

conference

proceedings

A
rtifact A

ppendices to the Proceedings of the 31st U
SEN

IX Security Sym
posium

Boston, M

A
, USA

August 10–12, 2022

Sponsored by

ISBN 978-1-939133-31-1

Artifact Appendices to the
Proceedings of the 31st
USENIX Security Symposium

Boston, MA, USA
August 10–12, 2022

USENIX Association

August 10–12, 2022
Boston, MA, USA

Artifact Appendices to the Proceedings of the
31st USENIX Security Symposium

© 2022 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-31-1

Artifact Evaluation Committee
Artifact Evaluation Committee Co-Chairs
Clémentine Maurice, CNRS
Cristiano Giuffrida, VU Amsterdam

Artifact Evaluation Committee
Shubham Agarwal, CISPA Helmholtz Center for

Information Security
Mohsen Ahmadi, University of California, Los Angeles
Nikolaos Alexopoulos, Technische Universität Darmstadt
Ranya Aloufi, Imperial College London
Amit Seal Ami, College of William & Mary
Simone Aonzo, EURECOM
Daniel Arp, Technische Universität Braunschweig
Erin Avllazagaj, University of Maryland, College Park
Pierre Ayoub, EURECOM
David G. Balash, The George Washington University
Shay Berkovich, BlackBerry
Jakob Bleier, TU Wien
Alejandro Cabrera Aldaya, Tampere University
Fabricio Ceschin, Federal University of Parana
Weikeng Chen, University of California, Berkeley
Hongjun Choi, Purdue University
Emilio Coppa, Sapienza University of Rome
Pascal Cotret, ENSTA Bretagne
Dipanjan Das, University of California, Santa Barbara
Giulio De Pasquale, King’s College London
Luca Degani, University of Trento and Istituto di Informatica

e Telematica, Consiglio Nazionale delle Ricerche
Matteo Dell’Amico, University of Genoa
Hailun Ding, Rutgers University
Dong Du, Shanghai Jiao Tong University
Thorsten Eisenhofer, Ruhr-Universität Bochum
Alessandro Erba, CISPA Helmholtz Center for

Information Security
Christof Ferreira Torres, University of Luxembourg
Romain Fouquet, Université de Lille, Inria, CNRS
Walid Ghandour, Lebanese University
Samuel Grayson, University of Illinois at Urbana–Champaign
Michele Grisafi, University of Trento
Ashish Hooda, University of Wisconsin—Madison
Shengtuo Hu, University of Michigan
Shan Huang, Stevens Institute of Technology
Mazharul Islam, University of Wisconsin—Madison
Adriaan Jacobs, imec-DistriNet, Katholieke Universiteit Leuven
Jafar Haadi Jafarian, University of Colorado Denver
Yilin Ji, Karlsruhe Institute of Technology
Kaushal Kafle, College of William & Mary
Imtiaz Karim, Purdue University
Arslan Khan, Purdue University
Hyungsub Kim, Purdue University
Soomin Kim, Korea Advanced Institute of Science and

Technology (KAIST)
Daniel Klischies, Ruhr-Universität Bochum
Anne Josiane Kouam, Inria
Johannes Krupp, CISPA Helmholtz Center for

Information Security
Joel Kuepper, The University of Adelaide
Georg Land, Ruhr-Universität Bochum and Deutsches

Forschungszentrum für Künstliche Intelligenz
Ang Li, Arizona State University

Song Li, Johns Hopkins University
Eleonora Losiouk, University of Padua
Keyu Man, University of California, Riverside
Damien Marion, IRISA
Maryam Masoudian, Sharif University of Technology, Hong Kong

University of Science and Technology (HKUST)
Guozhu Meng, SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences
Grégoire Menguy, Université Paris-Saclay, CEA
Brad Miller, Google
Vladislav Mladenov, Horst Görtz Institute for IT Security
Eric Mugnier, University of California, San Diego
Paul Olivier, EURECOM
Kexin Pei, Columbia University
Cesar Pereida Garcia, Tampere University
Duy-Phuc Pham, INRIA, IRISA, France
Goran Piskachev, Fraunhofer IEM
Hernan Ponce de Leon, Bundeswehr University Munich
Erwin Quiring, Technische Universität Braunschweig
Imranur Rahman, North Carolina State University
Vidya Lakshmi Rajagopalan, Stevens Institute of Technology
Andrew R. Reiter, Redacted
Jenni Reuben, Totalförsvarets forskningsinstitut (FOI)
Irwin Reyes, Two Six Technologies
Michael Rodler, University of Duisburg-Essen
Kuheli Sai, University of Pittsburgh
Saiful Islam Salim, University of Arizona
Solmaz Salimi, Sharif University of Technology
Moritz Schloegel, Ruhr-Universität Bochum
Vikash Sehwag, Princeton University
Omid Setayeshfar, University of Georgia
Alex Seto, Purdue University
Johnny So, Stony Brook University
Marco Squarcina, TU Wien
Avinash Sudhodanan, HUMAN
Mauro Tempesta, TU Wien
Erik Tews, University of Twente
Flavio Toffalini, EPFL
Guillaume Valadon, Quarkslab
Thijs van Ede, University of Twente
Alexios Voulimeneas, imec-DistriNet, Katholieke Universiteit

Leuven
Dawei Wang, SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences
Ding Wang, Nankai University
Xiaoguang Wang, Virginia Tech
Zhenting Wang, Rutgers University
Zhongjie Wang, Baidu Security
Noel Warford, University of Maryland, College Park
Feng Wei, University at Buffalo
Shijia Wei, The University of Texas at Austin
Ruoyu Wu, Purdue University
Jeffrey Alan Young, Clemson Univeristy
Chengyu Zhang, East China Normal University
Qingzhao Zhang, University of Michigan
Yuchen Zhang, Stevens Institute of Technology
Zhiyuan Zhang, The University of Adelaide
Yongjun Zhao, Nanyang Technological University
Shitong Zhu, University of California, Riverside

Artifact Appendices to the Proceedings of the
31st USENIX Security Symposium

August 10–12, 2022
Boston, MA, USA

Wednesday, August 10
Measurement I: Network
Uninvited Guests: Analyzing the Identity and Behavior of Certificate Transparency Bots . 1
Brian Kondracki, Johnny So, and Nick Nikiforakis, Stony Brook University

Kernel Security
Playing for K(H)eaps: Understanding and Improving Linux Kernel Exploit Reliability . 3
Kyle Zeng, Arizona State University; Yueqi Chen, Pennsylvania State University; Haehyun Cho, Arizona State University
and Soongsil University; Xinyu Xing, Pennsylvania State University; Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao,
Arizona State University

In-Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authentication . 5
Sungbae Yoo, Jinbum Park, Seolheui Kim, and Yeji Kim, Samsung Research; Taesoo Kim, Samsung Research and
Georgia Institute of Technology

Midas: Systematic Kernel TOCTTOU Protection . 7
Atri Bhattacharyya, EPFL; Uros Tesic, Nvidia; Mathias Payer, EPFL

Web Security I: Vulnerabilities
Mining Node .js Vulnerabilities via Object Dependence Graph and Query . 9
Song Li and Mingqing Kang, Johns Hopkins University; Jianwei Hou, Johns Hopkins University/Renmin University
of China; Yinzhi Cao, Johns Hopkins University

FUGIO: Automatic Exploit Generation for PHP Object Injection Vulnerabilities . 15
Sunnyeo Park and Daejun Kim, KAIST; Suman Jana, Columbia University; Sooel Son, KAIST

Crypto I: Attacking Implementations
TLS-Anvil: Adapting Combinatorial Testing for TLS Libraries .17
Marcel Maehren and Philipp Nieting, Ruhr University Bochum; Sven Hebrok, Paderborn University; Robert Merget,
Ruhr University Bochum; Juraj Somorovsky, Paderborn University; Jörg Schwenk, Ruhr University Bochum

Trust Dies in Darkness: Shedding Light on Samsung’s TrustZone Keymaster Design . 23
Alon Shakevsky, Eyal Ronen, and Avishai Wool, Tel-Aviv University

User Studies I: At-Risk Users
“They Look at Vulnerability and Use That to Abuse You”: Participatory Threat Modelling
with Migrant Domestic Workers . 25
Julia Słupska and Selina Cho, University of Oxford; Marissa Begonia, Voice of Domestic Workers; Ruba Abu-Salma,
King’s College London; Nayanatara Prakash, University of Oxford; Mallika Balakrishnan, Migrants Organise

Software Vulnerabilities
How Long Do Vulnerabilities Live in the Code? A Large-Scale Empirical Measurement Study on FOSS
Vulnerability Lifetimes . 27
Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wagner, Tim Grube, and Max Mühlhäuser, Technical University
of Darmstadt

Expected Exploitability: Predicting the Development of Functional Vulnerability Exploits . 31
Octavian Suciu, University of Maryland, College Park; Connor Nelson, Zhuoer Lyu, and Tiffany Bao,
Arizona State University; Tudor Dumitraș, University of Maryland, College Park

Arbiter: Bridging the Static and Dynamic Divide in Vulnerability Discovery on Binary Programs 33
Jayakrishna Vadayath, Arizona State University; Moritz Eckert, EURECOM; Kyle Zeng, Arizona State University;
Nicolaas Weideman, University of Southern California; Gokulkrishna Praveen Menon, Arizona State University;
Yanick Fratantonio, Cisco Systems Inc.; Davide Balzarotti, EURECOM; Adam Doupé, Tiffany Bao, and Ruoyu Wang,
Arizona State University; Christophe Hauser, University of Southern California; Yan Shoshitaishvili, Arizona State
University

Network Security I: Scanning & Censorship
Spoki: Unveiling a New Wave of Scanners through a Reactive Network Telescope . 35
Raphael Hiesgen, HAW Hamburg; Marcin Nawrocki, Freie Universität Berlin; Alistair King, Kentik; Alberto Dainotti,
CAIDA, UC San Diego and Georgia Institute of Technology; Thomas C. Schmidt, HAW Hamburg; Matthias Wählisch,
Freie Universität Berlin

GET /out: Automated Discovery of Application-Layer Censorship Evasion Strategies . 37
Michael Harrity, Kevin Bock, Frederick Sell, and Dave Levin, University of Maryland

Differential Privacy
Twilight: A Differentially Private Payment Channel Network . 41
Maya Dotan, Saar Tochner, Aviv Zohar, and Yossi Gilad, The Hebrew University of Jerusalem

Measurement II: Auditing & Best Practices
Building an Open, Robust, and Stable Voting-Based Domain Top List . 43
Qinge Xie, Georgia Institute of Technology; Shujun Tang, QI-ANXIN Technology Research Institute; Xiaofeng Zheng,
QI-ANXIN Technology Research Institute and Tsinghua University; Qingran Lin, QI-ANXIN Technology Research
Institute; Baojun Liu, Tsinghua University; Haixin Duan, QI-ANXIN Technology Research Institute and Tsinghua
University; Frank Li, Georgia Institute of Technology

Side Channels I: Hardware
Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86 . 45
Yingchen Wang, University of Texas at Austin; Riccardo Paccagnella and Elizabeth Tang He, University of Illinois
Urbana-Champaign; Hovav Shacham, University of Texas at Austin; Christopher W. Fletcher, University of Illinois
Urbana-Champaign; David Kohlbrenner, University of Washington

Web Security II: Fingerprinting
QCSD: A QUIC Client-Side Website-Fingerprinting Defence Framework . 47
Jean-Pierre Smith and Luca Dolfi, ETH Zurich; Prateek Mittal, Princeton University; Adrian Perrig, ETH Zurich

Crypto II: Performance Improvements
Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference . 51
Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding, Alibaba Group

Piranha: A GPU Platform for Secure Computation . 55
Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa, University of California, Berkeley

OpenSSLNTRU: Faster post-quantum TLS key exchange . 57
Daniel J. Bernstein, University of Illinois at Chicago and Ruhr University Bochum; Billy Bob Brumley,
Tampere University; Ming-Shing Chen, Ruhr University Bochum; Nicola Tuveri, Tampere University

User Studies II: Sharing
Caring about Sharing: User Perceptions of Multiparty Data Sharing . 59
Bailey Kacsmar, Kyle Tilbury, Miti Mazmudar, and Florian Kerschbaum, University of Waterloo

Hardware Security I: Attacks & Defenses
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems . 61
David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard, Graz University of Technology

Branch History Injection: On the Effectiveness of Hardware Mitigations Against Cross-Privilege
Spectre-v2 Attacks . 63
Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuffrida, Vrije Universiteit Amsterdam

TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized Reverse Engineering . 65
Andrei Tatar, Vrije Universiteit, Amsterdam; Daniël Trujillo, Vrije Universiteit, Amsterdam, and ETH Zurich;
Cristiano Giuffrida and Herbert Bos, Vrije Universiteit, Amsterdam

Fuzzing I: Networks
BrakTooTh: Causing Havoc on Bluetooth Link Manager via Directed Fuzzing . 67
Matheus E. Garbelini, Vaibhav Bedi, and Sudipta Chattopadhyay, Singapore University of Technology and Design;
Sumei Sun and Ernest Kurniawan, Institute for Infocomm Research, A*Star

ampFuzz: Fuzzing for Amplification DDoS Vulnerabilities . 77
Johannes Krupp, CISPA Helmholtz Center for Information Security; Ilya Grishchenko, University of California,
Santa Barbara; Christian Rossow, CISPA Helmholtz Center for Information Security

Smart Homes I
SkillDetective: Automated Policy-Violation Detection of Voice Assistant Applications in the Wild 81
Jeffrey Young, Song Liao, and Long Cheng, Clemson University; Hongxin Hu, University at Buffalo; Huixing Deng,
Clemson University

Measurement III
A Large-scale Investigation into Geodifferences in Mobile Apps . 83
Renuka Kumar, Apurva Virkud, Ram Sundara Raman, Atul Prakash, and Roya Ensafi, University of Michigan

Fuzzing II: Low-Level
morphuzz: Bending (Input) Space to Fuzz Virtual Devices . 85
Alexander Bulekov, Boston University and Red Hat; Bandan Das and Stefan Hajnoczi, Red Hat; Manuel Egele,
Boston University

Fuzzware: Using Precise MMIO Modeling for Effective Firmware Fuzzing . 87
Tobias Scharnowski, Nils Bars, and Moritz Schloegel, Ruhr-Universität Bochum; Eric Gustafson, UC Santa Barbara;
Marius Muench, Vrije Universiteit Amsterdam; Giovanni Vigna, UC Santa Barbara and VMware; Christopher Kruegel,
UC Santa Barbara; Thorsten Holz and Ali Abbasi, Ruhr-Universität Bochum

Drifuzz: Harvesting Bugs in Device Drivers from Golden Seeds . 91
Zekun Shen, Ritik Roongta, and Brendan Dolan-Gavitt, NYU

Wireless Security
Ghost Peak: Practical Distance Reduction Attacks Against HRP UWB Ranging . 93
Patrick Leu and Giovanni Camurati, ETH Zurich; Alexander Heinrich, TU Darmstadt; Marc Roeschlin and
Claudio Anliker, ETH Zurich; Matthias Hollick, TU Darmstadt; Srdjan Capkun, ETH Zurich; Jiska Classen,
TU Darmstadt

ML I: Federated Learning
Simc: ML Inference Secure Against Malicious Clients at Semi-Honest Cost . 97
Nishanth Chandran, Divya Gupta, and Sai Lakshmi Bhavana Obbattu, Microsoft Research; Akash Shah, UCLA

Thursday, August 11
Deanonymization
Mitigating Membership Inference Attacks by Self-Distillation Through a Novel Ensemble Architecture 101
Xinyu Tang, Saeed Mahloujifar, and Liwei Song, Princeton University; Virat Shejwalkar, Milad Nasr, and
Amir Houmansadr, University of Massachusetts Amherst; Prateek Mittal, Princeton University

Synthetic Data – Anonymisation Groundhog Day . 103
Theresa Stadler, EPFL; Bristena Oprisanu, UCL; Carmela Troncoso, EPFL

Targeted Deanonymization via the Cache Side Channel: Attacks and Defenses . 105
Mojtaba Zaheri, Yossi Oren, and Reza Curtmola, New Jersey Institute of Technology

Web Security III: Bots & Authentication
DeepPhish: Understanding User Trust Towards Artificially Generated Profiles in Online Social Networks 107
Jaron Mink, Licheng Luo, and Natã M. Barbosa, University of Illinois at Urbana-Champaign; Olivia Figueira,
Santa Clara University; Yang Wang and Gang Wang, University of Illinois at Urbana-Champaign

Crypto III: Private Matching & Lookups
Estimating Incidental Collection in Foreign Intelligence Surveillance: Large-Scale Multiparty Private Set
Intersection with Union and Sum . 109
Anunay Kulshrestha and Jonathan Mayer, Princeton University

Constant-weight PIR: Single-round Keyword PIR via Constant-weight Equality Operators 111
Rasoul Akhavan Mahdavi and Florian Kerschbaum, University of Waterloo

Incremental Offline/Online PIR . 113
Yiping Ma and Ke Zhong, University of Pennsylvania; Tal Rabin, University of Pennsylvania and Algorand Foundation;
Sebastian Angel, University of Pennsylvania and Microsoft Research

Passwords
Might I Get Pwned: A Second Generation Compromised Credential Checking Service . 115
Bijeeta Pal, Cornell University; Mazharul Islam, University of Wisconsin–Madison; Marina Sanusi Bohuk,
Cornell University; Nick Sullivan, Luke Valenta, Tara Whalen, and Christopher Wood, Cloudflare; Thomas Ristenpart,
Cornell Tech; Rahul Chatterjee, University of Wisconsin–Madison

Why Users (Don’t) Use Password Managers at a Large Educational Institution . 119
Peter Mayer, Karlsruhe Institute of Technology; Collins W. Munyendo, The George Washington University;
Michelle L. Mazurek, University of Maryland, College Park; Adam J. Aviv, The George Washington University

Web Security IV: Defenses
Provably-Safe Multilingual Software Sandboxing using WebAssembly . 121
Jay Bosamiya, Wen Shih Lim, and Bryan Parno, Carnegie Mellon University

SWAPP: A New Programmable Playground for Web Application Security . 125
Phakpoom Chinprutthiwong, Jianwei Huang, and Guofei Gu, SUCCESS Lab, Texas A&M University

The Security Lottery: Measuring Client-Side Web Security Inconsistencies . 127
Sebastian Roth, CISPA Helmholtz Center for Information Security; Stefano Calzavara, Università Ca’ Foscari Venezia;
Moritz Wilhelm, CISPA Helmholtz Center for Information Security; Alvise Rabitti, Università Ca’ Foscari Venezia;
Ben Stock, CISPA Helmholtz Center for Information Security

ML II
PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier 129
Chong Xiang, Saeed Mahloujifar, and Prateek Mittal, Princeton University

Transferring Adversarial Robustness Through Robust Representation Matching . 131
Pratik Vaishnavi, Stony Brook University; Kevin Eykholt, IBM; Amir Rahmati, Stony Brook University

Measurement IV
Measurement by Proxy: On the Accuracy of Online Marketplace Measurements . 133
Alejandro Cuevas, Carnegie Mellon University; Fieke Miedema, Delft University of Technology; Kyle Soska,
University of Illinois Urbana Champaign and Hikari Labs, Inc.; Nicolas Christin, Carnegie Mellon University
and Hikari Labs, Inc.; Rolf van Wegberg, Delft University of Technology

Hardware Security II: Embedded
RapidPatch: Firmware Hotpatching for Real-Time Embedded Devices . 135
Yi He and Zhenhua Zou, Tsinghua University and BNRist; Kun Sun, George Mason University; Zhuotao Liu and
Ke Xu, Tsinghua University and BNRist; Qian Wang, Wuhan University; Chao Shen, Xi’an Jiaotong University;
Zhi Wang, Florida State University; Qi Li, Tsinghua University and BNRist

Holistic Control-Flow Protection on Real-Time Embedded Systems with Kage . 137
Yufei Du, UNC Chapel Hill and University of Rochester; Zhuojia Shen, Komail Dharsee, and Jie Zhou, University
of Rochester; Robert J. Walls, Worcester Polytechnic Institute; John Criswell, University of Rochester

Client-Side Security
Orca: Blocklisting in Sender-Anonymous Messaging . 139
Nirvan Tyagi and Julia Len, Cornell University; Ian Miers, University of Maryland; Thomas Ristenpart, Cornell Tech

Adversarial Detection Avoidance Attacks: Evaluating the robustness of perceptual hashing-based
client-side scanning .141
Shubham Jain, Ana-Maria Crețu, and Yves-Alexandre de Montjoye, Imperial College London

End-to-Same-End Encryption: Modularly Augmenting an App with an Efficient, Portable, and
Blind Cloud Storage . 143
Long Chen, Institute of Software, Chinese Academy of Sciences; Ya-Nan Li and Qiang Tang, The University of Sydney;
Moti Yung, Google & Columbia University

Crypto IV: Databases & Logging
Faster Yet Safer: Logging System Via Fixed-Key Blockcipher .147
Viet Tung Hoang, Cong Wu, and Xin Yuan, Florida State University

Software Forensics
Back-Propagating System Dependency Impact for Attack Investigation .149
Pengcheng Fang, Case Western Reserve University; Peng Gao, Virginia Tech; Changlin Liu and Erman Ayday,
Case Western Reserve University; Kangkook Jee, University of Texas at Dallas; Ting Wang, Penn State University;
Yanfang (Fanny) Ye, Case Western Reserve University; Zhuotao Liu, Tsinghua University; Xusheng Xiao,
Case Western Reserve University

Ground Truth for Binary Disassembly is Not Easy . 151
Chengbin Pang and Tiantai Zhang, Nanjing University; Ruotong Yu, University of Utah; Bing Mao, Nanjing University;
Jun Xu, University of Utah

Information Flow
polycruiSe: A Cross-Language Dynamic Information Flow Analysis . 153
Wen Li, Washington State University, Pullman; Jiang Ming, University of Texas at Arlington; Xiapu Luo, The Hong Kong
Polytechnic University; Haipeng Cai, Washington State University, Pullman

SymSan: Time and Space Efficient Concolic Execution via Dynamic Data-flow Analysis . 155
Ju Chen, UC Riverside; Wookhyun Han, KAIST; Mingjun Yin, Haochen Zeng, and Chengyu Song, UC Riverside;
Byoungyoung Lee, Seoul National University; Heng Yin, UC Riverside; Insik Shin, KAIST

celliFT: Leveraging Cells for Scalable and Precise Dynamic Information Flow Tracking in RTL 157
Flavien Solt, ETH Zurich; Ben Gras, Intel Corporation; Kaveh Razavi, ETH Zurich

FlowmaTrix: GPU-Assisted Information-Flow Analysis through Matrix-Based Representation 159
Kaihang Ji, Jun Zeng, Yuancheng Jiang, and Zhenkai Liang, National University of Singapore; Zheng Leong Chua,
Independent Researcher; Prateek Saxena and Abhik Roychoudhury, National University of Singapore

Network Security II: Infrastructure
Bedrock: Programmable Network Support for Secure RDMA Systems . 163
Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu, and Ang Chen, Rice University

Creating a Secure Underlay for the Internet . 165
Henry Birge-Lee, Princeton University; Joel Wanner, ETH Zürich; Grace H. Cimaszewski, Princeton University;
Jonghoon Kwon, ETH Zürich; Liang Wang, Princeton University; François Wirz, ETH Zürich; Prateek Mittal,
Princeton University; Adrian Perrig, ETH Zürich; Yixin Sun, University of Virginia

ML III
DeepDi: Learning a Relational Graph Convolutional Network Model on Instructions for Fast and
Accurate Disassembly .169
Sheng Yu, University of California Riverside and Deepbits Technology Inc.; Yu Qu, University of California Riverside;
Xunchao Hu, Deepbits Technology Inc.; Heng Yin, University of California Riverside and Deepbits Technology Inc.

Side Channels II
HyperDegrade: From GHz to MHz Effective CPU Frequencies .171
Alejandro Cabrera Aldaya and Billy Bob Brumley, Tampere University

Pacer: Comprehensive Network Side-Channel Mitigation in the Cloud .173
Aastha Mehta, University of British Columbia (UBC); Mohamed Alzayat, Roberta De Viti, Björn B. Brandenburg,
Peter Druschel, and Deepak Garg, Max Planck Institute for Software Systems (MPI-SWS)

Composable Cachelets: Protecting Enclaves from Cache Side-Channel Attacks .175
Daniel Townley, Peraton Labs; Kerem Arıkan, Yu David Liu, and Dmitry Ponomarev, Binghamton University;
Oğuz Ergin, TOBB University of Economics and Technology

Don’t Mesh Around: Side-Channel Attacks and Mitigations on Mesh Interconnects . 181
Miles Dai, MIT; Riccardo Paccagnella, University of Illinois at Urbana-Champaign; Miguel Gomez-Garcia, MIT;
John McCalpin, Texas Advanced Computing Center; Mengjia Yan, MIT

Web Security V: Tracking
weBGraph: Capturing Advertising and Tracking Information Flows for Robust Blocking . 183
Sandra Siby, EPFL; Umar Iqbal, University of Iowa; Steven Englehardt, DuckDuckGo; Zubair Shafiq, UC Davis;
Carmela Troncoso, EPFL

Automating Cookie Consent and GDPR Violation Detection . 187
Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David Basin, ETH Zurich

khaleeSi: Breaker of Advertising and Tracking Request Chains . 189
Umar Iqbal, University of Washington; Charlie Wolfe, University of Iowa; Charles Nguyen, University of California, Davis;
Steven Englehardt, DuckDuckGo; Zubair Shafiq, University of California, Davis

Practical Data Access Minimization in Trigger-Action Platforms . 191
Yunang Chen and Mohannad Alhanahnah, University of Wisconsin–Madison; Andrei Sabelfeld, Chalmers University
of Technology; Rahul Chatterjee and Earlence Fernandes, University of Wisconsin–Madison

Crypto V: Provers & Shuffling
Polynomial Commitment with a One-to-Many Prover and Applications . 193
Jiaheng Zhang and Tiancheng Xie, UC Berkeley; Thang Hoang, Virginia Tech; Elaine Shi, CMU; Yupeng Zhang,
Texas A&M University

ppSAT: Towards Two-Party Private SAT Solving . 195
Ning Luo, Samuel Judson, Timos Antonopoulos, and Ruzica Piskac, Yale University; Xiao Wang, Northwestern University

Hyperproofs: Aggregating and Maintaining Proofs in Vector Commitments . 197
Shravan Srinivasan, University of Maryland; Alexander Chepurnoy, Ergo Platform; Charalampos Papamanthou,
Yale University; Alin Tomescu, VMware Research; Yupeng Zhang, Texas A&M University

Friday, August 12
Security Analysis
Loki: Hardening Code Obfuscation Against Automated Attacks . 199
Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Julius Basler, Ruhr-Universität Bochum;
Thorsten Holz, CISPA Helmholtz Center for Information Security; Ali Abbasi, Ruhr-Universität Bochum

Oops . . . Code Execution and Content Spoofing: The First Comprehensive Analysis of OpenDocument Signatures 201
Simon Rohlmann, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk, Ruhr University Bochum

Playing Without Paying: Detecting Vulnerable Payment Verification in Native Binaries of Unity Mobile Games . . . 205
Chaoshun Zuo and Zhiqiang Lin, The Ohio State University

SGX I & Side Channels III
Repurposing Segmentation as a Practical LVI-NULL Mitigation in SGX . 207
Lukas Giner, Andreas Kogler, and Claudio Canella, Graz University of Technology; Michael Schwarz, CISPA Helmholtz
Center for Information Security; Daniel Gruss, Graz University of Technology

A Hardware-Software Co-design for Efficient Intra-Enclave Isolation . 209
Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo Chen, Shanghai Jiao Tong University

SGxFuzz: Efficiently Synthesizing Nested Structures for SGX Enclave Fuzzing . 213
Tobias Cloosters, University of Duisburg-Essen; Johannes Willbold, Ruhr-Universität Bochum; Thorsten Holz,
CISPA Helmholtz Center for Information Security; Lucas Davi, University of Duisburg-Essen

SecSMT: Securing SMT Processors against Contention-Based Covert Channels .217
Mohammadkazem Taram, University of California San Diego; Xida Ren and Ashish Venkat, University of Virginia;
Dean Tullsen, University of California San Diego

Fuzzing III
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux kernel 219
Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian, UC Riverside

Stateful Greybox Fuzzing . 221
Jinsheng Ba, National University of Singapore; Marcel Böhme, Monash University and MPI-SP; Zahra Mirzamomen,
Monash University; Abhik Roychoudhury, National University of Singapore

Crypto VI
How to Abuse and Fix Authenticated Encryption Without Key Commitment . 225
Ange Albertini and Thai Duong, Google Research; Shay Gueron, University of Haifa and Amazon; Stefan Kölbl,
Atul Luykx, and Sophie Schmieg, Google Research

Batched Differentially Private Information Retrieval . 227
Kinan Dak Albab, Brown University; Rawane Issa and Mayank Varia, Boston University; Kalman Graffi,
Honda Research Institute Europe

One-off Disclosure Control by Heterogeneous Generalization . 231
Olga Gkountouna, University of Liverpool; Katerina Doka, National Technical University of Athens; Mingqiang Xue,
Tower Research; Jianneng Cao, Bank Jago; Panagiotis Karras, Aarhus University

User Studies III: Privacy
Security and Privacy Perceptions of Third-Party Application Access for Google Accounts . 233
David G. Balash, Xiaoyuan Wu, and Miles Grant, The George Washington University; Irwin Reyes, Two Six Technologies;
Adam J. Aviv, The George Washington University

Smart Homes II
SCRAPS: Scalable Collective Remote Attestation for Pub-Sub IoT Networks with Untrusted Proxy Verifier 235
Lukas Petzi, Ala Eddine Ben Yahya, and Alexandra Dmitrienko, University of Würzburg; Gene Tsudik, UC Irvine;
Thomas Prantl and Samuel Kounev, University of Würzburg

ML IV: Attacks
AutoDA: Automated Decision-based Iterative Adversarial Attacks . 237
Qi-An Fu, Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua-Bosch Joint ML Center, THBI Lab, BNRist Center,
Tsinghua University, Beijing, China; Yinpeng Dong, Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua-Bosch Joint
ML Center, THBI Lab, BNRist Center, Tsinghua University, Beijing, China; RealAI; Hang Su, Dept. of Comp. Sci. and
Tech., Institute for AI, Tsinghua-Bosch Joint ML Center, THBI Lab, BNRist Center, Tsinghua University, Beijing, China;
Peng Cheng Laboratory; Tsinghua University-China Mobile Communications Group Co., Ltd. Joint Institute; Jun Zhu,
Dept. of Comp. Sci. and Tech., Institute for AI, Tsinghua-Bosch Joint ML Center, THBI Lab, BNRist Center, Tsinghua
University, Beijing, China; RealAI; Peng Cheng Laboratory; Tsinghua University-China Mobile Communications Group
Co., Ltd. Joint Institute; Chao Zhang, Institute for Network Science and Cyberspace / BNRist, Tsinghua University

Fuzzing, OS, and Cloud Security
Double Trouble: Combined Heterogeneous Attacks on Non-Inclusive Cache Hierarchies . 239
Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede, imec-COSIC, KU Leuven

FixreverTer: A Realistic Bug Injection Methodology for Benchmarking Fuzz Testing . 243
Zenong Zhang and Zach Patterson, University of Texas at Dallas; Michael Hicks, University of Maryland and Amazon;
Shiyi Wei, University of Texas at Dallas

Privacy, User Behaviors, and Attacks
privGuarD: Privacy Regulation Compliance Made Easier . 245
Lun Wang, UC Berkeley; Usmann Khan, Georgia Tech; Joseph Near, University of Vermont; Qi Pang,
Zhejiang University; Jithendaraa Subramanian, NIT Tiruchirappalli; Neel Somani, UC Berkeley; Peng Gao,
Virginia Tech; Andrew Low and Dawn Song, UC Berkeley

ovrSeen: Auditing Network Traffic and Privacy Policies in Oculus VR . 247
Rahmadi Trimananda, Hieu Le, Hao Cui, and Janice Tran Ho, University of California, Irvine; Anastasia Shuba,
Independent Researcher; Athina Markopoulou, University of California, Irvine

Hardware Security III
Half-Double: Hammering From the Next Row Over . 251
Andreas Kogler, Graz University of Technology; Jonas Juffinger, Graz University of Technology and Lamarr Security
Research; Salman Qazi and Yoongu Kim, Google; Moritz Lipp, Amazon Web Services; Nicolas Boichat, Google;
Eric Shiu, Rivos; Mattias Nissler, Google; Daniel Gruss, Graz University of Technology

reTBleeD: Arbitrary Speculative Code Execution with Return Instructions . 253
Johannes Wikner and Kaveh Razavi, ETH Zurich

PISTIS: Trusted Computing Architecture for Low-end Embedded Systems . 255
Michele Grisafi, University of Trento; Mahmoud Ammar, Huawei Technologies; Marco Roveri and Bruno Crispo,
University of Trento

OS Security & Formalisms
Sapic+: protocol verifiers of the world, unite! . 261
Vincent Cheval, Inria Paris; Charlie Jacomme, CISPA Helmholtz Center for Information Security; Steve Kremer,
Université de Lorraine LORIA & Inria Nancy; Robert Künnemann, CISPA Helmholtz Center for Information Security

ML V: Principles & Best Practices
On the Security Risks of AutoML . 263
Ren Pang and Zhaohan Xi, Pennsylvania State University; Shouling Ji, Zhejiang University; Xiapu Luo, Hong Kong
Polytechnic University; Ting Wang, Pennsylvania State University

User Studies IV: Policies & Best Practices
Where to Recruit for Security Development Studies: Comparing Six Software Developer Samples 265
Harjot Kaur, Leibniz University Hannover; Sabrina Amft, CISPA Helmholtz Center for Information Security;
Daniel Votipka, Tufts University; Yasemin Acar, Max Planck Institute for Security and Privacy and
George Washington University; Sascha Fahl, CISPA Helmholtz Center for Information Security and
Leibniz University Hannover

SGX II
maGe: Mutual Attestation for a Group of Enclaves without Trusted Third Parties . 267
Guoxing Chen, Shanghai Jiao Tong University; Yinqian Zhang, Southern University of Science and Technology

elaSTiclave: An Efficient Memory Model for Enclaves . 269
Jason Zhijingcheng Yu, National University of Singapore; Shweta Shinde, ETH Zurich; Trevor E. Carlson and
Prateek Saxena, National University of Singapore

Minefield: A Software-only Protection for SGX Enclaves against DVFS Attacks . 271
Andreas Kogler and Daniel Gruss, Graz University of Technology; Michael Schwarz, CISPA Helmholtz Center for
Information Security

Network Security III: DDoS
Anycast Agility: Network Playbooks to Fight DDoS . 273
A S M Rizvi, USC/ISI; Leandro Bertholdo, University of Twente; João Ceron, SIDN Labs; John Heidemann, USC/ISI

Regulator: Dynamic Analysis to Detect ReDoS . 281
Robert McLaughlin, Fabio Pagani, Noah Spahn, Christopher Kruegel, and Giovanni Vigna, University of California,
Santa Barbara

Zero Knowledge
Aardvark: An Asynchronous Authenticated Dictionary with Applications to Account-based Cryptocurrencies . . . 283
Derek Leung, MIT CSAIL; Yossi Gilad, Hebrew University of Jerusalem; Sergey Gorbunov, University of Waterloo;
Leonid Reyzin, Boston University; Nickolai Zeldovich, MIT CSAIL

Zero-Knowledge Middleboxes . 287
Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish, NYU

Efficient Representation of Numerical Optimization Problems for SNARKs . 291
Sebastian Angel, University of Pennsylvania and Microsoft Research; Andrew J. Blumberg, Columbia University;
Eleftherios Ioannidis and Jess Woods, University of Pennsylvania

Experimenting with Collaborative zk-SNARKs: Zero-Knowledge Proofs for Distributed Secrets 295
Alex Ozdemir and Dan Boneh, Stanford University

Software Security
Detecting Logical Bugs of DBMS with Coverage-based Guidance . 297
Yu Liang, Pennsylvania State University; Song Liu, Pennsylvania State University and Qi-AnXin Tech. Research
Institute; Hong Hu, Pennsylvania State University

Debloating Address Sanitizer . 301
Yuchen Zhang, Stevens Institute of Technology; Chengbin Pang, Nanjing University; Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu, Stevens Institute of Technology

Side Channels IV
Automated Side Channel Analysis of Media Software with Manifold Learning . 305
Yuanyuan Yuan, Qi Pang, and Shuai Wang, The Hong Kong University of Science and Technology

ML VI: Inference
Membership Inference Attacks and Defenses in Neural Network Pruning . 307
Xiaoyong Yuan and Lan Zhang, Michigan Technological Unviersity

Are Your Sensitive Attributes Private? Novel Model Inversion Attribute Inference Attacks on
Classification Models . 309
Shagufta Mehnaz, The Pennsylvania State University; Sayanton V. Dibbo and Ehsanul Kabir, Dartmouth College;
Ninghui Li and Elisa Bertino, Purdue University

A Artifact Appendix

A.1 Abstract
In our paper, “Uninvited Guests: Analyzing the Identity and
Behavior of Certificate Transparency Bots”, we curated an ex-
tensive dataset of web requests originating from bots monitor-
ing Certificate Transparency (CT) logs. In total, we recorded
over 1.5 million requests from CT bots, originating from
31,898 unique IP addresses. To assist in the understanding and
further exploration of this previously-unexplored population
of bots, we are releasing our dataset and domain generation
script to researchers.

We observed that CT bots can be subdivided into distinct
groups based on the types of hosts they target, each with vary-
ing behaviors. Using our provided dataset, one can analyze
these subsets of CT bots, including the populations of each
group and characteristics of the web requests they transmit.

A.2 Artifact check-list (meta-information)
• Publicly available:

– Dataset: https://zenodo.org/record/6677235#
.YrH-o3jMJes

– Domain generation script: https://zenodo.org/
record/6818616#.YsxXLy-B0iY

• Data licenses: Licenced under Creative Commons Attribution
4.0 International

• DOI:

– Dataset: 10.5281/zenodo.6677235

– Domain generation script: 10.5281/zenodo.6818616

A.3 Description
A.3.1 How to access

Download our dataset and domain generation script using the Zenodo
links in Section A.2.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

• Python3

• Python Pandas library

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
N/A

A.5 Evaluation and expected results
In our paper, we studied the behavior and identity of Certificate
Transparency (CT) bots, curating a dataset consisting of over 1.5 mil-
lion web requests from bots consuming CT logs. We found that this
previously-unexplored population of web bots can be sub-divided
into groups that target specific types of hosts based on the content of
their domains names–with each subset exhibiting unique behaviors.

In addition to providing our full dataset of CT bot web requests,
we have also included an example analysis script that can be used
to reproduce a number of general statistics and a table listed in our
paper. To do this, download our dataset and analysis script from
the Zenodo repository listed in Section A.2. Next, using a Python3
interpreter, install the Python Pandas library (listed in the included
requirements.txt file). Finally, run the example analysis script and
review the outputted results on the terminal, which include the popu-
lation sizes of each CT bot subset as well as a table listing the most
common file paths requested by bots in each group.

To assist the research community in reproducing our CTPOT

system, we are also releasing a Python script that can be used to
generate pseudo-random subdomains to be advertised on CT through
the generation of TLS certificates. After downloading the script
from the Zenodo link listed in Section A.2, simply execute it using a
Python3 interpreter. A unique pseudo-random subdomain will then
be printed onto the terminal.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 1

https://zenodo.org/record/6677235#.YrH-o3jMJes
https://zenodo.org/record/6677235#.YrH-o3jMJes
https://zenodo.org/record/6818616#.YsxXLy-B0iY
https://zenodo.org/record/6818616#.YsxXLy-B0iY

A Artifact Appendix

A.1 Abstract
This artifact requires machines with x86_64 architecture. At
least 2 logical cores and 2 GB RAM is required for running
the experiments. Since the experiment is resource-consuming,
more cores and RAM settings are recommended. The artifact
has been containerized, so it runs on most Linux-based oper-
ating systems. It has been verified to work on Ubuntu-20.04.

Our paper is about empirically evaluating the reliability en-
hancement brought by kernel exploit stabilization techniques;
the empirical experiment forms the foundation for our paper.

To validate the experiment, one can repeat the experiment
included in the artifact and compare the result with what
we present in the paper. Since our experiment result can be
slightly affected by the underlying hardware, we expect the
result on another machine to be slightly different from what is
in the paper. However, the effect of each exploit stabilization
technique should not change. In other words, if a technique
improves exploit reliability for a specific CVE in the paper,
it should behave the same in repeated experiments. However,
the improvement may be slightly different.

A.2 Artifact check-list (meta-information)
• Binary: Compiled vulnerable Linux kernels are included.

New vulnerable kernels can be compiled as well using
scripts/kernel_builder/build_kernels.py.

• Data set: The artifact requires a dataset of vulnerable Linux
kernels and corresponding exploits. They are included in ex-
ploit_env/CVEs/.

• Run-time environment: The artifact depends on "docker"
software. It requires a Linux-based host OS to build the con-
tainer image. It has been verified to work on Ubuntu-20.04.
The OS inside the container is Ubuntu-18.04. root access on
the host OS is required.

• Execution: The experiment should be run on a machine with-
out other processes running. The existence of other processes
may interfere with the experiment and affect the result.

• Metrics: The metric used in the experiment is the success rate
of exploits.

• Output: The output of the experiment is the success rate of
each exploit. The number of success/failure runs is saved in a
JSON file in the output folder.

• Experiments: To prepare and run the experiment, one needs to
1. clone the artifact repository from https://github.com/
sefcom/KHeaps, 2. build the docker image as instructed in
README.md, and 3. run an evaluation experiment for each
CVE as instructed.
The expected result is included in the paper. We expect slightly
different success rates for each exploit. However, the effect
of each exploit stabilization technique should be the same. In
other words, if a technique improves reliability in the paper,
the behavior should stay the same in repeated experiments with

a slightly different improvement. The same applies to the cases
where techniques hurt exploit reliability.

• How much disk space required (approximately)?: We ex-
pect the whole experiment to take about 20GB disk space after
disabling logging (the "-nl" option in "vuln_tester.py").

• How much time is needed to prepare workflow (approxi-
mately)?: We containerized the whole experiment. It takes
about 10-15 minutes to build a disk image for the VM and
docker image for the evaluation.

• How much time is needed to complete experiments (approx-
imately)?: To complete the 2CPU+2GB RAM experiment
(each VM configured with 2 virtual CPU and 2GB RAM), it
requires 1680 CPU days. The time needed can be reduced by
increasing the number of CPUs. For example, it can be finished
in 42 days with a 40-core machine.

• Publicly available (explicitly provide evolving version refer-
ence)?: The artifact is publicly available at https://github.
com/sefcom/KHeaps

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: MIT license.

• Archived (explicitly provide DOI or sta-
ble reference)?: Stable reference on GitHub:
https://github.com/sefcom/KHeaps/tree/
22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3 Description
A.3.1 How to access

Clone git repository from https://github.com/sefcom/KHeaps/
tree/22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3.2 Hardware dependencies

N/A.

