one might infer the possible
provenance of a system, we provide a worked example with
the use of abductive reasoning, a form of logical inference
to find the most likely explanations for a set of observations,
and graph theory. With this example, we limit ourselves to
a well-understood domain, to better showcase the concepts
we wish to describe. For this, we use the popular board game
“Connect Four”.

In Connect Four, players take turns to drop coloured disks
into a vertical grid; disks fall straight down, occupying the
lowest empty space within the column. The winner is the first
player to create an unbroken horizontal, vertical, or diagonal
line of four disks of their colour.

To keep things simple enough to follow (and our diagrams
legible), we use a 3×3 Connect Four grid for this example.
While this raises the seemingly obvious problem that neither
player will ever be able to win, for the purposes of demonstrat-
ing the provenance of moves this does not matter; it is simply
the chain of moves that we care about, and this principle holds
regardless of the grid size (or indeed, the system that is being
modelled).

We first begin by simulating a completed game of Connect

3



Four to serve as the ‘true’ provenance, shown in Figure 2. It
is not optimal play (in fact, each move is selected at random),
but again, for the purposes of creating a chain of actions for
us to reason over, this is ideal. This ‘true’ provenance is
unobserved; that is, we assume that we only have knowledge
of the start and end states.

3.1 Language
The first step to create possible provenance is to design the
language of possible transformations. While it is obvious that
it is impossible to create a language for all possible transfor-
mations, especially those driven by human-actions or one-off
user defined functions, this still leaves a wide range of appli-
cations and actions that have an easy and obvious language.

To codify our system with a set of rules that can be used
to infer the full graph of possible state transitions we use
clingo [6] to incorporate the rules of the game itself into
a logic-based inference system. We translate the rules that
define the allowable transitions between states in our scenario,
as well as also applying additional constraints to our ruleset
that limit the generated states to fit between the known start
and end states. This minimises the size of the created graph of
possible provenances, which in turn allows for the simulation
of more complex problems.

3.2 Expansion
In order to generate the set of possible states and transfor-
mations, we utilise the Possible Worlds Explorer (PWE) [9].
We use the PWE-framework to solve our problem by using a
combination of Answer Set Programming (ASP) and Python
to generate possible provenance results. Abductive reasoning
is a natural fit for ASP and Possible Worlds Explorer. The
result of this is shown in Figure 3.

This gives us a number of different ‘possible provenance’
paths; different ways that a legal chain of moves can be fol-
lowed in order to reach the current state of the board. In the
same fashion, this approach could be applied to — for ex-
ample — a set of SQL transactions required to reach one
database state from another.

Rather than suggesting what the correct provenance path
may be, this approach returns all of the possible paths. While
there may be a case for highlighting the most likely of the
returned paths (or discounting those deemed unlikely), it is
equally possible that for some use-cases it is sufficient to show
whether a path was possible or not.

It should be noted that by its nature this problem-scenario
naturally produces an acyclical graph; each possible node is
visited once and only once (as pieces can never be removed
from the board). This simplifies this problem space somewhat;
however, in other domains (such as ETL) other transforma-
tions would be possible that revisit previous states and thus
create cycles.

3.3 Evaluation
Once we have computed (and rendered) the set of all possible
provenance paths between the known states, the question
becomes “what of it?”. How do we evaluate this solution as
a whole, and how do we determine which of the possible
paths is “closest” to the true provenance (and whether that is
something that can be meaningfully defined)? To answer this,
we propose the following metrics for our possible provenance
graphs.

3.3.1 Specificity

We define specificity as a descriptive measure of how much
of the ‘true’ provenance can be reconstructed and how much
relies on an abstraction. For example: does our language (and
the subsequent expansion) provide an (exhaustive) list of the
intermediate database states? Can it determine what type of
transformation was applied between each step? And/or can it
go so far as to reconstruct the commands used (in SQL or an
equivalent domain-specific language) to carry out those trans-
formations? Alternatively, does the method describe a ‘fuzzy’
set of states and group together particular sets of transitions
that are — to the user, perhaps — functionally equivalent.

For our example system, there are two types of transition
between nodes (adding a red disk, or a yellow disk) and these
are baked into the ruleset. As a result we can fully reconstruct
the (possible) process of moves taken to reach any given state;
therefore, our specificity is 100%.