A.3.3 Software dependencies

The experiment requires a Linux-based OS to build. Ubuntu-20.04
is preferred.

One of the experiments requires nested-kvm parameter in kvm-
intel kernel module. One can check whether it is enabled by checking
/sys/module/kvm_intel/parameters/nested. If it is enabled, the pseudo
file should return "Y".

The experiment depends on "docker" software.

A.3.4 Data sets

The dataset is included in the public KHeaps repository. It consists
of two parts: 1. vulnerable kernels are pre-compiled and included in
the repository. 2. kernel exploits are included in "poc" folders.

A.3.5 Models

N/A

USENIX Association 31st USENIX Security Symposium 3

https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Use the following command to build the docker image.

1. git clone https://github.com/sefcom/KHeaps
2. cd KHeaps
3. cd scripts/create-image/ && ./create-image.sh && cd ../..
4. docker build -t kheap .
The above process takes about 10 minutes to finish.
At this stage, a docker image called "kheap" should be created.

One can verify this by making sure its existence in the output of
"docker images".

A.5 Experiment workflow
The experiment aims to evaluate the success rates of exploits against
vulnerable kernels. For each CVE, it compiles all the corresponding
exploits first and then launches VMs with the vulnerable kernel. It
then copies exploits into the VMs using ssh and runs exploits inside
the VMs until the VMs crash. The VM monitor will extract the crash
logs and determine whether the exploits succeed or not. We regard
an exploit as successful if the VM crashes at an attacker-controlled
program counter, which demonstrates the control flow hijacking
capability of the exploit.

A.6 Evaluation and expected results
Main claim: Exploits equipped with the combo technique
outperforms realworld exploits in terms of reliability. This
can be verified by running realworld exploits and combo
exploits and comparing their success rates. In our evaluation,
the success rates of realworld and combo exploits are 54.30%
and 91.15% (67.86% improvement). In repeated experiments,
we expect combo exploits to have at least 50% improvement
over realworld exploits.

Key results:

• Defragmentation improves reliability for OOB exploits.
We expect exploits equipped with Defragmentation tech-
nique to have a significantly higher success rate com-
pared with baseline exploits. This can be verified by
running baseline exploits and exploits equipped with
Defragmentation technique.

• Defragmentation may hurt reliability for UAF or DF
exploits. We expect that Defragmentation does not sig-
nificantly improve reliability for UAF and DF exploits
and significantly hurts the reliability for some of them.
For example, CVE-2017-2636.

• Heavy workload hurts exploit reliability, but exploits
can still achieve high success rates. This can be verified
by running exploits in both idle and busy settings. One
should observe exploit success rate degradation in busy
settings and that more than half exploits equipped with

Multi-Process Heap Spray can achieve more than 90%
success rates.

• Multi-Process Heap Spray generally outperforms Single-
Thread Heap Spray. This can be verified by running
both Multi-Process Heap Spray and Single-Thread Heap
Spray exploits. We expect Multi-Process Heap Spray
to outperform Single-Thread Heap Spray in all settings
with one exception: CVE-2017-6074 in idle settings,
potentially also in busy settings.

A.7 Experiment customization
To evaluate exploits for a new CVE, one needs to add a new
folder in "CVEs" folder and specify its maximum runtime in
"setup.json".

To limit the evaluation to some specific exploits, one can
add filters in "make_pocs" function in "vuln_tester.py" script.

A.8 Notes
N/A.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

4 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Our artifact provides code and binaries and scripts to repro-
duce experimental results in the paper. As for benchmarks,
we demonstrated experimental results on two real machines
(Mac mini based on M1 chip, and rpi3), but our artifact has
been prepared to run only on Mac mini, since rpi3 lacks a
support of ARM Pointer Authentication (PA). Other results
than benchmarks can be reproducible on host PC machines.

A.2 Artifact check-list (meta-information)
• Algorithm: compiler instrumentation, pointer analysis

• Program: Linux kernel, LLVM plugin, GCC plugin, python
scripts (all sources and binaries included)

• Compilation: LLVM 9.0, Modified GCC 7.3 (binaries and
sources included)

• Transformations: Security check insertion implemented as a
GCC plugin.

• Binary: Pre-built root file system, kernel images with various
configurations.

• Run-time environment: Ubuntu 18.04 or 20.04. Host envi-
ronment, not virtual environment, is recommended.

• Hardware: Mac mini with M1 chip

• Security, privacy, and ethical concerns: Some of shared
codes are subject to intellectual property. Please do not redis-
tribute them.

• Output: static analysis results of context analyzer and static
validator, benchmark results on Mac mini.

• How much disk space required (approximately)?: The ar-
tifact repository takes up around 5GB.

• How much time is needed to prepare workflow (approxi-
mately)?: It takes about 1-2 hours to prepare.

• How much time is needed to complete experiments (ap-
proximately)?: It takes about 1 hour to complete.

• Publicly available (explicitly provide evolving version ref-
erence)?: Some codes, which have no issue of intellec-
tual property, will be available at https://github.com/
SamsungLabs/PALinux/ soon.

A.3 Description
A.3.1 How to access

You can access all materials for the artifact evalua-
tion through a repository in the Bitbucket: https:
//bitbucket.org/jinb-park/pal-ae/. Note that this is a
private repo because we cannot open the source code to the public
yet due to an issue of intellectual property. Reviewers can access
this repo by using the SSH key posted on "Artifact access" section
in the hotcrp submission site.

A.3.2 Hardware dependencies

It is required to have a physical access to a mac mini built on M1
chip for reproducing benchmarks. Also, it requires a USB-to-C cable
and a HDMI cable for connection between the mac mini and host
PC.

A.3.3 Software dependencies

We have confirmed this artifact on Ubuntu 18.04/20.04 host ma-
chines, not virtual guest machines. We also tried our artifact on
virtual guests but found that some of experiments can go wrong. So
we recommend running this on host machines if possible.

A.4 Installation
First of all, copy the SSH key content into a file (e.g., pal_rsa), and
then type the following command:

$ chmod 600 pal_rsa
$ GIT_SSH_COMMAND=’ssh -i pal_rsa -o

IdentitiesOnly=yes’ git clone git@bitbucket.
org:jinb -park/pal-ae.git

Next, follow the guide, README.md, in the repository.

A.5 Experiment workflow
Our experiment workflow is twofold.
First, for functional evaluation, run the context analyzer to get a CFI
precision report and a guide for dynamic contexts; then build linux
kernel along with the guide; lastly, run the static validator on the built
kernel binary to find out insecure uses of PA (Pointer Authentication)
instructions. See "full-workflow/README.md" to get to know all
instructions needed for it.
Second, for reproducing key results, we put appropriate prebuilt files
as well as a README file that contains required instructions in each
directory in the repository. (analyzer/, precision/, static-validator/,
benchmarks/)

A.6 Evaluation and expected results
Key results that are reproducible are:

• Context analyzer (Table 6): We present the prebuilt llvm
bitcode file for a whole kernel binary and the source code of
context analyzer in the form of LLVM plugin. See "analyz-
er/README.md" for detail.

• CFI precision (Table 2 and Table 3): It shows how CFI pre-
cision gets better as dynamic contexts are used, and reproduces
Table 2 and Table 3 in our paper. See "precision/README.md"
for detail.

• Static validator (Section 4.5 - Results.): We give an in-depth
analysis for violations that our validator found (Section 4.5
Results). Also, we present two prebuilt kernel binaries (iOS
and PAL) and validator’s code written in python, allowing
to run our validator. See "static-validator/README.md" for
detail.

USENIX Association 31st USENIX Security Symposium 5

https://github.com/SamsungLabs/PALinux/
https://github.com/SamsungLabs/PALinux/
https://bitbucket.org/jinb-park/pal-ae/
https://bitbucket.org/jinb-park/pal-ae/

• Benchmarks on Mac mini (Table C1 and Section 6.3 - Per-
formance Overhead)): We present kernel images built with
or without PAL, and a root filesystem that contains macro- and
micro-benchmarks, and a helper script to run them on Mac
mini. See "benchmarks/README.md" for detail.

A.7 Experiment customization
Each README.md in the bitbucket repo explains on how to cus-
tomize experiments in detail.

A.8 Notes
The results of benchmarks can fluctuate. Even when we used the
same mac mini, we saw that its results can vary around 2 times
slower or faster at maximum, especially for benchmarks that take a
relatively short time.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

6 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

For Midas, we present an artifact including the source code
and binaries for the prototype based on Linux, an exploit
which demonstrate that Midas mitigates a real CVE, and
benchmarks for evaluating Midas’ performance, and scripts
which simplify the process. In the following sections, we
describe the artifact, its requirements and how to run it,
and what the expected results are. Visit the project website
https://hexhive.epfl.ch/midas for more details.

A.1 Description

The primary artifact for this paper is the code implementing
Midas on the Linux kernel (v5.11), available on GitHub. We
also provide a disk image suitable for recreating experiments
from this paper, containing the kernel as both source code
and as compiled binaries. The disk image contains the CVE
exploit used to test correctness in the paper, all benchmarks
evaluated in the paper, and scripts to run these. This image
allows recreation of all emperical evidence presented in the
paper’s evaluation. Finally, we provide further information
on the project website including a detailed description of the
artifact, its contents, how to run it and expected outputs.

• Source code: https://github.com/HexHive/midas
• Disk image: https://zenodo.org/record/5753026
• Project website: https://hexhive.epfl.ch/midas

A.1.1 Hardware Dependencies

You can run the disk image within a QEMU virtual machine
to test functionality. The host machine requies around 100GiB
free disk space and at least 8GiB memory. You should run
the disk image on a real machine for performance tests. Our
Midas prototype supports machines with 64-bit x86 proces-
sors, and the results in the paper were obtained on a machine
with an Intel i7-9700 CPU. Further, the real machine requires
an empty 1TiB disk, and a EUFI-enabled motherboard. In
both setups, a SSD is preferred for storage, as it leads to faster
compilation should you choose to re-compile the kernel. Eval-
uating the Nginx benchmark requires a second, networked
machine to act as a load generator.

A.1.2 Software Dependencies

Running the Midas disk image requires a guest operating sys-
tem which supports running QEMU. The image was tested on
QEMU version 4.2.1 on a machine running Ubuntu 20.04
with Linux kernel version 5.4.0-88-generic. Other virtual-
ization software should also be supported, but the instructions
focus on QEMU. Running the disk image on real hardware
requires no special software support, apart from a tool to write
the image to a disk. On Linux, we can use dd.

A.2 Installation
The installation procedure includes downloading and uncom-
pressing the provided compressed disk image, then either
running a VM directly from this image, or by writing the
image to a disk and booting from it.

On Linux, the following command extracts the image.

pv ae.img.xz | unxz -T <num threads> > ae.img

The uncompressed disk image can then either be run with
QEMU, or written to a real disk. To run with QEMU, an
example command is shown below.

qemu-system-x86_64 \
-m 4G \
-cpu host \
-machine type=q35,accel=kvm \
-smp 4 \
-drive format=raw,file=ae.img \
-display default \
-vga virtio \
-show-cursor \
-bios /usr/share/ovmf/OVMF.fd \
-net user,hostfwd=tcp::2222-:22 \
-net nic

To run on real hardware, copy the image to a real disk using
the command shown below, then install into the machine and
start it.

dd if=ae.img of=/dev/<disk> bs=100M

A.3 Experiment Workflow
The experimental workflow compares the modified Midas
kernel with the baseline Linux kernel. Detailed steps are avail-
able on the website at https://hexhive.epfl.ch/midas/
docs/ae.html. You can validate the artifact by executing the
following steps:

• Check that the code modifications described in the paper
correspond to the code.

• Compile the code to re-create the kernel binary.
• Run a script to check that a CVE exploit is mitigated, as

claimed in the paper.
• Run scripts to execute the benchmarks presented in the

paper, to verify their reported performance.
For the CVE exploitation test, the dmesg output must be

checked to ensure that Midas prevents exploitation. For the
performance experiments, the results must be compiled and
compared to get the Midas’ relative performance. The general
workflow is:

• boot with the correct kernel (baseline or Midas),
• run the script for the benchmark/CVE exploit,
• reboot with the other kernel, and
• run the same script again.

USENIX Association 31st USENIX Security Symposium 7

https://hexhive.epfl.ch/midas
https://github.com/HexHive/midas
https://zenodo.org/record/5753026
https://hexhive.epfl.ch/midas
https://hexhive.epfl.ch/midas/docs/ae.html
https://hexhive.epfl.ch/midas/docs/ae.html

A.4 Expected Results
Midas is evaluated to demonstrate effective mitigation of
double-fetch bugs with low overhead. The artifact enables you
to verify this claim, that the prototype provides the claimed
protection and that it performs as claimed. We demonstrate the
first property by including checks in the kernel and running
an exploit for CVE-2016-6516 to demonstrate its mitigation.
The remaining benchmarks measure performance, either as
operations per second or as time taken to finish each operation.
Below, we describe how to interpret the outputs of running
the exploit and benchmarks.

Midas protects the kernel against double-fetch bugs, and in
particular mitigates an exploit for CVE-2016-6516. In our pro-
totype, you will execute the exploit with and without Midas’
protections. When run with the baseline kernel, the exploit is
triggered, and the string "Triggered bug: CVE-2016-6516!"

will be printed to dmesg output. With the Midas kernel, the
string is never printed.

We also run kernel-intensive benchmarks which demon-
strate that Midas has a low runtime overhead. Our artifact
also contains the performance benchmarks used for testing
Midas’ performance. The benchmarks must be run separately
with both the baseline and Midas kernel. We include a script
to plot the relative performance vs. the baseline kernel. Mi-
das’ performance is strongly dependent on the CPU used for
evaluation, and exact performance values can vary signifi-
cantly. However, we expect the trends of performance across
benchmarks to roughly follow the following limits.

• Microbenchmarks see results in line with paper.
• NPB benchmarks experience 0-5% overhead, and should

follow the numbers from the paper.
• PTS benchmarks - openssl, git, pybench, redis see an

overhead <1%.
• PTS benchmarks - apache sees a overhead < 10-15%.
• PTS benchmarks - IPC benchmark sees overhead < 5%.
• Nginx shows a constant overhead as request size changes,

until the network link is saturated.
The setup for breaking down Midas’ overhead is compli-

cated, and omitted from this artifact.

A.5 Artifact meta-information
• Program: NASA Parallel Benchmarks (NPB),

Phoronix Test Suite (PTS), Nginx, the Linux kernel, and
exploits for CVE-2016-6516. All benchmarks and code
are publicly available, and are installed in the provided
disk image.

• Binaries: The disk image provides the compiled Linux
kernel (v5.11) with and without Midas’ protections.

• Hardware: For functionality evaluation, one machine
with 100GiB free disk space, and QEMU (version 4.2).
For results reproduction, one machine with modern Intel
x86 CPU, and a free 1TiB disk. In both setups, a SSD is
preferred.

• Run-time state: The disk image includes a program
for fixing CPU frequency, eliminating run-time variance.
This only works on native hardware, not QEMU.

• Metrics: NPB workloads report execution rate. PTS
workloads report either execution time or operation rate.
Nginx reports both request rate and throughput.

• Output: Most benchmarks and tests output to a console.

• Experiments: Experiments have been prepared within
the disk image, and can be run using provided scripts.

• How much time is needed to prepare workflow (ap-
proximately)?: 3-4 hours, on a machine with an SSD.

• How much time is needed to complete experiments
(approximately)?: For performance evaluation, approx.
8 hours.

• Publicly available?: All code is publicly available.

• Code license: GPL v2.0

• Archived (provide DOI or stable reference)?: DOI
10.5281/zenodo.5753026 available at https://zenodo.
org/record/5753026.

8 31st USENIX Security Symposium USENIX Association

https://zenodo.org/record/5753026
https://zenodo.org/record/5753026

A Artifact Appendix

A.1 Abstract
In the paper, we propose flow- and context-sensitive static
analysis with hybrid branch-sensitivity and points-to infor-
mation to generate a novel graph structure, called Object De-
pendence Graph (ODG), using abstract interpretation. ODG
represents JavaScript objects as nodes and their relations
with Abstract Syntax Tree (AST) as edges, and accepts graph
queries—especially on object lookups and definitions—for
detecting Node.js vulnerabilities.

We implemented an open-source prototype system, called
ODGEN, to generate ODG for Node.js programs via abstract
interpretation and detect vulnerabilities. Our evaluation of
recent Node.js vulnerabilities shows that ODG together with
AST and Control Flow Graph (CFG) is capable of modeling
13 out of 16 vulnerability types. We applied ODGEN to detect
six types of vulnerabilities using graph queries: ODGEN
correctly reported 180 zero-day vulnerabilities, among which
we have received 70 Common Vulnerabilities and Exposures
(CVE) identifiers so far.

In this artifact evaluation, we claim that OPGEN is capable
of detecting all six types of vulnerabilities and found all the
zero-day vulnerabilities.

A.2 Artifact check-list (meta-information)
• Algorithm: Mining Node.js Vulnerabilities via Object

Dependence Graph and Query

• Data set: We use the self-generated dataset and it is
included in the docker image

• Run-time environment: Ubuntu 20.04 is recom-
manded and tested. The main software dependencies
are Python 3.7+, pip, npm, and Node.js 12+

• Run-time state: No

• Metrics: Number of detected vulnerable packages

• Output: The testing results are located in the "logs"
folder of the running directory. All the detected vulnera-
ble packages will be output to the "succ.log" file; All the
un-detected packages will be output to the "results.log"
file. You can get the number of the successfully detected
packages by running "cat ./logs/succ.log | wc -l", during
or after the running process.

• Experiments: You can download and load the docker,
or set up the environment from the source code. Then
run the pre-written scripts and see the results.

• How much disk space required (approximately)?:
10GB

• How much time is needed to prepare workflow (ap-
proximately)?: 10 to 30 mins

• How much time is needed to complete experiments
(approximately)?: 200 mins

• Publicly available?: Yes

• Code licenses (if publicly available)?: GPL v3.0

• Data licenses (if publicly available)?: GPL v3.0

• Archived (provide DOI)?:

A.3 Description
A.3.1 How to access

We provide two methods for testing, loading the docker image
is highly recommanded:

• A docker image

We uploaded our docker to Docker Hub. You can pull it
by running

docker pull iamthesong/odgen:latest
Then you can attach to this docker by running

docker run -it iamthesong/odgen bash
After loading it, you should be able to see the environ-
ment

• A repository for the source code

If you are not able to access the virtual ma-
chine and can not load the docker image, you
can also try to clone our source code from
the GitHub repository https://github.com/Song-
Li/ODGen/tree/24d68fa810cae8c028cf36f269461e178c198c98
(commit hash: 24d68fa810cae8c028cf36f269461e178c198c98)
and follow the instructions in the README.md to set
up the environment.

A.3.2 Hardware dependencies

Recommended

• CPU: 16 cores

• Memory: 16GB

Minimum

• CPU: 4 cores

• Memory: 4GB

A.3.3 Software dependencies

If you want to start with the source code, Ubuntu 20.04 is
recommended. This artifact requires Python 3.7+, pip, npm,
and Node.js 12+.

USENIX Association 31st USENIX Security Symposium 9

A.4 Installation

A.4.1 Docker image

We prepared a docker image on Docker Hub. You can follow
the commands mentioned in section A.3.1 to download the
load the docker.

A.4.2 Source code

Setup the Environment If you want to start with the source
code, we recommend you to use Ubuntu 20.04., you can
simply cd into the source code folder and install the software
dependencies by running:

./ubuntu_setup.sh
After the packages are successfully installed, you can setup

the environment by running:
./install.sh
The script install.sh will install a list of required Python

and Nodejs dependencies. Once finished, the environment is
setup and we are ready to go.

Verify the Installation You can run the script
odgen_test.py to verify the installation. The command is:

python3 ./odgen_test.py
If the environment is successfully set up, you should be

able to see the tests are finished without errors. The end of
the outputs should be like:

Ran 3 tests in XXXs
OK

A.5 Experiment workflow

As we claimed in the Abstract section and the Contributions
part of section 1 in our paper, our main claim that needed to be
evaluated is we found 43 application-level and 137 package-
level zero-day vulnerabilities. Our tool can successfully found
the vulnerabilities of those packages. We prepared the dataset
and the related scripts to run our tool on top of the packages.

Besides the main claim, other evaluation results, including
the performance, the code coverage, and the false-negative
rate of our paper are also reproducible and reproduced by
the reviewers. I will also include the steps and datasets to
reproduce the related evaluation results in the next section.

A.5.1 File organization of our Docker Image

Once you log into the docker, all the files and folders are
organized as follows:

A.5.2 Dataset

Dataset 1: Zero-day vulnerable packages

• dataset: The 174 zero-day vulnerable packages that
found by our tool. (Note that after our reporting, there
are eight packages that are unpublished from NPM. Cur-
rently, we only have source code for 173 packages + one
package, which is unpublished but cached on our server.)

• location: ∼/packages

• the CVEs they got: ∼/packages/xx/package-
name@version/cve.txt (if exists)

• a script that runs the analysis on each of these
folders/projects and detects the vulnerabilities:
∼/packages/xx/package-name@version/run.sh

where xx = code_exec, ipt, os_command, path_trasversal,
proto_pollution, and xss.

Note that considering the large size of the dataset, we are
not able to upload the dataset to the GitHub repository. We
uploaded the zipped dataset to Google Drive and if you are
testing it by the source code, please download it, unzip it, and
put it in the root directory of your machine.

Dataset 2: Legacy vulnerable packages

• dataset:The legacy vulnerable packages dataset men-
tioned in Section 6.3 of the paper, including 75 com-
mand injection vulnerable packages, 31 code execution
vulnerable packages, 52 prototype pollution vulnerable
packages, 87 path traversal vulnerable packages, and 11
internal property tampering (IPT) vulnerable packages.

• location: We uploaded it as a zip file to the GitHub Repo
(https://github.com/Song-Li/legacy_benchmark)

Dataset 3: Randomly selected packages

• dataset: The 500 randomly selected packages from the
NPM database.

• location: We uploaded it as a zip file to the GitHub Repo
(https://github.com/Song-Li/random_500_npm.git)

10 31st USENIX Security Symposium USENIX Association

https://drive.google.com/file/d/1IiuQoMV4a2QAzwswEq9fSKXcZpNuGYP0/view?usp=sharing
https://github.com/Song-Li/legacy_benchmark
https://github.com/Song-Li/random_500_npm.git

A.5.3 Play with the examples

In the ∼/examples folder of the Docker image, we have a
few simple vulnerable examples for you to get familiar with
our tool. You can try the run_ipt.sh, run_os_command.sh
or run_proto_pollution.sh to run our tool on top of the
pp_example.js(a prototype pollution) example and the moti-
vating_example.js(the motivating example introduced in our
paper). You can also write your modules, use a similar com-
mand and test them out.

A.6 Evaluation and expected results
A.6.1 Evaluation

Zero-day vulnerable packages detection (Dataset 1) To-
tally we have six different types of vulnerabilities, they are
command injection, code execution, prototype pollution, path
traversal, cross-site scripting, and internal property tampering.
Each of them can be tested by running a command in the root
directory of the source code:

• Command injection: ./scripts/os_command.sh

• Code execution: ./scripts/code_exec.sh

• Prototype pollution: ./scripts/prototype_pollution.sh

• Path traversal: ./scripts/path_traversal.sh

• Cross-site scripting: ./scripts/xss.sh

• Internal property tampering: ./scripts/ipt.sh

To reproduce the results, you can pick a vulnerability type
and run the corresponding script.

Note that the scripts will try to run our tool parallelly, so you
will not see the progress. Once you run a script, you should
be able to see a message that says "new instance". You can
check how many processes are still running by the command:
screen -ls. You can also attach to a specific process by running:
screen -r XXX(XXX means the name of the screen). Once all
the processes are finished, you can check the result and run
another script.

The testing results are located in the logs folder of the run-
ning directory. All the detected vulnerable packages will be
output to the succ.log file; All the un-detected packages will
be output to the results.log file. You can get the number of the
successfully detected packages by running cat ./logs/succ.log
| wc -l, during or after the running process.

If you finished checking one vulnerability type, please run
./clean.sh to remove the logs and temporary files before check-
ing another one.

Note that since the order of the testing functions is ran-
domized, you may encounter some un-detected packages.
For the un-detected packages, you may run them indepen-
dently follow the instructions in README.md, or, go to
∼/packages/vulneralbility-type/package-name@version/ and
run the run.sh

False negative rate (Dataset 2) The false-negative rate is
introduced in Table 9 of the paper, which is measured on top
of the legacy vulnerable packages. The steps to reproduce it
is:

• Login to our Docker by the command docker run -it
iamthesong/odgen bash

• Make sure you are in the root directory of the
docker, and download the dataset by git clone
https://github.com/Song-Li/legacy_benchmark.git

• Go into the downloaded dataset by cd
legacy_benchmark/ and unzip the dataset by un-
zip legacy_benchmark.zip

• Go into the source code directory by cd /projs/ODGen/.
Test a type of vulnerability by ./odgen.py -t VUL_TYPE --
list /root/legacy_benchmark/VUL_TYPE.list -aq --nodejs
--timeout 120 --parallel 16

Note that

• There are two locations in the last command that
use VUL_TYPE. VUL_TYPE should be replaced by
os_command, ipt, proto_pollution, path_traversal or
code_exec

• The --parallel argument is used to run ODGen parallelly.
In my case, I use 16 to indicate that I want to run 16
processes together. You can adjust the argument based
on the number of CPU cores of your device

• The --timeout argument is used to set the timeout of a
single test. We recommend 300 to make sure it works.
In most cases, 120 should be enough.

If the number is less than expected, we need to run multi-
ple times on those packages. You can simply run the same
command multiple times (without cleaning the logs), and the
results will be logged to the /root/projs/ODGen/logs/succ.log
file, cumulatively. To remove the duplicates, you can go into
the /root/projs/ODGen/logs/ folder and run awk ’!x[$0]++’
succ.log > outfile.succ. The generated file outfile.succ will be
the detected list.

Code coverage (Dataset 3) The code coverage rate is in-
troduced in Figure 9 of the paper, which is measured on top of
the 500 randomly selected Node.js packages. We prepared the
statement-level code coverage API and the randomly selected
500 packages for testing.

Steps to reproduce:

USENIX Association 31st USENIX Security Symposium 11

Table 1: Expected Detection Results for Zero-day Vulnerable Packages
Command Injection Code Execution Prototype Pollution Path Traversal Cross-site Scripting IPT

#Packages 80 14 19 30 13 24
#Unpublished 2 4 0 0 0 0
#Expected 76∼78 9∼10 17∼19 30 12∼13 23∼24

Table 2: Expected True Positive Packages on Legacy Vulnerable Packages
Command Injection Code Execution Prototype Pollution Path Traversal IPT Total

#Packages 75 31 52 87 11 256
#Claimed True Positive 67 20 40 55 7 189
#Expected True Positive 67 20∼21 39∼40 55∼ 56 7∼ 10 189∼194

Table 3: Reproduced Code Coverage Rate
Code Coverage Percentage of Packages
0% to 10% 5.52%
10% to 20% 5.25%
20% to 30% 8.01%
30% to 40% 2.76%
40% to 50% 2.76%
50% to 60% 6.63%
60% to 70% 2.76%
70% to 80% 6.35%
80% to 90% 11.60%
90% to 100% 48.34%

• Login to our Docker by the command docker run -it
iamthesong/odgen bash

• Make sure you are in the root directory of the
docker, and download the dataset by git clone
https://github.com/Song-Li/random_500_npm.git

• Go into the downloaded dataset by cd random_500_npm/
and unzip the dataset by unzip ./random_500.zip

• Go into the source code directory by cd /projs/ODGen/.

• Update the source code to the latest version by git pull

• Start the testing by running ./odgen.py -t os_command
-ma –list /random_500_npm/random_500.list --timeout
30 --parallel 20

• During the running process, you can go to the tools folder
by cd /root/projs/ODGen/tools and check the results on
the fly by running python get_code_coverage_dis.py.
This script will output the results directly. You can run
this command multiple times to see how the code cover-
age changes during the evaluation.

You can check how many processes are running by screen
-ls. If all processes are finished, you can check the final

result. Note that the code coverage raw data is logged in
ODGen/logs/stat.log. You can also take a look if you want!

Note that not all of the packages will report code coverage,
There are two reasons for that:

• Since the packages are randomly selected, there are many
packages that do not meet the requirement of the NPM
standard. For example, some of them do not have an
entrance file, some of them do not include a package.json
file, and some of them are demo packages without any
meaningful content. For those packages, ODGen will
not report the code coverage;

• It is possibly happening for packages running into a time-
out. ODGen will not output the code coverage results
for timeout packages since those results can not reflect
the real code coverage of ODGen.

A.6.2 Expected results

Zero-day vulnerable packages detection The number of
all the packages, unpublished packages, expected detected
packages and the estimated running time are listed in Table 1

False negative rate The number of all the packages,
claimed true positive packages, expected detected packages
are listed in Table 2

Code coverage The distribution of the code coverage
should be comparable to Figure 9 of the paper. The results
that reproduced by the reviewers are listed in Table 3

A.7 Troubleshooting

Zero-day vulnerable packages detection If you can not
get the expected results, you can try to restart the docker and
see if it can run smoothly without the influence of the cache.

12 31st USENIX Security Symposium USENIX Association

False negative rate If you can not get the expected results,
you can try to:

• When you run the tool multiple times, try to change the
number of --parallel each time. For example, we can use
--parallel 17 for the first time, and --parallel 19 for the
second time. In that way, each process may start from
different packages and it may be faster to generate the
results.

• Since the number of packages with code execution vul-
nerability is not very large. If your device has enough
computing resources, for example, more than 20 CPU
cores. You can try to set the --parallel argument to --
parallel 31 to make sure every vulnerable package can
use an independent process. After doing this, you can
check how many packages are still running by using
screen -ls.

A.8 Experiment customization
You are very welcome to test our tool on top of your cus-
tomized packages. To do so, please go to the ∼/example
folder and write your package follow the NPM package stan-
dard, or write a module like the ∼/example/pp_example.js
and the ∼/example/motivating_example.js.

Once you prepared the module, you can check out the
README.md file in the source code repository and follow
the instructions to run the corresponding commands.

USENIX Association 31st USENIX Security Symposium 13

https://github.com/Song-Li/ODGen/blob/master/README.md

A Artifact Appendix

A.1 Abstract
FUGIO is the first automatic exploit generation (AEG) tool for
PHP object injection (POI) vulnerabilities. The artifact pro-
vides Docker images to reproduce the experiments performed
in the paper. We tested these Docker images and scripts on a
Ubuntu 18.04 machine. Each Docker container requires less
than 5 GB of disk, but it requires more disk spaces for run-
ning FUGIO that stores identified POP chains and generates
exploit objects to be fed to the fuzzer. We expect the artifact
reproduces evaluations in Sections 7.2 and 7.3, producing
Tables 1, 2, and 3 in the paper. Unfortunately, it might be hard
to expect the same experimental results as the paper since
FUGIO conducts fuzzing campaigns, and evaluations would
be conducted in machines with different specifications.

A.2 Artifact check-list (meta-information)
• Program: We evaluated FUGIO on 30 PHP applications:

– PHP 5.4: Contao CMS 3.2.4, Piwik 0.4.5, GLPI 0.83.9,
Joomla 3.0.2, CubeCart 5.2.0, CMS Made Simple 1.11.9,
Open Web Analytics 1.5.6, Vanilla Forums 2.0.18.5,
SwiftMailer 5.0.1, SwiftMailer 5.1.0, Smarty 3.1.28,
ZendFramework 1.12.20

– PHP 5.6: PHPExcel 1.8.1, PHPExcel 1.8.2, Dompdf
0.8.0, Guzzle 6.0.0, WooCommerce 2.6.0, WooCom-
merce 3.4.0, Emailsubscribers 4.4.0, EverestForms 1.6.6
(w/ WordPress 5.0)

– PHP 7.2: TCPDF 6.3.2, Drupal 7.78, SwiftMailer 5.4.12,
SwiftMailer 6.0.0, Monolog 1.7.0, Monolog 1.18.0,
Monolog 2.0.0, Laminas 2.11.2, Yii 1.1.20, TYPO3 9.3.0

All benchmarks are included in the benchmarks directory. The
artifact provides not only applications’ source code also dump
files of each application and its database for convenient set-
tings.

• Compilation: FUGIO requires some libraries to be compiled.
It needs only public compilers and the artifact provides all
scripts to compile the libraries.

• Run-time environment: The artifact runs on Docker contain-
ers. We tested our Docker images and scripts on a Ubuntu
18.04 host machine. Given Docker images might work on any
OS if it supports Docker.

• Output: After analyzing the target application, FUGIO gen-
erates 1) a PUT. When FUGIO identifies 2) a POP chain, it
saves it as a file. If a POP chain reaches the sensitive sink,
FUGIO reports the POP chain as 3) a probably exploitable
chain. If the POP chain invokes the sink with a parameter
containing the attack payload, FUGIO reports the POP chain
as 4) an exploitable chain. All outputs are generated in the
Files/fuzzing/[APP_PATH.TIME]/PUT directory.

1. PUT: put-head.php and put-body.php are PUT files;
inst_PUT.php is an instrumented PUT file for fuzzing
the target application.

2. POP chains: identified POP chains are stored as filename
procX_X_X_X_X_X.chain.

3. Probably exploitable chains: probably exploitable pay-
loads are stored in the PROBABLY_EXPLOITABLE direc-
tory.

4. Exploitable chains: exploitable payloads are stored in
the EXPLOITABLE directory.

During FUGIO identifies POP chains and generates their ex-
ploits, it periodically shows the progress to the console: how
long FUGIO is running, how many POP chains are identi-
fied, how many POP chains are fed to the Fuzzer, how many
probably exploitable payloads are generated, and how many
exploitable payloads are generated.

• Experiments: We expect the artifact reproduces Tables 1,
2, and 3 in Sections 7.2 and 7.3. The artifact provides the
config.py script for preparing the corresponding environment
in which each experiment was conducted. However, it might
be hard to expect the same experimental results since 1) FU-
GIO conducts fuzzing campaigns, which randomly produces
results, and 2) evaluations would be conducted in machines
with different specifications; our evaluations were performed
on a Linux workstation equipped with 88 cores of CPUs and
384 GB of RAM.

• How much disk space required (approximately)?: Each
Docker container does not require more than 5 GB of disk.
However, FUGIO sometimes requires hundreds of GB depend-
ing on the target application since FUGIO identifies millions
of POP chains.

• How much time is needed to prepare workflow (approxi-
mately)?: Preparing Docker containers and FUGIO takes less
than an hour. Most of the time is spent on building the Docker
image and installing dependencies.

• How much time is needed to complete experiments (ap-
proximately)?: The running time of FUGIO depends on the
target application and the specification of the machine. For
each application, Table 1 provides the time spent in running
FUGIO on a machine equipped with 88 cores of CPUs. FUGIO
can be run up to 12 hours for each target application.

• Publicly available?: The artifact is released at https://
github.com/WSP-LAB/FUGIO-artifact/tree/v0.1.

A.3 Description
A.3.1 How to access

Users can access the artifact by cloning the repository from https:
//github.com/WSP-LAB/FUGIO-artifact/tree/v0.1.

A.3.2 Hardware dependencies

Although FUGIO does not require high-performance machines, it
is better to have many cores of CPU and large capacities of RAM
for parallel fuzzing. Note that we performed the experiments on a
machine equipped with 88 cores of CPUs and 384 GB of RAM.

The artifact requires less than 5 GB of disk for each Docker
container, but it requires more GBs for running FUGIO that stores
identified POP chains and generates exploit objects to be fed to

USENIX Association 31st USENIX Security Symposium 15

https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1

the fuzzer. Depending on the target application, it might require
hundreds GBs of disk space.

A.3.3 Software dependencies

We tested the Docker images and scripts on a Ubuntu 18.04 machine.
The artifact requires only Docker; thus, it might work on any OS if
it supports Docker. Other software packages will be installed using
the provided scripts.

A.4 Installation
1. Install Docker and set that you can run docker commands with

a non-root user.

2. Set up RabbitMQ by running the script run_rabbitmq.sh.

3. For each version of PHP, build Docker image using the script
1_docker_build.sh and run a Docker container using the
scripts 2_docker_run.sh and 3_docker_exec.sh.

4. In the Docker container, install dependencies for FUGIO by
running the script install_XX.sh, depending on the version
of PHP.

• PHP 5.4: install_54.sh

• PHP 5.6: install_56.sh

• PHP 7.2: install_72.sh

5. Prepare environment for operating web applications. Start
Apache web server and MySQL using the script start.sh.
Then, make an account of MySQL using the script
create_user.sh.

* For more details, please refer to the artifact repository.

A.5 Experiment workflow
1. Prepare a target web application. The artifact provides dump

files of applications and databases for convenient settings. In-
stall all or each application using the script install.py.

2. Add .htaccess file for monitoring POI vulnerabilities by
running the script htaccess.py.

3. Prepare two terminals; one is for running FUGIO and the other
is for triggering POI vulnerabilities.

4. In the first terminal, run FUGIO using the script
run_FUGIO_XX.sh with the path of the target web ap-
plication’s source code.

5. In the other terminal, trigger the corresponding POI vulnera-
bility using the given scripts in the Trigger directory.

* For more details, please refer to the artifact repository.

A.6 Evaluation and expected results
In the evaluations in Sections 7.2 and 7.3, we show that

1. FUGIO can automatically generate exploits for identified POP
chains with zero false positives

2. FUGIO can generate exploits for some of the POP chains
reported by Dahse et al.

3. FUGIO can generate new exploits compared to PHPGGC listed

using Tables 1, 2, and 3, respectively.
Table 1 shows that all exploitable chains that FUGIO generated

are indeed exploitable chains (the left number of the plus sign in true
positive chains). The number of true positive chains in Table 1 is
manually analyzed. For Table 2, we could not match each exploitable
chain since Dahse et al. did not provide the details of each chain.
Thus, we compared the numbers of exploit objects that FUGIO re-
ported with the numbers reported in their paper. Table 3 shows that
FUGIO reported new 32 exploitable chains that PHPGGC does not
list. PHPGGC provides templates for generating POP exploits. How-
ever, it is not clear that what POP gadgets each POP chain consists of.
Thus, we provide POP chains from PHPGGC in the FUGIO reposi-
tory (https://github.com/WSP-LAB/FUGIO). FUGIO repository
also includes a utility for helping the analysis of the generated POP
chains. For more details, please refer to the artifact repository.

The followings are steps for reproducing Tables 1, 2, and 3. First,
please follow the installation step described in A.4. Second, for
each target application, follow the instructions described in A.5. It
takes much time to reproduce all target applications. We recommend
selecting target applications that take less time and produce many
exploits. When FUGIO finished analyzing the target application,
FUGIO generates a dump file of summaries, which is stored in the
directory Files/dump_files. When triggering a POI vulnerability
of the target application using the given script, crawler, or other
tools, FUGIO generates a PUT, which is stored in the directory
Files/fuzzing/[APP_PATH.TIME]/PUT. When FUGIO identifies
a POP chain, it saves it as a file in the same directory of the PUT
file. If a POP chain reaches the sensitive sink, FUGIO reports the
POP chain as a probably exploitable chain. If the POP chain invokes
the sink with a parameter containing the attack payload, FUGIO
reports the POP chain as an exploitable chain. Such explot objects are
saved in the PROBABLY_EXPLOITABLE and EXPLOITABLE directories,
respectively. FUGIO also prints the number of the identified POP
chains, probably exploitable chains, and exploitable chains to the
console. The results can be compared with Tables 1, 2, and 3 in the
paper.

16 31st USENIX Security Symposium USENIX Association

https://github.com/WSP-LAB/FUGIO

A Artifact Appendix

A.1 Abstract
TLS-Anvil is a test suite that evaluates the RFC compliance of
Transport Layer Security (TLS) libraries using combinatorial
testing (CT). To facilitate the automated analysis of multiple
TLS libraries, we additionally provide the TLS-Docker-Lib
project, which contains around 700 images for various ver-
sions of 22 TLS libraries. The test results composed by TLS-
Anvil for the libraries BearSSL, BoringSSL, Botan, GnuTLS,
LibreSSL, MatrixSSL, mbed TLS, NSS, OpenSSL, Rustls,
s2n, tlslite-ng, and wolfSSL are the foundation of the evalua-
tion in our paper. The results can be reproduced by running
TLS-Anvil against local installations or docker images of the
libraries. TLS-Anvil and its dependencies are written in Java,
specifically for Java 11. Hardware requirements depend on
the desired extent of the combinatorial testing (test strength).
16 GB of RAM are sufficient to test each library with strength
three as we did for the paper.

A.2 Artifact check-list (meta-information)
• Compilation: TLS-Anvil and its dependencies can be built

using Maven with Java 11.

• Binary: We provide executable jars built for Java 11 for TLS-
Anvil here . TLS-Anvil is also provided as Docker image that
is distributed using GitHub Packages. The TLS server/clients
that we evaluated with TLS-Anvil are part of the TLS-Docker-
Library. Those are designed as Docker images as well, but not
available yet. However, the images can be built locally.

• Data set: We provide our raw test results to be used with the
Report Analyzer here

• Run-time environment: We tested our artifacts using Linux
or macOS. Since the TLS-Docker-Library contains some bash
and python scripts this is also our recommendation. Those
scripts depend on Docker. Therefore, root access is also needed.

• Hardware: No special Hardware needed. 16GB Ram is rec-
ommended to run TLS-Anvil.

• Output: The results of TLS-Anvil are stored in various json
files. Those should be processed and evaluated with our Report
Analyzer web application, which is also available as Docker
image.

• Experiments: Analysis of TLS clients and servers using TLS-
Anvil.

• Required disk space: Roughly 50 GB, considerably more if
the whole Docker library is built (roughly 1 TB).

• Approximate time required to prepare the workflow: 2h

• Time required to complete experiments: Key results can be
recreated quickly using a low testing strength of one, which
takes around one hour for OpenSSL. Testing with strength
two takes around six hours and strength three around 31 hours.
While we evaluated with a strength of three, we identified
that all findings can already be found using a strength of two.
Generating all results for all libraries using docker images takes
around one week when evaluating two libraries in parallel.
Table 4 in our paper contains an overview of execution times.

• Publicly available evolving repo: The TLS-Anvil GitHub
repo is available here.

• Code licenses: Apache 2

• Data licenses: Apache 2

• Archived stable references: The archived tags for TLS-Anvil,
TLS-Docker-Library, and the Large-Scale-Evaluator are:

– TLS-Anvil:
Tag v1.0.3

– TLS-Docker-Library:
Tag 2.0.1

– TLS-Anvil-Large-Scale-Evaluator:
Tag 1.0.1

The required versions of TLS-Anvil’s dependencies are listed
as submodules of the git repository.

A.3 Description

A.3.1 How to access

• TLS-Anvil can be found here.

• TLS-Docker-Library can be found here.

• TLS-Large-Scale-Evaluator can be found here.

Dependencies (optional)

• TLS-Attacker can be found here.

• TLS-Scanner can be found here.

See submodules of tags given in ’Archived’ from subsec-
tion A.2 for specific versions.