3.3.2 Correctness

Correctness is defined simply as whether the graph of possible
provenance contains the true provenance as a path within it.
While this should always be the case (and can only be mea-
sured for certain when the true provenance is already known,
for example in a testing environment), it is a useful test of the
model, as a lack of correctness highlights an inconsistency,
inaccuracy, or incompleteness in the language used to define
the problem space.

For the Connect Four example, we can confidently say that
the graph of our example model is correct as it contains the
‘true’ provenance (which is known to us) within it.

3.3.3 Structure

As we are representing our possible-provenance space as a
directed graph, we can also show some basic information
about the structure of the graph — such as the average degree,
density, etc. — as a means of describing the overall network.

For example, in our Connect Four graph, there are a total
of 34 nodes and 46 edges, leading to 27 different paths from
the known start to the known end. The average node degree
is 1.353 and the graph has a density of 0.041. The average
path length is 9 transitions, which matches our expectations

4



Figure 2: The ‘true’ provenance of the Connect Four game. Note that arrows represent forward movement in time, not PROV
relationships.

Figure 3: The set of possible provenance paths, with the true
provenance highlighted

(there are 9 full cells in the end state, so every path must take
9 moves to reach it).

We can also automatically analyse the overall structure
of the graph and the paths through it. Obviously, any nodes
that all paths traverse must be part of the ‘true’ provenance
(assuming our language accurately reflects the system). How-
ever, any node that has a high proportion of paths passing
through it, even if not part of the ‘true’ provenance with ab-
solutely certainty are still of value; these suggest processes
within our system that, if their presence (or equally, their lack
of presence) is observed, would assist in providing a measure
of confidence to the most likely possible provenance path.

3.3.4 Accuracy

For each possible provenance path that we have generated (a
path that leads from the known start state to the known end
state), what level of overlap do they have with the true prove-
nance? We define accuracy as the number of matching nodes,
divided by the maximum path-length of the two paths. There-
fore, paths that avoid nodes that are in the ‘true’ provenance,
as well as those that contain substantial additional nodes that
are not in the true provenance, will have a lower accuracy.
Figure 4 shows the distribution of accuracy across each of the
(non-true) possible paths for our worked example.

Because of the comparison with the ‘true’ provenance, this
metric is by necessity something that we can only calculate in
a testing environment. However, doing so allows us to check
the accuracy of our model and analyse the consequences of
any abstractions, as well as allowing us to refine our workflow
based on the features common to the most accurate paths. For
example, if we pick one of the possible paths, what do we
lose out on compared to the ‘true’ path? Is it more complex,
are there additional steps, do we lose information, and so on.

3.3.5 Variance

Variance can be thought of as complimentary to accuracy;
however, rather than looking at how many nodes in each path
correspond to the true provenance, we can look at how many
paths pass through each node of the true provenance.

The variance for our Connect Four example is shown in
Figure 5. As might be expected, the variance peaks during
the middle of the path as the branches reach their most dense
and complex, before collapsing again towards the end as they
move closer to the known state.

5



Figure 4: Distribution of Path Accuracy

Figure 5: Path variance

As with accuracy, and for the same reason, variance can
only be calculated when the true provenance is known. Again
however, this can highlight features of the underlying system
such as those transitions that can lead to more complex states,
and allow us to ensure our model is suitable.

3.3.6 Performance

Performance is another key metric that can be measured in
terms of both run-time and memory allocation; if it is infea-
sible to generate or reason over the space of possible prove-
nances in a reasonable timeframe on reasonable hardware, it
will be nothing more than interesting theory for the majority
of users, with no practical application.

Performance is largely a consequence of the possible state
space, and therefore of the overall complexity of the system
to be modelled and the number of constraints that can be
applied to it by the rule-set and the description language.
Broadly, the more constraints that can be applied, the better
the performance will be. This leads to the possibility of a
trade-off between accuracy (and possibly even correctness)
in exchange for performance.

3.3.7 Human Utility

However, perhaps the most important consideration when
evaluating the viability of possible provenance is its human
utility (to both armature and professional users). This includes
an analysis of what aspects of provenance human users con-
sider the most vital and whether our implementation suffi-
ciently captures these features, and the acceptable accuracy
when considering different use cases.

3.4 Partial Provenance
Now let us assume that we have access to a part of the true
provenance; through some means we have observed (or cal-
culated) additional known states, or ‘intermediate capture
points’, between the existing known-start and known-end
states.

To illustrate this using our running example, we randomly
select a node from the ‘middle’ of our known provenance path
to act as this intermediate capture point. This allows us to
prune the graph of all paths that do not lead from the start to
the capture point, or the capture point to the end, effectively
breaking the problem into two smaller parts. As shown in
Figure 6, this dramatically reduces the overall number of
possible states.

Clearly then, the identification of suitable capture points is
desirable, as this allows us to evaluate each ‘half’ of the graph
individually, as two separate chains of provenance with their
own known-start and known-end states. Not only does this
mean that we can calculate our evaluation metrics across both
halves of the problem, but doing so should ideally provide
more accurate and actionable results.

6



Figure 6: The provenance when we consider the highlighted
Known Capture Point

This then raises the question — what makes a capture
point most suitable? Not all intermediate capture points will
reduce the statespace in such a way; therefore, developing
a method to determine which nodes will most effectively
simplify the resultant graph is key. This in turn can help
us to prioritise which transitions (or combinations of,) we
should make observable in our real-world system (assuming
that our observations are limited by resources) in order to
maximise the utility of both possible provenance and observed
provenance approaches.

4 Discussion

Here we discuss some of the advantages and drawbacks of
each of the approaches categorised in §2. Firstly, we can
compare those methods that directly observe events to create
provenance with those that instead generate possible prove-
nance. Obviously, those that observe the provenance as it hap-
pens will produce a more accurate representation of events
than those that do not. The trade-off for this is a requirement
that the system either is designed in such a way as to be able
to integrate provenance generation into its on-going activity,
records a log of all relevant events, or mandates collaboration
with the end user to annotate operational regions of note. In
each of these cases, this leads to operational overheads, and
often the application of contextual knowledge of the system
and the domain, to determine which events are necessary to

observe and record.
Within those systems that directly observe events to create

provenance, we can differentiate between systems that gen-
erate their own provenance, and those that act as third-party
tools or plugins for another system. While integrated tools are
— by design — more convenient to the user, as their collection
of provenance is embedded within their primary function, this
focus also often limits them to specific domains or workflows.
Likewise, we can compare between those tools that attempt to
automatically create provenance data with as little intrusion
and interruption of the workflow as possible, versus those that
rely on user annotation and interaction in order to (potentially)
have a more accurate and concise output.

Alternatively, we can compare between those systems that
generate possible provenance. While none of them can guar-
antee that their provenance is correct with total certainty (al-
though the use of abductive reasoning, when properly mod-
elled, should guarantee that the correct provenance is con-
tained within it), they have two main advantages. Firstly (as
with some of the third-party approaches) they are capable
of reconstructing provenance post-hoc. Secondly, by incor-
porating additional information into the metadata (such as
uncertainty measures or possible paths) they can provide a
novel perspective on the use of provenance.

Representing inferred provenance with uncertainty values
embedded in the metadata is one approach. However, it may
be prudent to also include, in these methods, an accompany-
ing model of how the uncertainty was calculated or accounted
for: through Bayesian probabilities, from prior user models,
etc. Machine learning is another approach; with sufficiently
complex set of training data, ML systems can provide a good
approximation of provenance metadata. However, a notable
disadvantage of this approach is generating the model; not
only in the cost of time and resources to allow the machine
to learn the relationships within the training set, but also in
gathering the training set itself; if we have the resources to
observe our system directly, we may as well use these obser-
vations to generate the provenance. However, this approach
could be used to benefit existing similar systems, or to relieve
resources once enough training data has been collected to
‘kick-start’ the ML process.

We also make the case for the use of abductive reasoning
for both inferring provenance, and for informing which ar-
eas of the system are most valuable to observe to capture
direct provenance. The advantages of this method are that it
is wholly independent from the system itself; other than the
initial and final state of the data, no output or other logging
is required. The main drawback also stems from this inde-
pendence: the need to logically model the system. Firstly, the
task of applying the rules of the system to a logical model,
and consequently, the need to abstract the rules governing
more complex systems in order to maintain reasonable per-
formance.