A.3.2 Hardware dependencies

Depending on the desired testing strength, up to 16 GB of
RAM are required. The overall CPU load of the system may
affect the tests performed by TLS-Anvil. Please ensure that
the system can provide enough processing resources for TLS-
Anvil to obtain accurate results. A relatively recent CPU
should be enough.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 17

https://ruhr-uni-bochum.sciebo.de/s/0ccHC0jOpkKX3vG
https://ruhr-uni-bochum.sciebo.de/s/wUbe4Chpqy8VNj4
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Anvil/releases/tag/v1.0.3
https://github.com/tls-attacker/TLS-Docker-Library/releases/tag/2.0.1
https://github.com/tls-attacker/TLS-Anvil-Large-Scale-Evaluator/releases/tag/1.0.1
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Docker-Library
https://github.com/tls-attacker/TLS-Anvil-Large-Scale-Evaluator
https://github.com/tls-attacker/TLS-Attacker.git
https://github.com/tls-attacker/TLS-Scanner.git

A.3.3 Software dependencies

To evaluate the considered libraries with TLS-Anvil and TLS-
Docker-Lib, Java 11, Docker, Docker-Compose, and Maven
are required. To build TLS-Anvil and its dependencies without
Docker, Java 11 SDK is required. Running TLS-Anvil outside
of a Docker container requires tcpdump.

A.3.4 Data sets

We provide the raw outputs of TLS-Anvil for the libraries
considered in our evaluation. While we evaluated the libraries
using a test strength of up to three, we identified that all find-
ings can already be reproduced with a test strength of two.
We hence provide the outputs for testing strength two.

A test output consists of multiple json files. These should
be processed using our web application that visualizes the
results (see below for more details).

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Setting up TLS-Anvil You can either use our provided
Docker images or build everything yourself using a Dock-
erfiles contained in the TLS-Anvil repository. Note that
the docker commands below fetch the latest version of
TLS-Anvil.

a) Using the provided docker images:

1. Pull TLS-Anvil Docker image

docker pull \
ghcr.io/tls-attacker/tlsanvil:latest

2. Pull Report Analyzer Docker image

docker pull \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest

3. Pull Report Uploader Docker image

docker pull \
ghcr.io/tls-attacker/\
tlsanvil-result-uploader:latest

4. Adjust the tags to match a local build

docker tag \
ghcr.io/tls-attacker/tlsanvil:latest \
tlsanvil:latest
docker tag \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest \
uploader:latest
docker tag \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest \
reportanalyzer:latest

5. Clone the TLS-Anvil repository

git clone \
https://github.com/tls-attacker/\
TLS-Anvil.git

b) Building TLS-Anvil and the Report Analyzer yourself:

1. Clone the TLS-Anvil repository

git clone \
https://github.com/tls-attacker/\
TLS-Anvil.git

2. Run the build script

cd TLS-Anvil/
sh build.sh

3. Build the Report-Analyzer Docker image

cd Report-Analyzer/
docker-compose build

4. Build the upload Docker image (this uploads TLS-Anvil
json files to the Report Analyzer web application)

cd src/backend/uploader
docker build -t uploader .

Setting up TLS-Docker-Library

1. Clone the repository using

git clone https://github.com/tls-attacker/\
TLS-Docker-Library.git

2. Navigate to TLS-Docker-Library/

3. Execute setup.sh

4. Execute mvn install -DskipTests

Downloading OpenSSL docker images

1. Get provided client and server images

18 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

docker pull ghcr.io/tls-attacker/\
openssl-client:1.1.1i
docker pull ghcr.io/tls-attacker/\
openssl-server:1.1.1i

2. Adjust the tags to match a local build

docker tag 4791200dbed9 \
openssl-server:1.1.1i
docker tag 8fe8f5106aa9 \
openssl-client:1.1.1i

Building an OpenSSL library Docker Container your-
self (optional)

1. Navigate to TLS-Docker-Library/images/

2. Build the OpenSSL 1.1.1i server and client image

python3 build-everything.py -l \
openssl -v 1.1.1i

Building the TLS-Anvil-Large-Scale-Evaluator (op-
tional)

1. Clone the repository

git clone https://github.com/tls-attacker/\
TLS-Anvil-Large-Scale-Evaluator.git

2. Navigate to TLS-Anvil-Large-Scale-Evaluator/

3. Run mvn install -DskipTests

A.5 Experiment workflow
TLS-Anvil can be run in client and server test mode depending
on the tested endpoint. Regardless of the endpoint, TLS-Anvil
first performs a feature discovery to determine suitable values
for test parameters as well as applicable test templates. Since
most test templates are either exclusively client or server test
templates, many tests will be skipped during the execution.
This is also the case for tests that must be skipped if an end-
point does not support a feature required for the test.

During the execution, TLS-Anvil creates json files for every
executed test template containing the detailed results. The fol-
lowing guide shows how the OpenSSL server and client can
be tested using TLS-Anvil. Both peers run inside a Docker
container. The test results are stored inside the current work-
ing directory.

A.5.1 Testing OpenSSL Server

1. Create a separate Docker network

docker network create tls-anvil

2. Start the OpenSSL Server

docker run \
-d \
--rm \
--name openssl-server \
--network tls-anvil \
-v cert-data:/certs/ \
openssl-server:1.1.1i \
-port 8443 \
-cert /certs/rsa2048cert.pem \
-key /certs/rsa2048key.pem

3. Start TLS-Anvil

docker run \
--rm \
-it \
-v $(pwd):/output/ \
--name tls-anvil \
--network tls-anvil \
tlsanvil:latest \
-outputFolder ./ \
-parallelHandshakes 1 \
-strength 1 \
-identifier openssl-server \
server \
-connect openssl-server:8443 \
-doNotSendSNIExtension

A.5.2 Testing OpenSSL Client

1. Create a separate Docker network

docker network create tls-anvil

2. Start TLS-Anvil

docker run \
--rm \
-it \
-v $(pwd):/output/ \
--network tls-anvil \
--name tls-anvil \
tlsanvil:latest \
-outputFolder ./ \
-parallelHandshakes 3 \
-parallelTests 3 \
-strength 1 \
-identifier openssl-client \
client \
-port 8443 \
-triggerScript curl --connect-timeout 2

openssl-client:8090/trigger↪→

3. Start OpenSSL Client

docker run \
-d \

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 19

--rm \
--name openssl-client \
--network tls-anvil \
openssl-client:1.1.1i \
-connect tls-anvil:8443

A.5.3 Testing all Libraries

Since we needed to analyze multiple servers and clients of
different libraries the manual process shown above results in
a large overhead. Therefore, we automated the Docker con-
tainer launching with a (Java) tool TLS-Anvil-Large-Scale-
Evaluator. To analyze the OpenSSL server using this tool, the
following command should be executed from the main folder
of the cloned repository:

java -jar \
apps/TLS-Anvil-Large-Scale-Evaluator.jar \
-m server -e testsuite -i openssl -v 1.1.1i \
-p 1 -s 2

To analyze the client use:

java -jar \
apps/TLS-Anvil-Large-Scale-Evaluator.jar \
-m client -e testsuite -i openssl -v 1.1.1i \
-p 1 -s 2

After building the docker images for the libraries versions
listed in the paper, you can run TLS-Anvil against all consid-
ered implementations using:

-i bearssl boringssl botan gnutls libressl \
mbedtls nss openssl rustls s2n tlslite_ng \
wolfssl matrixssl \
-v 0.6 3945 2.17.3 3.7.0 3.2.3 2.25.0 3.60 \
1.1.1i 0.19.0 0.10.24 0.8.0-alpha39 \
4.5.0-stable 4.3.0

A.6 Evaluation and Expected Results
To evaluate our results, you can either recreate them using the
explanations from subsection A.5 or use the data from our
experiments, which are available here.

A.6.1 Uploading Test Results to the Report Analyzer

To start with the evaluation you should start the Report Ana-
lyzer by navigating into the cloned TLS-Anvil repository and
running:.

cd Report-Analyzer
docker-compose up -d

After that, a web application should be available at
http://localhost:5000. The application offers three main

pages: ’Upload’, ’Analyzer’, and ’Manage’. While it is possi-
ble to upload results using the web app, we recommend using
the uploader Docker container as it collects all necessary files
automatically. To start a recursive search for results from your
current directory and upload them to the web application, use:

docker run \
--rm \
-it \
--network host \
-v $(pwd):/upload \
uploader

A.6.2 Analyzing Test Results

The drop down menu in the upper left corner of the ’Analyzer’
page shows all test results uploaded to the Report Analyzer’s
database. In order to analyze a result, select a test result and
click the ’Add’ button next to the drop down menu. The Re-
port Analyze will then show some basic execution properties,
such as the execution time, and a list containing each test
template that was executed and a symbol that indicates the
test result. A check mark indicates a strictly succeeded test,
a cross indicates a failed test. A check mark with a warning
sign indicates a conceptually succeeded test, a cross with a
warning sign indicates a partially failed test. An exclamation
mark indicates further information is available on the test
results.

Clicking on the result symbol leads to a detail page for
the test template. The list shows the result for each test case
executed throughout the test template. Clicking on an iden-
tifier on the left or a sub result on the right opens a modal
window that summarizes the test inputs used for this specific
test case as well as some meta data. Additionally, it is possible
to inspect and download a pcap file that contains the recorded
traffic of this specific test case.

Using the filter menu above the results table, it is possible
to filter connections, for example, to only show connections
where a parameter had a specific value or where a specific
test result has been determined.

A.6.3 Key Results

Using TLS-Anvil, we identified a variety of RFC violations
for the 13 considered libraries. Below, we describe how to
identify some of the main findings using the Report Analyzer
and our provided test results.

wolfSSL Authentication Bypass wolfSSL client 4.5.0 al-
lows a server to bypass the authentication by sending a
Certificate message with an empty certificate list. Open
the test results for wolfSSL client (wolfssl-client-4.5.0-
stable-WWkfM) in the Report Analyzer. Search for the

20 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://ruhr-uni-bochum.sciebo.de/s/wUbe4Chpqy8VNj4

emptyCertificateList test in the list and click on the re-
sult symbol on the right. On the new page, some connec-
tions are marked as succeeded (with a checkmark), while
others failed. The seemingly succeeded tests are the result of
wolfSSLs intolerance for some record lengths. Since record
fragmentation with different lengths is a parameter of our test
input, wolfSSL sometimes can not finish the handshake. Since
our RFC violation and the first fragmented records both take
place within our first flight of messages, it appears as if wolf-
SSL sometimes correctly rejects our malformed Certificate
message which is not the case. To obtain a clear test result,
click on the drop down menu on the top of the page and se-
lect RECORD_LENGTH. This will filter the connections to only
show a specific fragmentation length in bytes. Change the
value on the right from 1 to 16384, which effectively shows
only those handshakes where no record fragmentation was
used. Inspecting the remaining test results of the list, either
by hovering on the result symbol or clicking on it, shows
that wolfSSL always failed to reject the invalid message and
instead proceeded to send its final handshake message and
application data. You can compare this behavior to the very
similar emptyCertificateMessage test, where wolfSSL be-
haves as expected. In contrast to the previous test, here we
use an entirely empty message (with a message length of
zero). By applying the same filter steps as before, the results
show that wolfSSL rejects this type of empty Certificate
message correctly.

MatrixSSL Padding Oracle Vulnerability The MatrixSSL
4.3.0 client indicates an invalid padding upon decryption
for ciphersuites that use SHA256 to compute the HMAC.
Open the same test result as before and search for the test
invalidCBCPadding. MatrixSSL aborted the connection for
all messages that contained an invalid padding value. How-
ever, for SHA256 cipher suites, MatrixSSL does not send an
alert as it does for all other cipher suites. We further analyzed
this behavior and identified that this is due to a segmentation
fault. This behavior is unique to the invalid padding error
case and thus leaks information about the obtained plaintext.
You can compare this behavior to the invalidMAC test, where
MatrixSSL always sends an alert regardless of the cipher
suite.

MatrixSSL Unproposed Groups The MatrixSSL 4.3.0
client accepts that a server negotiates certain curves that have
not been proposed by the client. While MatrixSSL offers
the curves secp256r1, secp384r1, x25519, and secp521r1 it
also accepts ServerKeyExchange messages that contain a
public key of the curves secp192r1 and secp224r1, which
both have significantly weaker security properties. To iden-
tify this behavior, open the test results for MatrixSSL
client (matrixssl-client-4.3.0-ik8fF) and search for the test
acceptsUnproposedNamedGroup and click on the test re-
sult symbol. Using the drop down menu at the top, se-

lect ’Test Result’ as the filter and set the desired value to
’FAILED’ in the drop down menu on the right. By clicking
on the remaining test results, the Report Analyzer shows a
text box with a summary of details in json. First of all, the
DerivationContainer element shows the chosen parame-
ters of the test. The NAMED GROUP parameter for the failing
tests is either secp192r1 or secp224r1. Further below, the
Stacktrace shows the failed JUnit Assertion with an indi-
cation of the error. In this case, an alert was expected (since
the server made an illegal selection) but MatrixSSL client
proceeded to send a ClientKeyExchange, ChangeCipherSpec,
and Finished message instead.

A.7 Experiment customization
You can also run your own experiments with TLS-Anvil
against any server or client. For this purpose run the jar avail-
able in TLS-Anvil/TLS-Testsuite/apps from the cloned and
built repository or use our provided jars. To test a server run-
ning on localhost:4433, use:

java -jar TLS-Testsuite.jar server -connect \
localhost:4433

To test a client from port 4433, use:

java -jar TLS-Testsuite.jar client -port 4433 \
-triggerScript triggerScript.sh

Where triggerScript.sh contains the command to start a
client that connects to localhost:4433.

A.8 Notes
Analyzing the issues for a scientific paper sometimes required
additional manual labour, as we grouped failed tests based
on their route cause to get to the final number of findings.
Therefore the number of failed tests is larger than the number
of findings.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 21

https://ruhr-uni-bochum.sciebo.de/s/0ccHC0jOpkKX3vG

A Artifact Appendix

A.1 Abstract

Keybuster is a research tool that allows to interact with the
Keymaster TA (Trusted Application) on Samsung devices
that run Android. Keybuster implements a Keymaster client -
based on the libkeymaster_helper.so library from Sam-
sung’s Keymaster HAL.

Keybuster requires sufficient permissions (root and
SELinux context) to access TZ drivers. To achieve this, we
rooted our device using Magisk and used the strong context
that it provides. Keybuster requires special hardware - an
Samsung Galaxy smartphone (S9 and newer models) with
a Trusted Execution Environment (TEE). The binary can be
downloaded from GitHub releases or built using Android
NDK. To reproduce our attacks, only minimal software re-
quirements are required (e.g., adb/ssh, openssl and python3).

Keybuster allows to reproduce the attacks that we describe
in the paper - the IV reuse attack and the downgrade attack.
The GitHub repository contains detailed step-by-step instruc-
tion on how to recreate both attacks. Additionally, it allows
researchers to freely explore the Keymaster TA without input
validation or filtering. Samsung validated both attacks using
Keybuster and assigned a High severity CVE to each issue.

In essence, the proof-of-concept attacks utilize Keybuster
to demonstrate private key material extraction of hardware-
protected keys that were encrypted by the TEE.

A.2 Artifact check-list (meta-information)
• Compilation: Android NDK (alternatively, the binary can

be downloaded from GitHub releases)

• Binary: keybuster binary for Android, included in GitHub
releases

• Run-time environment: Android specific, requires a suffi-
ciently strong context (e.g., rooted device)

• Hardware: Rooted Samsung Galaxy device (e.g. available
over adb/SSH)

• Security, privacy, and ethical concerns: The vulnerabili-
ties were responsibly disclosed to Samsung and they issued
patches. Running on a rooted Android device (that is con-
nected to WiFi) over SSH might be dangerous.

• Output: Console output. GitHub repository includes ex-
pected output.

• Experiments: Follow instructions in GitHub repository to
run the proof-of-concept scripts

• How much disk space required (approximately)?: Minimal

• How much time is needed to prepare workflow (approxi-
mately)?: < 2 minutes

• How much time is needed to complete experiments (approx-
imately)?: < 2 minutes

• Publicly available (explicitly provide evolving version ref-
erence)?: Will be made available on https://github.
com/shakevsky/keybuster

• Code licenses (if publicly available)?: Apache-2.0 License

• Archived (explicitly provide DOI or stable reference)?:
Will be made available on https://github.com/
shakevsky/keybuster/tree/v0.1.0

A.3 Description
A.3.1 How to access

The stable artifact will be made available on https://github.com/
shakevsky/keybuster/tree/v0.1.0.

A.3.2 Hardware dependencies

To reproduce our attacks with Keybuster it is required to have a
Samsung device (S9 and newer models) with a sufficiently strong
context, e.g., by rooting a device or by having a development device
from Samsung. We can try to make such device available over SSH.
Unpacking the artifact requires very little space (only to download
the binary or compile the sources).

A.3.3 Software dependencies

Keybuster is a binary that can be run on a rooted Samsung device.
To access such a device we’ve used adb, and we can try to make a
vulnerable device available over SSH. To reproduce the IV reuse at-
tack, no additional software is required. To reproduce the downgrade
attack (e.g., against a simplified Secure Key Import server) python3
and openssh can be used (although they only emphasize the point -
running the proof of concept script should be enough).

A.3.4 Security, privacy, and ethical concerns

The vulnerabilities were responsibly disclosed to Samsung and they
issued patches. We have some concerns over giving SSH access
to a rooted Android device over the internet, as it can potentially
compromise the home WiFi network of one of the authors.

A.4 Installation
Assuming that we’ll provide remote SSH access, we can upload
all the necessary files to the device so that no further setup is re-
quired and reviewers can simply run the proof-of-concept scripts.
Otherwise, the GitHub repository includes detailed steps of how to
reproduce the attacks (which bash commands to run).

A.5 Evaluation and expected results
Full details on reproducing the proof-of-concept attacks, as well as
expected outputs, will be made available in the GitHub repository.

The main claims of our paper include:

• We show that the hardware protection in Samsung Galaxy
S9 devices is vulnerable to an IV reuse attack on AES-GCM,
allowing the extraction of protected key material.

USENIX Association 31st USENIX Security Symposium 23

https://github.com/shakevsky/keybuster
https://github.com/shakevsky/keybuster
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0

• We show a downgrade attack on Samsung Galaxy S10, S20,
and S21 devices, making them vulnerable to our IV reuse
attack.

• We evaluate the impact of our attacks and describe how to
exploit them to misuse the Keystore key attestation to bypass
FIDO2 WebAuthn login and compromise Google’s Secure Key
Import.

The proof-of-concept attacks that use Keybuster support the
claims:

• The IV reuse PoC shows that we are able to fully recover key
material from hardware-protected keys that were encrypted by
the TEE.

• The downgrade attack PoC shows that we are able to force
even the latest devices (S10, S20, and S21) to generate keys
that are vulnerable to IV reuse.

• The README.md of the downgrade attack also includes infor-
mation about how an attacker can use the downgrade attack to
target higher level cryptographic protocols such as Secure Key
Import (we included python3 code that emulates the server
and show how a successful attack breaks the security of the
keys) and WebAuthn (we included a GDB script that we’ve
successfully used against the StrongKey FIDO2 WebAuthn
server, as described in the paper).

The expected outputs and results are shown in the proof-of-
concept README files in the GitHub repository.

A.6 Notes

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

24 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

To examine the threats perceived and faced by migrant do-
mestic workers (MDWs) to their security and privacy, we
designed and conducted five participatory threat modelling
workshops with MDWs in the UK. Drawing on the findings
of our workshops, we created and disseminated a free online
digital privacy and security guide (hosted on GitHub), to make
our research outputs accessible to the public as well as organ-
isations that protect migrant and precarious workers in the
UK1. We developed the guide in collaboration with Voice of
Domestic Workers (VoDW), an education and support group
run by and for migrant domestic workers, and Migrants Or-
ganise, a grassroots platform where migrants and refugees
organise for justice. During each workshop, we asked partici-
pants whether they had any questions for us on online safety,
privacy, and security. We noted down these questions as well
as the threats participants had identified and their advice for
other MDWs. We then used these as the basis of our online
digital privacy and security guide. In making the guide, we
focused, where possible, on existing resources, such as the
DIY Guide to Feminist Cybersecurity2, the Citizens Advice
online scams helper3, and Kalayaan’s Employment Rights
webpage4. We made sure to include clear action points the
reader could easily implement. We also focused on making
the guide easily readable. Lastly, we avoided unnecessary
intimidation or victim blaming. For example, we included re-
minders like “Avoiding surveillance by your employer should
not have to be your responsibility. Employers need to un-
derstand and respect domestic workers’ right to privacy and
safety, and refrain from excessive monitoring”. To refine and
validate the guide, we are continuously soliciting feedback
from our computer privacy and security as well as MDW
communities on the guide, are incorporating feedback on a
regular basis, and plan to organise workshops with MDWs
to hear their input on the guide. We also aim to translate our
guide from English into other languages. The appendix of
our USENIX Security paper describes our guide structure in
detail (see Appendix B in the main paper).

A.2 Artifact check-list (meta-information)
• Security, privacy, and ethical concerns: Ethical consider-

ations for this study included preserving the anonymity of
vulnerable participants. We followed principles of data min-
imisation, ensuring that the research data that we collected was
not connected to participants’ identities. In order to do this, we

1Accessible here: https://domesticworkerprivacy.github.io/
2https://hackblossom.org/cybersecurity/
3https://www.citizensadvice.org.uk/consumer/scams/

what-to-do-if-youve-been-scammed/
4http://www.kalayaan.org.uk/for-workers/

employment-rights/

did not video or audio record workshops; we instead relied on
handwritten notes which did not include participants’ names,
as well as used an online platform where participants could
submit answers to our questions anonymously. Some partic-
ipants also participated in our study outside their home and
workplace; e.g., in a park, in order to avoid being overheard by
employers. Further, the only researchers with access to the per-
sonal/contact details of participants were those being involved
in data collection and analysis. We also note that although
some participants had experiences of being undocumented in
the past (as a result of recruitment by our peer researcher), all
participants had right to remain at the time of the study.
Another concern was the potential distress of participants who
discussed difficult or sensitive experiences. To mitigate this,
we reminded participants that they did not need to answer the
questions, and they could take breaks during the study. Further,
our peer researcher at VoDW was present at all workshops to
make sure that participants felt comfortable.
Lastly, our research was reciprocal, to make sure participants
benefited from the project, particularly as they belonged to a
vulnerable group in often precarious employment. We com-
pensated each participant £50, and we attempted to ensure the
accessibility of our research outputs through publishing a digi-
tal privacy and security guide online. This study was approved
by the Research Ethics Committee at the University of Oxford.

• Output: We attempted to ensure the accessibility
of our research outputs through publishing a dig-
ital privacy and security guide online on GitHub:
https://github.com/domesticworkerprivacy/
domesticworkerprivacy.github.io/tree/
33fc93f2a192378180a5f6eb235f384d07c67ced.

• Experiments: The appendix of our USENIX Security paper
describes the questionnaire we used during our workshops,
which can be used in similar future studies in different countries
(see Appendix A in the main paper).
The topics discussed in the workshops were as follows:
ASSETS:

1. What kinds of social media or communication technol-
ogy do you use?

2. How do you feel about using social media and commu-
nication technology?

3. What parts of your data or information do you most want
to protect?

4. What does being safe mean to you?

THREATS:

1. What are the main threats to your safety, privacy, and
security (e.g., threats faced online or in your workplace)?

2. Have you ever worked in a house where there was a
camera or some type of a monitoring device? If yes, how
did you find out about it? How did you feel about it?

3. Are you worried about being watched online? If so, by
who and why?

MITIGATIONS:

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 25

https://domesticworkerprivacy.github.io/
https://hackblossom.org/cybersecurity/
https://www.citizensadvice.org.uk/consumer/scams/what-to-do-if-youve-been-scammed/
https://www.citizensadvice.org.uk/consumer/scams/what-to-do-if-youve-been-scammed/
http://www.kalayaan.org.uk/for-workers/employment-rights/
http://www.kalayaan.org.uk/for-workers/employment-rights/
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced

1. What advice would you give other MDWs to stay safe
online?

2. What parts of your safety do you most want to improve?

3. Do you have any questions you want to ask us?

4. What kind of support do you need to be safe?

• Publicly available (explicitly provide evolving version
reference)?: The first version of the guide is accessible
here: https://github.com/domesticworkerprivacy/
domesticworkerprivacy.github.io/tree/
33fc93f2a192378180a5f6eb235f384d07c67ced.

• Code licenses (if publicly available)?: The
first version of the guide is accessible here:
https://github.com/domesticworkerprivacy/
domesticworkerprivacy.github.io/tree/
33fc93f2a192378180a5f6eb235f384d07c67ced.

• Archived (explicitly provide DOI or stable refer-
ence)?: The first version of the guide is accessible
here: https://github.com/domesticworkerprivacy/
domesticworkerprivacy.github.io/tree/
33fc93f2a192378180a5f6eb235f384d07c67ced. No
changes have been made.

A.3 Description

A.3.1 How to access

The first version of the guide is accessible on GitHub:
https://github.com/domesticworkerprivacy/
domesticworkerprivacy.github.io/tree/
33fc93f2a192378180a5f6eb235f384d07c67ced. No changes
have been made.

A.3.2 Hardware dependencies

N/A.

A.3.3 Software dependencies

N/A.

A.3.4 Data sets

N/A.

A.3.5 Models

N/A.

A.3.6 Security, privacy, and ethical concerns

Please see above in §A.2.

A.4 Installation
Drawing on the findings of our study, we created and disseminated
a free online digital privacy and security guide (hosted on GitHub),
to make our research outputs accessible to the public as well as
organisations that protect migrant and precarious workers in the
UK5. Our guide is publicly accessible to everyone.

A.5 Experiment workflow
N/A.

A.6 Evaluation and expected results
Our artifact is a digital privacy and security guide. The guide serves
as an educational/support platform for MDWs in the UK and other
countries, to protect their on- and offline privacy and keep themselves
safe. The guide is divided into six main sections. We first explain the
guide and its purpose; provide general digital privacy and security
advice; describe three main types of privacy threats identified by
our MDW participants who took part in our workshops (one section
is dedicated to each threat type): government surveillance, online
scams and harassment, and employer monitoring; and conclude by
arguing that our computer security and privacy community must take
into account intersecting forms of marginalisation (due in part to
different levels of social and economic power) as well as the broader
social structures that foster insecurity. The guide also includes links
to further resources that domestic workers can refer to when in need
of protection; see the appendix of the main paper for more details.

To develop similar guides with MDW communities or validate
our guide, researchers can recruit MDW participants in different
countries – bearing in mind the ethical considerations we described
above – as well as use the questionnaire we provided above in §A.2.

A.7 Experiment customization
N/A.

A.8 Notes
N/A.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

5Accessible here: https://domesticworkerprivacy.github.io/

26 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://github.com/domesticworkerprivacy/domesticworkerprivacy.github.io/tree/33fc93f2a192378180a5f6eb235f384d07c67ced
https://domesticworkerprivacy.github.io/

A Artifact Appendix

A.1 Abstract
This artifact includes software that covers all 3 basic func-
tionalities needed to reproduce the results of our paper "How
Long Do Vulnerabilities Live in the Code? A Large-Scale
Empirical Measurement Study on FOSS Vulnerability Life-
times". The three main functionalities are (a) data collection,
(b) heuristic execution (code analysis), and (c) experiments
(analysis incl. plots, tables, etc. that are presented in the pa-
per). The artifact shows that the process described in the
paper is reproducible and the results of executing the artifact
(tables, plots) should be similar to the results reported in the
paper (by executing the artifact now, new CVEs will be added
to the analysis so results are expected to differ slightly from
the ones reported in the paper).

The artifact is shipped as a docker image (the repository in-
cludes a Dockerfile that can be used to create the image). We
tested on Docker version 18.09.1 on Debian GNU/Linux 10.
Function (b) “heuristic execution” is CPU-intensive and par-
allelized, so we recommend using a machine with many CPU
cores to speed up the process. The docker container requires
~60GB of disk space, mainly to download the repositories of
the projects in the study. Although we tested the artifact on a

“big” 128-core machine, we expect it to run without problems
on “smaller” machines. We offered reviewer of the AE Com-
mittee of USENIX Security ’22 ssh access to the machine we
used for testing.

A.2 Artifact check-list (meta-information)
• Data set: The “ground-truth” dataset (CVE to VCC mappings)

is included as a set of files in the repository. The process to
create the main dataset is performed by the artifact.

• Run-time environment: The artifact is intended to be executed
in a docker container, so docker is required (which generally
also implies root privileges on the machine).

• Hardware: No specific hardware is required, although the
execution of the experiments can be accelerated with the use of
multiple CPU cores (heuristic execution) and good bandwidth
(cloning repositories). Since the execution can take long to
complete, a dedicated machine or server (with internet access)
is required.

• Output: The output consists of the tables and plots included
in the paper.

• Experiments: The artifact includes a “run_all.sh” bash script
that performs all the actions required. Alternatively the user
can run the commands in this script manually.

• How much disk space required (approximately)?: 60GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1-5 min.

• How much time is needed to complete experiments (approx-
imately)?: 10-80 hrs (mainly depending on number of cores
available and bandwidth)

• Publicly available (explicitly provide evolving ver-
sion reference)?: https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_ae

• Code licenses (if publicly available)?: GPL-3.0

• Data licenses (if publicly available)?: CC BY 4.0

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_v1.0

A.3 Description

A.3.1 How to access

https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_ae

A.3.2 Hardware dependencies

The process requires ~60GB of disk space. This is mainly
because the artifact looks into the repositories of some big
projects, such as chromium and Linux. More cores will mean
the artifact will run faster.

A.3.3 Software dependencies

Git to clone the repository and docker to build and run the
image.

A.3.4 Data sets

The required datasets are either included in the repository or
created by the artifact.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Clone the repository1 and follow the instructions in the
readme2 to build and run the docker image (docker usually
implies that root access is required on the machine you are
using).

1git clone --branch usenix_v1.0 https://github.com/
manuelbrack/VulnerabilityLifetimes

2https://github.com/manuelbrack/VulnerabilityLifetimes/
blob/usenix_ae/README.md

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 27

https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_v1.0
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_v1.0
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes
https://github.com/manuelbrack/VulnerabilityLifetimes
https://github.com/manuelbrack/VulnerabilityLifetimes/blob/usenix_ae/README.md
https://github.com/manuelbrack/VulnerabilityLifetimes/blob/usenix_ae/README.md

A.5 Experiment workflow
The artifact implements the 3 main functionalities required
to reproduce the results of our paper: (a) dataset creation,
(b) heuristic execution, and (c) results analysis. All re-
quired steps are included in a “run_all.sh” bash script
with comments that explain the purpose of each step. At
the end we recommend that you copy the contents of the
“/project/VulnerabilityLifetimes/out/” directory3 to a machine
with a GUI so you can inspect the plots.

A.6 Evaluation and expected results
Note that this is a measurement paper and that the artifact also
implements the critical part of dataset creation. The ability of
this code to create an up-to-date dataset automatically is a key
contribution of this artifact. Given that the dataset collection
for the paper was executed some months before publication,
you should expect some variation of the results caused by new
data points. You can get exactly the same results as the ones
reported in the paper by importing the mappings from https:
//figshare.com/s/4dd1130c336f43f6e18c and running
the analysis scripts but there is no real reproduction value
there. The main claims of the paper can be summarized by
the following:

1. The heuristic provides good estimates for vulnerability
lifetimes

• Check the output of the /out/heuristic.csv file
for the content of Table 2 of the paper. Here you
should note that the numbers reported are similar;
especially, the numbers in the last 2 columns of the
file are smaller than the respective numbers of the
previous columns.

• Check the plots under ./out/year_trends/ye
ar_trend_linux_gt_comp.pdf, ./out/distri
butions/distribution_gtdata_gt.pdf, ./ou
t/distributions/distribution_gtdata_heu
ristic.pdf, as well as the qqplots in the same
directory. They should be similar to Figures 3 and
4, showing that the results of the heuristic are close
to the ground truth data.

2. Section 5.1: Look into ./out/lifetimes_table.csv
for results similar to the ones reported in Table 3. You
should be able to observe big differences between
projects and a higher average/mean value than median.
This table can also be used as a check to see if the exper-
iment has been executed successfully. If results in your
file are similar to the ones reported in the paper, then
you can be pretty sure that the experiment ran correctly.

3. Section 5.2: Look into the plots at
./out/distributions/distribution_All_pdf.pdf

3e.g. docker cp and then scp if you are connected to a server

and ./out/distributions/qq_plot.pdf. for similar
results to Figures 5 and 6. Here you should be able to
observe that the exponential distribution is a good fit to
the data.

4. Section 5.3: Inspect plots with the naming convention
./out/year_trends/year_trend_{project}.pdf
for similar results to Figure 7 (increasing trends except
for Firefox).

5. Section 5.4: Look into the plots at the directory ./out/r
egular_code_age/ for similar results to Figure 9. Here
you should be able to observe the correlation between
vulnerability lifetimes and code age and, especially for
Chromium, that lifetimes are increasing slower than code
age.

6. Section 5.6: Look at the plot at ./out/year_trends/y
ear_trend_kernel_mem_vs_others.pdf for similar
results to Figure 10. You should be able to note that the
trend is increasing both for memory vulnerabilities and
for other types.

Apart from the main results listed above, you can find many
more results (both presented in the paper and additional mate-
rial in the directories referenced above). Also, some results,
such as the statistical tests for vulnerability types are printed
in stdout. You can find these results in the log file of the
execution.

A.7 Experiment customization
The code is written in a way that new projects and data sources
can be added with relatively little additional effort (although
not trivially). See the readme in the main branch of the reposi-
tory for more information. However, the scripts for the artifact
evaluation do not support seamless addition of projects to an-
alyze. This could be a point for future work.

A.8 Notes
Warnings during the execution of the artifacts are not sup-
pressed and are to be expected. Here is a short explanation:

• ‘Cannot add or update a child row...‘: a fixing commit-
CVE mapping has been identified by text mining tech-
niques but the CVE is not in the list of CVEs that affect
the project as identified by cpe.

• ‘CVE search: 89it [00:14, 37.71it/s]...‘: The CVE entry
is not complete.

• ‘62f4f82ad39f177538f733b37cdd5dabd8f333de
could not be saved...‘: Commit message
includes a picture (emoji) – see https:
//github.com/chromium/chromium/commit/
62f4f82ad39f177538f733b37cdd5dabd8f333de.
This can be fixed in a future version of the tool.

28 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://figshare.com/s/4dd1130c336f43f6e18c
https://figshare.com/s/4dd1130c336f43f6e18c
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de

• ‘warnings.warn("Commit not found 0".for-
mat(commitsha))‘: a fixing commit-CVE mapping
has been identified by text mining techniques but the
commit is not in the repository.

• ‘ValueWarning: omni_normtest‘: some projects have few
points and such warnings are natural.

• ‘UserWarning: no blames‘: No commits were blamed by
the heuristic for a given fixing commit, e.g. because it
changed only non C/C++ files.

• ‘WARNING:root:SKIPPED powernorm distribution
(taking more than 30 seconds)‘: Expected warning from
the fitter package (https://fitter.readthedocs.
io/en/latest/)

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 29

https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/

A Artifact Appendix

A.1 Abstract
We developed a Web platform and an API client that allow
users to retrieve the Expected Exploitability (EE) scores pre-
dicted by our system. The system gets updated daily with the
newest scores.

We implemented an API client in python, distributed via
Jupyter notebooks in a Docker container, which allows users
to interact with the API and download the EE scores to re-
produce the main result from the paper, in Figure 5(a) and
Figure 8(a), or explore the performance of the latest model
and compare it to the performance of the models from the
paper.

A.2 Artifact check-list (meta-information)
• Program: Docker (tested on v20.10.8)
• Run-time environment: UNIX-like system
• Metrics: Rrecision, Recall, Precision-Recall AUC, TPR, FPR,

AUC.
• Output: Plots from the paper, reproducing and expanding

Figure 5(a) Figure 8(a).
• Experiments: Running Jupyter notebooks.
• How much disk space required (approximately)?: 4GB
• How much time is needed to prepare workflow (approxi-

mately)?: 15 min
• How much time is needed to complete experiments (ap-

proximately)?: 30 min
• Publicly available?: The website and client code are publicly

available. The API requires an API token which we provide
upon request.

A.3 Description
A.3.1 Web Platform

The Web platform exposes the scores of the most recent model, and
offers two tools for practitioners to integrate EE in vulnerability or
risk management workflows.

The Vulnerability Explorer tool allows users to search and inves-
tigate basic characteristics of any vulnerability on our platform, the
historical scores for that vulnerability as well as a sample of the
artifacts used in computing its EE. One use-case for this tool is the
investigation of critical vulnerabilities, as discussed in Section 7.3 -
EE for critical vulnerabilities.

The Score Comparison tool allows users to compare the scores
across subsets of vulnerabilities of interest. Vulnerabilities can be
filtered based on the publication date, type, targeted product or af-
fected vendor. The results are displayed in a tabular form, where
users can rank vulnerabilities according to various criteria of interest
(e.g., the latest or maximum EE score, the score percentile among
selected vulnerabilities, whether an exploit was observed etc.). One
use-case for the tool is the discovery of critical vulnerabilities that
need to be prioritized soon or for which exploitation is imminent, as
discussed in Section 7.3 - EE for emergency response.

A.3.2 API Client

The API allows clients to download historical scores for a given
vulnerability (using the /scores/cveid endpoint), or all the pre-
diction scores for a particular model on a particular date (using the
/scores/daily endpoint). The API documentation describes the
endpoints and the parameters required for each call, and provides
example code for clients to interact with the API.

A.4 How to access
The Web platform is available at https://exploitability.app/. The API
and the client code are available at https://api.exploitability.app/.

A.5 Installation
The practitioner tools are available on the Web platform. To use the
API, clone the code repository, point a terminal to that folder and
run bash docker/run.sh. This will create the Docker container
and spawn a Jupyter server. Use the URL displayed in the console
to open a browser session within that container.

A.6 Evaluation and expected results
To reproduce the results from the paper, open and run the fol-
lowing notebook: reproducibility_plot_performance.ipynb
In an API key is provided, this will download the required
scores used in the paper, cache them in various files in
scores_reproducibility_download/, and use these files to com-
pute the performance of EE and baselines. The output consists of
2 figures, which correspond to Figure 8(a) and Figure 5(a) in our
paper.

To evaluate the latest model, open and run the following
notebook: latest_plot_performance.ipynb In an API key is
provided, the notebook will download all the scores produced
by our latest model on 2021-10-10, cache them into a file in
scores_latest_download/, and use this file to compute the perfor-
mance of EE. The output consists of 2 figures which are comparable
to Figure 8(a) and Figure 5(a) in our paper.

As of December 2021 we observe that the performance of our
latest model predicting EE, computed before 2021-10-10, is very
close to the performance reported in the paper (0.69 PR AUC / 0.96
AUC for latest model vs 0.73 PR AUC / 0.84 AUC in the paper),
demonstrating that our online predictor is functional and in line with
the claims from the paper. The performance of the latest model on
other dates can be computed by changing the SCORES_DATE variable
and re-running the notebook.

A.7 Experiment customization
When running latest_plot_performance.ipynb, users can cus-
tomize the SCORES_DATE variable in the notebook to observe the
performance of our model on different dates.

USENIX Association 31st USENIX Security Symposium 31

https://exploitability.app/
https://api.exploitability.app/

A Artifact Appendix

A.1 Abstract
The artifact provided is the implementation of ARBITER
framework along with the VD implementations for 4 CWE
types and for the Juliet data set. The framework, as well as,
the VD templates are written in Python. The artifact contains
a helper script written in Python that invokes the Arbiter API
when provided with a VD template on a target binary both
of which can be specified via command-line arguments. The
artifact requires machines that contain 1 logical core and at
least 4 GB of RAM. A containerized copy of the artifact is
available and can be used on any systems that support docker.
The software requirements for installing are Python (version
at least 3.8) and angr. The artifact has been tested on a ma-
chine running Ubuntu 18.04. The artifact also contains the
list of packages that were used for evaluation, a JSON file
containing the MD5 hashes of each of the binaries as well as
the actual binaries from the Juliet data set that were evaluated.

Our paper describes ARBITER as a combination of static
analysis and dynamic symbolic execution that can be used
to detect classes of vulnerabilities in binary programs with
high scalability and low false positive rate. The large scale
evaluation on 76,516 x86-64 binaries in Ubuntu repositories
as well as the evaluation on Juliet Test Suite (v1.3) highlight
these properties of ARBITER .

In order to validate the experiments, one can repeat them
using the provided templates and compare the results with
those presented in the paper. Since the underlying techniques
used by ARBITER contain a degree of non-determinism, the
results may vary slightly when evaluating on larger binaries.
However, the overall results will be comparable to those pre-
sented in the paper.

A.2 Artifact check-list (meta-information)
• Binary: Binary executables from the Juliet Test Suite (v1.3)

that were used during the evaluation are included in the artifact.

• Data set: The artifact contains a list of packages from the
Ubuntu repository and a JSON file that contains the MD5 sums
of each binary used for the evaluation.

• Run-time environment: The artifact was verified to work on
Ubuntu 18.04 and requires Python (version at least 3.8) and
angr binary analysis framework.

• Hardware: Our experiments were performed on a kubernetes
cluster where each pod was provided 1 logical core and 4 GB
of RAM. However, each pod could request up to 8 GB of RAM.

• Execution: The artifact contains a helper script that can be
executed using the Python interpreter. The arguments to this
script include the VD template to use as well as the target
binary to analyze.

• Metrics: The metric used in the experiment is the false posi-
tive rate of the bugs reported.

• Output: Each template outputs the bugs that it detects in the
target binary. The results are also stored into log files and json
files that are saved on the disk.

• Experiments: To prepare and run the experiments, steps re-
quired are as follows.

1. Download the relevant binary if required.
2. Clone the artifact repository from

https://github.com/jkrshnmenon/arbiter and install it or
pull the docker image 4rbit3r/arbiter:latest.

3. Execute the helper script named run_arbiter.py provided
in vuln_templates/ with a VD template and a path to the
target binary as arguments.

• How much disk space required (approximately)?: The to-
tal disk space used, including downloaded binaries and gen-
erated output files, for our experiment is approximately 350
GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Installing the framework or using the docker con-
tainer should take nearly 5 minutes. However, downloading
the binaries could take up to 1 minute per package. Even if this
process is performed in parallel, it could take up to 1 hour to
download all the packages depending upon the network speed.

• How much time is needed to complete experiments (ap-
proximately)?: Our evaluation was performed on a kuber-
netes cluster that allowed running 800 tasks at a time. With
that constraint, our evaluation of 76,516 binaries took nearly 2
days to complete per template.

• Publicly available (explicitly provide evolving
version reference)?: The artifact is available at
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1 and
as a docker image 4rbit3r/arbiter:latest

• Workflow frameworks used?: We used kubernetes in our
experiments that allowed us to run 800 tasks at a time with
each task being allotted 1 logical core and 4 GB of RAM.

A.3 Description
A.3.1 How to access

The artifact is publicly available at
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1 and
as a docker image 4rbit3r/arbiter:latest.

A.3.2 Hardware dependencies

The artifact requires 1 logical core and at least 4 GB of RAM.

A.3.3 Software dependencies

The artifact has been verified to work on Ubuntu 18.04 and requires
Python (at least version 3.8) and the angr python package.

A.3.4 Data sets

A list of the packages used and JSON file containing the binaries
and their MD5 sums are provided. The corresponding binaries can
be downloaded from the Ubuntu repositories. The binaries from the
Juliet Test Suite (v1.3) are provided with the artifact.

USENIX Association 31st USENIX Security Symposium 33

https://github.com/jkrshnmenon/arbiter
https://hub.docker.com/repository/docker/4rbit3r/arbiter
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1
https://hub.docker.com/repository/docker/4rbit3r/arbiter
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1
https://hub.docker.com/repository/docker/4rbit3r/arbiter

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
The artifact contains a setup script that can be executed to install
the framework. After the repository has been cloned, the following
command can be used to install the framework : python setup.py
install.

A.5 Experiment workflow
The experiment was performed on a kubernetes cluster. In order to
deploy tasks on the cluster, a docker image has to be specified. We
create docker images for each CWE type that would execute the
corresponding template script against a specified target binary and
wrote the results to disk. This process was repeated for each CWE
type using the corresponding template script.

Since the Juliet data-set only provides documentation about the
locations of vulnerabilities in terms of source code files and line
numbers, a mapping between this location and the address of corre-
sponding function in the compiled binary is required.

ARBITER provides the function address where the vulnerability
has been detected. This information, combined with the ground-truth
from the Juliet data-set can be used to evaluate the false-positive rate
of ARBITER .

A.6 Evaluation and expected results
The paper highlights the high scalability and low false positive rates
of ARBITER . The key results that highlight these properties are :

• The large scale evaluation on 76,516 x86-64 binaries on 4
different CWE types.

• The resulting reports that were manually evaluated and the
false positive rate was determined to be nearly 40%.

• The evaluation on the Juliet Test Suite (v1.3) where the false
positive rate was found to be nearly 23%.

In order to reproduce these results, the templates can be evaluated
against the target binaries and the results generated can be manually
verified. The expected false positive rate across all the 4 CWE types
on the entire data set of 76,516 x86-64 binaries in the Ubuntu repos-
itories is nearly 40% while the expected false positive rate for the
binaries from the Juliet Test Suite is nearly 25%.

A.7 Experiment customization
The existing templates can be evaluated on any x86-64 user-space
binary. The easiest way to evaluate the existing templates on a new
binary is to use the run_arbiter.py helper script and specifying the
VD template to use as well as a path to the new binary as argument.

The process of implementing a new VD template for a different
CWE type has been described in the paper and demonstrated in
the comments inside the examples directory. This process can be
followed in order to evaluate ARBITER using a new template.

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

34 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Spoki is a real-time reactive network telescope. It is written in
C++ and based on the actor model to achieve high scalability.
The artifacts also include Python tools to analyze Spoki log
files, identify downloaders distributed by attackers, and fetch
files referenced by the downloaders.

We used Spoki to collect the data for our paper over the
course of three months. The artifact contains the source code.
It can be used to collect the same information (given a suitable
setup) and get started with the evaluation.

A.2 Artifact check-list (meta-information)
Compilation: C++-17 compiler, Python 3.

Run-time environment Linux. Capabilities to capture network
traffic (telescope, root access).

Hardware Depends on your traffic volume. Processing traffic from
a /24 should work with 4 cores of common server hardware.

Output Spoki writes observed events to log files, which can be
analyzed by our Python tools.

Experiments We collected data over three months. The data sets
we used contain sensitive data and are thus not available.

Publicly available? Yes, see below.

Code licenses MIT License

A.3 Description
A.3.1 How to access

All artifacts and future results are available via https://spoki.
secnow.net/. We also archived the artifact on Zenodo: https:
//zenodo.org/record/5702603.

A.3.2 Software dependencies

Spoki runs on Linux and uses the following open-source software.
The repository contains a script to build them.

• The C++ Actor Framework (CAF)

• Scamper

• libtrace

The Python tools depend on Kafka. Python-related dependencies
can be installed via pip (see below).

A.4 Installation
Spoki The source code is located in the spoki/ folder. On
Ubuntu 20.04, you first need to install the following dependencies:

$ sudo apt install gcc g++ cmake git curl make
libtool -bin automake libpcap0.8-dev
libbison -dev flex

Now you can build the required libraries via a script in the reposi-
tory. It installs the libraries into a local folder.

$./setup.sh

Finally, you need to configure and build Spoki:

$./configure
$ make -C build

The Spoki binary will be located at ./build/tools/spoki/.

Evaluation Tools to download the malware linked in payloads
are located in evaluation. First, setup a local virtual environment.
Inside the environment you can setup the tools via the makefile (run
it twice the first time):

$ make update
$ make update

This will link the following tools into the virtual environment:

assemble Reads Spoki logs and assembles events.

filter Identifies events with downloaders.

clean Extracts and clean links from events.

download Follows links and downloads executables.

Additional tools to analyze port statistics, contact types, query
malware hashes in VirusTotal, and annotate data are located in the
same project. Please check the README.md file for details.

A.5 Experiment workflow
Spoki can be run directly from the command line and accepts config-
uration via a caf-application.conf file. Please check the README
of Spoki for the configuration details. It is necessary to configure the
data source (e.g., the interface to read packets from), a folder for the
logs, and a tag for your datasource. Spoki writes two types of logs:
event logs that contain information on observed events alongside
Spoki’s probe reply and scamper logs that list the probe confirma-
tions received from scamper.

The malware processing tools require a running Kafka instance
for communication. They further accept CLI options to configure the
Kafka topic they use between them. The assemble further accepts
the location of the Spoki tools and a date and hour to start processing.
These tools build a processing pipeline. In the final step, Spoki logs
all observed URLs and the data it downloads alongside some meta
information.

A.6 Evaluation and expected results
We cannot provide our data sets because they include personally
identifiable information such as IP addresses. We provide Spoki’s
code to allow others to repeat our experiments.

USENIX Association 31st USENIX Security Symposium 35

https://spoki.secnow.net/
https://spoki.secnow.net/
https://zenodo.org/record/5702603
https://zenodo.org/record/5702603

A Artifact Appendix

A.1 Abstract
In this paper, we present the first techniques to automate the
discovery of new censorship evasion techniques purely in the
application layer. We present a general solution and apply it
specifically to HTTP and DNS censorship in China, India, and
Kazakhstan. Our automated techniques discovered a total of
77 unique evasion strategies for HTTP and 9 for DNS, all of
which require only application-layer modifications, making
them easier to incorporate into apps and deploy. We analyze
these strategies and shed new light into the inner workings
of the censors. We find that the success of application-layer
strategies can depend heavily on the type and version of the
destination server. Surprisingly, a large class of our evasion
strategies exploit instances in which censors are more RFC-
compliant than popular application servers.

For the purposes of this submission, our artifacts
are (1) the strategies we present in the paper and
(2) the code used to implement them. We developed
our fuzzer by building off of the open-source Geneva
project (https://github.com/Kkevsterrr/geneva), but
our code has not yet merged into that repository publicly.
Therefore, we have provided the full modified codebase to
assist in the evaluation.

For this artifact evaluation, we demonstrate how the reader
can evaluate (1) that our strategies can generate modified
requests; (2) that our strategies can evade censorship. Option-
ally, the evaluator can test for themselves that our tool can
fuzz HTTP requests.

A.2 Artifact check-list (meta-information)
• Algorithm: A new algorithm for bypassing censorship with modifications

to application-layer data.

• Program: The program—an extension to our prior work, Geneva—that
implements the algorithm. Specifically, we are asking you to evaluate the
engine that runs the strategies that our algorithm discovered, not to run
the genetic algorithm that found the strategies.

• Security, privacy, and ethical concerns:

• Metrics: Whether or not it is able to access otherwise restricted content.

• Output: HTTP output (from running curl).

• Experiments: Re-run several of our censorship-evading strategies.

• How much disk space required (approximately)?: Very little (megabytes);
a free-tier Ubuntu AWS instance would suffice.

• How much time is needed to prepare workflow (approximately)?: Minutes
(set up an Ubuntu VM, install, and run).

• How much time is needed to complete experiments (approximately)?: Min-
utes, including setup.

• Publicly available (explicitly provide evolving version reference)?: Yes

• Code licenses (if publicly available)?: BSD 3-Clause "New" or "Revised"
License

• Archived (explicitly provide DOI or stable reference)?:
https://zenodo.org/record/6692160

A.3 Description
A.3.1 How to access

The code is available at
https://zenodo.org/record/6692160

We developed our fuzzer by building off of the open-source
Geneva project (https://github.com/Kkevsterrr/geneva), but
our code has not yet merged into that repository publicly.
Therefore, we have provided the full modified codebase to
assist in the evaluation.

Documentation for Geneva is available at
https://geneva.readthedocs.io/en/latest/. To
ease the burden on the artifact evaluators, we have provided
just the required steps to evaluate our artifact below.

A.3.2 Software dependencies

See the dependency installation in the installation setup below
(some basic python libraries).

A.3.3 Security, privacy, and ethical concerns

As this is accessing a server that we control, we do not antici-
pate any security, privacy, or ethical concerns. However, we
do suggest that the evaluator run from a machine inside of
a country that does not prosecute censorship circumvention
(e.g., from within the United States).

A.4 Installation
1. Setup a machine: To test our artifacts, we recommend

using Ubuntu 18.04, and although it may be possible to
reproduce our results using a virtual machine, it is ideal
if the machine has a public IP address and is not behind a
NAT, to avoid any potential interference from your host
or home network.

We recommend setting up a free-tier Amazon EC2 ma-
chine with Ubuntu 18.04. Once your machine is up and
running, transfer our artifact submission to it.

2. Install dependencies: Next, install the dependencies for
Geneva:

cd geneva/
sudo apt-get install build-essential python-dev
libnetfilter-queue-dev libffi-dev libssl-dev
iptables python3-pip
...
python3 -m pip install -r requirements.txt
...

3. Test strategies: To validate our strategies, reviewers can
test (1) that our code generates the strategies it says it
does and (2) that these strategies are actually effective at
evading censorship.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 37

In our paper, we present over 85 strategies, and tested these
across 8 servers against 3 different censoring regimes, using
vantage points we obtained in those locations. Unfortunately,
for security reasons, we cannot give evaluators direct access
to these vantage points.

To make evaluation easier, we have set up an HTTP server
running Apache 2.4.6 in Kazakhstan with www.youporn.com
as the required Host header (we have provided the IP address
and port of that server in our submission). Kazakhstan oper-
ates censorship bidirectionally (forbidden requests sent into
the country are censored in the same way as requests leaving
the country), which enables evaluators to trigger HTTP cen-
sorship remotely to our vantage point. If evaluators wish to
test the rest of our strategies to the other censored countries
or our DNS strategies, we can offer advice and work with the
evaluators as to how to best purchase vantage points in those
locations and test the remaining strategies.

With the server we set up, an evaluator can safely test a
sample of our strategies to this IP address and verify that
they do evade censorship. To maintain reviewer anonymity,
we will discard this server’s logs. In the below guide, we
have removed our server’s IP address; wherever you see <ip>,
please replace with the IP address we provided in HotCrp

First, we will verify that you can reach our server. Start
by curling to our server. Note that Since curl will not set
a Host header by default, you should see a 403 Forbidden
response:

$ curl <ip>:8000
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>403 Forbidden</title>
</head><body>
<h1>Forbidden</h1>
<p>You don’t have permission to access /
on this server.</p>
</body></html>

Second, we will verify that you can experience censorship
to our vantage point. Start tcpdump to our IP address in the
background, and make a request with www.youporn.com in
the Host header. You should see that censorship occurs (the
censor null-routes our request), and the request is retransmit-
ted:

$ sudo tcpdump -f -n ’host <ip>’ &
$ curl -H "Host: www.youporn.com" <ip>:8000
03:31:11.724898 IP 172.172.172.172.38520 > <ip>.8000: Flags [S], seq
2244093827, win 62727, options [mss 8961,sackOK,TS val 585883751 ecr
0,nop,wscale 7], length 0
03:31:11.840224 IP <ip>.8000 > 172.172.172.172.38520: Flags [S.], seq
1501790452, ack 2244093828, win 65160, options [mss 1460,sackOK,TS val
2426661480 ecr 585883751,nop,wscale 7], length 0
03:31:11.840266 IP 172.172.172.172.38520 > <ip>.8000: Flags [.], ack 1,
win 491, options [nop,nop,TS val 585883867 ecr 2426661480], length 0
03:31:11.840609 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585883867 ecr
2426661480],
length 79
03:31:12.219434 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585884246 ecr
2426661480],
length 79
03:31:12.571446 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq

1:80, ack 1, win 491, options [nop,nop,TS val 585884598 ecr
2426661480],
length 79
03:31:13.275434 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585885302 ecr
2426661480],
length 79

Shut down the tcpdump before continuing.

A.5 Experiment workflow

Next, we can evaluate that Geneva can implement the strate-
gies in our paper. Since our paper reported over 85 strategies,
to reduce the burden on the evaluators, we have sampled 3
strategies that work with this server and evade censorship in
Kazakhstan.

• Strategy 1 (Long Request):

[HTTPRequest:host:*]-insert{%20:start:value:1600}-|

• Strategy 2 (Host Header Whitespace):

[HTTPRequest:host:*]-insert{%20:end:value:1}-|

• Strategy 3 (Request Line Whitespace):

[HTTPRequest:method:*]- insert{%0A:start:value:1}-| \/

To use Geneva to test a strategy, we use Geneva’s
--test-type flag to invoke our HTTP fitness function (called
application_http), and can test strategies with the follow-
ing:

$ python3 evolve.py --test-type application_http --log debug --port 8000
--server <ip> --headers Host:www.youporn.com --eval-only "<STRATEGY HERE>"

Explanation of flags:

• --test-type: The fitness function plugin to invoke, in
this case, application_http

• --log: the log level to use (debug, so the evaluator can
see the strategy running and the exact request it sends
on the wire)

• --port: the port the server is listening on (8000 for our
server)

• --server: the server to test with; supply our IP address.

• --eval-only: this is a Geneva flag instructing it to eval-
uate a single strategy and then exit. Provide the strategy
to test here.

38 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A.6 Evaluation and expected results
Our primary claim is that these modifications to application-
layer data permit evasion of censorship. You can use the
above steps to run individual strategies (either the ones we
selected, or any of the ones from the paper: you should be able
to simply copy-paste them where it says “STRATEGY HERE”)
and should see something to the effect of the following:

$ sudo python3 evolve.py --test-type application_http --log debug
--port 8000 --server <ip> --headers Host:www.youporn.com --eval-only
"[HTTPRequest:host:*]-insert{%20:end:value:1}-|"
2022-06-22 20:51:13 DEBUG:Launching strategy evolution: --test-type
application_http --log debug --port 8000 --server <ip> --headers
Host:www.youporn.com --eval-only [HTTPRequest:host:*]-
insert{%20:end:value:1}-|
2022-06-22 20:51:13 INFO:Logging results to trials/2022-06-
22_20:51:13/logs
2022-06-22 20:51:14 DEBUG:Beginning evaluation in plugin
2022-06-22 20:51:14 DEBUG:Now entered evaluate of
ApplicationHTTPPlugin.
2022-06-22 20:51:14 DEBUG:Only using port 8000
2022-06-22 20:51:14 DEBUG:Starting with request: b’GET /
HTTP/1.1\r\nHost:www.youporn.com\r\n\r\n’
2022-06-22 20:51:14
DEBUG:---
2022-06-22 20:51:14 DEBUG:Running individual:
[HTTPRequest:host:]-
insert{%20:end:value:1}-| \/
2022-06-22 20:51:14 DEBUG: + out action tree triggered:
[HTTPRequest:host:]-insert{%20:end:value:1}-|
2022-06-22 20:51:14 DEBUG:Inserting value: |%20| into
the end of the
variable header_value, 1 times, in the header
Host:www.youporn.com
2022-06-22 20:51:14 DEBUG:Shuffling headers...
2022-06-22 20:51:14 DEBUG:New request string: b’GET /
HTTP/1.1\r\nHost:www.youporn.com \r\n\r\n’
2022-06-22 20:51:14 DEBUG:Connecting to url <ip> with
port 8000
2022-06-22 20:51:14 DEBUG:Response data
HTTP/1.1 200 OK
Date: Thu, 23 Jun 2022 03:51:14 GMT
Server: Apache/2.4.6 (Unix)
Last-Modified: Thu, 23 Jun 2022 03:12:30 GMT
ETag: "2d-5e214d2fe4577"
Accept-Ranges: bytes
Content-Length: 45
Content-Type: text/html

<html><body><h1>It works!</h1></body></html>

2022-06-22 20:51:14
DEBUG:==
2022-06-22 20:51:14 DEBUG:EVADED the censor! Had
response line: HTTP/1.1
200 OK
2022-06-22 20:51:14
DEBUG:==
2022-06-22 20:51:14 DEBUG:Punishing for complexity: 1
2022-06-22 20:51:14 DEBUG:New request is 1 bytes longer
than original.
Punishing -10 fitness.
2022-06-22 20:51:14 DEBUG:Individual
[HTTPRequest:host:]-
insert{%20:end:value:1}-| \/ ran with a fitness of: 316
2022-06-22 20:51:14 INFO:[316]
2022-06-22 20:51:14 INFO:Trial 0: success! (fitness
= 316)
2022-06-22 20:51:14 INFO:Overall 1/1 = 100%
2022-06-22 20:51:14 INFO:Exiting eval-only.

In the above output, you can see that the strategy was imple-
mented on the outgoing request: one space (%20) was added to
the outbound request at the end of the value of the Host header
(’GET / HTTP/1.1\r\nHost:www.youporn.com \r\n\r\n’).

You may use tcpdump to verify that these bytes are transmit-
ted on the wire.

You can next see that this strategy evaded censorship, and
the server was able to properly respond. You can also see that
the fitness function correctly detected that it evaded censor-
ship, and awarded a positive fitness value accordingly. Repeat
this step for the three strategies we provided, and you can
verify that each correctly implements the strategy it purports
to on the wire and that those strategies successfully evade
censorship.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 39

A Artifact Appendix

A.1 Abstract

This artifact is separated into two parts: simulations (Sections
6 and 7 on the paper) and evaluations (Sections 8 and 9).

The simulations part assumes a machine with Python3.8
and the libraries scipy, numpy, lightning-utils, networkx, mat-
plotlib, and seaborn. This part runs standalone simulations
and was used to generate Figures 4, 5, 6, 7, and 10 on the
paper. In practice, to reduce running time, we ran most of the
simulations using Slurm on an internal cluster.

On the part of the evaluation, we implemented the Twilight
system in 4 components: smart contract (Solidity), enclave
(C++, SGX), relay (Python), and the evaluations manager
(Python). The enclave and relay parts were run on an Azure
VM. The tests were written using pytest, used Ganache as
a local blockchain, and the compiler solcjs to compile the
contract. In order to create fully reproduceable results, this
evaluation part can be executed only in Azure cloud environ-
ment. The manager creates the relevant resources in the cloud
and executes the system according to the evaluation experi-
ments. To run this part, we assume a machine with Python3.8,
the libraries paramiko (to establish SSH connection to the
machines) and matplotlib, seaborn to generate the plots, the
Pythonic Azure SDK, credentials with admin permissions (to
create resources such as VMs, NICs, IPs, etc.), and enough
quota in Azure to create these machines. To create Figures
8 and 9 in the paper, we used 6 VMs with the type Stan-
dard_DC1s_v2 (3 in each region: eastus and northeurope).

A.2 Artifact check-list (meta-information)
• Algorithm: We implemented Algorithm 1 from the paper (Ap-

pendix, Section A) inside the SGX (file Enclave/tree.cpp),
and Algorithm 2 (Appendix, Section B) inside the smart con-
tract (file smart_contract/channel.sol).

• Compilation: Most of our code is written in Python. The part
of the enclave is written in C++17 and could be compiled by
running make SGX_MODE=HW SGX_PRERELEASE=1 in
the root directory. The smart contract can be compiled using
any solidity compiler, we used solcjs without any flags.

• Hardware: The evaluation uses an Azure VM of type
Standard_DC1s_v2, with SGX-1. The local code runs in
Python and has no hardware requirements.

• Experiments: In the evaluation part, we created a line topol-
ogy of 6 machines: Alice, 4 relays, and Bob. For every through-
put value that has been tested, we executed a command on
Bob’s machine to initiate the given amount of payments every
second. Then, after 10 seconds, we queried Alice’s machine
for the number of finished payments (to get the throughput)
and for the duration of the payment (to get the latency).

• How much disk space required (approximately)?: Negligi-
ble. Less than 1GB should be sufficient.

• How much time is needed to prepare workflow (approxi-
mately)?: Creating and preparing all the cloud resources is
being executed once, and take less than an hour overall.

• How much time is needed to complete experiments (ap-
proximately)?: Each data point in Figures 9 and 10 should
be executed separately and takes around 20 minutes (can be
controlled by lowering the number of repetitions. We used a
default of 20 repetitions).

• Publicly available (explicitly provide evolving version refer-
ence)?: The Github repository is: https://github.com/s
aart/Twilight.

• Code licenses (if publicly available)?: None.

• Data licenses (if publicly available)?: We used the Lightning
Network topology which was queried (using a standard CLI
command https://github.com/lightningnetwork/lnd/
blob/593962b788753768661582d11221f32ebf7dbe67/cm
d/lncli/commands.go#L1515) from a Lightning node. This
is publicly available.

• Workflow frameworks used?: We used Python and Azure’s
SDK to manage the experiments (initiate and teardown ma-
chines), FastAPI (https://fastapi.tiangolo.com/) as the
communication framework between the relays, and Pistache
(https://github.com/pistacheio/pistache) as the
communication framework between the relay and the enclave.

• Archived (explicitly provide DOI or stable reference)?: On
the paper we used tag: https://github.com/saart/Twili
ght/tree/USENIX-Security-22.

A.3 Description
A.3.1 How to access

Publicly available at: https://github.com/saart/Twili
ght

A.3.2 Hardware dependencies

None (run on machines with specific requirements on the
cloud).

A.3.3 Software dependencies

Python3.8 with the libraries scipy, numpy, networkx,
mat plotlib, and seaborn. For the evaluation part, Azure SDK
is also required. Moreover, we assume network connectivity,
and in particular the ability to run Azure CLI command and
establish SSH sessions to Azure’s VMs.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 41

https://github.com/saart/Twilight
https://github.com/saart/Twilight
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://fastapi.tiangolo.com/
https://github.com/pistacheio/pistache
https://github.com/saart/Twilight/tree/USENIX-Security-22
https://github.com/saart/Twilight/tree/USENIX-Security-22
https://github.com/saart/Twilight
https://github.com/saart/Twilight

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

To install the Azure VM follow the description in: https:
//github.com/saart/Twilight#how-to-install-
on-a-new-azure-confidetial-computing-machine.
To install the local machine: Install Python3.8 with https:
//www.python.org/downloads/, install setuptools using
pip install setuptools==58.0.0, install azure cli using pip in-
stall azure-cli==2.19.0 and install the rest of requirements
using pip install -r simulations/requirements.txt. Then, create
permissions from your Azure profile using https://docs.m
icrosoft.com/en-us/azure/developer/python/sdk/
authentication-overview (make sure that you can authen-
ticate using python, e.g. by running the Pythonic command
get_client_from_cli_profile(ComputeManagementClient)).

A.5 Experiment workflow

The simulation workflow is standalone per Figure:

• Figure 4 can be reproduced using simula-
tions/distinct_routes.py

• Figures 5 and 6 can be reproduced using simula-
tions/visualizations/efficiency_privacy_tradeoff.py

• Figure 7 can be reproduced using simula-
tions/noise_simulations/liquidity_distribution.py
and then simulations/noise_simulations/success_rate.py

• Figure 10 can be reproduced using simula-
tions/visualization/adoption.py

The evaluation workflow is managed using the script simu-
lations/manage_tests.py.The general flow is:

1. Create the machines in the relevant regions (eastus and
northeurope).

2. Start/Restart the machines, which starts two processes:
the relay and the enclave as system services. This step
also refreshes the existing machines between different
experiments.

3. Build the P2P and channels topology. I.e. query for the
names of the relays, and execute register to create the
edges.

4. Execute a command on Bob’s machine, that initiates a
repetitive thread that starts payments according to the
given route and the given desired throughput.

5. Query Alice’s machine on the payments that have been
finished in the last few seconds, and store the throughput
(number of finished payments) and the latency (duration
of each payment).

Steps 2-5 are re-executed repetitively: both to evaluate
the same experiment again, and to evaluate using different
parameters (number of issued payments, route length).

In order to plot the results and reproduce Figures 8 and 9,
use the file simulations/draw_evaluation_figures.py.

A.6 Evaluation and expected results
Our main claim in the paper is that Twilight is a valid solution
to the probing attack of off-chain networks.

This claim is backed by this artifact that presents both
simulations and evaluations of the system and its properties.
Every one of the Figures 3-10 from the paper is backed with
the code that is presented in this artifact.

To reproduce the results of the simulations part (Figures
3-7 and 10), follow the description in Section A.5, and run
each file to generate the corresponding figure.

To reproduce the results of the evaluation part (Figures
8 and 9), first connect to your azure environment using
the bash command az login, authenticate in the opened
browser, and run the evaluation using the script simula-
tions/manage_tests.py from the directory simulations/. Then,
draw the plots using draw_evaluation_figures.py.

The results from both parts should plot the same graphs
that we presented on the paper. This is possible that the results
will vary, therefore for each plot on the paper we included
error bars that should present the range of the variation.

A.7 Experiment customization
The topology of the evaluation is flexible. Although we pre-
sented on the paper only a line-topology, we included in the
file simulations/manage_tests.py more possible topologies
that evaluate different use-cases. The different use cases that
we also examined are: changes in the throughput over time,
building a topology based on the topology of the Lightning
network, and two routes that intersect in the middle (X topol-
ogy).

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

42 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview

A Artifact Appendix

A.1 Abstract

In this work, we developed a voting-based domain ranking
method that operates on passive DNS (PDNS) data to con-
struct a domain top list. We open-source our top list construc-
tion implementation at https://github.com/SecRank/secrank-
sourcecode/releases/tag/v1.0.0, to provide transparency into
the design of our ranking method. The code provided (written
in Scala) processes proprietary PDNS data to compute a daily
top 1M domains list, running in a distributed fashion using
Apache Spark on YARN. As we are unable to release the raw
proprietary PDNS data used, the code is not directly runnable.
Instead, it serves as a reference for understanding the details
of our ranking method, and as a template that can be modified
for other PDNS datasets and computing environments.

As our top list design achieves favorable stability and ma-
nipulation resistance properties, we also provide public access
to a regularly updated domain top list constructed using our
ranking method at https://secrank.cn/topdomain, for others to
use in their research. After registering for an account on the
website, a user can download a daily top 1M domains list as
well as historical top lists.

A.2 Artifact check-list (meta-information)
• Algorithm: We provide a new voting-based domain rank-

ing algorithm that operates on PDNS data, where the domain
preferences of individual IP addresses are first computed, and
then a global top list ranking is produced by applying a voting
scheme across all IP addresses.

• Security, privacy, and ethical concerns: This artifact does
not raise any security, privacy, or ethical concerns.

• Publicly available?: Our top list construction implementation
is publicly available at https://github.com/SecRank/secrank-
sourcecode/releases/tag/v1.0.0. A regularly updated domain
top list constructed using our ranking method is publicly avail-
able at https://secrank.cn/topdomain, upon registering for a
user account.

• Code licenses?: MIT License.

• Archived?: Our top list construction implementation
is publicly archived at https://github.com/SecRank/secrank-
sourcecode/releases/tag/v1.0.0.

A.3 Description

A.3.1 How to access

Source Code Access. We open-source our top list construc-
tion implementation at https://github.com/SecRank/secrank-
sourcecode/releases/tag/v1.0.0. Our implementation relies on
proprietary PDNS data, which we are unable to release for
privacy and commercial reasons. Thus, the code is not directly

runnable, and rather provides transparency into the design of
our domain ranking method.

Those interested may adapt our code for their own PDNS
data/format and computing environment. Note that our im-
plementation uses Apache Spark on YARN, with input and
output data stored in HDFS. For users with a similar comput-
ing environment, our code can be most directly applied by
providing the proper input and output data file paths, as well
as adjusting the data field names extracted from the input data.
Further details are provided in the README.MD file.

The code repository consists of the following main files:
• README.MD: The README file providing guidance on

using the code.
• TopFQDNDailyRelease.scala: The main algorithm source

code file, containing detailed comments for each algorithm
component that reference the relevant sections in our paper
describing the algorithm’s design. We additionally docu-
ment the input/output file paths and data formats that must
be modified if adapting this code for other PDNS datasets.

• pom.xml: The XML file that contains information about
the software package and configuration details (including
software and library dependencies).

• submit.sh: The shell script to submit the Spark application
to a YARN cluster.

Daily Top 1M Domains List Access. Public access to
a regularly updated top 1M domains list is available at
https://secrank.cn/topdomain, through registering for a free
account. With an activated account, users can download the
latest daily list as well as historical lists.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

Our released implementation is written in Scala and runs
on Apache Spark on YARN. While our released code is not
directly runnable, those modifying it for use will likely require
IntelliJ IDEA, Java 1.8, Maven JDK 1.8, Scala 2.11.8, Apache
Spark 2.4.5, and Hadoop 2.7.2. (These dependencies are also
shown in the pom.xml file in the release package.)

A.3.4 Data sets

The source code relies on proprietary PDNS data, which we
are unable to release for privacy and commercial reasons.

A.3.5 Models

N/A

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 43

https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://secrank.cn/topdomain
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://secrank.cn/topdomain
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://github.com/SecRank/secrank-sourcecode/releases/tag/v1.0.0
https://secrank.cn/topdomain

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

While our released code is not directly runnable (as we cannot
release our raw input PDNS data), we provide guidance on
how one could modify the code to run on their own input
PDNS dataset. As our implementation is executed via Apache
Spark on YARN, we assume a similar computing environment
(i.e., Java 1.8, Maven JDK 1.8, Scala 2.11.8, Apache Spark
2.4.5, and Hadoop 2.7.2).
1. We suggest using IntelliJ IDEA to create an Apache Maven

project, and replacing the default pom.xml file with the
pom.xml file in our Github repository (which contains all
dependency configurations and package requirements).

2. Next, place TopFQDNDailyRelease.scala in the path
$PROJECT_PATH$/src/main/java/com/secrank/examples/.

3. In TopFQDNDailyRelease.scala, modify the trends_path
and access_path variables to reference the input PDNS
data file paths on HDFS, and also modify accordingly the
output file path (in the code’s final stage).

4. As documented in the comments of TopFQDNDailyRe-
lease.scala, the code assumes certain fields are present
in the input data format. If those fields are not available,
either the source data must be modified to provide these
fields, or the field names must be adjusted accordingly in
the code to reflect the source data.

5. After modifying the code, package the Maven project into
a JAR file, upload this JAR file to your Spark client, and
execute submit.sh to submit the Spark application to the
YARN cluster. After the code fully executes, the output
will contain the top 1M domains list.

A.5 Experiment workflow

N/A

A.6 Evaluation and expected results

Users are expected to modify the code for their own input
PDNS data and computing environments, with the expected
output being a top 1M domains list computed using our do-
main ranking method.

A.7 Experiment customization

N/A

A.8 Notes

N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

44 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact contains the source code of all the experiments
that were used to produce the figures and numbers in the
research paper. Its hardware requirements are a bare-metal
machine with an Intel i7-9700 CPU (however, with some
engineering efforts, the code can be ported to other Intel CPU
models), and a second machine that can communicate with
(i.e., send network requests to) the first machine. Its software
requirement is Ubuntu 18.04 or 20.04 with its default system
configuration. It will take approximately 10 days to reproduce
the entire set of all the experiments in the paper.

A.2 Artifact check-list (meta-information)
• Compilation: GCC and Golang.

• Hardware: Two machines:

1. A bare-metal machine with Intel i7-9700. However, with
additional engineering efforts, the code can be ported to
other CPU models (e.g., see Table 1 in the paper).

2. A second machine that can communicate with (i.e., send
network requests to) the first machine.

• Security, privacy, and ethical concerns: In the proof-of-
concept attacks, you will launch both the attacker and the vic-
tim. No production servers are targeted.

• Experiments: Please checkout the README in the artifact
for details on the experiments included.

• How much disk space required (approximately)?: We rec-
ommend at least 2 GB of free disk space.

• How much time is needed to prepare workflow (approxi-
mately)?: Overall, preparing the various workflows should
take approximately 30 minutes on the i7-9700 CPU.

• How much time is needed to complete experiments (ap-
proximately)?: Reproducing all the experiments will take
approximately 10 days.

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes, the artifact is publicly available at https:
//github.com/FPSG-UIUC/hertzbleed

• Code licenses (if publicly available)?: University of Illinois
/ NCSA Open Source License.

• Archived (explicitly provide DOI or stable refer-
ence)?: https://github.com/FPSG-UIUC/hertzbleed/
releases/tag/usenix2022ae

A.3 Description
This artifact includes (i) several experiments that reverse engineer the
dependency between data, power and frequency on Intel CPUs and
(ii) proof-of-concept attacks that leak full cryptographic keys from
two SIKE libraries, break KASLR, and establish a covert channel
using the frequency side channel.

A.3.1 How to access

https://github.com/FPSG-UIUC/hertzbleed.

A.3.2 Hardware dependencies

1. A bare-metal machine with Intel i7-9700. However, with addi-
tional engineering efforts, the code can be ported to other CPU
models (e.g., see Table 1 in the paper).

2. A second machine that can communicate with (i.e., send net-
work requests to) the first machine.

A.3.3 Software dependencies

A default installation of Ubuntu 18.04 or 20.04, and (if not pre-
installed) the programs gcc, golang, stress-ng, and python3.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

No production servers are targeted. No sensitive data is collected,
and no damage is caused to the machines.

A.4 Installation
Please checkout the README in the artifact for instructions on how
to install the software dependencies.

A.5 Experiment workflow
Please checkout the README in the artifact for instructions on how
to set up the experiment workflow.

A.6 Evaluation and expected results
The expected results are figures like the ones in the research paper
and numbers like the ones reported in the research paper. Some
variability is possible due to environmental/machine differences, but
the general figure trends should apply.

A.7 Experiment customization
Please checkout the README in the artifact for instructions on how
to customize the experiments.

A.8 Notes
N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 45

https://github.com/FPSG-UIUC/hertzbleed
https://github.com/FPSG-UIUC/hertzbleed
https://github.com/FPSG-UIUC/hertzbleed/releases/tag/usenix2022ae
https://github.com/FPSG-UIUC/hertzbleed/releases/tag/usenix2022ae
https://github.com/FPSG-UIUC/hertzbleed

A Artifact Appendix

A.1 Abstract

The artefact consists of scripts for collecting several datasets
of live-defended VPN network traces using the QCSD frame-
work, simulating defended network traces, and performing
machine-learning evaluations, in addition to the source code
of the QCSD client library and test clients written in Rust
and the datasets collected during the evaluation. The artefact
requires at least 2 CPU cores and 4 GB of memory, however
additional cores help greatly to reduce run times, as does
access to GPUs. It requires python3.8, rust, and docker and
was tested on Ubuntu 20.04. The artefact generates the plots
present in the paper and allows running the machine-learning
evaluations on the datasets from the paper to compare the
resulting plots to those in the paper.

A.2 Artifact check-list (meta-information)
• Compilation: rustc >= 1.51, publicly available

• Data set: included

• Run-time environment: root access, Ubuntu 20.04, docker,
rust, python3.8, git/git-lfs

• Hardware: Wireguard VPN servers, GPU

• Run-time state: impacted by network throughput

• Execution: test → under 24 hours; full → data collection >
4 days with 3 VPN gateways and a 32 core server, machine-
learning evaluations several days on an RTX 3060

• Security, privacy, and ethical concerns: network scanning,
web-page crawling

• Metrics: recall, r-precision, Pearson’s correlation, LCSS

• Output: plots, tables, see paper for expected results

• Experiments: automated setup, snakemake workflow

• How much disk space required (approximately)?: 60 GiB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (ap-
proximately)?: test → under 24 hours, full → upwards of
6 days

• Publicly available (explicitly provide evolving version
reference)?: yes, https://github.com/jpcsmith/
qcsd-experiments/tree/v1.0.1

• Code licenses (if publicly available)?: MIT, Apache-2.0

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International

• Workflow frameworks used?: Snakemake

• Archived (explicitly provide DOI or stable reference)?:
10.3929/ethz-b-000565356

A.3 Description
A.3.1 How to access

The repository containing the scripts can be by cloned
from the GitHub repository https://github.com/jpcsmith/
qcsd-experiments.git, with tag v1.0.1 corresponding to the ver-
sion of this appendix. The dataset collected during the paper, along
with archived versions of the associated repositories and a virtual
machine with the software dependencies installed, can be found
under the DOI 10.3929/ethz-b-000565356.

A.3.2 Hardware dependencies

Below we describe the hardware dependencies based on the various
phases in the workflow.

Dataset collection The provided test configuration runs on a
server with 8 CPU cores and 8 GB of memory, and with a single
Wireguard VPN gateway running on the same host. The full collec-
tion utilised 3 VPN gateways (2 CPU cores and 2 GB memory is
more than sufficient for each) and 12 VPN clients per gateway (36
in total) running on a server with 32 cores and 188 GB of memory.
Each VPN client is is restricted to at most 2 CPU cores. Reduce the
number of clients per gateway to use less cores at the cost of longer
dataset collection times.

Machine learning (ML) evaluations The ML evaluations
associated with the test configuration can be run on 8 cores or less.
For the full configuration, at least 1 GPU is recommended such as
an RTX 3060 or better.

A.3.3 Software dependencies

The following software dependencies are assumed to be already
installed, and are installed in the provided VM:

• Ubuntu 20.04 and bash: All code was tested on a fresh instal-
lation of Ubuntu 20.04.

• git, git-lfs: Used to clone the code repository and install python
packages.

• Python 3.8 with virtual envs: Used to create a Python 3.8 virtual
environment to run the evaluation and collection scripts.

• docker >= 20.10: Used to isolate simultaneous runs of
browsers and collection scripts, as well as to enable multi-
ple Wireguard clients on a single host. The user must be able
to manage containers without using sudo.

• tcpdump >= 4.9.3: Used to capture traffic traces. Must be
configured to allow the non-root user to capture.

• rust (rustc, cargo) == 1.51: Used to compile the QCSD library
and test client library written in Rust.

• Others: Additionally, the following packages are required to
build the QCSD library and test client, and can be installed
with the ubuntu package manager, apt: build-essential
mercurial gyp ninja-build libz-dev clang tshark
texlive-xetex

Other software dependencies, such as ansible and Wireguard, are
installed automatically.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 47

https://github.com/jpcsmith/qcsd-experiments/tree/v1.0.1
https://github.com/jpcsmith/qcsd-experiments/tree/v1.0.1
https://github.com/jpcsmith/qcsd-experiments.git
https://github.com/jpcsmith/qcsd-experiments.git

A.3.4 Data sets

The dataset from the collection performed in the paper has the DOI
10.3929/ethz-b-000565356 and can be downloaded and used as
a starting point for running the evaluations. To do so, replace the
results/ directory in the cloned repository with the results direc-
tory found in the gzipped tar archive.

A.3.5 Security, privacy, and ethical concerns

The evaluation downloads thousands of web page HTMLs and as-
sociated resources. The scripts in the workflow avoid overloading
servers by scheduling requests such that sequential requests to a
domain are either delayed or interleaved with requests to different
domains. Additionally, be aware of any regulations of your network
provider regarding performing automated web browsing.

A.4 Installation
If using the provided VM image, change to the home directory of the
vagrant user /home/vagrant/, otherwise change to the directory in
which you would like to install the artefact.

1. Clone the repository https://github.com/jpcsmith/
qcsd-experiments.git using git clone.

2. Change to the code directory and pull the additional resources
cd qcsd-experiments && git lfs pull.

3. If you want to use a specific version of the repository, change
to it now (e.g., git checkout v1.0.1).

4. Create a Python 3.8 virtual environment and activate it
python3.8 -m venv env && source env/bin/activate

5. Upgrade the python package manager (python -m pip
install -U pip wheel) and install required python
packages python -m pip install --no-cache-dir -r
requirements.txt.

Decide whether you want to run the experiments locally or dis-
tributed across multiple machines. The file ansible/distributed
contains an example of the configuration required for running with
remote VPN gateways and clients. The file ansible/local con-
tains the configuration for running the experiments locally, and is
used as an example for the following steps.

6. Set the gateway_ip variable in ansible/local to the non-
loopback IP address of the host, for example, the LAN IP
address.

7. Change the exp_path variable to a path on the (local) filesys-
tem. It can be the same path to which the repository was cloned.

8. Run the command ansible-playbook -i ansible/local
ansible/setup.yml to setup the docker image for creating
the web-page graphs with Chromium; create, start, and test
docker images for the Wireguard gateways and clients; and
download and build the QCSD library and test clients.

The QCSD source code is cloned on the remote host into the third-
party/ directory of the folder identified by the exp_path variable in
the hosts file (ansible/local or ansible/distributed).

A.5 Experiment workflow
Before running the workflow, it is necessary to ensure that the ap-
propriate environment variables are set. This can be done with
source env/bin/active to activate the python environment cre-
ated during installation, and source env_vars to set environment
variables for the project.

The results and plots in the paper were produced using snakemake.
Like GNU make, snakemake will run all dependent rules necessary
to build the final target. The general syntax is

snakemake -j --configfile=<filename> <rulename>
where <filename> can be config/test.yaml or
config/final.yaml and <rulename> is the name of one
of the snakemake rules found in workflow/rules/*.smk files or
the target filename. Table 1 lists the figures in the table and the rules
to produce them, whereas the following section describes the results
in the paper and the rule used to produce them. The listed output
files can be found in the results directory.

Generally, the various result workflows can be divided into the
phases: scan, collect, evaluate. In the first phase, scan, a python script
is used to scan domains from the Alexa Top list for QUIC support. In
the second phase, collect, Chromium browser instances are used to
download the domains and record their resource dependencies, and
then these dependency graphs are used to download live-defended
and undefended samples using the QCSD test clients. Finally in the
last phase, machine learning, overhead, or shaping evaluations are
performed and plots are created.

A.6 Evaluation and expected results
The main claims and associated results are described below,
along with the snakemake rules used to run them in paren-
theses. The snakemake rules can be tested with snakemake
-j --configfile=config/test.yaml <rulename>, where
<rulename> is given in parentheses below. The claims can be
evaluated fully using final.yaml instead of test.yaml.

• Claim. QCSD can successfully emulate website-fingerprinting
defences such as Tamaraw and FRONT.
Results. The Pearson correlation coefficient indicate medium
and strong correlations between simulated and live-defended
traces with QCSD at 50 ms sampling rates. LCSS scores in-
dicate long common sub-sequences at 5 ms sampling rates
(> 85%) (shaping_eval__all).

• Claim. QCSD adds small overheads to chaff-only defences
such as FRONT.
Results. Compared to the simulated FRONT defences,
the live-defended traces increase bandwidth overhead by
around 30% of the original trace length and latency
overhead by under 10% (overhead_eval__table and
overhead_eval_mconn__table).