A key feature to consider is the eventual use-case of the

7



provenance being collected (or generated) in any given sit-
uation. It is likely that some of these methods of creating
observed or possible provenance are likely to be more appro-
priate for some applications over others. For example, abduc-
tive reasoning may not be useful if the end-goal is intrusion
detection, as it requires knowledge of the rules governing the
system (whereas intrusion often requires breaking or subvert-
ing those rules). However, it may be a better fit for domains
that govern trust or ownership, or contexts in which for exam-
ple the exact ordering of transactions is a lesser concern than
inferring which transactions happened at all.

5 Future Work and Conclusions

In this paper we present a categorisation of a number of meth-
ods of capturing or creating provenance metadata, whether
through direct observation of a system or through inferring
‘possible’ provenance. We demonstrate this theoretical alter-
native to capturing provenance of a system in-the-moment;
however, rather than providing a method of reconstructing
provenance we instead presented the set of possible prove-
nances and suggest that we can facilitate the observation of
“true” provenance by modelling appropriate points and condi-
tions of the system to dedicate resources to observing. In this
way, our approach can be seen as complementary to existing
direct-capture methods.

A clear next step to take this work forward is to expand
on the categorisation that we have performed on the various
provenance-enabling frameworks; our initial work into this
field is by no means exhaustive, but should provide a solid
base for additional work to be built upon.

Secondly, to take the abductive-inference method described
here and apply it to a ‘real-world’ system that would be of
greater interest to the provenance community (such as an
ETL Data Warehouse). In doing so it will demonstrate the
feasibility of the methodology, and allow for the comparison
of the proposed evaluation metrics against different variations
of the system space. An important component to this work
would also be applying it to a human context; how useful
is this approach towards supporting provenance and is the
resultant metadata applicable to the required use-cases? Do
users — data managers, auditors, and administrators — have
a use for this type of semi-abstracted provenance or at least
guidance towards the most important parts of a system to
observe to generate key capture-points?

Lastly, another avenue of work is to consider expanding
on the theoretical approach; how much of the possible prove-
nance is necessary, and how much of it can be ‘collapsed’ into
abstract states? For example, within a given system, is there
a particular combination or chain of events (or edges in our
graph of possible provenance) that it is desirable to capture
without needing to model the precise ordering? If so we can
reduce the number of possible provenance paths by collapsing
similar paths through the use of transitive closure.

By relaxing the constraint that provenance must be directly
observed to be recorded, we allow for the possibility of lower-
cost provenance gathering in an effort to support provenance
capture by a wider range of tools and organisations, that is
sufficiently (if not totally) accurate for their needs. In conclu-
sion, we hope that this work helps to realise the promise of
provenance by drawing together new concepts for provenance
capture, and supporting more widespread provenance uptake.

Acknowledgements

This work was funded by the Infer<Proven>ence Project
(EPSRC Reference: EP/S028366/1), and supported by the
Federal Ministry for Economic Affairs and Energy on the
basis of a decision of the German Bundestag (project number
50OO1905).

Availability

The full codebase used to generate and then infer the prove-
nance of the Connect Four games used as an example in this
paper is available as a Jupyter Notebook at: http://github.
com/InferProvenance/ConnectFour

References

[1] Peer C Brauer, Andreas Czerniak, and Wilhelm Has-
selbring. Start smart and finish wise: The kiel marine
science provenance-aware data management approach.
In 6th USENIX Workshop on the Theory and Practice
of Provenance (TaPP 2014), 2014.

[2] Peter Buneman and Wang-Chiew Tan. Data provenance:
What next? ACM SIGMOD Record, 47(3):5–16, 2019.

[3] James Cheney, Stephen Chong, Nate Foster, Margo
Seltzer, and Stijn Vansummeren. Provenance: a future
history. In Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming
systems languages and applications, pages 957–964,
2009.

[4] Tom De Nies, Sam Coppens, Erik Mannens, and Rik
Van de Walle. Modeling uncertain provenance and
provenance of uncertainty in w3c prov. In Proceedings
of the 22nd International Conference on World Wide
Web, pages 167–168, 2013.

[5] Tom De Nies, Sara Magliacane, Ruben Verborgh, Sam
Coppens, Paul T Groth, Erik Mannens, and Rik Van de
Walle. Git2prov: Exposing version control system con-
tent as w3c prov. In International Semantic Web Con-
ference (Posters & Demos), pages 125–128, 2013.