• Claim. QCSD effectively defends single connections with
FRONT, but only mildly reduces classification performance
when defending with Tamaraw.
Results. In the single connection setting, the r20-precision-
recall curves for traces defended with FRONT match or surpass
the curves of the simulated FRONT defences, whereas for
the Tamaraw defence, the curves curves of the live-defended

48 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/jpcsmith/qcsd-experiments.git
https://github.com/jpcsmith/qcsd-experiments.git

Table 1: List of figures and snakemake rules to produce them. Use snakemake -j --configfile=<config> <rulename>
with the appropriate rule name to create the figure. Output file paths are relative to the results/ directory.

Section Figure Rule name Output file(s)

5. Shaping Case Studies:
FRONT & Tamaraw

Figure 3 shaping_eval__all plots/shaping-eval-front.png,
plots/shaping-eval-tamaraw.png

Table 2 overhead_eval__table tables/overhead-eval.tex
6.1. Defending Single Connec-
tions

Figure 4 ml_eval_conn__all plots/ml-eval-conn-tamaraw.png,
plots/ml-eval-conn-front.png

6.2. Defending Full Web-Page
Loads

Figure 5 ml_eval_mconn__all plots/ml-eval-mconn-tamaraw.png,
plots/ml-eval-mconn-front.png

Figure 6 ml_eval_brows__all plots/ml-eval-brows-front.png
E. Overhead in the Multi-
connection Setting

Table 3 overhead_eval_mconn__table tables/overhead-eval-mconn.tex

F. Server Compliance with Shap-
ing

Figure 8 See failure-analysis.ipynb plots/failure-rate.png

traces do not indicate significantly better performance than
undefended traces (ml_eval_conn__all).

• Claim. QCSD effectively defends multiple connections with
FRONT, but does not reduce classification performance when
defending with Tamaraw.
Results. In the single connection setting, the r20-precision-
recall curves for traces defended with FRONT match or sur-
pass the curves of the simulated FRONT defences, both when
considering multiple orchestrated connections based on de-
pendency graphs (ml_eval_mconn__all) and in the browser
setting (ml_eval_brows__all). When applying the Tamaraw
defence on multiple orchestrated connections, the precision-
recall curves are similar to the curves for the undefended
traces for 2 of the 3 evaluated classifiers (k-FP and VarCNN)
(ml_eval_mconn__all).

A.7 Experiment customization
The experiments can be customised by modifying the hosts
on which the experiments are to be run (e.g., ansible/local
and ansible/distributed) or changing experiment parameters
in the snakemake config files (e.g., config/test.yaml and
config/final.yaml).

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 49

A Artifact Appendix

A.1 Abstract
In this artifact, we will build our Cheetah framework, and to
evaluate three neural networks, i.e,. ResNet50, DenseNet121,
and SqueezeNet in a secure two-party computation manner.
Also, we build the counterpart (i.e., SCI-HE from the CrypT-
Flow2’s paper) for comparison. Specifically, this artifact can
reproduce the performance numbers in Table 8, and Fig 10 in
our paper.

To build our programs, we require a C++ toolchain in-
cluding cmake (version>=3.13), C++ compiler that sup-
ports C++17 (e.g., g++>=8.0), make and git. Also we require
OpenSSL to be installed. To achieve the best performance, or
to reproduce the performance numbers in our paper, we expect
the AVX512 instructions (i.e., avx512dq and avx512ifma) are
enabled.

For each neural network, we will generate two executables,
one for Cheetah and the other for CrypTFlow2’s counterpart.
Running the executable, it will log the running time and com-
munication cost for evaluating the neural network securely.
All the logs are re-directed to file.

A.2 Artifact check-list (meta-information)
• Algorithm:

Our artifact includes all the proposed algorithms in our pa-
per. Specially, the linear protocols (Fig2, Fig4, and Fig 11) are
placed in include/gemini/cheetah/ and the non-linear pro-
tocols (Fig8 and Fig 9) are placed in SCI/src/Millionaire/
and SCI/src/Nonlinear/.

• Compilation:
For compilation, we provide two scripts
scripts/build-deps.sh and scripts/build.sh which
builds the dependencies and our implementation, respectively.

• Binary:
Using our scripts, the generated binaries are placed in the
build/bin/ directory, including 6 demo.

– sqnet-cheetah Run inference on SqueezeNet using
Cheetah.

– resnet50-cheetah Run inference on ResNet50 using
Cheetah.

– densenet121-cheetah Run inference on DenseNet121
using Cheetah.

– sqnet-SCI_HE Run inference on SqueezeNet using SCI-
HE

– resnet50-SCI_HE Run inference on SqueezeNet using
SCI-HE.

– densenet121-SCI_HE Run inference on SqueezeNet
using SCI-HE.

• Model:
We provide three pretrained neural networks:

– pretrained/sqnet_model_scale12.inp,

– pretrained/resnet50_model_scale12.inp,

– pretrained/densenet121_model_scale12.inp.

• Run-time environment: >=2.70 GHz CPU with more than
16GB RAM. A Linux-like OS is preferred. For instance,
our timing results can be reproduced using Alibaba Cloud
ecs.c7.2xlarge instances or Amazon AWS c6g.2xlarge in-
stances.
If to execute our artifacts on a single machine (i.e., using two
processes to mimic two remote machines), we recommend the
CPU supports more than 8 cores.

• Execution:
We provide two scripts scripts/run-server.sh and
scripts/run-client.sh to execute our demo. For exam-
ple, to run an inference on SqueezeNet using Cheetah. We
can run bash scripts/run-server.sh cheetah sqnet
on one terminal and run bash scripts/run-client.sh
cheetah sqnet on other terminal.
Replacing the first argument cheetah with SCI_HE to run
CrypTFlow2’s counterpart.

• Metrics:
We measure the total running time and communication cost
for one inference. The one-time setup including base-ot and
key-generation are NOT included. Our programs will log the
running time (in seconds) and communication (in megabytes)
for each layer in the neural network.

• Output:
Our programs will generate a detailed log for each layer
including the running time and communication. Also,
on the client side, it will output the prediction label for
the input image. For example, after running the script
scripts/run-client.sh cheetah sqnet, the generated
log file cheetah-sqnet_server.log is placed under the cur-
rent directory.

• Experiments:
Our artifact reproduces some empirical results in our paper,
including the Cheetah and SCI-HE performance numbers in
Table 8, and the top-10 values in the final prediction vectors in
Figure 10.

• How much disk space required (approximately)?:
About 500 megabytes, including the source codes, dependen-
cies, built objects and pretrained models.

• How much time is needed to prepare workflow (approxi-
mately)?:
It took us less than 10 minutes to build all the programs. Note
that to build our programs, we need to fetch dependencies from
Github.

• How much time is needed to complete experiments (ap-
proximately)?:
It might take about 15–30 minutes to run all the demos.
The three Cheetah-related demos takes less than 4 minutes to
execute on LAN and AVX512 enabled. While the three SCI-
HE -related demos takes more than 10 minutes to execute on
LAN and AVX512 enabled.
If AVX512 is not available, the execution time might be twice.

USENIX Association 31st USENIX Security Symposium 51

• Publicly available (explicitly provide evolving version ref-
erence)?:
Our source codes are available in https://github.
com/Alibaba-Gemini-Lab/OpenCheetah, commit hash
a9b362e.

A.3 Description

A.3.1 How to access

Our source codes are available in https://github.com/
Alibaba-Gemini-Lab/OpenCheetah, commit hash a9b362e.

A.3.2 Hardware dependencies

To reproduce the performance numbers in our paper, we require the
CPU to support AVX512, ie., avxdq and avx512ifma instructions.
Nevertheless, our programs can run without AVX512 support.

A.3.3 Software dependencies

Our programs depend on the following open-sourced libraries. Note
that we provide a script script/build-deps.sh to fetch and build
these dependencies automatically.

• emp-tool https://github.com/emp-toolkit/emp-tool

• emp-ot https://github.com/emp-toolkit/emp-ot

• Eigen https://github.com/libigl/eigen

• SEAL https://github.com/microsoft/SEAL

• zstd https://github.com/facebook/zstd

• hexl https://github.com/intel/hexl/tree/1.2.2

A.3.4 Data sets

‘N/A’

A.3.5 Models

We provide three pretrained neural networks:

• pretrained/sqnet_model_scale12.inp,

• pretrained/resnet50_model_scale12.inp,

• pretrained/densenet121_model_scale12.inp.

These pretrained model are generated/taken from CrypT-
Flow2’s code base https://github.com/mpc-msri/EzPC/tree/
master/Athos/Networks.

A.3.6 Security, privacy, and ethical concerns

‘N/A’

Athos

Compiler

EzPC

Compiler

resnet50.py main_resnet50.cpp

Secure Correct Inference (SCI)

CrypTFlow2 Cheetah
main_resnet50.cpp

resnet50-SCI_HE

renset50-Cheetah

renset50_input_scale12.inp
renset50_model_scale12.inp

predicted label
Server

Client

Inference

Compiling

Figure 1: Workflow of Cheetah

A.4 Installation
1. Install the following requirements manuallly on your OS:

(a) git We use git command to fetch all the source codes
from Github.

(b) cmake version >= 3.13. We use the cmake build-system
to manage the source codes.

(c) make To run the generated build scripts from cmake, we
use the make command.

(d) bash Helper scripts are written in bash syntax.

(e) openssl. The openssl library should be installed in a
‘standard’ path (e.g., /usr/include/) so that cmake can
find out where it is.

(f) C++ compiler e.g. g++ (on Linux) or clang (on MacOS).
We require the C++ compiler to support at least C++-17.
For example, g++-8 and clang-13.

2. Fetch the Cheetah repo from Github via git clone
git@github.com:Alibaba-Gemini-Lab/OpenCheetah.git
Then go into the OpenCheetah/ directory, and checkout git
checkout a9b362e the specific version.

3. Build the dependencies via bash scripts/build-deps.sh
This step will fetch many libraries from Github and build them,
which might take a while to run.

4. Build the executables via bash scripts/build.sh This step
will build 6 executables placed in the build/bin/ directory.

A.5 Experiment workflow
From the high-level view, the current Cheetah implementation is
an alternative implementation of the Secure and Correct Inference
(SCI) Library [3]. We keep using the same interface of SCI so that
we can leverage the Athos compiler [1] and the EzPC compiler [2] to
convert a Python script that defines the structure of a neural network
using TensorFlow to a secure two party computation C++ program
that evaluates that neural work. A such compilation takes place once

52 31st USENIX Security Symposium USENIX Association

https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
 https://github.com/emp-toolkit/emp-tool
 https://github.com/emp-toolkit/emp-ot
 https://github.com/libigl/eigen
 https://github.com/microsoft/SEAL
 https://github.com/facebook/zstd
 https://github.com/intel/hexl/tree/1.2.2
https://github.com/mpc-msri/EzPC/tree/master/Athos/Networks
https://github.com/mpc-msri/EzPC/tree/master/Athos/Networks

for one neural network, and no trained model or input is needed
during the compilation. In this artifact, we place the pre-compiled
neural networks under the folder networks/.

For the secure inference, the server and the client run the compiled
program with their private input. Also, input of server (i.e., pretrained
model) and input of client (i.e., image) are also pre-processed using
Athos’s script. For example, floating point values are pre-processed
to fixed-point values. The program will read the input from stdin.
Also the program requires many parameters to run

• ‘r’ The role of player, ‘r=1’ indicates server and ‘r=2‘ indicates
client

• ‘k’ The fixed-point precision.

• ‘ip’ The IP address of the server.

• ‘p’ The port for the client’s program to connect.

• ‘nt’ The number of threads. We can set at most 4 threads.

• ‘ell’ The bit length for the secret sharing, e.g,. we use ‘ell=37’
in our paper.

We provide helper scripts in scripts/run-client.sh and
scripts/run-server.sh which hide most of the details for this
parameters setting.

A.6 Evaluation and expected results
In our paper, we majorly claim two points.

1. Cheetah can evaluate deep neural network in minutes. For
instance, in Table 8, we claim that Cheetah can evaluate
ResNet50 within 1.5 minutes and transfer about 2.3 GB mes-
sages over LAN.

2. Our one-bit approximate truncation is effective for deep neural
network inference. In § 6.5, we state that Cheetah can output
almost the same prediction vector as SCI (which is bit-wise
equivalent to the plaintext fixed-point computation).

By running our artifacts, we can reproduce the results in Table 8 and
Figure 10.

To run our artifacts locally, execute as follows (take ResNet50 as
the example)

1. Run bash scripts/run-server.sh cheetah resnet50
on one terminal.

2. Run bash scripts/run-client.sh cheetah resnet50
on the other terminal.

By replacing cheetah as SCI_HE, it will run the SCI-HE’s coun-
terpart. The other pretrained models, i.e., SqueezeNet (sqnet),
DenseNet121 (densenet121) can be used by switching the second
parameter.

After the computation is done, a log file is generated under the cur-
rent directory, e.g., cheetah-resnet50_client.log on the client’s
machine and cheetah-resnet50_server.log on the server’s ma-
chine. These files contain a detailed log for each layer of the neu-
ral network which can be used to validate the numbers in Ta-
ble 8 and Figure 10 in our paper. The total computation time

can be found in client’s log file. For example in the 273-th line
of cheetah-resnet50_client.log, it might record Total time
taken = 80719 milliseconds. The total communication cost
can be found in server’s log file. For example in the 276-th line
of cheetah-resnet50_server.log, it might record Total comm
(sent+received) = 2289.33 MiB. The computation time might
vary within 10% while the communication cost barely change much.

In addtion, we also print out the top-10 values in the final pre-
diction vector to the last three lines in the client’s log file. For our
ResNet50 example, it will record

top-10 values from ResNet50
[13.0649084,11.7061750,10.7425666,10.4339929,9.8536843,· · ·
predicted label=249

In the SCI_HE-resnet50_client.log (generated by running
the resnet50-SCI_HE demo), it records

top-10 values from ResNet50
[13.0845959,11.7224159,10.7543676,10.4407995,9.8753999,· · ·
predicted label=249
This reproduces the numbers in Figure 10 of our paper.

A.7 Experiment customization
If running on two remote machines, we first edit the SEVER_IP
and SERVER_PORT variables defined in scripts/common.sh. The
scripts/throttle.sh script can be used to manipulate the band-
width (i.e., speed and ping latency). We can used this script to mimic
the WAN/LAN setting within lab enviorments, e.g., running program
within one machine. For example, using

sudo scripts/throttle.sh wan
on a Linux OS which will limit the local-loop interface to about
400Mbps bandwidth and 40ms ping latency. You can check the ping
latency by just ping 127.0.0.1. The bandwidth can be check using
extra iperf command.

A.8 Notes
To reproduce the timing numbers in our paper, we require the
AVX512 instructions (i.e., avx512dq and avx512ifma) are supported.
If AVX512 is not available, the timing numbers (both for Cheetah
and SCI-HE) will be increased about 2×.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Athos. https://github.com/mpc-msri/EzPC/tree/
master/Athos, June 2021.

[2] EzPC - a language for secure machine learning. https:
//github.com/mpc-msri/EzPC/tree/master/EzPC, June
2021.

[3] Secure and correct inference (SCI) library. https://github.
com/mpc-msri/EzPC/tree/master/SCI, June 2021.

USENIX Association 31st USENIX Security Symposium 53

https://github.com/mpc-msri/EzPC/tree/master/Athos
https://github.com/mpc-msri/EzPC/tree/master/Athos
https://github.com/mpc-msri/EzPC/tree/master/EzPC
https://github.com/mpc-msri/EzPC/tree/master/EzPC
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/mpc-msri/EzPC/tree/master/SCI

A Artifact Appendix

A.1 Abstract

Piranha is an open-source platform (https://github.com/
ucbrise/piranha) for accelerating multi-party computation
protocols using the GPU. Our artifact for Piranha consists of
the prototype platform, along with scripts needed to replicate
our experiments from Section 6. In particular, our artifact
supports 3 LSSS protocols and a protocol-agnostic Neural
Network training library. We demonstrate that such GPU ac-
celeration can speed complex MPC applications like NN train-
ing by orders of magnitude compared to the CPU, achieves
meaningful training results, and does so in a significantly
more memory-efficient manner than prior work.

Our artifact is a combination of the Piranha platform and
associated test scripts that can be used to validate these claims,
specifically in replicating Figures 4-7 and Tables 2-4 in our
paper, by executing the relevant micro- and end-to-end bench-
marks. Piranha requires that each party participating in the
protocol provision a machine with a GPU, along with ac-
cess to the NVIDIA CUDA toolkit. The expected result of
evaluation is to be able to replicate each major paper figure.

A.2 Artifact check-list (meta-information)
• Program: C++-based MPC GPU acceleration platform, with

associated protocol-independent neural network library.

• Run-time environment: Cloud-based GPU cluster, with par-
ties each executing on dedicated GPUs. A separate control
server dispatches test runs to each party.

• Execution: Script-based for individual figure and table repli-
cation.

• Metrics: Computation and communication time, communica-
tion cost, training/test accuracy, and GPU memory footprint.

• Output: Data replicating paper figures and tables.

• Experiments: Secure training and inference passes, basic ac-
celerated operation benchmarks, memory footprint measure-
ment under various changes

• How much time is needed to prepare workflow (approxi-
mately)?: Provisioning a cluster of GPUs and a control server
to run experiments might require 1-2 hours to set up.

• How much time is needed to complete experiments (approx-
imately)?: Multi-party computation remains very slow com-
pared to state-of-the-art plaintext. Expect almost no hands-on
time but at least 40 hours of compute-time without evaluating
the largest network (VGG16) and upwards of 400 compute-
hours for VGG to replicate Figure 5.

• Publicly available (explicitly provide evolving version
reference)?: Available at https://github.com/ucbrise/
piranha/tree/main

• Code licenses (if publicly available)?: Piranha is licensed
under the MIT License

• Archived (explicitly provide DOI or stable refer-
ence)?: https://github.com/ucbrise/piranha/commit/
ddfb646f6f0e37e20194e4437e0d8e303fd89e4c

A.3 Description
The Piranha artifact consists of (1) the implementation of the device
layer for integer-based GPU acceleration, (2) three LSSS protocols
with varying party setups, (3) a neural network training library, and
(4) a set of experimental runtime scripts to replicate the experiments
we show in the manuscript.

For artifact evaluation, we assume a cloud-based cluster of
compute- and GPU-provisioned machines, for MP-SPDZ and Pi-
ranha benchmarks, respectively. For LAN and WAN experiments, a
replicator will provision 4 machines in a local (1ms latency) network
and 2 additional machines in a different network (60ms latency),
each acting as one party in a Piranha computation. Finally, a separate
machine should act as a control server that runs the replication script.

A.3.1 Hardware dependencies

Piranha requires that each machine be provisioned with an NVIDIA
GPU, and was initially evaluated on NVIDIA Tesla V100 GPUs.

A.3.2 Software dependencies

In a standalone installation, Piranha depends on installed GPU
drivers, the NVIDIA CUDA Toolkit libraries, as well as CUTLASS
and gtest.

A.3.3 Data sets

Piranha uses common ML datasets – MNIST, CIFAR10, and Tiny
ImageNet; you may use scripts provided in the artifact to download
and format the MNIST and CIFAR10 datasets we use for training.

A.3.4 Models

The artifact includes as part of the neural network training library
a set of common neural network architectures in JSON format that
can be executed using Piranha.

A.3.5 Security, privacy, and ethical concerns

N/A. All evaluation is done between parties that the evaluator directly
controls; there is no interaction with third parties.

A.4 Installation
To install the artifact, clone the repository and follow the most up-
to-date installation instructions at https://github.com/ucbrise/
piranha. Install the required software dependencies, and, if using Pi-
ranha to perform training or inference, download the desired datasets
with the provided scripts. Build the needed integer kernels with CUT-
LASS and compile the project for a given fixed point precision and
multi-party protocol using the step-by-step instructions provided.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 55

https://github.com/ucbrise/piranha
https://github.com/ucbrise/piranha
https://github.com/ucbrise/piranha/tree/main
https://github.com/ucbrise/piranha/tree/main
https://github.com/ucbrise/piranha/commit/ddfb646f6f0e37e20194e4437e0d8e303fd89e4c
https://github.com/ucbrise/piranha/commit/ddfb646f6f0e37e20194e4437e0d8e303fd89e4c
https://github.com/ucbrise/piranha
https://github.com/ucbrise/piranha

A.5 Evaluation and expected results
The primary evaluation script can be found at
experiments->run_experiment.py, which will connect to
and spawn execution on each of the GPU-provisioned parties as
needed. Use the script to individually recreate figures and tables
from the paper. You can choose to focus on the faster results first,
leaving the extremely long VGG16-based results until you’ve
verified the first set.

The main claims of the paper are that (1) GPU acceleration can
improve MPC runtime in a protocol-agnostic manner far above CPU
performance, (2) enabling realistic machine learning training, and (3)
that Piranha accomplishes this while providing much better memory
efficiency. Figure 4 and Table 4 support the first, showing a large
improvement in runtime. Table 2 and Figures 5 and 6 show that
real training results can be achieved in a reasonable amount of time,
while Table 3 and Figure 7 demonstrate the benefits of Piranha’s
memory-conscious approach on memory footprint, thus achieving
larger batch sizes. Reproducing these results involves running indi-
vidual iterations or full training epochs for every table or figure in
the paper, and comparing the output values or figures to those in the
manuscript.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

56 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

F Artifact Appendix

F.1 Abstract
This demo was

• announced 2020.04.16 on the pqc-forum mailing list,
• updated 2020.04.23 from OpenSSL 1.1.1f to

OpenSSL 1.1.1g,
• updated 2021.06.08 from OpenSSL 1.1.1g to

OpenSSL 1.1.1k, including additional support for
sntrup857,

• updated 2021.09.30 from OpenSSL 1.1.1k
to OpenSSL 1.1.1l, alongside an update of
the instructions to use stunnel 5.60 and
glib-networking 2.60.4, and

• updated 2021.11.02 to cover usage of tls_timer and
suggestions regarding its use for experiments, and

• updated 2021.12.14 from OpenSSL 1.1.1l to
OpenSSL 1.1.1m.

Our patches work for versions of OpenSSL from 1.1.1f
to 1.1.1m.

This is a demo of OpenSSLNTRU web browsing tak-
ing just 156317 Haswell cycles to generate a new one-
time sntrup761 public key for each TLS 1.3 session. This
demo uses: (i) the Gnome web browser (client) and stunnel
(server) using (ii) a patched version of OpenSSL 1.1.1m
using (iii) a new OpenSSL ENGINE using (iv) a fast new
sntrup761 library.

The TLS 1.3 integration in OpenSSLNTRU uses the
same basic data flow as the CECPQ2 experiment carried
out by Google and Cloudflare. Compared to the cryptogra-
phy in CECPQ2, the cryptography in OpenSSLNTRU has a
higher security level and better performance. Furthermore,
OpenSSLNTRU’s new software layers decouple the fast-
moving post-quantum software ecosystem from the TLS
software ecosystem. OpenSSLNTRU also supports a second
NTRU Prime parameter set, sntrup857, optimizing compu-
tation costs at an even higher security level.

F.2 Artifact check-list (meta-information)
• How much time is needed to prepare workflow (approxi-

mately)?: 60 min
• How much time is needed to complete experiments (approx-

imately)?: 5–60 min
• Publicly available?: Y
• Archived (provide DOI)?: 10.5281/zenodo.5833729

F.3 Description
F.3.1 How to access

Visit https://opensslntru.cr.yp.to/demo.html.
Additionally, we provide an archived version on Zenodo. The

instructions in this appendix apply to the latter using, in place of the

online URLs at https://opensslntru.cr.yp.to/, the contents
extracted from the downloaded archive.

F.3.2 Hardware dependencies

1. AVX2 support

F.3.3 Software dependencies

1. Linux
2. OpenSSL 1.1.1

F.4 Installation

https://opensslntru.cr.yp.to/demo.html

F.5 Evaluation and expected results

We claim the artifact at https://opensslntru.cr.yp.to/demo.
html reproduces two of the paper claims.

F.5.1 Reaching applications transparently

Following the provided instructions, the artifact allows to reproduce
Section 4.3. By the end of the demo, you should achieve:

1. Setting up a TLS server with a custom TLS 1.3 cipher suite
supporting sntrup.

2. Setting up a TLS client with a custom TLS 1.3 cipher suite
supporting sntrup.

3. The user sees this upon issuing the last command
epiphany https://test761.cr.yp.to as listed in the
demo instructions.

The server side is optional, depending on if you want to talk to
your own webserver or https://test761.cr.yp.to.

F.5.2 Macrobenchmarks: TLS handshakes

Additionally, the last part of the artifact covers the use of tls_timer
to measure the wall-clock execution time of sequential TLS connec-
tions using different TLS groups, as described in Section 4.4.

Using tls_timer you can evaluate that

1. our specialized batch implementation (provided via engNTRU
by libsntrup761) is faster than the reference code included in
the optional patch to embed support for sntrup761 operations
in libcrypto;

2. with the caveats mentioned in Section 4.4, we achieve new
records, in terms of computational costs, when compared
with X25519 and NIST P-256, the fastest pre-quantum im-
plementations of TLS 1.3 key-exchange groups included in
OpenSSL 1.1.1, while providing higher pre-quantum security
levels and much higher post-quantum security levels against
all known attacks.

USENIX Association 31st USENIX Security Symposium 57

https://doi.org/10.5281/zenodo.5833729
https://opensslntru.cr.yp.to/demo.html
https://doi.org/10.5281/zenodo.5833729
https://opensslntru.cr.yp.to/
https://opensslntru.cr.yp.to/demo.html
https://opensslntru.cr.yp.to/demo.html
https://opensslntru.cr.yp.to/demo.html
https://test761.cr.yp.to

F.6 Notes
To reproduce the results summarized in Figure 5 in terms of ab-
solute values, you would have to replicate the setup described in
terms of hardware in footnote 6, and also take care of setting up
both systems as detailed in the paragraph directly above the foot-
note to avoid biases due to CPU contention. It should also be noted
that 100 experiments for each group, each performing 8192 connec-
tions, will require several hours, and that for the entire duration of
the experiment you should ensure low network traffic and that no
other processes (automated updates and other scheduled processes
in particular) are executed on the machines running the experiments.

A simpler alternative, that would prove consistent with the results
presented in Figure 5 in terms of sorting the groups according to
the average connections per second, but not necessarily in absolute
values, would be to install the server side and the client side of the
demo on the same host, and then use tls_timer over the loopback
interface, lowering the number of sequential connections (e.g., to
1024) to reduce the execution time of each experiment.

In any case, it is important to take care of the details listed in
Section 4.4 regarding disabling frequency scaling, Turbo boost, con-
current services, and scheduled processes, isolating physical cores ex-
clusively to each of the 3 processes (i.e., tls_timer, stunnel, and
apache2) involved in each experiment run, and disabling/reducing
logging to console or files, in order to minimize external causes of
noise and achieve consistent results.

58 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

Our artifact consists of the study protocol with respect to

the survey provided to respondents. Additionally, we include

expanded details of our statistical evaluation. We provide two

supplemental files for the replication and interpretation of the

work in the paper "Caring about Sharing: User Perceptions

of Multiparty Data Sharing" to appear at USENIX Security

2022. Note that the survey includes opening and closing text

as per the University of Waterloo’s office of research ethics.

This study received approval under ORE #: 41762.

There are no additional hardware or software requirements

beyond a computer to access the files online. Readers can

review the conclusions of our paper using the expanded statis-

tics with respect to the tests performed and the test statistic

values. The provided survey can be used to replicate our re-

sults or to apply them to different population sets or for related

privacy perception studies.

A.2 Artifact check-list (meta-information)

• Security, privacy, and ethical concerns: This study received

approval under ORE #: 41762. Participants were able to quit

the study at any point and still receive remuneration. They were

informed of the bounds of the study before participating and

informed of the privacy focus after the study.

• Publicly available: https://github.com/bkacsmar/

CaringAboutSharing)

• Archived: https://github.com/bkacsmar/

CaringAboutSharing/releases/tag/V1.Usenix.22

A.3 Description

A.3.1 How to access

All files can be accessed at https://github.com/bkacsmar/

CaringAboutSharing. They can be read in their online form, selec-

tively downloaded, or by git-cloning the repository.

A.3.2 Hardware dependencies

Not applicable.

A.3.3 Software dependencies

Not applicable.

A.3.4 Data sets

Not applicable.

A.3.5 Models

Not applicable.

A.3.6 Security, privacy, and ethical concerns

A.4 Installation

Not applicable.

A.5 Evaluation and expected results

• The overall acceptability of multiparty data sharing is

lower for collaborations that are not reciprocal. The in-

clusion of a health company in non-reciprocal collabora-

tions is even less

• Across user controls, preferences for consent vary the

most between collaboration types, however, opt-in con-

sent is, generally speaking, the most acceptable.

To reproduce our results, if a study was done that sampled

the same population, after doing the statistical tests, the same

results should be found. We provide the results of our statisti-

cal tests across all variables we measured and our results can

be verified by reviewing the values of the test statistics.

A.6 Version

Based on the LaTeX template for Artifact Evaluation

V20220119.

USENIX Association 31st USENIX Security Symposium 59

 https://github.com/bkacsmar/CaringAboutSharing)
 https://github.com/bkacsmar/CaringAboutSharing)
https://github.com/bkacsmar/CaringAboutSharing/releases/tag/V1.Usenix.22
https://github.com/bkacsmar/CaringAboutSharing/releases/tag/V1.Usenix.22
https://github.com/bkacsmar/CaringAboutSharing
https://github.com/bkacsmar/CaringAboutSharing

A Artifact Appendix

A.1 Abstract
The artifacts available at https://github.com/IAIK/
Jenny contain the source code of the prototype described in
the paper including any instructions and scripts to reproduce
the figures from the paper. Please see the included README.md
for further instructions.

A.2 Artifact check-list (meta-information)
• Program: We use the existing tools nginx and lmbench for

our benchmarks. Both are included as submodules within our
artifact repository and compiled from source.

• Run-time environment: The artifacts require Ubuntu 20.04
with Linux 5.4.0 and root permissions. Detailed setup instruc-
tions are provided in the README.md.

• Hardware: A CPU with Memory Protection Keys (MPK)
(e.g., Intel Xeon Scalable) is required.

• Output: The artifacts include scripts to generate all
benchmark-related figures from the paper.

• How much disk space required (approximately): 10GB

• How much time is needed to prepare workflow (approxi-
mately): 1–4 hours

• How much time is needed to complete experiments (ap-
proximately): approx. 1 day

• Publicly available: https://github.com/IAIK/Jenny

A.3 Description
A.3.1 How to access

The artifacts are available at https://github.com/IAIK/Jenny/
tree/39bb0c696ce3c178e9593b7dbc034b2447ba2d00. Instruc-
tions on how to clone and use them, as well as any required hardware
and software dependencies are detailed in the README.txt within
this repository.

A.4 Installation
The artifacts are built and installed separately for the different bench-
marks. See instructions below.

A.5 Evaluation and expected results
When the current working directory is code/OurLib,
then the microbenchmarks can be run with make
bench-x86. This creates a new subdirectory called
benchmarks/output_syscalls_{datetime} for the results.
There, tc_getpid.pdf and tc_open.pdf should be created, which
were used in the paper as Figure 4 and 5.

For the application benchmarks, first our library has to be recom-
piled using make app-bench-x86.

Then, within the benchmarks directory, the three com-
mands ./run_all.sh applications, ./run_all.sh

nginx, and ./run_all.sh lmbench will place the
results in the benchmarks/output_{datetime}.
The resulting pdf files appbench_single.pdf,
lmbench_numbers.pdf, appbench_nginx_single.pdf, and
output_true_initialization_overhead.pdf correspond to
Figures 6, 7, 9, and 10 from the paper.

Note, that the resulting numbers will be slightly different com-
pared to the paper since they are dependent on the exact CPU model,
CPU frequency, kernel version, compiler versions, virtualization, etc.

USENIX Association 31st USENIX Security Symposium 61

https://github.com/IAIK/Jenny
https://github.com/IAIK/Jenny
https://github.com/IAIK/Jenny
https://github.com/IAIK/Jenny/tree/39bb0c696ce3c178e9593b7dbc034b2447ba2d00
https://github.com/IAIK/Jenny/tree/39bb0c696ce3c178e9593b7dbc034b2447ba2d00
https://www.acm.org/publications/policies/artifact-review-badging

A Artifact Appendix

A.1 Abstract
The artifact reproduces the results shown in Section 5 and
the exploits showcased in Section 6. More specifically, we
provide code to: (i) test if a system is vulnerable to BHI,
(ii) verify if out-of-place BTI is possible, (iii) validate the
results in Table 3, (iv) and verify the two exploits (inter- and
intra- mode). The artifacts for x86-64 have been validated on
Intel Core i7-10700K and Xeon Silver 4310 running Ubuntu
20.04 with Linux kernel 5.14, while the Arm results have
been verified on the performance cores of a Google Pixel 6
(Cortex X1). All our source code is available on GitHub at
https://vusec.net/projects/bhi-spectre-bhb
Following is the directory tree of the artifact:

bhi-spectre-bhb
re

x64
bhi_test (Section 5.1)
bhb_brute_force (Section 5.2)
bhb_size (Section 5.3)
bhb_control (Section 5.3)

arm
bhi_test (Section 5.1)
bhb_brute_force (Section 5.2)

pocs
inter_mode (Section 6.2)
intra_mode (Section 6.3)

tools

A.2 Artifact check-list (meta-information)
• Experiments: We provide self contained experiments match-

ing the results of specific sections.

• Compilation: gcc, aarch64-linux-android31-clang, nasm.

• Binary: One binary per experiment in each directory.

• Run-time environment: For x86-64 experiments: Ubuntu
20.04 with Linux kernel 5.14. We provide the default Ubuntu
kernel .config file (at the time of writing) on GitHub. For
arm experiments: Android 12 with kernel 5.10. For both archi-
tectures, bhi_test uses a customized kernel.

• Hardware: x86-64 results were validated on Intel Core i7-
10700K and Xeon Silver 4310. Arm results were validated on
a Google Pixel 6.

• Run-time state: Set Linux CPUFreq governor to
performance.

• Execution: Each folder contains a ./run.sh script to run
the experiment. When additional steps are required, this is
specified in the README.

• Output: Each experiment provides only textual output. We
describe in details the expected outcome for each experiment
in Section A.6 and in the READMEs available in the corre-
sponding directory.

• How much disk space required (approximately)?: 8GB
are sufficient if the experiments are run using provided kernel
images. Otherwise 80GB are needed.

• How much time is needed to prepare workflow (approxi-
mately)?: Few minutes in total. Each experiment and their cor-
responding environment can be set up with a single ./run.sh
bash script.

• How much time is needed to complete experiments (approx-
imately)?: Approximately 5 minutes per experiment to run
and verify the results of each experiment in re/ and in pocs/.

• Publicly available (explicitly provide evolving version ref-
erence)?: All the source code is available at https://vusec.
net/projects/bhi-spectre-bhb.

• Code licenses (if publicly available)?: Apache License 2.0.

• Archived (explicitly provide DOI or stable reference)?:
The ae_final tag contains the final stable artifacts. Avail-
able at https://github.com/vusec/bhi-spectre-bhb/
releases/tag/ae_final.

A.3 Description
A.3.1 How to access

All the source code is available at https://github.com/
vusec/bhi-spectre-bhb/releases/tag/ae_final. Use
the version under the tag ae_final for reproducing these re-
sults.

A.3.2 Hardware dependencies

The experiments in re/x64/ were tested on all the Intel CPUs
in Table 2. These also run on AMD, however they will not
yield any interesting result since these systems are not vul-
nerable. The experiments in re/arm/ were validated on a
Google Pixel 6. The two end-to-end exploits (pocs/) were
tested against the Intel Core i7-10700K and Xeon Silver 4310.
Some adjustments to the cache eviction strategies and timings
may be required on different Intel CPUs.

A.3.3 Software dependencies

We rely on standard build tools available in the Ubuntu pack-
age manager: build-essentials, nasm, debootstrap and
qemu-system-x86. We also rely on msr-tools to read the
msr specifying the availability of IBRS and eIBRS in a sys-
tem. For the bhi_test experiments a modified Linux kernel
is required. The kernel image and the source patch file are
available as part of the artifact.

A.4 Installation
You can build all the artifacts from their corresponding direc-
tory using the following command depending on the target:

make UARCH=INTEL_10_GEN | INTEL_11_GEN | PIXEL_6

USENIX Association 31st USENIX Security Symposium 63

https://vusec.net/projects/bhi-spectre-bhb
https://vusec.net/projects/bhi-spectre-bhb
https://vusec.net/projects/bhi-spectre-bhb
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final

The only exception are bhi_test experiments. In order
to run these, you need to first set up a VM with a custom
Linux kernel (x86-64), or install a customized kernel directly
(Arm). The kernel images are available as part of the artifact,
as well as the patch file required to compile the kernel from
source with our modifications. For x86-64, you can set up
and start the VM in a few minutes following the instructions
in the README found inside the re/x64/bhi_test/vm di-
rectory, while for Arm it is sufficient to boot the image using
fastboot boot boot.img.

A.5 Experiment workflow
You can then execute every experiment by simply executing
the ./run.sh script in each directory.

A.6 Evaluation and expected results
In our work we make three main claims: (i) We show how
Intel eIBRS and Arm CSV2 are incomplete solutions against
cross-privilege BTI attacks, and introduce Branch History In-
jection (BHI) as a new primitive to build such attacks; (ii) We
leverage BHI to build an end-to-end exploit on Intel systems
deploying eIBRS (i.e., inter-mode); (iii) And we show that
even when cross-privilege history injection is not possible
kernel-to-kernel exploits (i.e., intra-mode) are still practical.

The experiments in the re/ directory are meant to validate
claim (i) for both x86-64 and Arm architectures.

The two end-to-end exploits in the pocs/ directory are
meant to validate claims (ii) and (iii).

We now describe the goal and expected output for each of
these experiment. More details are available in the READMEs
in each folder. The first experiments are meant to verify the
claims on Intel CPUs.
• (x64) bhi_test.

– Goal. Verify if the system is vulnerable to BHI.
– Implementation. As described in Algorithm 1.
– Results. On vulnerable systems we expect F+R to pro-

vide a hit rate > 85%.

• (x64) bhb_brute_force.
– Goal. Verify if we can carry out out-of-place BTI.
– Implementation. As described in Figure 4, we use two

different call sites and randomize the preceding jump
chains.

– Results. On vulnerable systems we expect stable colli-
sions (F+R hit rate > 85%) and 214 iterations on average
before finding a collision on Intel 10th gen CPUs—the
iterations become 217 for Intel 11th gen.

• (x64) bhb_size.
– Goal. We want to recover the number of branches the

BHB can keep track of.
– Implementation. As described in Figure 5.

– Results. We should observe predictions for n = 29 and
n = 66 on the Intel Core i7-10700K and Xeon Silver
4310 respectively.

• (x64) bhb_control.
– Goal. We want to recover the minimum number of

branches under control by the attacker to generate ar-
bitrary BTB collisions.

– Implementation. As described in Figure 7.
– Results. We should observe collisions for k = 9 and k =

8 on the Intel Core i7-10700K and Xeon Silver 4310
respectively.

• (Arm) bhi_test.
– Goal. Verify if the system is vulnerable to BHI.
– Implementation. As described in Algorithm 1.
– Results. On the Cortex X1 we expect F+R to provide a

hit rate > 90%.

• (Arm) bhb_brute_force.
– Goal. Verify if we can carry out out-of-place BTI.
– Implementation. As described in Figure 4, we use same

or different call sites and randomize the preceding jump
chains.

– Results. On the Cortex X1 we expect stable collision
(F+R hit rate > 90%) for in-place BTI, while no collision
for out-of-place BTI.

• (PoC) inter_mode.
– Goal. Showcase an end-to-end exploit leveraging BHI

to perform cross-privilege mistraining and eBPF to read
arbitrary kernel memory.

– Implementation. As described in Section 6.2.
– Results. It should take less than a minute to build an

eviction set and then start leaking kernel memory.

• (PoC) intra_mode.
– Goal. Showcase an intra-mode exploit where we take

advantage of eBPF to perform both mistraining and mis-
prediction.

– Implementation. As described in Section 6.3.
– Results. It should take less than a minute to build an

eviction set and then start leaking kernel memory.

A.7 Experiment customization
Our reverse engineer programs, as well as our exploit, can also
be run on different hardware with a suitable configuration. In
particular, the tool fr_checker can be used to find the correct
F+R threshold, and the file common/targets.h to specify the
microarchitectural parameters.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

64 31st USENIX Security Symposium USENIX Association

D Artifact Appendix

D.1 Abstract
The artifact reproduces the reverse engineering experiments
outlined in §4 and §A with results summarized in Table 1 and
Table 2, the computation of optimized eviction sets presented
in §5, as well as the case studies discussed in §6. Specifi-
cally, we provide 3 code trees: TLB/ contains Linux kernel
modules used for reverse engineering TLB properties, along
with helper userspace programs; cache-ninja/ models set-
associative caches with replacement policies and computes op-
timized eviction sets; case-studies/ contains the case study
experiments. The hardware used for TLB is detailed in Table 1
and Table 2, whereas the case studies were developed for Intel
Kaby Lake processors. Finally, cache-ninja is architecture
independent and can run on any computer. All our source
code is available at https://github.com/vusec/tlbdr.

D.2 Artifact check-list (meta-information)
• Compilation: cache-ninja requires a rust compiler and

cargo version � 1.49. TLB and case-studies work with the
system gcc.

• Run-time environment: the kernel modules in TLB and
TLB/AMD are programmed against kernel versions 5.4 through
5.18. The kernel module in TLB/PCID assumes kernel version
5.4. Module insertion requires root access and a policy allow-
ing loading of unsigned modules.

• Hardware: case-studies require an Intel Kaby Lake i7-
7700 CPU with Hyperthreading enabled. Other Kaby Lake
CPUs might be usable with small tweaks. TLB runs on the
architectures shown in Table 1 and Table 2.

• Execution: The reverse engineering experiments under TLB
are best run on a quiescent system, or at the very least one
idle core. The experiments under case-studies are best run
pinned on idle cores, ideally enforced via e.g., cpusets.

• Output: Each piece of code produces bespoke output, usually
textual, representing its results. We describe this output in more
detail in the README file of each directory, and provide tools
to process this output.

• Experiments: The README file under each directory pro-
vides instructions on how to set up and run each experiment. A
convenience script and/or Makefile is also included.

• How much disk space required (approximately)?: a few
MiB for source and build.

• How much time is needed to prepare workflow (approx-
imately)?: a few minutes for each experiment, mostly for
setting up environment.

• How much time is needed to complete experiments (ap-
proximately)?: runtime usually depends on the number
of measurements taken, which can be adjusted; by default
the reverse engineering experiments in TLB and TLB/PCID
run within 2–3 minutes, the experiments under TLB/AMD
may take up to 30 minutes, cache-ninja runs within a

minute, case-studies/anc takes up to one hour, while
case-studies/pthammer and case-studies/tlbleed take
around 10 minutes each.

• Publicly available (explicitly provide evolving version ref-
erence)?: All the source code is available at https://
github.com/vusec/tlbdr.

• Code licenses (if publicly available)?: The kernel modules
under TLB and case-studies/pthammer/ptsim are licensed
GPLv2, the rest of the code is licensed under Apache 2.0.

• Archived (explicitly provide DOI or stable reference)?:
The sec22-ae-final git tag marks the tree with the artifacts
submitted for evaluation.

D.3 Description
D.3.1 How to access

All the source code is available at https://github.com/vusec/
tlbdr, under the tag sec22-ae-final.

D.3.2 Hardware dependencies

• TLB: The experiments in TLB and TLB/PCID were run on the
CPUs listed in Table 1, while the experiments under TLB/AMD
were run on the CPUs listed in Table 2.

• case-studies: The experiments make microarchitectural as-
sumptions that require an Intel Kaby Lake CPU and were run
on an i7-7700K, as described in more detail in §6. A different
model within the same family should also work, but might
require some manual parameter tuning.

D.3.3 Software dependencies

• TLB: Building the kernel module requires kernel headers and
system build tools. Running prepare.sh will install these
dependencies on Ubuntu systems.

• cache-ninja: Building and running require rust and cargo
version � 1.49; earlier versions may work, although not tested.

• case-studies: Building and running requires a C compiler
and, depending on the experiment, kernel headers and Python.

D.4 Installation
• TLB: Run make to build the kernel module and insmod
mmuctl/mmuctl.ko to insert the kernel module (as root). To
run the PCID or AMD experiments, navigate to the corresponding
subdirectory before running the commands.

• cache-ninja: Run cargo build [--debug|--release]
to compile the binary. Internet access might be required for
cargo to download dependencies.

• case-studies: Run make in each case study subdirectory to
build the experiment.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 65

D.5 Experiment workflow
• TLB: Start with a freshly booted Linux system running on

bare metal and ensure the build dependencies are satisfied.
Run make test; this will build the experiment kernel module,
load the module and execute the trigger binary. If the kernel
module is already inserted it sufficies to run the trigger binary
directly. After the experiment run make unload to remove the
module from the kernel. To run the PCID or AMD experiments,
navigate to the corresponding subdirectory before running the
commands. Warning: these experiments run kernel code that
might crash/hang a core or otherwise leave the kernel in an
invalid state, we recommend you monitor the kernel log and
immediately reboot your system after any error.

• cache-ninja: Run cargo run to build and run the program,
which then computes and prints the optimized eviction sets
discussed in §5.

• case-studies: Execute make run in each directory to run
experiments with default settings. Consult the individual
README files under each directory for detailed instructions.

D.6 Evaluation and expected results
In this work we make several main claims: (i) We introduce TLB
desynchronization as a reliable primitive for TLB reverse engineer-
ing and validate it against previous work; (ii) We show how TLB
desynchronization, due to its precision and reliability, can be used
to reverse engineer previously undocumented TLB features; (iii)
We show how knowledge of one of these properties—replacement
policies—enable knowledgeable manipulation of TLB state, leading
to vastly more efficient adversarial evictions; and (iv) We show how
these more efficient adversarial evictions bring significant improve-
ments to various classes of attacks that make use of TLB eviction.

• TLB is the reverse engineering code using TLB desynchroniza-
tion which supports claims (i) and (ii).

• cache-ninja implements a model of TLB state along with the
replacement policies that we reverse engineered, and uses this
model to compute optimal adversarial eviction sets, validating
claim (iii).

• case-studies implements proofs-of-concept for integrating
the previously computed optimal eviction sets into several
existing attacks, in support of claim (iv).

We now describe the goal and expected output of each of our
experiments.

• TLB

– Goal: Measure TLB properties.

– Implementation: As described in §4 and §A.

– Results: On the relevant systems, we expect results in
line with Table 1 and Table 2.

• cache-ninja

– Goal: Produce optimal eviction sets for a Kaby Lake
TLB

– Implementation: As described in §5, using BFS to search
through the state graph.

– Results: We expect the optimized eviction sets as pre-
sented in §5.2, §5.3, and §6.2.

• case-studies/anc

– Goal: Measure and compare the speed of AnC attacks
using naive and optimized eviction sets.

– Implementation: As described in §6.1.

– Results: On relevant hardware we expect results compa-
rable to Figure 7.

• case-studies/pthammer

– Goal: Reproduce Figure 8 from raw data; optionally
produce a histogram of all data.

– Implementation: As described in §6.1.

– Results: We expect a faithful rendering of Figure 8. The
histogram should also show distinctly tri-modal output,
as described in §6.1.

• case-studies/pthammer/ptsim

– Goal: Simulate, measure and compare the potential ham-
mer rate of a PTHammer-like attack using naive and
optimized eviction sets.

– Implementation: As described in §6.1.

– Results: On relevant hardware we expect results similar
to those described in §6.1 and shown in Figure 8.

• case-studies/tlbleed

– Goal: Measure and compare the speed of TLBleed-style
attacks using naive or optimized eviction sets.

– Implementation: As described in §6.2.

– Results: On relevant hardware, we expect raw sample
rates in line with those shown in Table 5. Similarly, we
expect peak sustained covert channel bandwidth in line
with that described in §6.2.

D.7 Experiment customization
Customization and tweaking of experiments is possible to some
degree, consult the individual README files of each subdirectory
for more details.

D.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

66 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact provides binaries and OS scripts to evaluate a
Bluetooth over-the-air fuzzer under a PC (x86_64) running
Ubuntu 18.04. Due to its over-the-air approach and depen-
dency on Bluetooth target devices, access to a remote ma-
chine is provided via SSH with private key. Moreover, we
design six experiments to assist in replicating the main re-
sults of the paper by generating figures and terminal outputs
after the fuzzing campaign ends. The evaluation procedure
consists of OS scripts that are either included in the artifact
or described in this appendix. The results generated by our
experiments will help support the claims that (i) our fuzzer
outperforms other state-of-the-art over-the-air BT fuzzer, (ii)
that our internal fuzzing components are essential and add
to the effectiveness of the fuzzer and (iii) that our fuzzing
framework is extensible to other wireless protocols beyond
Bluetooth such as Wi-Fi and BLE. Lastly, the artifact also
includes exploits to launch against real wireless devices (BT,
Wi-Fi and BLE) attached to a remote machine.

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Algorithm: Braktooth OTA Fuzzing

• Compilation: GCC version 7.5.0 for modules compilation,
fuzzer binaries provided in artifact, source code upon request.

• Binary: bt_fuzzer, wdmapper (included with artifact)

• Run-time environment: Ubuntu 18.04, Kernel 5.11.13

• Hardware: ESP-WROVER-KIT, ESP32-Ethernet-KIT, Oppo
Reno 5G, Raspberry 3B and x86_64 Computer

• Metrics: Execution Time, Model Coverage, Number of
Crashes, Number of Anomalies

• Output: Console, files (.txt, .csv) and graphs.

• Experiments: Os scripts and manual steps by the user.

• How much disk space required (approximately)?: 4 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 10 min.

• How much time is needed to complete experiments (ap-
proximately)?: 30 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://doi.org/10.5281/zenodo.7023642

A.3 Description
The artifact showcases the capabilities of our systematic directed
fuzzing framework that automatically discover implementation bugs
in arbitrary Bluetooth Classic (BT) devices. We also showcase the
flexibility of our approach, which can be applied to other wireless
protocols such as Wi-Fi and BLE.

A.3.1 How to access

The access to the target Evaluation Machine can be done via SSH
after the reviewer sends his SSH public key to the researchers during
the artifact evaluation period.

Once access has been granted, the target Evaluation Machine can
be accessed via SSH using linux/macos as follows:

ssh artifact@evaluation.braktooth.com -p 2222

If the reviewer cannot share his/her public SSH public key, we
can send our SSH private key (artifact.key), which can be used to
access the Evaluation Machine as follows:

chmod 0600 artifact.key
ssh -i artifact.key artifact@evaluation.braktooth.com -p 2\

222

X11 forwarding is recommended to be enabled in the SSH client
to visualize pdf figures. Otherwise, figure files can be transferred via
SFTP.

To access the remote Evaluation Machine from windows, the
software MobaXterm can be used as it has X11 enabled by default.

A.3.2 Hardware dependencies

The following hardware development boards are required to evaluate
the fuzzer:

• ESP32-WROVER-KIT - Bluetooth Fuzzing Interface

• ESP32-Ethernet-KIT - Vulnerable Bluetooth/Wi-Fi Target

• Oppo Reno 5G - Vulnerable Bluetooth Target

• Raspberry 3B - Vulnerable Wi-Fi Target

All the listed hardware dependencies are connected to the remote
Evaluation Machine.

A.3.3 Software dependencies

The software dependencies for the fuzzer runtime is provided in the
artifact script requirements.sh. Such script is intended to be executed
under Ubuntu 18.04. However, the main runtime dependencies are
listed below:

• Wireshark 3.7.0 (Included with artifact)

• Python3 ≥ 3.6.9 (Included with artifact)

• Node.js v12.22.12

Furthermore, the vulnerable SDK (esp-idf commit 3de8b79) for
the vulnerable target (ESP32) must be installed in the host pc to flash
the vulnerable firmware to the target.

Lastly, for comparing our fuzzer with other BT OTA fuzzers, the
following 3rd party software is required:

• Bluetooth Stack Smasher v0.6

• BlueFuzz

• bfuzz (iotcube) v2.2.0

Note that the above BT fuzzers are installed via their respective
modules/eval/experimen3-*.sh scripts.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 67

https://doi.org/10.5281/zenodo.7023642

A.3.4 Data Sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

To avoid causing unintended malfunctions to arbitrary Bluetooth
devices, the artifact must be only used against devices which are
strictly authorized by the device’s owner. Therefore, it is advisable to
only fuzz the wireless targets discussed in the experiment workflow.

Furthermore, our remote Evaluation Machine is configured to not
log any SSH connection to ensure privacy of the reviewer during the
artifact evaluation period.

A.4 Installation
The installation of the fuzzer can be done by running few scripts
provided in the artifact binary repository. Download and installation
of the fuzzer and software dependencies can be done as follows:

mkdir braktooth
cd braktooth
wget https://zenodo.org/record/7023642/files/release.zip
unzip release.zip
Install software requirements for Ubuntu 18.04
sudo apt install zstd
tar -I zstd -xf wdissector.tar.zst # Extract binary folder
cd wdissector
sudo ./requirements.sh
sudo ./requirements.sh doc # Ignore errors

Next, a vulnerable SDK version of our Bluetooth target (ESP32
esp-idf commit 3de8b79) needs to be installed. The following com-
mands can download and install the vulnerable SDK on the remote
machine:

git clone https://github.com/espressif/esp-idf
cd esp-idf
git checkout 3de8b79 # Vulnerable version of esp-idf SDK
./install.sh
cd ../

A.5 Experiment workflow
Figure 1 illustrates the relevant hardware setup in which the exper-
iments are performed on the remote Evaluation Machine. In the
following, we describe the experiment workflow which leverages
our hardware setup. Note that the fuzzer relies on the BT Fuzzing
Interface, which uses the same board model as our Target 1, but they
are separate boards as illustrated in Figure 1.

First, we aim to evaluate the Bluetooth fuzzer by running it against
Target 1: ESP32-WROVER. After the maximum number of fuzzing
iterations is reached, the fuzzer will stop and generate log files which
are used to analyze the results during the experiments via the python
scripts provided in the artifact folder modules/eval.

As illustrated in Figure 2 (a), the workflow is designed to first
evaluate the different variants of the fuzzer by changing its config-
uration parameters. After each variant is evaluated, the log folder

 Alpha AWUS036AC
(Wi-Fi Fuzzing Interface)

Remote PC
artifact@evaluation.braktooth.com:2222

Target 1: ESP32-WROVER-KIT

ESP32-WROVER-KIT
(BT Fuzzing Interface)

/dev/ttyUSB1

/dev/ttyUSB3 ADB

Target 2: Oppo Reno 5G

SSH

Target 3: Raspberry Pi 3B

wlan1

08:3a:f2:31:1c:b2 10.42.0.220

c0:2e:25:df:73:80

Other Targets
(Table 1 and 2)

Figure 1: Main Hardware Setup of Evaluation Machine

Flash Vulnerable
Target Firmware

Run Fuzzer for 1000
Iterations Evaluate Logs

Table 4

Table 5

Figure 14

all, mut, dup , evo

4 Times
(for each variant: all, mut, dup, evo)

eval.py

gen_plot.py

Flash Vulnerable
Target Firmware

Run Fuzzer for 1000
Iterations

Evaluate Logs &
Plot graphs Figure 15

1, 15, 30, 45, 60

5 Times
(for each model: 1, 15, 30, 45, 60)

gen_models_plot.py

b) Experiments for evaluating different state machine models

a) Experiments for evaluating fuzzing timing and model coverage

flash_esp32.sh

flash_esp32.sh
refs/*.json

sdf_rfcomm_query.json
State Machine Model

State Machine Model

Figure 2: Diagram of Experiments Workflow

Table 1: All BT Devices Setup of Evaluation Machine
BT SoC Vendor BT SoC Dev. Kit / Product BDAddress Monitor

Bluetooth 5.2

Intel AX200 PCIe Module 6C:6A:77:53:97:2D
SSH

artifact@127.0.0.1

Qualcomm WCN399X Oppo Reno 5G C0:2E:25:DF:73:80
ADB

627ff0eb
Bluetooth 5.1

Texas Instruments CC2564C CC256XCQFN-EM 98:5D:AD:12:03:F3
Serial

/dev/ttyACM0
Bluetooth 5.0

Cypress CYW20735B1 CYW920735Q60EVB-01 20:73:5B:1C:D9:93
Serial

/dev/ttyUSB6
Bluetrum Technology AB5301A AB32VG1 - -
Zhuhai Jieli Technology AC6925C XY-WRBT Module 48:1B:B2:26:90:36 N.A
Actions Technology ATS281X Xiaomi MDZ-36-DB - -
Bluetooth 4.2
Zhuhai Jieli Technology AC6905X BT Audio Receiver 1F:F6:F7:96:12:E3 N.A

Espressif Systems ESP32 ESP-WROVER-KIT 08:3A:F2:31:1C:B2
Serial

/dev/ttyUSB3
Bluetooth 4.1
Harman International JX25X JBL TUNE500BT - -
Bluetooth 4.0
Qualcomm CSR 8811 Laird DVK-BT900-SA - -

Beken BK3260N HC-05 98:DA:60:00:42:E3
Serial

/dev/ttyUSB10
Bluetooth 3.0 + HS

Silabs WT32i DKWT32I-A 00:07:80:CC:7D:E3
Serial

/dev/ttyUSB4

68 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

is fed to the script eval.py, which analyzes the packet trace file
(capture_bluetooth.pcapng) and events logs (events.*.txt) to return
timing, coverage and evaluation summary as depicted in Table 4
(Timing of 1000 fuzzing iterations for each device) and Table 5
(Evaluation summary w.r.t. different Rsel and DT) of the paper.

Furthermore, the target is re-flashed via Espressif esp-idf SDK
after each re-evaluation. This is to ensure a fresh state to the target in
case its flash memory is corrupted during the fuzzing process. Next,
after all the fuzzer variants are evaluated (mutation, duplication
evolution and all), a graph similar to Figure 14 (crashes/deadlocks
w.r.t ESP32 fuzzing iterations) is generated by running the script
gen_plot.py.

Next, in Figure 2 (b), we illustrate the experiments to evaluate the
state machine model of the fuzzer. Similar to the previous experi-
ment, the fuzzer is evaluated multiple times, but with different state
machine models. Then, the log results of each evaluation are ana-
lyzed by the python script gen_models_plot.py and a graph similar
to Figure 15 in the paper is generated (Evaluation of different state
machine models).

Further, Table 1, lists the BT devices attached to the Evaluation
Machine, which can be used to evaluate the bugs and timing behavior
depicted in Table 2 and Table 4 of the paper. The column BDAddress
lists the target Bluetooth Address for fuzzing or exploitation, whereas
column Monitor describes the monitor connection method with the
target such as Serial, SSH or ADB. Moreover, Table 1 corresponds to
Table 1 of the paper. However, four devices are currently not possible
to remotely evaluate due to the following reasons:

• Xiaomi MDZ-36-DB and JBL TUNE500BT - Both BT prod-
ucts (Speaker and headphone respectively) turn off automat-
ically when not receiving any BT connections and requires
manual interaction to turn them on before a fuzzing session.
Therefore, such devices are not possible to automate for the
artifact.

• Bluetrum AB5301A - Such board has been updated with the
latest proprietary firmware from vendor during the disclosure
period, however, we have no copies of the older vulnerable
firmware to ensure a proper evaluation with such device. We
have contacted the vendor to acquire the older firmware, but
we have not received a response so far.

• Laird DVK-BT900-SA - The board is non-functional due to
a short circuit in the evaluation board which prevent further
evaluation. Unfortunately, the DVK-BT900-SA development
kit is out of stock as of the time of writing.

Note that the Mic. Monitor from the paper is indicated as N.A (not
applicable) in Table 1 for devices XY-WRBT and BT Audio Receiver
since the Evaluation Machine laboratory is in a noisy environment
and outside our control. Therefore, the "Microphone" monitor is not
evaluated in the artifact.

Finally, Table 2 lists the Wi-Fi and BLE devices connected to the
Evaluation Machine. Column "Address" lists the BLE Address of
each device, whereas it is N.A for Wi-Fi devices since they connect
to the Wi-Fi AP fuzzer automatically. Such Table can be used to
replicating Table 7 of the paper (Summary of unknown flaws found
by extension).

Table 2: Wi-Fi / BLE Devices Setup of Evaluation Machine
Extension Target Address Monitor

BLE
Host

ESP32 08:3A:F2:31:1C:B2
Serial

/dev/ttyUSB3
Telink TLSR8258 A4:C1:38:D8:AD:A9 N.A

NXP KW41Z 00:60:37:88:16:0C
Serial

/dev/ttyACM2
TI CC2540 38:81:D7:3D:45:A2 N.A

Wi-Fi
AP

ESP32 N.A
Serial

/dev/ttyUSB7

ESP8266 N.A
Serial

/dev/ttyUSB9

Rasp. Pi 3 B N.A
SSH

pi@10.42.0.220

One Plus 5T N.A
ADB

3ffd4d9a

A.6 Evaluation and expected results
The results generated by our experiments will help support the claims
that (i) our fuzzer outperforms other state-of-the-art over-the-air BT
fuzzer, (ii) that our internal fuzzing components are essential and add
to the effectiveness of the fuzzer and (iii) that our fuzzing framework
is extensible to other wireless protocols beyond Bluetooth such as
Wi-Fi and BLE.

Evaluation Instructions:
We start by flashing a vulnerable firmware into the target esp32

which is connected to the remote machine. A code snipped of the
procedure is shown in Listing 1. For your convenience, such script
is included in modules/eval/flash_esp32.sh.

Listing 1: Flashing firmware to ESP32 target (flash_esp32.sh)
cd esp-idf
source export.sh
cd examples/bluetooth/bluedroid/classic_bt/bt_spp_acceptor
idf.py build
Program firmware to target (connected via /dev/ttyUSB3)
idf.py -p /dev/ttyUSB3 erase_flash flash

A.6.1 Experiment 1 - Evaluating Timing, Coverage and
Fuzzing Components

This experiment is intended to run the fuzzer in different configura-
tions to evaluate the components that contribute to the overall design
of the fuzzer. The script included on modules/eval/experiment1.sh
runs the fuzzer 4 times, switching between the fuzzing parameters
–mutation, –duplication, –optimization.

The script below can be used to run experiment 1 for a ESP32
target with BDAddress of 10:52:1c:69:ac:82.

cd $HOME/braktooth/wdissector/modules/eval
./experiment1.sh

When running the script above, the terminal output illustrated in
Figure 3 appears during the fuzzing session, indicating an exchange
of over-the-air LMP packets between the fuzzing interface and the
target ESP32 device. Furthermore, upon end of evaluation (which
takes several hours), extra logging folders and files are created as
illustrated in Figure 4.

Now, we can start to analyze the outputs generated and relate
to the tables and figures present in the paper. To start, we can get

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 69

Figure 3: Expected output when the BT fuzzer is running

wdissector
modules

eval
allLogs for Variant ’All’
mutLogs for Variant ’Mutation’
dupLogs for Variant ’Duplication’
evoLogs for Variant ’Evolution’
graph_models.pdf ..Figure 14 in the paper

Figure 4: Generated folder and files after running experi-
ment1.sh

the coverage and timing for the variant ’all’, which corresponds to
Table 4 in the paper, by running the following command in the eval
folder:

Listing 2: Generate results for Table 4 (Timing of 1000
fuzzing iterations for each device)
cd $HOME/braktooth/wdissector/modules/eval
./eval.py all

The output of Listing 2 should look similar to Figure 5, thus
returning relevant information that is present in Table 4 of the paper
such as Total Time, 1st Vulnerability, 1st Non-compliance and Model
Coverage (highlighted in blue). Although the time to complete 1000
iterations (Total Time) can variate, it is usually in the range of 3h-
3:30h for a BT target such as ESP32. Nevertheless, Model Coverage
for ESP32 has its value in the range 22−30% for this evaluation, as
exemplified in Figure 5. Moreover, due to the stochastic behavior
of the over-the-air fuzzing process, the 1st Vulnerability, 1st Non-
compliance can variate significantly. Depending on the iteration, the
first Vulnerability or Non-Compliance can be achieved in less than
1 minute in an optimistic scenario or after dozens of minutes, or
almost one hour in worst case.

This experiment to generate Table 4 mainly focuses on ESP32.
However, customization of the experiment for evaluation of other
BT targets is discussed in section A.7.1.

Next, the first entry of Table 5 of the paper (Evaluation summary
w.r.t. different Rsel and DT) is obtained by running the script of List-
ing 3 and getting the output of "Evaluation Summary" as illustrated
in Figure 6. Note that the python script eval.py receives "dup" as
argument, which refers to the Duplication fuzzing variant log folder,
which was generated after running experiment1.sh.

Listing 3: Generate tesults for Table 5 (Evaluation summary
w.r.t. different Rsel and DT)

Figure 5: Example output for Table 4 results (ESP32 target)

cd $HOME/braktooth/wdissector/modules/eval
./eval.py dup

Figure 6: Example output for an entry of Table 5

It is worthwhile to mention that the generated result for this ex-
periment is based on 1000 iterations instead of 200 iterations as
described on the paper to avoid running an additional evaluation.
Furthermore, since it requires a total of 9 evaluation to generate all
entries of Table 5 as shown in the paper, this experiment only focuses
on the first one to save time during this experiment. Nevertheless,
generating more entries or limiting the number of iteration can be
done by changing certain configuration parameters as later discussed
in the Experiment Customization (Section A.7.1).

Furthermore, the output obtained for Listing 3 shall indicate more
Crashes (C) than indicated on the paper due to the extended maxi-
mum number of iterations, which results in more time to find crashes.
On the other hand, the Average Transitions (Std. Dev.) should stay
relatively the same as indicated on Table 5 in the paper (107± 81
for entry Rsel = 0.1 and DT = 6000).

Lastly, we can generate a figure similar to the Figure 14 presented
in the paper (crashes/deadlocks w.r.t ESP32 fuzzing iterations), albeit
not for unique crashes/deadlocks, but rather for all reported crashes
from the fuzzer. This is because our framework cannot automatically
detect the root cause of each reported crash. Instead, the uniqueness
shown on Figure 14 in the paper, requires manual and careful analy-
sis of the target trace output. Automation of such effort to investigate
the root cause is beyond the scope of our fuzzing tool.

Nevertheless, a figure for crashes/deadlocks w.r.t ESP32 fuzzing
iterations is generated and opened by running the script below:

70 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

cd $HOME/braktooth/wdissector/modules/eval
./gen_plot.py
Graph saved to graph_optimization.pdf.pdf

In the case the figure failes to open to your view, you can manually
copy the figure locally via SFTP or call okular on the remote host
machine. The latter approach requires X11 enabled in your SSH
client:

okular graph_optimization.pdf

Figure 7 depicts a sample of the expected graph for this evaluation.

Figure 7: Sample graph for crashes/deadlocks w.r.t ESP32
fuzzing iterations.

A.6.2 Experiment 2 - Evaluating State Machine Model

As illustrated in the diagram of Figure 2 (b), this second experi-
ment focuses in evaluating the differences in coverage, number of
crashes and anomalies for different reference models used during
the Bluetooth fuzzing session. To this end, the script modules/eval/-
experiment2.sh has been prepared to automate the generation and
selection of the models before the evaluation starts. The relevant
files used for the model generation are depicted in Figure 8.

This experiment already provides such reference capture to sim-
plify the evaluation, however, Section A.7.2 details how to create
clean reference captures that can be used to create reference models.

After running the script of Listing 4, you should get (after several
hours) the terminal output depicted in Figure 9 and the evaluation
graph of all the reference models as illustrated in Figure 10.

Listing 4: Generate results for Figure 15 (Evaluation of dif-
ferent state machine models)
cd $HOME/braktooth/wdissector/modules/eval
./experiment2.sh
Graph saved to graph_models.pdf
okular graph_models.pdf

Figure 9 and Figure 10 relates to Figure 15 of the paper and
depicts the number of states, model coverage, number of crashes

wdissector
modules

eval
refs

1.pcapng1 min. Reference capture
15.pcapng ...15 min. Reference capture
30.pcapng ...30 min. Reference capture
45.pcapng ...45 min. Reference capture
60.pcapng ...60 min. Reference capture

Figure 8: Reference capture files used for reference model
generation.

Figure 9: Sample terminal output of evaluation of different
state machine models.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 71

Figure 10: Sample graph of evaluation of different state ma-
chine models (graph_models.pdf).

and anomalies for each of the five reference models evaluated as
described in the paper ({Mi

re f | i ∈ {1,15,30,45,60}}).
Overall, the number of states should slightly increase according

to the model with the highest training time (M60
re f) while the cover-

age should decrease for such model. This is because with a more
complete reference model such as M60

re f , more states are to be ex-
plored during the 1000 fuzzing iterations, which translates to a lower
coverage as compared to a simpler reference model such as M1

re f .
Customization of this experiment on how to generate reference

captures from scratch is discussed in Section A.7.2.

A.6.3 Experiment 3 - State Mapping Generation

The artifact includes several reference capture files from protocols
beyond BT Classic to evaluate the state mapper. However, in order
to evaluate the state mapper, we can run the script of Listing 5 to
generate the complete state machine visualization of the simplified
graph presented in Figure 16 of the paper (An illustration of a sim-
plified BT state machine and corresponding state mapping rules for
LMP and L2CAP.). The state machine generation takes as input a
reference capture (capture_bt_a2dp.pcapng) and the configuration
file with the mapping rules (config_bt.json).

Figure 11 illustrates the generated state machine graph for the sam-
ple BT capture (capture_bt_a2dp.pcapng) and should correspond to
Figure 16 of the paper.

Listing 5: Run state mapper for sample capture files
(Figure 16 of the paper).

cd $HOME/braktooth/wdissector/examples/wdmapper/
This will generate states_bt_a2dp.svg
./run_example_wdmapper.sh
sudo npm install svg2pdf -g
svg2pdf states_bt_a2dp.svg # Convert svg to pdf
okular states_bt_a2dp.pdf # Open pdf

Figure 11: Simplified BT state machine and corre-
sponding state mapping rules for LMP and L2CAP
(states_bt_a2dp.svg).

A.6.4 Experiment 4 - Comparison between different
fuzzing tools

On this experiment, we evaluate other BT OTA fuzzer against our
ESP32 target and compare the results to Table 6 (A Comparison
among different fuzzing tools).

For this experiment, we don’t validate the entry toothpicker since
it requires a special hardware setup which is outside the scope of our
remote evaluation platform.

Nevertheless, the other third parties fuzzing tools (bfuzz, Stack
Smasher and Bluefuzz) are installed and executed by running the
following scripts:

cd $HOME/braktooth/wdissector/modules/eval
./experiment3_bss.sh # Stack Smasher
./experiment3_bfuzz.sh # bfuzz (iotcube)
./experiment3_bluefuzz.sh # Bluefuzz

While the first script (bss) does not require user interaction, the
other scripts (bfuzz and bluefuzz) require the user to select the Blue-
tooth device before starting the fuzzing session. To this end, once
such script are executed and a prompt asking for device number
is requested, the user needs to select the number for device name
"ESP_SPP_ACCEPTOR" and its respective BT service options as
illustrated in Figure 12 and Figure 13 for the fuzzers bfuzz and
Bluefuzz respectively.

It is worthwhile to mention that the scripts for this experimented
are not completely automated, so the evaluator would need to press
the keys CTRL + C to interrupt the fuzzing session after 3 hours for
each script.

For all scripts, once a crash has been triggered, the terminal out-
put should show the crash indication message for each fuzzer such
as "Crash detected". Nevertheless, if the target (ESP32) becomes
unresponsive during the session, the experiment script can be re-run
to reset the target firmware.

It is expected that only bfuzz (iotcube) is able to trigger a crash in
ESP32, however due to the random nature of the other fuzzers (bss,
Bluefuzz), receiving a crash during the 3 hours evaluation period is
still possible. However, we claim that our fuzzer outperforms the
state-of-the-art (at the time of writing the paper) by finding new

72 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

bugs and non-compliance in the LMP layer of ESP32.

Figure 12: bfuzz BT device options screen.

Figure 13: Bluefuzz BT device options screen.

Customization of this experiment on running the comparison
against other BT devices of Table 1 is discussed in Section A.7.3.

A.6.5 Experiment 5 - Attacks Exploiting BrakTooth

In this experiment, we reproduce certain BT attacks against ESP32
as reported in the paper. We also provide an example of launching
an attack against Oppo Reno 5G via the SSH monitor included in the
fuzzer. Note that in this experiment we use Oppo Reno 5G instead
of Pocophone F1 as used in the paper due to unavailability of our
Pocophone F1 during the evaluation artifact period. Nevertheless
Oppo Reno 5G uses the same BT SoC (WCN399X) as Pocophone
F1 and therefore is vulnerable to the same BT attacks.

Before launching the attack, we need to know the BDAddress of
the target BT device. To facilitate this, BT Exploiter can scan the
BDAddress of targets nearby by running the following command:

sudo bin/bt_fuzzer --scan

If ESP32 is detected, then you should get a similar output as
shown in Figure 14.

Figure 14: BT Scan output

Next, we can choose an exploit by its name and use the target
BDAddress. For this example, evaluation, we start by launching the
remote code execution attack against ESP32 as described in the
paper (CVE-2021-28138) by running the following command:

sudo bin/bt_fuzzer --no-gui --exploit=\
invalid_feature_page_execution

--target=08:3a:f2:31:1c:b2 --target-port=/dev/ttyUSB3

If the attack is successful, the fuzzer output should log the crash
trace of the target ESP32 with a program counter (PC) set to
0xdeadbeee. Thus, indicating that we have control over the target’s
program counter.

Figure 15: Output of Arbitrary code execution on ESP32
(CVE-2021-28138)

Following page 13 of the paper (DoS in Laptops & Smartphones),
we can launch a denial-of-service attack against a smartphone (Oppo
Reno 5G) and monitor it via ADB. To this end, change the parameter
"MonitorType" to 3 in configs/bt_config.json (using nano or vim for
example) and run the fuzzer with the "invalid_timing_accuracy"
exploit.

sudo bin/bt_fuzzer --no-gui --exploit=\
invalid_timing_accuracy --target=c0:2e:25:df:73:80 \
--target-port=/dev/ttyUSB3

Run the command above for about 2 minutes and stop the fuzzer
with CTRL + C. Since the output of the phone via logcat is too
fast, we need to manually check the target log (logs/Bluetooth/moni-
tor.1.txt) to validate if a crash has been triggered on the SoC of the
target.

cd $HOME/braktooth/wdissector/logs/Bluetooth
cat monitor.1.txt | grep -i "SoC Crashed"

If the target BT firmware has crashed and the attack was suc-
cessful, the output of the command about should return the string
"Primary Reason for SoC Crash:SOC crashed"

Finally, the evaluator can optionally launch exploits to trigger the
bugs in Table 2 of the paper. This customization is elaborated in
Section A.7.4.

A.6.6 Experiment 6 - Fuzzing Extensions

This section evaluates the claim that our fuzzer is extensible to
other wireless protocols such as Wi-Fi and BLE Host by running
an exploit against ESP32 (BLE Host) and Raspberry Pi 3B (Wi-Fi).
We leave the replicability of the "coverage" of Table 7 (Summary of
unknown flaws found by extension) on the paper as optional since
demonstrating the exploits confirms the extensibility of the fuzzer.

BLE Host Fuzzer: Starting with the BLE host fuzzer, we need
to flash a BLE firmware to ESP32 with a slight modification to the
sample code "gatt_security_server":

nano $HOME/esp-idf/examples/bluetooth/bluedroid/ble/\
gatt_security_server/main/example_ble_sec_gatts_demo.\
c

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 73

Modify the following
- .own_addr_type = BLE_ADDR_TYPE_RANDOM,
+ .own_addr_type = BLE_ADDR_TYPE_PUBLIC,

- esp_ble_gap_config_local_privacy(true);
+ esp_ble_gap_config_local_privacy(false)

After modifying the source code as instructed above. You can
build and flash the new firmware to the ESP32 target:

$HOME/esp-idf/
source export.sh
cd $HOME/esp-idf/examples/bluetooth/bluedroid/ble/\

gatt_security_server/
idf.py build
idf.py -p /dev/ttyUSB3 flash_erase flash

Now, we can launch the "Null Dereference" exploit from the
fuzzer as follows:

sudo bin/bthost_exploiter --target=08:3a:f2:31:1c:b2 \
--exploit=esp32_bluedroid_pairing_crash

If the null pointer dereference attack (CVE-2022-26604) is suc-
cessful, you should the output indicated in Figure 16.

Figure 16: ESP32 Bluedroid Null Pointer dereference (CVE-
2022-26604)

Moreover, to run the BLE Host in normal mode (without any
exploits) and replicate Table 7, the fuzzer can be launched as follows:

sudo bin/bthost_exploiter --target=08:3a:f2:31:1c:b2 \
--mutation=true

--duplication=true --optimization=true --max-iterations=1\
000

cp logs/BTHost modules/eval/custom
cd modules/eval
./eval.py custom

The customization of this experiment to target other targets as
shown in Table 2 is discussed in A.7.5.

Wi-Fi AP Fuzzer:
Next, we repeat the exploitation experiment for the Wi-Fi AP

fuzzer by launching the Probe Resp. Deadlock (CVE-2022-26599)
against Raspberry Pi 3B. To launch such attack, we need to force the

Wi-Fi client (Raspberry Pi) to connect to our Wi-Fi AP by running
a script that ensures reconnection Wi-Fi reconnection. We provide
this Raspberry Pi script in our remote setup via SSH at 10.42.0.220:

Listing 6: Wi-Fi Client reconnection script
ssh pi@10.42.0.220 # No password needed
cd WiFiSuite/wifisuite/
sudo dmesg -C && sudo dmesg -w &
sudo python test.py

After the previous commands were issued in Raspbery Pi, it will
try to connect to an AP matching the name (SSID) "TEST_KRA".
Now, to start the Wi-FI AP fuzzer, start a new SSH terminal on the
remote machine and run the following:

Listing 7: Wi-Fi Client reconnection script
cd $HOME/braktooth/wdissector
sudo bin/wifi_ap --exploit=broadcom_bad_prob_rsp

After a couple of minutes (about 1-2 minutes), the attack is suc-
cessful if the Raspberry Pi SSH terminal shows the string "firmware
has halted or crashed" (c.f., Figure 17).

Figure 17: Raspberry Pi 3B Probe Response Deadlock (CVE-
2022-26599)

Similarly to BLE Host, you can optionally run the Wi-Fi AP
fuzzer in normal mode and replicate Table 7 as follows:

sudo bin/wifi_ap_fuzzer --mutation=true
--duplication=true --optimization=true --max-iterations=1\

000
cp logs/wifi_ap modules/eval/custom
cd modules/eval
./eval.py custom

The customization of this experiment to target other devices as
shown in Table 2 is discussed in A.7.5.

A.7 Experiment Customization
A.7.1 Experiment 1

To replicate all the results of Table 4 of the paper, you can launch
the BT fuzzer with the following arguments:

74 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

sudo bin/bt_fuzzer --no-gui --target=<BDAddress> \
--target-port=<Serialport> --duplication=true \
--mutation=true --optimization=true

cp logs/Bluetooth modules/eval/custom
cd modules/eval
./eval.py custom

The arguments –target and –target-port corresponds to the
columns BDAddress and Monitor of Table 1. Note that –target-
port is only used if the target is using the Serial monitor type. For
targets that use SSH or ADB, the file configs/bt_config.json need to
be updated as follows:

• SSH:
Update attribute "MonitorType":1
Update attribute "SSHUsername": "artifact"

• ADB:
Update attribute "MonitorType":3
For Oppo Reno 5G, update attribute "ADBDevice": "627ff0eb"
For OnePlus 5T, update attribute "ADBDevice": "3ffd4d9a"

After the changes above, you can start the fuzzer without argument
–target-port.

Next, to replicate all the results of Table 5 of the paper with the
correct number of Iterations and parameters (Rsel and DT), the con-
figuration file configs/bt_config.json can be changed as follows:
(i) "MaxIterations": 200
(ii) "DefaultDuplicationProbability": Rsel
(iii) "MaxDuplicationTime": DT

A.7.2 Experiment 2

To generate your own BT captures to be used in state machine model
generation (Experiment 2), you can disable the fuzzer components
and increase the global timeout as follows:
(i) "enable_duplication": false
(ii) "enable_mutation": false
(iii) "enable_optimization": false
(iv) "GlobalTimeout": 9999 Then you can start the fuzzer without
the argument –mutation, –duplication, –optimization. Example:

sudo bin/bt_fuzzer --no-gui --mutation=false
--duplication=false --optimization=false

Finally, after running the tool for a while, the reference wireshark
captures are saved to logs/Bluetooth/capture_bluetooth.pcapng

A.7.3 Experiment 4

To run the tools against other BT devices from Table 1, use their
respective BDAddress when starting each comparison script. For ex-
ample, you need to manually modify script experiment3_bss.sh:25 to
use the correct BDAddress of the target device. For the other compar-
ison scripts, you need to wait for the tools to scan the environment
before selecting the correct BDAddress of the target BT device.

A.7.4 Experiment 5

In order to launch exploits to trigger the bugs reported in Table 2
of the paper (Summary of unknown implementation bugs and other
anomalies found), we need the mapping between the Exploit Name

and the vulnerability name as reported in Table 2 of the paper. Ta-
ble 3 outlines the columns Attack Name, Exploit Name, CVE ID,
Affected SoC, etc to capture this mapping.

An exploit can be launched from the fuzzer with the following
arguments:

sudo bin/bt_fuzzer --no-gui --target=<BDAddress> \
--target-port=<Monitor>

--exploit=<Exploit Name>

Note that the <BDAddress>,<Monitor> corresponds to Table 1
and <Exploit Name> corresponds to the last column of Table 3.
Lastly, the argument –target-port=<Monitor> is optional and can be
configured for ADB and SSH targets as discussed in Section A.7.1.

You can also list all the available exploits names that are stored
in folder modules/exploits/bluetooth/*.cpp by running the following
command:

sudo bin/bt_fuzzer --no-gui --list-exploits

Exploit creation and modification is out of the scope of this ar-
tifact, but a tutorial material is included in the documentation file
exploit_modules_tutorial.pdf at the root folder of the artifact pack-
age.

A.7.5 Experiment 6

In order to evaluate the fuzzer against the BLE Targets of Table 2,
you can launch the BTHost fuzzer as follows:

sudo bin/bthost_fuzzer --target=<Address> --target-port=<\
Monitor> --duplication=true --mutation=true \
--optimization=true

The parameter Address is informed by Table 2 and devices in
which the column Monitor is "N.A" means that no monitor is ap-
plicable to such device. In this case, you can omit the argument
"–target-port" before launching the fuzzer.

Similarly to the BTHost fuzzer, you can launch the Wi-Fi fuzzer
as follows:

sudo bin/wifi_ap_fuzzer --target-port=<Monitor> \
--duplication=true --mutation=true --optimization=\
true

Note that since the Wi-Fi fuzzer is a rogue AP which waits a
connection from the target device, the column Address of Table 2 is
not applicable.