8

http://github.com/InferProvenance/ConnectFour
http://github.com/InferProvenance/ConnectFour


[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Max Ostrowski, Torsten Schaub, and Sven Thiele. A
user’s guide to gringo, clasp, clingo, and iclingo. 2008.

[7] Boris Glavic, Klaus R Dittrich, A Kemper, H Schöning,
T Rose, M Jarke, T Seidl, C Quix, and C Brochhaus.
Data provenance: A cctegorization of existing ap-
proaches. BTW’07: Datenbanksysteme in Buisness,
Technologie und Web, (103):227–241, 2007.

[8] T. Guedes, V. Silva, M. Mattoso, M. V. N. Bedo, and
D. de Oliveira. A practical roadmap for provenance
capture and data analysis in spark-based scientific work-
flows. In 2018 IEEE/ACM Workflows in Support of
Large-Scale Science (WORKS), pages 31–41, Nov 2018.
doi: 10.1109/WORKS.2018.00009.

[9] Sahil Gupta, Yi-Yun Cheng, and Bertram Ludäscher.
Possible worlds explorer: Datalog and answer set pro-
gramming for the rest of us. In CEUR Workshop Pro-
ceedings, volume 2368, pages 44–55. CEUR-WS, 2019.

[10] Jingwei Huang and Mark S Fox. Uncertainty in knowl-
edge provenance. In European Semantic Web Sympo-
sium, pages 372–387. Springer, 2004.

[11] Nwokedi Idika, Mayank Varia, and Harry Phan. The
probabilistic provenance graph. In 2013 IEEE Security
and Privacy Workshops, pages 34–41. IEEE, 2013.

[12] Matteo Interlandi, Kshitij Shah, Sai Tetali, Muhammad
Gulzar, Seunghyun Yoo, Miryung Kim, Todd Millstein,
and Tyson Condie. Titian: Data provenance support in
spark. Proceedings of the VLDB Endowment Interna-
tional Conference on Very Large Data Bases, 9:216–227,
01 2016.

[13] Neesha Kodagoda, Sheila Pontis, Donal Simmie, Simon
Attfield, BL William Wong, Ann Blandford, and Chris
Hankin. Using machine learning to infer reasoning
provenance from user interaction log data: based on the
data/frame theory of sensemaking. Journal of Cognitive
Engineering and Decision Making, 11(1):23–41, 2017.

[14] Mark Lemay, Wajih Ul Hassan, Thomas Moyer, Nabil
Schear, and Warren Smith. Automated provenance ana-
lytics: A regular grammar based approach with applica-
tions in security. In Proceedings of the 9th USENIX Con-
ference on Theory and Practice of Provenance, TaPP’17,
page 12, USA, 2017. USENIX Association.

[15] Barbara Lerner and Emery Boose. Rdatatracker: collect-
ing provenance in an interactive scripting environment.
In 6th USENIX Workshop on the Theory and Practice
of Provenance (TaPP 2014), 2014.

[16] Barbara Lerner, Emery Boose, and Luis Perez. Using
introspection to collect provenance in r. In Informatics,
volume 5, page 12. Multidisciplinary Digital Publishing
Institute, 2018.

[17] Sara Magliacane. Reconstructing provenance. In In-
ternational Semantic Web Conference, pages 399–406.
Springer, 2012.

[18] Sara Magliacane and Paul T Groth. Repurposing bench-
mark corpora for reconstructing provenance. In SePub-
lica, pages 39–50, 2013.

[19] Timothy McPhillips, Shawn Bowers, Khalid Bel-
hajjame, and Bertram Ludäscher. Retrospective
provenance without a runtime provenance recorder.
In 7th USENIX Workshop on the Theory and
Practice of Provenance (TaPP 15), Edinburgh,
Scotland, July 2015. USENIX Association. URL
https://www.usenix.org/conference/tapp15/
workshop-program/presentation/mcphillips.

[20] Simon Miles, Paul Groth, Steve Munroe, and Luc
Moreau. Prime: A methodology for developing
provenance-aware applications. ACM Transactions on
Software Engineering and Methodology (TOSEM), 20
(3):1–42, 2011.

[21] Luc Moreau, Paul Groth, Simon Miles, Javier Vazquez-
Salceda, John Ibbotson, Sheng Jiang, Steve Munroe,
Omer Rana, Andreas Schreiber, Victor Tan, et al. The
provenance of electronic data. Communications of the
ACM, 51(4):52–58, 2008.