Similar to the monitor configuration procedure of Section A.7.1,
the argument –target-port is only used if the target is using the
Serial monitor type. For targets that use SSH or ADB, the file con-
figs/wifi_ap_config.json or bthost_config.json (depending on which
fuzzer you are running) need to be updated as follows:

• SSH:
Update attribute "MonitorType":1
For Raspberry Pi, update attribute "SSHUsername": "pi"
For Raspberry Pi, update attribute "SSHHostAddress":
"10.42.0.220"

• ADB:
Update attribute "MonitorType":3
For OnePlus 5T, update attribute "ADBDevice": "3ffd4d9a"

After the changes above, you can start the fuzzer without argument
–target-port.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 75

Table 3: Summary of Exploits and Affected BT Devices
CVE ID Attack Name Affected Vendor(s) Affected SoC(s) or Product(s) Impact Exploit Name
CVE-2021-28139 Feature Page Execution Espressif Systems ESP32 (SoC) ACE / Deadlock invalid_feature_page_execution
CVE-2021-28136 Duplicated IOCAP Espressif Systems ESP32 (SoC) Crash (Reboot) duplicated_iocap
CVE-2021-28135 Feature Res. Flooding Espressif Systems ESP32 (SoC) Crash (Reboot) feature_response_flooding
CVE-2021-28138 Invalid Public Key Espressif Systems ESP32 (SoC) Crash (Reboot) wrong_encapsulated_payload
CVE-2021-28137 Feature Req. Ping-Pong Espressif Systems ESP32 (SoC) Crash (Reboot) feature_req_ping_pong
CVE-2021-28155 Feature Res. Flooding Harman International JBL TUNE500BT (Product) Crash (Shutdown) feature_response_flooding
CVE-2021-31609 LMP Auto Rate Overflow Silabs WT32i (SoC) Crash (Reboot) lmp_auto_rate_overflow
CVE-2021-34147 Invalid Timing Accuracy Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) invalid_timing_accuracy
CVE-2021-34146 AU Rand. Flooding Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) au_rand_flooding
CVE-2021-34145 LMP Invalid Max Slot Type Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) invalid_max_slot
CVE-2021-34148 LMP Max Slot Overflow Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) lmp_max_slot_overflow
CVE-2021-34149 AU Rand. Flooding Texas Instruments CC2564C (SoC) Deadlock au_rand_flooding
CVE-2021-31610 AU Rand. Flooding Bluetrum BT889X / AB5XX / AB5301A (SoCs) Crash (Reboot) au_rand_flooding
CVE-2021-34150 LMP Length Overflow over DM1 Bluetrum AB5301A (SoC) Deadlock (Paging disabled) lmp_overflow_dm1
CVE-2021-34143 AU Rand. Flooding Zhuhai Jieli Technology AC6366C (SoC) Deadlock au_rand_flooding
CVE-2021-34144 Truncated SCO Link Request Zhuhai Jieli Technology AC6366C (SoC) Deadlock truncated_sco_link_request
CVE-2021-31612 LMP Auto Rate Overflow Zhuhai Jieli Technology AC6905X (SoC) Deadlock lmp_auto_rate_overflow
CVE-2021-31613 Truncated LMP accepted Zhuhai Jieli Technology AC6905X / AC6925C (SoC) Crash (Reboot) truncated_lmp_accepted
CVE-2021-31611 Invalid Setup Complete Zhuhai Jieli Technology AC6905X / AC6925C (SoC) Deadlock invalid_setup_complete
CVE-2021-31787 Feature Res. Flooding Actions Technology ATS2815 / ATS2819 (SoC) Crash (Shutdown) feature_response_flooding
CVE-2021-31785 Repeated Host Connection Actions Technology ATS2815 / ATS2819 (SoC) Deadlock repeated_host_connection
CVE-2021-31786 Multiple Same Host Connection Actions Technology ATS2815 / ATS2819 (SoC) Deadlock (Shutdown) N.A (Specific BDAddress Configuration)
CVE-2021-33155 LMP Paging Scan Disable Intel Intel AX200 (SoC) Deadlock (Paging disabled) paging_scan_disable
CVE-2021-33139 Invalid Timing Accuracy Intel Intel AX200 (SoC) Crash (FW Reboot) invalid_timing_accuracy
CVE-2021-30348 Invalid Timing Accuracy Qualcomm Snapdragon 845 / 855 / Others (SoCs) Crash (FW Reboot) invalid_timing_accuracy
CVE-2021-35093 LMP Length Overflow over 2-DH1 Qualcomm CSR 8811 / CSR 8510 (SoCs) Deadlock / Crash lmp_overflow_2dh1
Pending LMP Invalid Transport Beken BK3266 Deadlock (Paging disabled) lmp_invalid_transport
CVE-2019-9506 Knob (Extra - For testing only) Many Many Entropy Reduction knob

A.8 Notes
In case that the BT target ESP32 hangs the fuzzing process and does
not seem to move forward, then you can reset ESP32 by running the
following command:

cd $HOME/braktooth/wdissector/modules/eval
./flash_esp32.sh

Due to IP requirements with our Keysight partners, the main
source code of the fuzzer is freely available only for academic re-
search purposes upon request to https://src.braktooth.com.
Students or Researchers with a valid university email, will receive
an automated invitation to our Gitlab repository. Nevertheless, the
source code of our ESP32 reverse engineering framework is available
to public at https://github.com/Matheus-Garbelini/esp32_
firmware_patching_framework.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

76 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://src.braktooth.com
https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework
https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework

A Artifact Appendix

A.1 Abstract
This artifact contains the source code of the AmpFuzz fuzzer
as well as a number of scripts that were used to evaluate it
on a number of programs from the Debian repositories. As
the evaluation pipeline is configured to run in multiple docker
containers, a linux-based host-system running the docker dae-
mon is required. To confirm that the artifact is functional and
to reproduce individual results, a commodity laptop or com-
puter does suffice. E.g., development took place on a core i5
with 8GB of RAM, on which re-discovery of the bosserver
amplification vulnerability takes less than 5 minutes. To re-
run the entire pipeline, which fuzzes all targets five times for
24 hours, a system with a larger number of cores and more
RAM is recommended (our experiments ran on a server with
two Intel Xeon Gold 6230N and 512GB of RAM, on which
the pipeline finished in about 4 days).

Lastly, this artifact also contains code to synthesize python
code from identified amplification vulnerabilities, which can
be used to develop amplification honeypots. This step only
requires a working Python3 installation on the host system
and can also be run on a commodity system.

Overall, this artifact should show that

• The AmpFuzz fuzzer is functional and can discover am-
plification vulnerabilities.

• The honeypot synthesis step is functional and produces
python code.

• A full 5x 24h evaluation reproduces Table 2 (within
the confidence intervals provided), similar maximum
amplification factors to those shown in Figure 5, and
similar results to those shown in Figure 4 for UDP-aware
fuzzing.

A.2 Artifact check-list (meta-information)
• Algorithm: No new algorithm is presented.

• Program: No standardized benchmark is available. Instead,
AmpFuzz is evaluated on 20 services from the Debian reposi-
tories.

• Compilation: AmpFuzz leverages LLVM11.0.1 and builds on
the compile-time instrumentation from ParmeSan and Angora.
All sources are included with the artifact and automatically
built.

• Transformations: AmpFuzz requires no external program
transformation tools.

• Binary: No binaries are required/included.

• Model: No model is used.

• Data set: The “evaluation data set” consists of 20 debian
programs. A script to reproduce the dataset from public debian
repositories is included.

• Run-time environment:
AmpFuzz was tested on Linux, requires access to a running
docker daemon and relies on bash, GNU make, and xargs.

• Hardware: No special hardware is requried (a x86_64 pro-
cesser is assumed).

• Run-time state: The artifact is non-sensitive to run-time state.

• Execution: Other heavy loads on the system could impact
results.

• Security, privacy, and ethical concerns: AmpFuzz only per-
forms local testing of publicly available programs. Where pos-
sible, care has been taken to prevent fuzzed services from
opening external network connections.

• Metrics: Included scripts and the AmpFuzz report on

– Number of unique execution paths

– Number of unique network requests (as defined by
unique basicblock coverage)

– Number of amplification inducing network requests

– Maximum amplification factor on layer 2 (including Eth-
ernet frames)

– Maximum amplification factor on layer 7 (UDP payload
only)

– Elapsed seconds until first response

• Output: Each fuzz run produces

– A human-readable console log with statistics
(fuzz.log)

– A csv file with fine-grained statistics (angora.log)

– a folder with tested requests as individual files
(queue/id:<numeric_id>)

– a folder with amplification induc-
ing requests as individual files
(amps/amp_<amp_factor_l2>_<path_hash>_<input_hash>)

Scripts are provided to generate the tables and figures included
in the paper from these raw-results:

– 02_print_table.py produces LaTeX code on which
Table 2 is based

– 03_plot_grid.py procudes Figures 4 and 5

• Experiments: Mostly automated, see detailed description
below.

• How much disk space required (approximately)?: For veri-
fying functionality on individual targets, 20GB should suffice
(the source-code repository requires approximately 3GB, most
of this from the LLVM git repository, the basic docker contain-
ers take around 13GB). Docker containers and output from the
full evaluation fit on a 1TB drive.

• How much time is needed to prepare workflow (approxi-
mately)?: Building the initial docker containers (step 1 above)
should take less than 15 minutes.

• How much time is needed to complete experiments (ap-
proximately)?: Running the full evalution with no changed
parameters (5 repetitions, 24 hour timeouts plus several 1 hour
runs with different configurations) took about 4 days on a sys-
tem with 80 threads.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 77

• Publicly available (explicitly provide evolving version refer-
ence)?: AmpFuzz is publicly available at https://github.
com/cispa/ampfuzz

• Code licenses (if publicly available)?: AmpFuzz is licensed
under Apache License 2.0

• Data licenses (if publicly available)?: n/a

• Workflow frameworks used?: No workflow frameworks
were used (evaluation pipeline only requires GNU make and
xargs)

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/cispa/ampfuzz/releases/tag/
usenix22_ae

A.3 Description
A.3.1 How to access

AmpFuz can be retrieved from GitHub via

git clone --recursive
https://github.com/cispa/ampfuzz↪→

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

• Linux host OS

• Docker

• bash

• GNU make

• GNU xargs

• Python3 with packages pandas, numpy, seaborn

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

AmpFuzz only performs local testing of publicly available programs.
Where possible, care has been taken to prevent fuzzed services from
opening external network connections.

A.4 Installation
A.4.1 Build docker base images

from the project directory, run

make

This will take some time and build four docker images:

• ampfuzz:base: serves as the base-image for the other three
stages, basically a Ubuntu 20.10 image with some packages
installed and including a copy of the llvm source.

• ampfuzz:wllvm_wrapper: used to build ubuntu packages
with wllvm, a the whole-program LLVM wrapper. Our later
stages use wllvm to extract LLVM bitcode from installed pack-
ages.

• ampfuzz:fuzzer: includes the fuzzer and required instrumen-
tation tools.

• ampfuzz:symbolic_execution: includes the symcc sym-
bolic execution engine, and is used to instrument targets and
replay the amplification inputs to collect path constraints.

A.5 Evaluation and expected results
We claim that

1. AmpFuzz fuzzer is functional and can discover amplification
vulnerabilities (Table 2 in the paper)

2. UDP-aware fuzzing allows AmpFuzz to find amplification
inducing responses faster than static timeouts (Figure 4 in the
paper)

3. The amplification maximization routines of AmpFuzz can lead
to higher maximum amplification factors than coverage-guided
fuzzing alone (Figure 5 in the paper)

A full evaluation run should produce results from which Table 2,
Figure 4 and Figure 5 could be reproduced (within the confidence
intervals provided in the paper).

A.5.1 Prepare Evaluation Directory

from the eval subdirectory, run

make

This will generate a fresh evaluation directory in
eval/04_create_eval_dir/eval. This directory contains

• args: A textfile containing the different fuzzer configurations
and timeouts

• build_scripts: helper scripts to build containers used for
fuzzing

• eval_scripts: helper scripts to analyze results (see below)

• fuzz_all.sh: bash script to run entire fuzzing pipeline

• fuzz_scripts: helper scripts used during fuzzing

• hpsynth_scripts: helper scripts used during honeypot code
synthesis

• Makefile: a GNU make script with rules to build containers
used for fuzzing (makes use of build_scripts)

• targets: configuration info for fuzz targets.

– <debian_package>/<path_to_binary_escape>/<port>:
configuration directory for a single fuzz target. Will also
be used to store log-files and container information.

* args: commandline arguments to be passed to the
fuzz target

78 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/cispa/ampfuzz
https://github.com/cispa/ampfuzz
https://github.com/cispa/ampfuzz/releases/tag/usenix22_ae
https://github.com/cispa/ampfuzz/releases/tag/usenix22_ae

* config.sh: bash script that configures the fuzz target
for fuzzing

• targets.json: json file containing tuples of

1. debian package
2. path to binary
3. port number

for all fuzz targets.
This newly built eval directory can be moved around freely.

Everything from here onwards will happen within this directory!

A.5.2 Fuzz

Running fuzz_all.sh within this newly created eval directory will
now

1. use the generated Makefile to prepare all targets for fuzzing
(i.e., building and instrumenting the target into individual
docker images)

2. fuzz each target with each configuration and collect all results
into a new results directory

3. run the paths-to-message deduplication script. This script col-
lects all unique "paths" found during fuzzing and executes them
against the dataflow-instrumented target binary, collecting only
request-dependent CFG edges.

For each target and run, a new subfolder will be created of the
form results/<pkg>/<binary>_<port>/<run>.

A.5.3 Analyze results

Once fuzzing and path-deduplication has completed, the new
results directory can be analyzed:

1. eval_scripts/01_compute_amp_stats.py will extract fi-
nal stats for each run into a file results/results.json

2. eval_scripts/02_print_table.py will generate latex
code for the overview table shown in the paper

3. eval_scripts/03_plot_grid.py will generate the plots to
show the results of different timeouts and amplification maxi-
mization runs

A.5.4 (optional) generate honeypot code

Prepare a target for symbolic exeuction,
run constraint-collection for a run folder
(results/<pkg>/<binary>_<port>/<config>/<run>) and
convert the collected constraints to python code:

1. Build a docker container for symbolic execution of the target:

make targets/<debian_package>/.sym_config_<path ⌋
_to_binary_escaped>_<port>.iid↪→

2. bash hpsynth_scripts/synth_one.sh <run_folder>
will create a constraints file named hpsynth/sym.result in
the run folder.

3. python hpsynth_scripts/main.py <sym.result> will
output python code for a number of check and output
functions, along with a combined gen_reply function.

(Honeypot-skeleton for listening on ports and providing rate-
limiting is not provided with this project)

A.6 Experiment customization
A.6.1 Full pipeline customization

Evaluation is controlled by two files, args and fuzz_all.sh. args
contains the different fuzzing configurations, one per line, in the
following format

<output_directory> <timeout> [extra_args ...]

E.g., the two lines

24h 24h
1h_100ms 1h -a=--disable_listen_ready

-a=--early_termination=none
-a=--startup_time_limit=100000
-a=--response_time_limit=100000

↪→

↪→

↪→

will run

1. a default configuration for 24 hours and store the results into
directory 24h

2. a configuration with a static timeout of 100ms and store the
results into directory 1h_100ms

The fuzz_all.sh script further specifies how often each experi-
ment should be repeated. This is controlled with the N_RUNS variable
(defaults to 5).

A.6.2 Individual results

Individual targets (e.g., for confirming functionality) can be tested
as follows: First, to build a docker container for a specific target, run

make targets/<debian_package>/.fuzz_config_<path_to ⌋
_binary_escaped>_<port>.iid↪→

to build one of the configred targets. For example, to pre-
pare a container to fuzz /usr/sbin/bosserver from the package
openafs-fileserver on port 7007, use

make targets/openafs-fileserver/.fuzz_config__usr_s ⌋
bin_bosserver_7007.iid↪→

This will

• download the package sources for the target from the debian
repositories

• compile it using wllvm

• install the package

• instrument the target binary for fuzzing

• apply additional configurations (from
files args and config.sh found under
targets/<debian_package>/<binary>/<port>)

A list of all valid targets can be retrieved using

make -qp|grep -oE
'targets/[^/]*/.fuzz_config[^/]*iid'|sort -u↪→

To fuzz the target in its newly built container, run

bash fuzz_scripts/fuzz_one -r <runid>
<debian_package> <path_to_binary>
<port> <result_directory> <timeout>

↪→

↪→

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 79

where <runid> is just some number to identify the run (used as
part of the output path).

Sticking with the example, to fuzz /usr/sbin/bosserver
for 5 minutes and storing the results under
results/openafs-fileserver/_usr_sbin_bosserver_7007/5m/01/,
use

bash fuzz_scripts/fuzz_one.sh -r 1
openafs-fileserver /usr/sbin/bosserver 7007
results/openafs-fileserver/_usr_sbin_bosserver_ ⌋
7007/5m
5m

↪→

↪→

↪→

↪→

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

80 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

Today’s voice personal assistant (VPA) services have been
largely expanded by allowing third-party developers to build
voice-apps and publish them to marketplaces (e.g., the Ama-
zon Alexa and Google Assistant platforms). In an effort to
thwart unscrupulous developers, VPA platform providers have
specified a set of policy requirements to be adhered to by third-
party developers, e.g., personal data collection is not allowed
for kid-directed voice-apps. In this work, we aim to identify
policy-violating voice-apps in current VPA platforms through
a comprehensive dynamic analysis of voice-apps. To this
end, we design and develop SKILLDETECTIVE, an interactive
testing tool capable of exploring voice-apps’ behaviors and
identifying possible policy violations in an automated man-
ner. Distinctive from prior works, SKILLDETECTIVE evaluates
voice-apps’ conformity to 52 different policy requirements in
a broader context from multiple sources including textual, im-
age and audio files. With SKILLDETECTIVE, we tested 54,055
Amazon Alexa skills and 5,583 Google Assistant actions,
and collected 518,385 textual outputs, approximately 2,070
unique audio files and 31,100 unique images from voice-app
interactions. We identified 6,079 skills and 175 actions poten-
tially violating at least one policy requirement.

A.2 Artifact check-list (meta-information)
• Algorithm: This work does propose an algorithm for a

question-type classifier.

• Program: The program components do require many dif-
ferent dependencies which are provided in the repository
or listed and easily downloaded.

• Data set: All applicable data sets are included in the repos-
itory.

• Run-time environment:

• Hardware:

• Metrics: VPA device output data are gathered and after
analysis, any potential policy violations should be reported

• Output: The outputs consist of VPA device interaction data
saved in a data set, collected device output image and audio
files. Lastly, after analysis, any potential policy violations
should be reported.

• Experiments: There are detailed instructions provided for
installation and software use. To run the experiment, one
would only have to run the software after installation.

• How much disk space required (approximately)?: Approxi-
mately 300 to 400 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: It should take no longer than 30 minutes to set
up the software.

• How much time is needed to prepare workflow (approxi-
mately)?: It should take no longer than 30 minutes to set
up the software.

• Publicly available?: The artifact is available at
https://github.com/skilldetective/skilldetective/releases/tag/V0.3

• Archived (provide DOI)?: The artifact is archived at
https://github.com/skilldetective/

A.3 Description
A.3.1 How to access

All of the software can be found at
https://github.com/skilldetective/

A.3.2 Software dependencies

There is a list of software dependencies provided within the
repository. Also, all of the dependency software for the Java
components are included in the repository and all of the
needed Python dependencies can be easily downloaded and
are clearly stated in the instructions documents.

A.4 Installation
Installation of SD requires a java IDE such as NetBeans and
a version of Python installed. The chatbot model runs on
Java and has a detailed installation guide that walks the user
through all the steps necessary such as acquiring a developer
account, writing a test app, accessing the testing terminal,
installing and running the software and what to expect from
the output as well as some troubleshooting. The policy com-
pliance portion of the software package has a detailed installa-
tion and user’s guide that outlines all needed steps to analyze
the outputs of the chatbot.

A.5 Experiment workflow
The chatbot should be installed and run first. We have pro-
vided a list of Alexa skill names for testing. Device interac-
tions should be collected automatically for at least 30 minutes
to an hour in order to insure an adequate amount of test data
get collected. Next, the policy compliance software should
be installed and the test data from the chatbot can be used for
evaluation.

A.6 Evaluation and expected results
The chatbot runs autonomously once installed and set up. A
data set consisting of speech interactions, image files and
audio files should be expected as output. These output data
can then be analyzed using the policy compliance software.
As a final output, the user should expect a list of any suspected
policy violations found in the interaction data.

USENIX Association 31st USENIX Security Symposium 81

A.7 Experiment customization
The experiment has many different changeable parameters.
First, the list of application names can be altered to include
any arbitrary set by changing the file Skills.xlsx. The web
browser used to collect the interaction data can be changed
by altering the selenium code in S5.java. There are a number
of software parameters such as how many interactions are
allowed per VPA application and possible changes made to the
neural network. These are all commented within the source
code.

A.8 Notes
Please feel free to contact us at anytime with any con-
cerns or issues. The email address is skilldetectivetrou-
bleshoot@gmail.com. Also, within the repository please make
sure to follow the instructions located at:

• https://github.com/skilldetective/
skilldetective/tree/master/skilldetective_
policy_detector

• https://github.com/skilldetective/
skilldetective/blob/master/ChatBot/
SkillDetective%20Instructions.pdf

82 31st USENIX Security Symposium USENIX Association

https://github.com/skilldetective/ skilldetective/tree/master/skilldetective_ policy_detector
https://github.com/skilldetective/ skilldetective/tree/master/skilldetective_ policy_detector
https://github.com/skilldetective/ skilldetective/tree/master/skilldetective_ policy_detector
https://github.com/skilldetective/ skilldetective/blob/master/ChatBot/ SkillDetective%20Instructions.pdf
https://github.com/skilldetective/ skilldetective/blob/master/ChatBot/ SkillDetective%20Instructions.pdf
https://github.com/skilldetective/ skilldetective/blob/master/ChatBot/ SkillDetective%20Instructions.pdf
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

A Artifact Appendix

A.1 Abstract
We make the artifacts of our large scale geographical study
on the geodifferences in mobile apps available to the research
community. In this research, we crawl a set of 5,684 glob-
ally popular app binaries, their metadata, and privacy policies
from Google Play store in 26 countries. We open-sourced the
crawlers we used to download these apps, their metadata, and
privacy policies, and provide documentation on how to setup
these crawlers in a public GitHub repository. In addition, we
provide a way for researchers to request access to the actual
app binaries and privacy policies. The metadata of these apps
and the error messages that we obtain during our crawls are
both published and available for download.

A.2 Artifact check-list (meta-information)
• Run-time environment: The code requires a Python 3 envi-

ronment. The repository contains three crawlers (for metadata,
APK, and privacy policies) and it is recommended to create
separate environments for each crawler; we have provided
Pipfiles to install Python dependencies to each environment.
Instructions are located in the repository READMEs.

• Output: Depending on which code is run, the crawler will
download the respective data (metadata, APK, privacy policy)
to the output folder specified by the user. Note that the crawler
is making requests to Google Play (or sites hosting individ-
ual privacy policies) and may have nondeterministic output
depending on the time of the request.

• Publicly available: Our code is publicly available on GitHub
and we provide a public Google Drive URL (link in the reposi-
tory README) to download our app metadata and crawl error
messages. The privacy policy and APK files are available upon
request.

• Code licenses: The code is released under the GNU General
Public License. Full licensing information is provided in the
GitHub repository.

• Archived: A stable link to our GitHub reposi-
tory can be found at the following link: https:
//github.com/censoredplanet/geodiff-app/tree/
9ae97196ee82e741e17126dfc6ad518a88ea2cac. We have
a public Google Drive folder containing a subset of our
dataset for download: https://drive.google.com/drive/
folders/1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ.

A.3 Description
A.3.1 How to access

The complete source code for the crawlers we cus-
tomized for this research along with their setup instruc-
tions is available as a public GitHub repository here
https://github.com/censoredplanet/geodiff-app (commit
hash 9ae97196ee82e741e17126dfc6ad518a88ea2cac). The app
binaries and their privacy policies are available upon request (write

to us at geodiff.app@umich.edu and we will provide a download
link). We have provisioned it this way for us to keep track of who
has access to our data at a time. The metadata for the apps, and
Google’s error messages we obtained at the time of app downloads
(which we used to determine who is resposbile for blocking)
are available at https://drive.google.com/drive/folders/
1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ.

A.3.2 Data sets

Refer to subsubsection A.3.1 on how to access our dataset.

A.4 Installation
Our crawlers use the runtime environment provided by the
Python interpreter. We use Pipfiles to manage Python
dependencies. The installation instructions are provided as
a README on our GitHub repository accessible at the URL:
https://github.com/censoredplanet/geodiff-app/tree/
9ae97196ee82e741e17126dfc6ad518a88ea2cac.

A.5 Evaluation and expected results
Our setup involved ten Linux machines, ten Android phones, and
VPN/S access to 26 countries. Once the measurement testbed is setup
(as described in the paper), the crawlers can be used to download the
apps from each respective country. However, note that reproducing
the entire setup and experiment results depends on several factors,
including the availability of reliable VPN/S access for downloads
and the apps we tested on Google Play. That apart, the results may
not be precisely reproducible given how these apps are updated
regularly.

USENIX Association 31st USENIX Security Symposium 83

https://github.com/censoredplanet/geodiff-app/tree/9ae97196ee82e741e17126dfc6ad518a88ea2cac
https://github.com/censoredplanet/geodiff-app/tree/9ae97196ee82e741e17126dfc6ad518a88ea2cac
https://github.com/censoredplanet/geodiff-app/tree/9ae97196ee82e741e17126dfc6ad518a88ea2cac
https://drive.google.com/drive/folders/1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ
https://drive.google.com/drive/folders/1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ
https://github.com/censoredplanet/geodiff-app
https://drive.google.com/drive/folders/1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ
https://drive.google.com/drive/folders/1-UGiOUEEge-DA53k9B7KbIOvMlXKfiYZ
https://github.com/censoredplanet/geodiff-app/tree/9ae97196ee82e741e17126dfc6ad518a88ea2cac
https://github.com/censoredplanet/geodiff-app/tree/9ae97196ee82e741e17126dfc6ad518a88ea2cac

A Artifact Appendix

A.1 Abstract
Our artifacts facilitate building and running Morphuzz for the
QEMU and Bhyve hypervisors. These are the two implemen-
tations of Morphuzz described in our paper. We packaged the
fuzzers in two VMs (one for fuzzing each hypervisor). Use
an Intel/AMD x86-64 Linux machine to run these VMs.

A.2 Artifact check-list (meta-information)
• Compilation: clang (included)

• Run-time environment: Linux

• Hardware: Intel/AMD x86-64 Machine

• Output: Crashes

• How much disk space required (approximately)?: 20 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 Hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: GPLv2

• Archived?: https://zenodo.org/record/5655839

A.3 Description
A.3.1 How to access

Download the Artifacts (2 VM images) from: https://zenodo.
org/record/5655839

A.3.2 Hardware dependencies

Intel or AMD x86-64 Machine with Virtualization support

A.3.3 Software dependencies

Linux, KVM, and QEMU 3.1+

A.4 QEMU Installation
Our instructions are based around VM images. The evaluation should
be possible on a single bare-metal x86 machine running linux.

Please install QEMU to run these VMs:

• Debian: apt install qemu-system-x86_64

• Ubuntu: apt install qemu-system-x86_64

• Fedora: yum install qemu-kvm

• Other: https://www.qemu.org/download/

Additionally, to ensure that the VM takes advantage of hardware-
acceleration

1. Check that you have virtualization extensions enabled in BIOS
(VT-x on Intel, AMD-V/SEV on AMD).

2. Check that your user has access to /dev/kvm. Usually, you can
add your user to the kvm group: sudo adduser $USER kvm.
(Otherwise you may need to run qemu as root/with sudo).

3. To test out bhyve-fuzzing, you may need to enable support
for nested-virtualization. Unlike the QEMU-Fuzzer, the bhyve-
Fuzzer is not decoupled from the in-kernel CPU virtualization
component. Thus, even though our fuzzers do not run any vir-
tual CPU code, we will need to enable nested-virt to create the
VM. This amounts to loading the KVM kernel module with a
special flag. This page has instructions to do this for AMD and
Intel CPUs: https://docs.fedoraproject.org/en-US/
quick-docs/using-nested-virtualization-in-kvm/

Please open a terminal and "cd" into the folder containing the
qcow2 VM images you downloaded. We will be building the fuzzers
inside the VMs. Then, we will fuzz a virtual-device. We will observe
any crashes found by the fuzzer. Finally, we will generate coverage-
reports for the results.

In each VM, we provide annotated scripts that will build the fuzzer
and run it for some example virtual-device.

Boot the QEMU Fuzzing VM:

$ qemu-system-x86_64 -machine q35 \
-accel kvm -cpu host -m 4G -smp 2 \
-hda ./morphuzz_qemu.qcow2 -vga virtio \
-device virtio-net,netdev=mynet0 \
-netdev \
user,id=mynet0,hostfwd=tcp:127.0.0.1:22222-:22

After a few seconds, you should be able to ssh into the VM from
another terminal on your machine:

$ ssh -p22222 paper@localhost
Credentials:

user: paper
pass: artifact_eval

Once you are SSHed, we can proceed with building and running
the fuzzer.

A.5 QEMU Evaluation
We provide annotated scripts for building, fuzzing, and providing
readable qtest-reproducers:

$ cat build.sh # Examine the build script...
$./build.sh # Build QEMU with Morphuzz

$ cat run_example.sh # Examine the example script
for running the fuzzer

$./run_example.sh # Fuzz a virtual device
ctrl-c to stop fuzzing

$ cat reproducer.sh # Examine the script
to build a QEMU reproducer

$./reproduce.sh # This will reproduce
a megaraid bug

$./build_gcov.sh # Build Morphuzz with
GCov Support

$./run_gcov.sh # Run the CORPUS collected by
run_example.sh and output a
coverage summary

USENIX Association 31st USENIX Security Symposium 85

https://zenodo.org/record/5655839
https://zenodo.org/record/5655839
https://www.qemu.org/download/
https://docs.fedoraproject.org/en-US/quick-docs/using-nested-virtualization-in-kvm/
https://docs.fedoraproject.org/en-US/quick-docs/using-nested-virtualization-in-kvm/

Once you are ready to switch to the bhyve VM: sudo shutdown

A.6 bhyve Installation

Boot the bhyve Fuzzing VM:

$ qemu-system-x86_64 -machine q35 \
-accel kvm -cpu host -m 4G -smp 2 \
-hda ./morphuzz_bhyve.qcow2 -vga virtio \
-device virtio-net,netdev=mynet0 \
-netdev \
user,id=mynet0,hostfwd=tcp:127.0.0.1:22223-:22

After a few seconds, you should be able to ssh into the VM from
another terminal on your machine:

$ ssh -p22223 paper@localhost
Credentials:

user: paper
pass: artifact_eval

A.7 bhyve Evaluation

$ cat build.sh # Examine the build script...
$ sudo ./build.sh # Build Bhyve with Morphuzz

$ cat run_example.sh # Examine the example run script
$ sudo ./run_example.sh # Fuzz Bhyve configured with

common virtual-devices
ctrl-c to stop fuzzing

$ sudo ./reproduce_crashes.sh # This will reproduce
the crashes discovered
by Morphuzz

$ sudo ./run_cov.sh # This will output a fuzzing
coverage report to /tmp/html

Use scp to copy the coverage report to the local
machine. View the report in a web browser.

Note that some of these commands require sudo. Once you are
done, sudo poweroff

A.8 Experiment customization

The QEMU/Bhyve configurations can be customized by chang-
ing the environment variables specified in the run_example.sh
script. These variables specify the virtual devices attached to
QEMU/Bhyve.

A.9 Notes
These steps are specific to the artifacts provided in the VMs. An
up-to-date version of QMorphuzz is maintained and documented at
https://gitlab.com/qemu-project/qemu/1

Current upstream documentation for using QEMU’s fuzzing
infrastructure/QMorphuzz can be found at:
https://gitlab.com/qemu-project/qemu/-/blob/
c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/
fuzzing.rst

The main differences between the upstream version of Morphuzz,
and the version described in this paper are:

• The upstream version of QMorphuzz performs PCI enumera-
tion, prior to fuzzing, to improve fuzzing efficiency.

• The upstream version contains some device-specific fuzzers
(independent of QMorphuzz), which serve mostly as examples
to go along with documentation. These are removed in the
artifact.

• The upstream version of QMorphuzz provides a sparse memory
device which improves the efficiency of the fuzzing process.

• The upstream version of QMorphuzz includes the configura-
tions used to fuzz QEMU on OSS-Fuzz.

• The version of QEMU in the artifacts is 5.0.0. At this time,
QEMU 6.2.0 has been released. Many of the bugs that can
be found by Morphuzz in the artifact VM have already been
patched.

• The upstream version comes with documentation for fuzzing
additional devices, and adding custom QEMU fuzzers.

1Stable link to the version of QEMU at the time of this writing:
https://gitlab.com/qemu-project/qemu/-/tree/
c39deb218178d1fb814dd2138ceff4b541a03d85

86 31st USENIX Security Symposium USENIX Association

https://gitlab.com/qemu-project/qemu/
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/tree/c39deb218178d1fb814dd2138ceff4b541a03d85
https://gitlab.com/qemu-project/qemu/-/tree/c39deb218178d1fb814dd2138ceff4b541a03d85

A Artifact Appendix

A.1 Abstract

FUZZWARE is a firmware emulation and fuzzing prototype
which makes use of symbolic execution to model MMIO
accesses. In our experiments, we fuzz tested different sets of
samples (synthetic, state-of-the-art, and new targets for CVE
discovery). Based on the experiment stage (analogous to our
paper’s evaluation subsections), we collect additional data
such as modeling statistics, job timings, unit test coverage,
and code coverage.

As a fuzzing work, our experiments require computational
resources. At a minimum (for a single-iteration evaluation
of our core experiments instead of the 5/10 iterations that
we performed), you should expect to perform 42 CPU days
worth of fuzzing time on a single Linux system during the
evaluation period (21 for the state-of-the-art comparison only).
For the easiest (and repeated) reproduction, we recommend
41 dual-core Ubuntu cloud VMs (2 CPUs / 4-6GB RAM / 64
GB storage) which will run for 11 days to perform the full
replication. Other setups are possible, but will require a bit of
tinkering with experiment run scripts.

A.2 Artifact check-list (meta-information)
• Algorithm: Locally-scoped Dynamic Symbolic Execution

• Program: Fuzzware builds on top of AFL/AFL++, unicorn
engine, angr (8.19.10.30), Python < 3.10 (due to angr version)

• Compilation: clang

• Binary: Firmware samples used for evaluation

• Data Set: Included: P2IM Unit Tests, P2IM Targets, uEmu
Targets, Artificial Password Firmware Samples, Contiki-NG &
Zephyr-OS Target Samples

• Run-time environment: Linux, Docker

• Hardware: The recommended setup for full replication re-
quires 41 dual-core Ubuntu cloud VMs.

• Metrics: Unit Test Coverage, Model Generation Timings,
MMIO Overhead Elimination Statistics, Code Coverage,
Reached Bugs

• Output: Included: Crashes (binary files), Generated: Fuzzing
Inputs (binary files), MMIO Models (text files), statistics (text
files), GNU plots (PNG files)

• Experiments: bash scripts, readmes

• How much disk space required (approximately)?: Recom-
mended setup: 25 GB of local storage for collected experiment
results, and 41 Ubuntu cloud machines with 64GB storage each.
For a fully local setup (run script customizations are required),
100GB should suffice to hold all experiment data.

• How much time is needed to prepare workflow (approxi-
mately)?: 4h

• How much time is needed to complete experiments (ap-
proximately)?: 5-10 days (on 41 Ubuntu cloud machines, to-
tal CPU time: 320 days for full experiment repetition count,
42 days for a single iteration)

• Publicly available (explicitly provide evolving version ref-
erence)?: Evolving: https://github.com/fuzzware-fuzzer

• Publicly available? Yes. Stable version: sec22-ae-accepted
• Code licenses (if publicly available)?: Apache-2.0
• Data licenses (if publicly available)?: Apache-2.0
• Archived (explicitly provide DOI or stable reference)?:

10.5281/zenodo.6499215

A.3 Description
A.3.1 How to access

We release both the research prototype, as well as all experiments
and data as open source on GitHub at the following two locations:

• https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-
accepted

• https://github.com/fuzzware-fuzzer/fuzzware-
experiments/tree/sec22-ae-accepted

A.3.2 Hardware dependencies

For the experiment reproduction, x86 computation resources are re-
quired. For the easiest reproduction (no customization of run scripts),
41 dual-core Ubuntu cloud instances are recommended (2 cores, 4-
6GB RAM, 64GB storage). With run script customizations, other
hardware setups that allow for 320 days worth of fuzzing compu-
tation time within a reasonable time frame can be used. In case
a single-run reproduction is deemed sufficient, a total of 42 days
worth of computation time (plus some compute for trace generation
and metric aggregation) are required.

A.3.3 Software dependencies

We recommend Linux/Docker as the experiment platform for a re-
producible setup of all dependencies. For a seemless reproduction,
we further recommend an Ubuntu LTS release (e.g., 18.04 or 20.04).
Note that the version of angr which is pinned for the evaluation
constrains the python version to be <3.10, which means that Ubuntu
LTS releases of coming years may require installing an older version
of python than are the default for future Ubuntu releases.

A.3.4 Data sets

We include all required firmware samples for running the experi-
ments in the GitHub repository. In more detail, we include a list
of target firmware images from previous work (P2IM, uEmu), and
compiled additional targets for bug discovery, which are present as
pre-built binaries in the fuzzware-experiments repository.

To reproduce our newly introduced target firmware samples, we
further provide build scripts for all relevant targets.

A.3.5 Models

We do not include the MMIO models generated by Fuzzware. These
will be generated by the prototype on-the-fly during the experiments.

USENIX Association 31st USENIX Security Symposium 87

https://github.com/fuzzware-fuzzer/fuzzware/releases/tag/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted

A.3.6 Security, privacy, and ethical concerns

The fuzzware-experiments repository contains crash cases for secu-
rity critical bugs in ZephyrOS and Contiki-NG. All corresponding
vulnerabilities have been disclosed to the maintainers and patches
were developed.

A.4 Installation
Installing individual instances of Fuzzware is done via the
build_docker.sh script (for a Docker-based setup), and via the in-
stall_local.sh script (for a native setup), which are both located in
the fuzzware repository.

To ease the setup process for the experiments, we also created
scripts in the fuzzware-experiments repository. to remotely install
SSH-accessible Ubuntu instances. The corresponding script can be
found in ssh_hosts_install.py. The README files within the reposi-
tory and comments in the source code are meant to provide additional
information to allow for the use of scripts and the customization of
the installation process.

The recommended setup is to create 41 Ubuntu LTS hosts with
2 cores, 6GB RAM, and 64 GB of disk space each. This could be
reduced 4 GB RAM and 32 GB disk space in case costs require
minimizing.

A.5 Experiment workflow
The data required to conduct each experiment is contained within
the fuzzware-experiments repository. The repository is organized in
a way such that each subdirectory corresponds to a particular section
in the paper. The mapping from directory to paper can be found in
the top-level README.md file.

In essence, each experiment entails a 24-hour fuzzing run of the
target (invoked via the "fuzzware pipeline" utility), which creates a
fuzzware-project directory. This directory contains the state of the
MMIO model configurations, as well as inputs that were generated
by fuzzers over the span of the fuzzing run. In a second step, metrics
such as code coverage are aggregated from this raw data. Finally, in
a third step, depending on the experiment, additional aggregation is
performed over the full set of fuzzing runs belonging to the given
experiment. This aggregation collects a summary of the data as can
be found in the respective section of the paper. Below we describe
the workflow for each of these experiments.
(1) PW discovery & Unit Tests. For the first experiment, the fol-
lowing workflow can be used to reproduce the experiments:

1. Make sure to have installed fuzzware on cloud hosts via
ssh_hosts_install.py. If 41 dual-core hosts have been installed
with the expected naming conventions, no modifications to run
scripts should be required.

2. Navigate to 01-access-modeling-for-fuzzing/pw-discovery/

3. Run the experiments on the hosts by executing the
ssh_based_kickoff_experiments.sh script

4. The experiments are spawning tmux sessions on the remote
machines, so tmux list-sessions should provide a status on
running experiments.

5. Collect the results from the fuzzing runs after the experiments
have been finished (10 repetitions of 24 hour runs). This is
done via the ssh_based_collect_results.sh script. The fuzzers

shut themselves down automatically, so the experiment does
not have to be cancelled manually. You may run the script at
any time to collect intermediate results, but for the final result
it is best to wait until the fuzzer has shut itself down. You may
check whether the experiment is still running by checking the
corresponding tmux session. Expect the experiments to run for
10-11 days including trace and per-run metrics generation.

6. Compute summary metrics via the run_metric_aggregation.py
script.

For the P2IM unit tests of experiment (1), you may run 01-access-
modeling-for-fuzzing/p2im-unittests/run_experiment.sh and observe
the stdout output.
(2) State-of-the-art comparison. For the second experiment, the
following workflow can be used to reproduce the experiments:

1. Same as for experiment (1).

2. Navigate to 02-comparison-with-state-of-the-art

3. Same as for experiment (1).

4. Same as for experiment (1).

5. Same as for experiment (1), but with 5 repetitions, 5-6 days of
runtime, and using ssh_based_collect_results.sh.

6. Same as for experiment (1).

Note that experiments (1) and (2) are meant to be run in parallel
in case 41 hosts are present, as experiment (1) is pre-configured to
use 20 instances, while experiment (2) is pre-configured to use the
remaining 21 instances.
(3) CVE discovery. For the third experiment, we tested the targets in
large-scale fuzzing campaigns. As such, single 24-hour runs for repli-
cation do not make sense in this context. Instead, we provide crashing
proof-of-concept inputs which were all generated in fuzzing runs,
alongside with README’s giving context on each POC. An example
of this is 03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-
2020-10065/POC/ within the fuzzware-experiments repository. You
can still run the different CVE targets using the fuzzware pipeline
utility (please refer to fuzzware pipeline -h for more documentation).
We built each target such that previously known bugs are fixed (e.g.,
bugs of related CVEs), and crashing inputs generated via fuzzing
should have a high likelihood to trigger the CVE bug.
(4) Crash Analysis. For the fourth experiment, we provide crashing
POC inputs alongside some documentation on each input. The exper-
iment’s README at 04-crash-analysis/README.md contains an
overview of how POC inputs correspond to the previous experiments,
and how they can be run in Fuzzware.
A note on the multi-host setups. The base setup for (1) and (2)
expect that the experiments are run in a distributed fashion on mul-
tiple hosts. In case your hardware resources do not allow for this
multi-host setup, it is also possible to perform the same experiments
on a smaller number of hosts that have access to more CPU cores.
We provide scripts to run the experiments locally in the form of
run_experiment.sh scripts within the respective experiment directo-
ries. As we cannot predict the exact computation resources (one very
large host, a handful of medium-sized hosts, ...), these scripts are con-
figured to run without parallelization by default. This means without
modification, simply running the different run_experiment.sh scripts
will take nearly a year to complete. However, we built parallelization
and target specification options via environment variables into these
scripts, such that the run_experiments.sh scripts should aid you in

88 31st USENIX Security Symposium USENIX Association

https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/run_docker.sh
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/install_local.sh
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/install_local.sh
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/ssh_hosts_install.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/README.md
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/ssh_hosts_install.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ssh_based_kickoff_experiments.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ssh_based_collect_results.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/run_metric_aggregation.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/p2im-unittests/run_experiment.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/p2im-unittests/run_experiment.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/02-comparison-with-state-of-the-art
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/02-comparison-with-state-of-the-art/ssh_based_collect_results.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-2020-10065/POC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-2020-10065/POC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/04-crash-analysis/README.md

running the experiments according to a given hardware environment.
Please refer to the script documentation for information on how to
parallelize running the experiments within a host.

A.6 Evaluation and expected results

The main claims of the paper are:

1. Fuzzware employs a lightweight MMIO modeling tech-
nique.

2. Fuzzware’s MMIO models reduce the fuzzer’s input
space considerably.

3. Fuzzware’s MMIO models are applicable to a wide vari-
ety of firmware and hardware platforms.

4. Fuzzware outperforms the state-of-the-art.

5. Fuzzware’s is able to identify previously unknown bugs.

The key results reported in the evaluation of the paper
which support our claims are as follows:

1. Fuzzware’s model generation cost an average of 6.34
minutes over 24-hour runs (6 seconds per model) for the
pw-discovery data set.

2. On the same data set, Fuzzware achieves a minimum
input elimination of 49.3% and a maximum 83.4%.

3. Fuzzware passes all of the valid P2IM unit tests.

4. In terms of basic block coverage, Fuzzware achieves on
average 44% more coverage compared to P2IM and
61% more compared to uEmu.

5. Fuzzware’s fuzzing campaigns yielded multiple previ-
ously unknown bugs in Zephyr-OS and Contiki-NG.

6. The majority of crashing inputs found by Fuzzware are
true positives.

These claims are supported by the data generated when
following the experiments in Section A.5. Note that the
README file in each experiment sub-directory should pro-
vide additional context on what data is collected, where to
find it, and what the expected results are.

After running the experiments, you should have access to a
set of fuzzware-project directories that contain aggregated
data. As an example, for the ARCH_PRO target of experiment
(1), a directory fuzzware-project-run-01 inside 01-access-
modeling-for-fuzzing/pw-discovery/ARCH_PRO/ should
have been automatically created. Similarly, for the P2IM/PLC
sample of experiment (2), fuzzware-project-run-01 should be
present in 02-comparison-with-state-of-the-art/P2IM/PLC/.
Running the run_metric_aggregation.py scripts should now

output data in a similar representation to what can be found
in the paper with regards to claim 1–41.