[22] Leonardo Murta, Vanessa Braganholo, Fernando Chiri-
gati, David Koop, and Juliana Freire. noworkflow: cap-
turing and analyzing provenance of scripts. In Inter-
national Provenance and Annotation Workshop, pages
71–83. Springer, 2014.

[23] Heather S Packer, Adriane Chapman, and Leslie Carr.
Github2prov: provenance for supporting software
project management. In 11th International Workshop on
Theory and Practice of Provenance (TaPP 2019), 2019.

[24] Thomas Pasquier, Xueyuan Han, Mark Goldstein,
Thomas Moyer, David Eyers, Margo Seltzer, and Jean
Bacon. Practical whole-system provenance capture. In
Proceedings of the 2017 Symposium on Cloud Comput-
ing, pages 405–418, 2017.

[25] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam
Bates, Olivier Hermant, David Eyers, Jean Bacon, and
Margo Seltzer. Runtime analysis of whole-system prove-
nance. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1601–1616, 2018.

9

https://www.usenix.org/conference/tapp15/workshop-program/presentation/mcphillips
https://www.usenix.org/conference/tapp15/workshop-program/presentation/mcphillips


[26] Tomas Petricek, James Geddes, and Charles Sutton.
Wrattler: Reproducible, live and polyglot notebooks. In
10th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2018), 2018.

[27] Joao Felipe Pimentel, Leonardo Murta, Vanessa Bra-
ganholo, and Juliana Freire. noworkflow: a tool for
collecting, analyzing, and managing provenance from
python scripts. Proceedings of the VLDB Endowment,
10(12), 2017.

[28] Eric D Ragan, Alex Endert, Jibonananda Sanyal, and
Jian Chen. Characterizing provenance in visualization
and data analysis: an organizational framework of prove-
nance types and purposes. IEEE transactions on visual-
ization and computer graphics, 22(1):31–40, 2015.

[29] Carlos Sáenz-Adán, Luc Moreau, Beatriz Pérez, Simon
Miles, and Francisco J García-Izquierdo. Automat-
ing provenance capture in software engineering with
uml2prov. In International Provenance and Annotation
Workshop, pages 58–70. Springer, 2018.

[30] Carlos Sáenz-Adán, Beatriz Pérez, Trung Dong Huynh,
and Luc Moreau. Uml2prov: automating provenance
capture in software engineering. In International Con-
ference on Current Trends in Theory and Practice of
Informatics, pages 667–681. Springer, 2018.

[31] Yogesh L Simmhan, Beth Plale, and Dennis Gannon.
A framework for collecting provenance in data-centric
scientific workflows. In 2006 IEEE International Con-
ference on Web Services (ICWS’06), pages 427–436.
IEEE, 2006.

[32] Manolis Stamatogiannakis, Elias Athanasopoulos, Her-
bert Bos, and Paul Groth. Prov 2r: practical provenance
analysis of unstructured processes. ACM Transactions
on Internet Technology (TOIT), 17(4):1–24, 2017.

[33] M. Tang, S. Shao, W. Yang, Y. Liang, Y. Yu, B. Saha, and
D. Hyun. Sac: A system for big data lineage tracking.
In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1964–1967, April 2019. doi:
10.1109/ICDE.2019.00215.

[34] Shen Xu, Elliot Fairweather, Toby Rogers, and Vasa
Curcin. Implementing data provenance in health data
analytics software. In International Provenance and
Annotation Workshop, pages 173–176. Springer, 2018.

[35] Qiannan Zhang, Tian Huang, Yongxin Zhu, and
Meikang Qiu. A case study of sensor data collection
and analysis in smart city: provenance in smart food sup-
ply chain. International Journal of Distributed Sensor
Networks, 9(11):382132, 2013.

10


	Introduction
	Provenance Capture
	Observed Provenance
	In-situ
	Post-hoc

	Possible Provenance
	Uncertain
	Inferred


	Possible Provenance Example
	Language
	Expansion
	Evaluation
	Specificity
	Correctness
	Structure
	Accuracy
	Variance
	Performance
	Human Utility

	Partial Provenance

	Discussion
	Future Work and Conclusions