For claim 5–6, you may replay the given POC inputs and
verify emulation behavior. In case you fuzz-tested the CVE
targets with sufficient computation resources, you can also
manually analyze the crashes which are produced in the re-
spective fuzzware-project directories. We further include em-
piric timings for the first occurrence of according crashes
in our experiments in 03-fuzzing-new-targets/README.md,
alongside numbers on how many cores we used for the crash
reproduction. Information on the reported bugs can be found
in 03-fuzzing-new-targets/bug-details.

A.7 Experiment customization
In case your computation resources differ from our recom-
mended setup, then modifications to the run scripts may be
required to achieve experiment parallelization which matches
your available setup. Please refer to the scripts’ sources and
README’s for more information.

A.8 Notes
Due to the probabilistic nature of fuzzing, many of the num-
bers will differ in each run.

Furthermore, our basic block coverage collection is slightly
different from the way it is collected in original publications
for uEmu and P2IM. These papers report QEMUs translated
blocks as reached basic blocks. However, due to the intrinsics
of this emulator, these do not necessarily correspond to actual
basic blocks. In our experiment, we match the entry of trans-
lated blocks to a list of actual basic blocks. While we include
these allow lists in the repositories, you can generate them on
your own by:

1. Opening the target’s ELF file in IDA

2. While loading the binary, choosing ARMv7-M as the
processor option

3. Running scripts/idapython/idapy_dump_valid_basic_block_list.py
which is included in the fuzzware repository.

4. Execution function dump_bbl_starts_txt().

You should now find a valid_basic_blocks.txt file next to the
opened ELF file.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

1Note that we only include an automated experiment setup for Fuzzware,
and not for rehosting frameworks we compare against.

USENIX Association 31st USENIX Security Symposium 89

https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ARCH_PRO
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ARCH_PRO
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/02-comparison-with-state-of-the-art/P2IM/PLC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/03-fuzzing-new-targets/README.md
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/bug-details
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/scripts/idapython/idapy_dump_valid_basic_block_list.py
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-accepted

A Artifact Appendix

A.1 Abstract

Our artifact includes three major parts: hardware-free device
driver fuzzer, modified PANDA/QEMU with full-system con-
colic tracing support and concolic code exploration scripts.
The code require a 64-bit x86 system with clean Ubuntu 20.04
install.

A.2 Artifact check-list (meta-information)

• Compilation: It’s best to use the default Ubuntu 20.04 com-
pilers

• Run-time environment: Linux (preferably Ubuntu 20.04)

• Hardware: 64-bit x86 computer

• How much disk space required (approximately)?: 40G

• How much time is needed to prepare workflow (approxi-
mately)?: 30 min

• How much time is needed to complete experiments (approx-
imately)?: several hours to days depending on number of
drivers and duration of fuzzing session you want to run

• Publicly available (explicitly provide evolv-
ing version reference)?: https://github.
com/messlabnyu/DrifuzzProject/tree/
d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9

A.3 Description

A.3.1 How to access

Clone source from https://github.com/messlabnyu/DrifuzzProject/.
Or you can obtain our docker image from docker hub
https://hub.docker.com/repository/docker/buszk/drifuzz-docker.

A.3.2 Hardware dependencies

64-bit x86 machine.

A.3.3 Software dependencies

Ubuntu 20.04 for building from source. Any Linux distro should be
fine for running the Docker image.

A.4 Installation

git clone https://github.com/messlabnyu/⤦
DrifuzzProject.git

cd DrifuzzProject \&\& ./build.sh 2>\&1 |tee ⤦
build.log

A.5 Experiment workflow
In top-down perspective, our work invokes a golden seed search
script to generate quality initial seeds. Then, we can run the fuzzing
tool with the generated seed to increase coverage. Because our ini-
tial seed has solved many roadblocks, using it tends to find better
coverage tank starting with random seed (e.g. Agamotto’s approach).
To find the golden seeds, we leverage concolic execution and forced
execution to find and tackle roadblocks incrementally to increase
coverage.

A.6 Evaluation and expected results
Evaluation should show that Drifuzz is able to perform concolic trac-
ing in device driver execution and our golden seed search algorithm
is able to provide a good initial seed resulting more code coverage.

A.6.1 Prerequisite

After installation, please check if the following files are created
correctly. If any of the file was not created properly, please check
the build log and script to triage the problem.

cd ~/DrifuzzRepo/Drifuzz
ls image/buster.img
ls panda -build/x86_64 -softmmu/panda -system -⤦

x86_64
ls panda -build/x86_64 -softmmu/panda/plugins/⤦

panda_taint2.so
ls linux -module -build/vmlinux

A.6.2 Concolic Tracing

Note: USB targets are supported with “–usb” flag in ./snap-
shot_helper.py and ./concolic.py.

cd ~/DrifuzzRepo/drifuzz -concolic

Create a driver specific snapshot
./snapshot_helper.py ath9k
ls work/ath9k/ath9k.qcow2 # should exists

Run concolic script with random input
head -c 4096 /dev/urandom >rand
./concolic.py ath9k rand
cat work/ath9k/drifuzz_path_constraints # path ⤦

constraints
cat work/ath9k/drifuzz_index # accessed MMIO/DMA
ls work/ath9k/out # generated inputs with ⤦

flipped branch

Understand the concolic result
head work/ath9k/drifuzz_path_constraints
Get the program counter of the first symbolic ⤦

branch
head work/ath9k/drifuzz_path_constraints |grep ⤦

PC | awk ’{print $6}’
Use addr2line script to get stack trace
./addr2line.py ath9k [program counter]

A.6.3 Golden seed

Note: you may encounter a bug that consumes all available disk
space. In that case, run du tool to find and remove the files. If you

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 91

https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9
https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9
https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9

use provided docker image, deleting the container and retrying a new
random seed might solve the problem.

Note: if you run into an AssertionError for “Cannot find a feasible
path for given model" for the first ./concolic.py run, it seems that
PANDA’s concolic tracing is not work. Please double check that you
have a snapshot in good standing and are able to run concolic tracing.
If that fails, changing a seed is reported to work in the situation.

Note: USB targets are supported with “–usb” flag in
./search_greedy.py.

cd ~/DrifuzzRepo/drifuzz -concolic
Run the golden seed script (takes a hour or so⤦

)
./search_greedy.py ath9k rand 2>&1|tee ⤦

search_ath9k.log
ls work/ath9k/out/0 # generated seed

Fields below can be derived from generated log to compare with
Table 2 from paper.

• #blocking branches = #iterations−1

• #symbolic branches = sizeo f (last branches list)

A.6.4 Fuzzing

cd ~/DrifuzzRepo/Drifuzz

Fuzz ath9k with random seed on 4 cores
fuzzer/drifuzz.py -D -p 4 seed/seed -random work/⤦

ath9k ath9k
Ctrl^C once to stop

Reproduce a generated input
scripts/reproduce.sh ath9k work/ath9k/ work/⤦

ath9k/corpus/payload_1

Process stacktrace when you see a crash
scripts/decode_stacktrace.sh crash.log

We also provide some helpful scripts to combine our golden seed
and concolic support with our fuzzer. Note: You need to run the
golden seed generation script before running some of the following
scripts.

cd ~/DrifuzzRepo/Drifuzz

Fuzzing random input without concolic support
scripts/run_random.sh ath9k
Fuzzing golden seed with concolic support
scripts/run_conc_model.sh ath9k

A.6.5 Coverage comparison

Get the coverage metric from the fuzzing sessions. The result should
show that the second session should have better coverage than the
first. The detailed number will differ because of time of fuzzing
period and non-determinism in fuzzing.

tail -n1 work/work -ath9k -random/evaluation/data.⤦
csv |awk -F’;’ ’{print $16}’

tail -n1 work/work -ath9k -conc -model/evaluation/⤦
data.csv |awk -F’;’ ’{print $16}’

A.7 Notes
Details of how to run each part of Drifuzz are shown in GitHub page.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

92 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/messlabnyu/DrifuzzProject/blob/main/ARTIFACT.md

A Artifact Appendix

A.1 Abstract
Our artifact is the code to create an ultra-wide band (UWB)
high-Rate pulse repetition frequency (HRP) sniffer that gener-
ates accurate timestamps and forwards timestamps and UWB
frames to Wireshark. We used this sniffer to identify timings
in UWB ranging sequences and to attack the frames using the
Ghostpeak attack. The artifact includes all necessary source
code to run it on a recent DWM3000EVB from Decawave
attached to a NUCLEO-F429ZI. A different board can be
used, but the speed may suffer due to different SPI speeds.

We do not publish sample code for the attacks demonstrated
in our paper, since this would violate German laws and might
allow malicious actors to enter a system secured by UWB
distance ranging.

A.2 Artifact check-list (meta-information)
• Algorithm:

• Compilation: For the UWB sniffer we use the free
STM32CubeIDE. The host a Python script.

• Binary: We do not include binaries, since the configuration
needs to be changed depending on the UWB channels to
listen on.

• Run-time environment: The STM32CubeIDE runs on
Linux, macOS and Windows

• Hardware: We use a DWM3000EVB as the UWB receiver
and attach it to a NUCLEO-F420ZI. The NUCLEO needs
some slight hardware modifications according to the man-
ufacturer Decawave.

• Execution: To actually sniff UWB signals some properties
about the signals are needed: The channel, the preamble
code and the start of frame delimiter (SFD) used.

• Output: Using the sensniff Python script the sniffer reports
rx accurate timestamps and received frames

• Experiments: We do not apply for the reproducibility
badge

• How much disk space required (approximately)?: 500KB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• Publicly available: https://github.com/
seemoo-lab/uwb-sniffer

• Code licenses: MIT License

• Archived: https://github.com/seemoo-lab/
uwb-sniffer/releases/tag/v1.0

A.3 Description
Our sniffer includes the necessary source code for the UWB board
and the host machine to receive and process frames. Furthermore,
we include a manual and a YouTube video on how to get started.

Figure 1: Shows a NUCELO-F429ZI with the
DWM3000EVB attached.

Figure 2: Necessary modifications on the NUCLEO board.

A.3.1 How to access

The artifact is available on GitHub: https:
//github.com/seemoo-lab/uwb-sniffer/tree/
usenix22-artifact-evaluation.

Furthermore, we provide a YouTube video that show how to setup
the sniffer and how to run it: https://youtu.be/akCwyHqgbhY.

A.3.2 Hardware dependencies

To run it we require the NUCELO-F429ZI and the DWM3000EVB
attached to the NUCLEO as shown in Figure 1.

The NUCELO-F429ZI needs to be slightly modified to behave
correctly when the DWM3000EVB is attached. These modifications
are not necessary for nRF boards. Remove solder on SB121 and
solder SB122. These modifications are shown in Figure 2.

A.3.3 Software dependencies

We use the STM32CubeIDE to compile and flash the attached
NUCELO. We use Python to run a host script that receives input
from the UWB Sniffer.

A.3.4 Data sets

N/A

USENIX Association 31st USENIX Security Symposium 93

https://github.com/seemoo-lab/uwb-sniffer
https://github.com/seemoo-lab/uwb-sniffer
https://github.com/seemoo-lab/uwb-sniffer/releases/tag/v1.0
https://github.com/seemoo-lab/uwb-sniffer/releases/tag/v1.0
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://youtu.be/akCwyHqgbhY

Figure 3: Importing a project in STM32CubeIDE.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

None.

A.4 Installation
Download the STM32CubeIDE and install it: https://www.st.
com/en/development-tools/stm32cubeide.html

Download the software samples from Decawave, which
include the API to communicate with the DWM3000EVB.
Due to license issues, we cannot host it on our GitHub.
https://www.decawave.com/wp-content/uploads/2022/03/
DW3xxx_XR6.0C_24Feb2022.zip

1. Open a new workspace in the STM32CubeIDE

2. Go to File → Import → General → “Import ac6 System Work-
bench for STM32 Project” (see Figure 3)

3. Select the root folder of the sample project and import the
project

4. Accept to convert the project to the new format

5. Now you can build and run the examples

6. Make sure that the examples build without an error

A.4.1 Integrate the sniffer

1. Copy all source files from this project to the root folder of the
DWM3000 sample code

2. Overwrite the main.c with the one in this project

3. Compile the project

4. Run it on an NUCLEO-F429ZI

Figure 4: Screenshot of Wireshark with received frames.

A.4.2 Configure the sniffer

UWB has a variety of available configurations: channel, preamble
code, data rate, sts mode, and sts length. Most of them have to be
known in advance to sniff a communication. In most cases these
values can be identified through means of reverse-engineering. For
iOS UWB communication, we use the iOS system logs from the
nearbyd to identify those values. The values can be changed in the
uwb_sniffer.c file in the config struct.

In the current implementation the sniffer also transfers frames
with incorrect headers or frame lengths to the host. So make sure to
check the Wireshark output if it is correct. An incorrect configuration
leads to long and incorrect frames where the STS or pars of the
preamble will be interpreted as data.

A.5 Experiment workflow
With the sniffer any UWB communication following the
IEEE802.15.4-2020 HRP standard can be sniffed. This includes
frames and accurate timestamps. For this the sniffer needs to be
configured as described in Section A.4.2.

With the STM32CubeIDE you can flash the NUCLEO with the
attached DWM3000EVB board. When powered on it will immedi-
ately start sniffing and trying to forward the packets to the attached
computer. To receive the frames on the computer it’s necessary to
run the provided python script.

$ python3 sensniff.py -a
The script will try to automatically detect the connected device.

If this fails (due to different OS support), we recommend passing
the right port directly:

$ python3 sensniff.py -d /dev/cu.usbmodem230d
Then launch Wireshark on the same computer and add a new pipe

at /temp/sensniff. When listening to this pipe in Wireshark all
frames received by the UWB sniffer will appear here. This includes
accurate timestamps when the frame has been received. Figure 4
is a screenshot of a running Wireshark instance that receives UWB
frames.

A.6 Evaluation and expected results
In our paper we state that we are able to run the attack Ghostpeak that
achieves distance reductions in UWB ranging environments using
the modern IEEE 802.15.4z standard. The attack works against the

94 31st USENIX Security Symposium USENIX Association

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.decawave.com/wp-content/uploads/2022/03/DW3xxx_XR6.0C_24Feb2022.zip
https://www.decawave.com/wp-content/uploads/2022/03/DW3xxx_XR6.0C_24Feb2022.zip

Apple U1 chip in combination with any other compatible UWB chip
(DW3000 from Qorvo/Decawave and SR150 from NXP). We do not
publish the attack code, but provide our code for the UWB sniffer,
which we used to measure accurate timestamps of the attack and
analyze ranging sequences. The sniffer also forwards UWB frames
to the host machine which can then display them in Wireshark.

Most U1 to U1 ranging scenarios can be monitored using the

sniffer. Depending on the devices used and the ranging sequence in
use the sniffer may need to be modified.

A.7 Version

Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association 31st USENIX Security Symposium 95

A Artifact Appendix

A.1 Abstract

Secure inference allows a model owner (or, the server)
and the input owner (or, the client) to perform in-
ference on machine learning model without revealing
their private information to each other. Recently,
Lehmkuhl et al. proposed a secure inference system,
Muse, in client malicious threat model. In our pa-
per titled “SIMC: ML Inference Secure Against Ma-
licious Clients at Semi-Honest Cost”, we design and
build Simc, a new cryptographic system for secure
inference in client malicious threat model.

In this artifact, we implement our proposed sys-
tem Simc. Using this implementation, we show that
Simc has 23−29× lesser communication and is up to
11.4× faster than Muse, for benchmarks considered
by Muse. Simc obtains these improvements using
a novel protocol for non-linear activation functions
(such as ReLU) that has > 28× lesser communica-
tion and is up to 43× more performant than Muse.

In this article, we summarize the system require-
ment, installation and building process, and finally,
the execution process in order to obtain the perfor-
mance numbers reported in our paper.

A.2 Artifact check-list (meta-
information)

• Algorithm: SIMC (Secure Inference Against Mali-
cious Client) protocol.

• Program: Implementation in C++
(https://aka.ms/simc).

• How much disk space required (approxi-
mately)?: 16GB.

• How much time is needed to prepare workflow
(approximately)?: 3 hours.

• How much time is needed to complete exper-
iments (approximately)?: 20 minutes

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT
License.

A.3 Description

A.3.1 How to access

Access the github repo using link:
https://aka.ms/simc (commit id:
2a5fd092b52427cc9cac55b36ec50ae43ecee6be).

A.3.2 Software dependencies

Install Eigen3, SEAL and emp-toolkit repositories. See
Installation steps for more details.

A.4 Installation and Compilation

1. Create parent directory msi-code

mkdir msi-code && cd msi-code

2. To install Eigen3 do

sudo apt-get update -y

sudo apt-get install -y libeigen3-dev

3. Follow the installation steps of [emp-toolkit/emp-
sh2pc].

4. Clone this repo in the parent directory msi-code.

5. Install SEAL 3.64

(a) Clone SEAL 3.6 repo in the parent directory
msi-code.

(b) Execute

cd SEAL

git checkout 3.6.4

mkdir build && cd build

cmake ..

make -j

sudo make install

6. In msi-code, go to emp-tool and do git checkout

df363bf30b56c48a12c352845efa3a4d8f75b388.

7. Next, go to emp-ot in
msi-code and do git checkout

3b21d6314cb1e7d8dbb9bb1f1ed80261738e4f4c.

8. For multi-threading support, go to emp-tool and run
the following

cmake . -DTHREADING=ON

make -j

sudo make install

9. Do the same for emp-ot repository.

10. Finally, do the same in our (simc) repository.

USENIX Association 31st USENIX Security Symposium 97

https://github.com/shahakash28/simc/tree/2a5fd092b52427cc9cac55b36ec50ae43ecee6be
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/microsoft/SEAL.git

A.5 Experiment workflow

The protocol is run between two parties. Open two ter-
minal windows and run the following test files from path
msi-code/simc:

A.5.1 Run Neuralnet Benchmarks

1. Fully-connected Layer: In one terminal
run bin/test msi linearlayer 1 0.0.0.0

<port no> 44 <neural network> and in
other terminal run bin/test msi linearlayer

2 <server ip address> <port no> 44

<neural network>.

2. Convolution Layer: In one terminal run
bin/test msi convlayer 1 0.0.0.0 <port no>
44 <neural network> and in other terminal run
bin/test msi convlayer 2 <server ip address>
<port no> 44 <neural network>.

3. Non-Linear Layer (ReLU): In one terminal run
bin/test msi relu final 1 0.0.0.0 <port no>
44 <neural network> 0 0 <num threads> and in
other terminal run bin/test msi relu final

2 <server ip address> <port no> 44

<neural network> 0 0 <num threads>.

4. Average Pool Layer: In one terminal run
bin/test msi average 1 0.0.0.0 <port no>
44 <neural network> and in other terminal run
bin/test msi average 2 <server ip address>
<port no> 44 <neural network>.

Here, the first parameters 1 and 2 denote the ID
of the participating party. <server ip address>
denotes the ip address of the server machine
and set <neural network>=1 for MNIST and
<neural network>=2 for CIFAR-10. See Figure 1
for examples.

A.5.2 Run Neuralnet Micro-benchmarks

See Figure 2 for instructions and examples to run
micro-benchmarks. Note that, for different system-
configuration, different number of threads may provide
best performance for given number of ReLUs.

A.6 Evaluation and expected results

To obtain performance numbers of our protocol that were
used to generate the plot of Figure 7 of our paper, follow
instructions in Section A.5.2.

Follow instructions in Section A.5.1, and then aggre-
gate the observed runtime and communication cost across
all the layers to obtain performance numbers of Tables 1,
2 and 3 of our paper. If the protocols are run in simi-
lar system setting as ours, the observed runtime will be
similar to what has been reported in paper.

98 31st USENIX Security Symposium USENIX Association

Fully connected Layer:

Terminal 1: bin/test_msi_linearlayer 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_linearlayer 2 <server_ip_address> 31000 44 1

Convolution Layer:

Terminal 1: bin/test_msi_convlayer 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_convlayer 2 <server_ip_address> 31000 44 1

Non-Linear Layer (ReLU):

Terminal 1: bin/test_msi_relu_final 1 0.0.0.0 31000 44 1 0 0 8

Terminal 2: bin/test_msi_relu_final 2 <server_ip_address> 31000 44 1 0 0 8

Average Pool Layer:

Terminal 1: bin/test_msi_average 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_average 2 <server_ip_address> 31000 44 1

Figure 1: Run Neuralnet Benchmarks Examples

Terminal 1: bin/test_msi_microbenchmark 1 0.0.0.0 31000 44 <benchmark_choice>

<num_relus> <#threads>

Terminal 2: bin/test_msi_microbenchmark 2 <server_ip_address> 31000 44 <benchmark_choice>

<num_relus> <#threads>

Input Parameters:

1. <server_ip_address>: IP Address of Server.

2. <benchmark_choice>: 0 - ReLU6, 1 - ReLU.

3. <num_relus>: Number of ReLUs

4. <#threads>: Number of threads

if <num_relus> <=2, set <#threads>=1,

else if <num_relus> <=4, set <#threads>=2,

else if <num_relus> <=16, set <#threads>=4,

else if <num_relus> >16, set <#threads>=8.

Example:

Terminal 1: bin/test_msi_microbenchmark 1 0.0.0.0 31000 44 0 16384 8

Terminal 2: bin/test_msi_microbenchmark 2 <server_ip_address> 31000 44 0 16384 8

Figure 2: Run Neuralnet Micro-benchmarks

USENIX Association 31st USENIX Security Symposium 99

A Artifact Appendix

A.1 Abstract

The artifact is based on PyTorch and requires GPU support.
We implement our MIA defense SELENA, which consists of
two components: Split-AI (Algorithm 1) and Self-Distillation.
We also provide the implementation of prior defenses Adver-
sarial Regularization [30] and MemGuard [21]. The artifact
can reproduce experimental results in the main body, i.e.,
Table 2.

Our source code is available at https://github.
com/inspire-group/MIAdefenseSELENA/tree/
39428e763566a8276d82e1c0fe91bbaaddb84bfb.
We further provide a detailed guide for eval-
uating our artifact at https://github.com/
inspire-group/MIAdefenseSELENA/blob/
39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/
reproducibility.md.

A.2 Artifact check-list (meta-information)
• Algorithm: We implement our defense SELENA, which

consists of two components: Split-AI (Algorithm 1) and
Self-Distillation from Split-AI. We also provide comparison
with prior defenses: undefended model, adversarial regulariza-
tion [30] and MemGuard [21].

• Program: N/A.

• Compilation: N/A.

• Transformations: N/A.

• Binary: N/A.

• Model: 4-layer fully connected neural network and ResNet-18.

• Data set: Purchase100, Texas100, CIFAR100. They are pub-
licly available benchmark datasets.

• Run-time environment: We test our artifact using anaconda
virtual environment on Linux.

• Hardware: Requires one GPU.

• Run-time state: N/A.

• Execution: N/A.

• Security, privacy, and ethical concerns: N/A.

• Metrics: Membership inference attack accuracy. This is de-
fined in Section 3.1. Random guess baseline is 50%.

• Output: We output results (classification accuracy and MIA
accuracy) and intermediate results to console.

• Experiments: We provide reproducing instructions including
commands.

• How much disk space required (approximately)?: Datasets
take around 4 GB. Each model weight takes less than 100 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• How much time
is needed to complete experiments (approximately)?: The
time range of defense for each experiment varies from a few
minutes to around 30 hours (from scratch). See Table 3 and
Table 4 for a reference. The time range of MIA attacks is
approximately a few minutes for direct single-query attacks
and data augmentation attacks, 4 ∼ 8 h for flip noise attack, 20
h for boundary distance attacks. The time of adaptive attacks
is similar to the time of run SELENA defense.

• Publicly available (explicitly provide evolv-
ing version reference)?: https://github.
com/inspire-group/MIAdefenseSELENA/tree/
39428e763566a8276d82e1c0fe91bbaaddb84bfb.

• Code licenses (if publicly available)?: MIT License.

• Data licenses (if publicly available)?: N/A.

• Workflow frameworks used?: N/A.

• Archived (explicitly provide DOI or stable reference)?:
N/A.

A.3 Description
A.3.1 How to access

We host our source code on GitHub at https:
//github.com/inspire-group/MIAdefenseSELENA/
tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb.
We further provide a detailed guide for eval-
uating our artifact at https://github.com/
inspire-group/MIAdefenseSELENA/blob/
39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/
reproducibility.md.

A.3.2 Hardware dependencies

The artifact requires 1 CPU and 1 GPU.

A.3.3 Software dependencies

The artifact is based on Python, PyTorch, TensorFlow and
other Python packages. All packages can be easily installed
with pip; we provide a list of required packages in require-
ment.txt.

A.3.4 Data sets

We use three publicly available datasets in our evaluation:
Purchase100, Texas100, CIFAR100. See our reproducing in-
structions for more details.

A.3.5 Models

The 4-layer fully connected neural network is for Pur-
chase100/Texas100, which is widely used in prior MIA de-
fenses [21, 30]. The ResNet-18 model for CIFAR100, which
is widely used in image classification tasks.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 101

https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/requirement.txt
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/requirement.txt
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md#datasets
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md#datasets

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Steps 1-3 can also be done in the Anaconda environment.

1. Install Python [help link] (or Anaconda ([help link]):
conda create -n myenv python=3.8.5).

2. Install GPU-compatible PyTorch [help link] and Ten-
sorFlow. [help link] (or Anaconda: GPU-compatiable
PyTorch [help link] and TensorFlow [help link]).

3. Install other Python dependencies [help link].

4. Clone the source code from https://github.
com/inspire-group/MIAdefenseSELENA/tree/
39428e763566a8276d82e1c0fe91bbaaddb84bfb.

5. Follow the preparation steps in Getting Started [help
link].

A.5 Experiment workflow
Our defense is implemented in $datasetname/SELENA
folder. After preparing the initial dataset and environ-
ments, we first need to run $datasetname/data_partition.py
to generate the npy files for member/nonmember sets
to train/eval MIA attacks. We also need to gener-
ate the non-model indices for training set via $dataset-
name/SELENA/generation10.py. Then we need to train
Split-AI model by $datasetname/SELENA/Split-AI/train.py.
Next, we need to train the Self-Distillation model by
$datasetname/SELENA/Distillation/train.py. To evaluate
the protected model from Self-Distillation by mem-
bership inference attacks, we need to run $dataset-
name/SELENA/Distillation/eval.py (eval_cw.py|eval_aug.py).
See reproducing instructions for more details. We can read
the training/test accuracy for the classification model, and
the membership inference attack accuracy from the console,
which is the corresponding result of Table 2 in the paper.

A.6 Evaluation and expected results
Our main claim is that our defense SELENA achieves a better
trade-off between empirical membership privacy and util-
ity compared to the state of the art MIA defenses [21,30].
This claim is supported by Table 2 of our paper. We can use
commands listed in our reproducing instructions to gener-
ate our key results including the classification accuracy and
MIA attack accuracy of our defense as well as prior MIA
defenses [21, 30]. For accuracy on training set, see the cor-
responding classification accuracy for ’train’. For accuracy
on test set, see the corresponding classification accuracy for

’test’. For direct single-query attacks, see ’Best direct single-
query attack acc: ’. For label-only attacks, see ’Best label-only
attack at flip:’ or ’CW attack:’ or ’Augmentation attack:’. For
adaptive attacks: see ’BEST ATTACK ACC:’.

The reported number should be consistent with Table 2
in the main body. It’s possible to have around 0% ∼ 2%
mismatches due to some randomness.

A.7 Experiment customization
Our source code provides an easy way to customize the ex-
periment. The main algorithm in our SELENA defense is to
generate non_model indices and perform adaptive inference
on Split-AI, which can be easy adapted to datasets/models not
listed in the source code. The parameters K and L can also be
changed via flag –K and –L when needed.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

102 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://www.python.org/downloads/
https://docs.anaconda.com/anaconda/install/
https://pytorch.org/get-started/locally/
https://www.tensorflow.org/install
https://anaconda.org/pytorch/pytorch
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb#requirements
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb#getting-started
https://github.com/inspire-group/MIAdefenseSELENA/tree/39428e763566a8276d82e1c0fe91bbaaddb84bfb#getting-started
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md#selena
https://github.com/inspire-group/MIAdefenseSELENA/blob/39428e763566a8276d82e1c0fe91bbaaddb84bfb/misc/reproducibility.md

A Artifact Appendix

A.1 Abstract
The artifact is an open-source Python library that implements
a novel framework to evaluate the privacy-utility trade-off
of synthetic data publishing and to compare it to that of tra-
ditional sanitisation techniques. The library provides imple-
mentations of two privacy attacks to evaluate privacy gain
with respect to the risk of linkability and inference. It further
includes implementations of five example generative models,
three standard models and two models trained under formal
privacy guarantees.

The artifact contains experiment scripts and configuration
files to reproduce some of the results presented in the paper.
In particular, the example runs described in the README
allow the user to partially reproduce the graphs of Section 6
that compares the privacy-utility trade-off of (differentially
private) synthetic data to traditional anonymisation.

A.2 Artifact checklist
• Algorithm: The privacy (and utility) games introduced in the

paper are implemented in the corresponding command line
interface (cli files.)

• Data set: The repository contains a copy of the cleaned-up
and pre-processed dataset used for the main set of experiments.
The dataset and the required metadata can be found in the data
folder under texas.csv and texas.json, respectively.

• Run-time environment: Synthetic Data is also distributed as
a ready-to-use Docker image containing Python 3.9 and CUDA
11.4.2, along with all dependencies required by Synthetic Data.

• Hardware: When running evaluations for either the PATE-GAN
or CTGAN model it is useful to have a GPU at hand. This signif-
icantly speeds up the execution. However, they are not needed
for running the example experiments.

• Execution: The README includes instructions about how
to run three example experiments. The evaluation under the
linkage risk model is the most compute- and memory-intensive.
On a machine with an Intel(R) Core(TM) i7-7600U CPU @
2.80GHz with 2 cores (with hyperthreading) this should take
around 1h15m.

• Output: The example experiments produce output files in a
json format and can be parsed with the functions provided
in utils/analyse_rersults. We include a simple jupyter
notebook that allows to visualise and analyse the results.

• Experiments: The repository includes experiment configu-
ration for three key experiments. See further below of the
README of the repository.

• How much disk space required (approximately)?: If using
the dockerised deployment, its image requires 1̃4GB of disk
space. The experiment outputs need

• How much time is needed to prepare workflow (approxi-
mately)?: <1h (but strongly depends on the bandwidth of the
connection used to pull the Docker image).

• How much time is needed to complete experiments (ap-
proximately)?: This depends on the compute power available.
On a machine with an Intel(R) Core(TM) i7-7600U CPU @
2.80GHz with 2 cores (with hyperthreading) it should take 3h
to run all example experiments.

• Publicly available?: The code is publicly available
at https://github.com/spring-epfl/synthetic_data_
release/tree/v1.1

• Code licenses (if publicly available)?: The code is dis-
tributed under a BSD-3-Clause License.

• Data licenses (if publicly available)?: See https://www.
dshs.texas.gov/THCIC/Hospitals/Download.shtm

A.3 Description
The library has two main classes: GenerativeModels and
PrivacyAttacks. For both classes we define a parent class that
determines the core functionality that objects of the class need to
implement.
GenerativeModel provides two main functions. GM.fit(R) is
called with a raw dataset R as input and implements the model’s
training procedure. GM.sample(m) generates a synthetic dataset S of
size m. The library enables easy integration of existing model training
procedures. GM.fit simply wraps any existing training algorithm
and exposes the appropriate API endpoints.

PrivacyAttack objects have two functions: PA.train and
PA.attack. PA.train trains the adversary’s guess function and
needs to be run before calling PA.attack. PA.attack(S), takes a
dataset S and outputs a guess about a secret value. In our implemen-
tation, we instantiate PrivacyAttack with two attacks, a linkage
adversary and an attribute inference attack.

The library also includes procedures to estimate the privacy gain
of synthetic and sanitised data publishing. These procedures can be
found in the corresponding cli files.

A.3.1 How to access

The code, some example data and experiment configuration files
are publicly available at https://github.com/spring-epfl/
synthetic_data_release/tree/v1.1.

A.3.2 Dependencies

For your convenience, Synthetic Data is also distributed as a ready-
to-use Docker image containing Python 3.9 and CUDA 11.4.2, along
with all dependencies required by Synthetic Data.

Note: This distribution includes CUDA binaries, before down-
loading the image, ensure to read its EULA and to agree to its terms.

A.3.3 Data sets

The repository contains a copy of the cleaned-up and pre-processed
dataset used for the main set of experiments, the Texas hospital
dataset. The dataset and the required metadata can be found in the
data folder under texas.csv and texas.json, respectively.

The Texas Hospital Discharge dataset is a large public use data
file provided by the Texas Department of State Health Services. The
dataset we include here for the experiments consists of 100,000

USENIX Association 31st USENIX Security Symposium 103

https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1

records uniformly sampled from a pre-processed data file that con-
tains patient records from the year 2013 and 2014. We retain 18 data
attributes of which 11 are categorical and 7 continuous.

A.4 Installation
Synthetic Data can either be installed from scratch or run in a dock-
erised environment. If you want to use the ready-to-use docker
container, pull the image and run a container (and bind a volume
where you want to save the data):
docker pull springepfl/synthetic-data:latest
docker run -it -rm -v "$(pwd)/output:/output"
springepfl/synthetic-data

The Synthetic Data directory is placed at the root directory of the
container.
cd /synthetic_data_release
You should now be able to run the examples without encountering
any problems.

A.5 Experiment workflow
We provide three example experiments and their configurations to
reproduce some of the key claims presented in Section 6 of the paper.

Privacy gain with respect to linkability. First, to run a privacy
evaluation with respect to the privacy concern of linkability you can
run
python3 linkage_cli.py -D data/texas -RC
tests/linkage/runconfig.json -O tests/linkage

The results file produced after successfully running the
script will be written to tests/linkage and can be parsed
with the function load_results_linkage provided in
utils/analyse_results.py. A jupyter notebook to visu-
alise and analyse the results is included at notebooks/Analyse
Results.ipynb.

Privacy gain with respect to inference. To run a privacy evaluation
with respect to the privacy concern of inference you can run
python3 inference_cli.py -D data/texas -RC
tests/inference/runconfig.json -O tests/inference

The results file produced after successfully running the script
can be parsed with the function load_results_inference pro-
vided in utils/analyse_results.py. A jupyter notebook to vi-
sualise and analyse the results is included at notebooks/Analyse
Results.ipynb.

Average machine learning utility. To run a utility evaluation with
respect to a simple classification task as utility function run
python3 utility_cli.py -D data/texas -RC
tests/utility/runconfig.json -O tests/utility

The results file produced after successfully running the script can
be parsed with the function load_results_utility provided in
utils/analyse_results.py. The jupyter notebook contains code
for visualising the results.

A.6 Evaluation and expected results

Privacy gain with respect to linkability. This experiment allows
you to compare the privacy gain for five outlier records from the
Texas dataset with respect to the risk of linkability for three different
privacy mechanisms: traditional sanitisation (SanitiserNHSk10),

synthetic data produced by a standard Bayesian Network (BayNet)
and a differentially private version of this model (PrivBay). The
differentially private model is trained with a privacy parameter of
ε = 1.0. All other model hyperparameters match the ones used in
the paper.

After loading the results into the notebook named Analyse
Results.ipynb, you can inspect the per-target privacy gain for five
outlier records from the Texas dataset under a linkage attack with
varying feature sets. You should observe that, as described in the pa-
per, the privacy gain of most targets is larger under the BayesianNet
model compared to traditional sanitisation and further increases if
the synthetic data is sampled from the differentially private model
(compare with Fig.4 in Section 6.1 in the final version of the paper).
You can choose under which attack feature set you want to compare
the targets’ privacy gain.

Note: Due to the sampling uncertainty and randomness of the
attack and generative model training process, you should expect
slight variations between the observed privacy gain and the exact
values reported in the final publication. Furthermore, the observed
variance of the per-record privacy gain is likely larger than the one
reported in the final publication. This is because the privacy game
is run for a smaller number of iterations to reduce the computa-
tion time of the experiments. To reduce the reported standard varia-
tion, you can modify the parameter nIter in the configuration file
tests/linkage/runconfig.json.

Privacy gain with respect to inference. Similarly, the privacy gain
of the same target records under the same models with respect to
the risk of inference can be evaluated with the results file written to
tests/inference/. The results should be comparable to the data
presented in Fig. 6 of Section 6.2.

Utility loss under a classification task. This experiment allows you
to compare the utility loss of sanitised and synthetic data publishing
under a simple classification task as utility function. The details of
this experiment are described in Section 6.3.1. Here, we want to
compare the accuracy of a machine learning classifier trained on a
sanitised or synthetic dataset to that of a classifier trained on the raw
data. You should observe how training on data with a higher privacy
gain, i.e., (differentially private) synthetic data, leads to a decline in
the model’s accuracy compare to the raw data.

A.7 Experiment customization
To change the evaluation parameters, you can modify the
runconfig.json files in the corresponding experiment folders. For
instance, to change the size of the raw and synthetic datasets, respec-
tively, you can modify the parameters sizeRawT and sizeSynT for
each experiment file.

To evaluate the privacy gain of synthetic data publishing under
a different generative model, a new GenerativeModel class has
to be integrated. See A.3 for more details on the implementation
of this class. If you want to run the evaluation on an entirely new
dataset, a metadata file in .json format is necessary. You can use
the texas.json metadata file as a template.

104 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

We demonstrate how targeted deanonymization attacks per-
formed via the CPU cache side channel can circumvent
browser-based defenses. The attack framework we show is
able to overcome the limitations of prior work, such as as-
sumptions on the existence of cross-site leaks. As a result
of this attack, the attacker is able to learn whether a specific
individual visits the attacker-controlled website – a potentially
serious privacy violation.

When a user visits the attacker-controlled website, the web-
site uses an iframe, popunder, or tabunder to request a resource
from a third-party website (i.e., the “leaky resource”). The re-
sponse to this request, as well as the cache activity it generates
in the user’s system, differs depending on the user state on the
third-party website. An attacker monitoring the CPU cache
side channel can analyze the cache patterns and learn whether
the leaky resource was loaded successfully in the browser
or not, and use this information to learn the identity of the
visiting user. The attack can be scaled to identify thousands
of users.

The artifact repository is hosted at GitHub and evaluations
are performed on Google Colab. The reviewers should run the
provided scripts on Google Colab. To support the feasibility of
the attacks and the defense proposed in the paper, the results
should be similar to Figure 5 and Table 1, 2 and 6 of the paper.

A.2 Artifact check-list (meta-information)
• Data set: dataset.zip

• Run-time environment: Google Colab

• How much disk space required (approximately)?: 200MB

• How much time is needed to complete experiments (approx-
imately)?: one hour

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/leakuidatorplusteam/artifacts.git com-
mit ID: 78bae165e0dbcdeb245b19a1f5b75a191de92fc3

A.3 Description
We submit for Artifacts Available, Artifacts Functional and Re-
sults Reproduced badges.

A.3.1 How to access

git clone git@github.com:
leakuidatorplusteam/artifacts.git

[1]

cd artifacts [2]

git checkout 78bae165e0dbcdeb245b19a1f5b75a191de92fc3
[3]

A.3.2 Hardware dependencies

To collect additional traces, one of the following systems are
required:

Dell Latitude - Intel Core i7 7820HQ [4]

Mac mini - Apple M1 8-Core [5]

MacBook Pro - Intel Core i7 3540M [6]

A.3.3 Software dependencies

To collect additional traces, one of the following systems are
required:

Windows 10 Pro 20H2 - Chrome 96.0 [7]

macOS Big Sur 11.4 - Chrome 96.0 [8]

macOS Catalina 10.15.7 - Safari 15.0 [9]

A.3.4 Data sets

dataset.zip file is available at the root directory of the artifacts repos-
itory hosted at GitHub.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Git software can be used to get local access to the repository. Re-
viewers need to have Google accounts to access Google Colab and
also to share resources privately.

A.5 Evaluation and expected results
Here we describe the step by step instructions of two phases of the
evaluation. In the first phase, we demonstrate how the dataset we
already collected can be used to train the classifiers and determine
the accuracy of attacks:

1. Open https://colab.research.google.com/

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 105

2. From your local copy of artifacts repository, upload
the USENIX_Artifact_Evaluation/cache_demo.ipynb file in
Google Colab and open it

3. On the left side of Google Colab interface, click on “Files”,
then “Upload to session storage”, and choose the dataset.zip
file from your local copy of the artifacts repository

4. From the menu on top of Google Colab interface, click on
“Runtime”, then “Run all”, and wait until it is finished

After finishing these 4 steps, the reported results are as follows:

• The code block with comment starting with "## [Single Target
Attacks]" shows the prediction accuracy on the dataset using
LR (logistic regression classifier), MSE (mean squared error),
and FastDTW (fast dynamic time warping). These results cor-
respond to the results reported on Table 1 and 6

• The code block with the comment starting with "## [Chrome
Android]" shows the results for experiments with Android
Chrome

• The code block with the comment starting with "## [Old De-
fense (Leakuidator)]" shows the results for experiments with
old defense prior to the modifications suggested in this paper

• The code block with the comment starting with "### [Multi
Target Attacks]" shows the results for experiments with multi
target attacks, reported in Table 2 of the paper

• The code block with the comment starting with "## [Average
and Attack Accuracy plots]" correspond to Figure 5 of the
paper.

In the second phase, we provide a step by step instruction to
demonstrate how the attack page collects the cache traces and uses
them for prediction. To run the attack from scratch, reviewers can
collect traces using one of three systems Win-Chrome, Mac-Intel-
Safari, or Mac-M1-Chrome detailed in Table 4 of the paper, using the
respective attack pages at USENIX_Artifact_Evaluation directory.
To customize the targeted deanonymization attack demo for a target
user of your choice, do the following:

1. Login to the attacker Youtube account (e.g., at-
tacker@gmail.com) at youtube.com

2. Upload two private videos of at least 1 second duration in the
attacker Youtube account

3. Write down the identifier of the private videos you created,
called [video_id_1] and [video_id_2]

4. Share [video_id_1] privately only with the targeted vic-
tim you’d like to track (e.g. victim@gmail.com) and
[video_id_2] privately only with another attacker account (e.g.
attacker_second_id@gmail.com)

5. Prepare the state dependent URL as follows:
"https://www.youtube.com/embed/[video_id_1]
?rel=0&autoplay=1&mute=1"

6. Prepare the URL for the non-target state as follows:
"https://www.youtube.com/embed/[video_id_2]
?rel=0&autoplay=1&mute=1"

7. Prepare two attack pages page_1.html and page_2.html and
change the "State-Dependent-URL" string in the source code
of the attack pages to these two URLs: page_1 points to the
URL at step 5 and page_2 points to the URL at step 6

8. Host the attack pages on a web server (either local or remote).
In particular, do not run the attack pages as local files (i.e., not
served by a web server)

9. Log out of the attacker’s youtube account, and login to the
victim’s youtube account

10. Open two tabs in the browser. The first tab points to page_1
resembling the target state, and the second tab points to page_2
resembling the non-target state. Record the traces first in the
target tab, then in the non-target tab, then again target tab,
then non-target tab, ..., and repeat this at least 100 times. (to
make the experiment easier, instead of manually performing
this experiment, customize and use the scripts at the "automa-
tion_scripts" folder)

11. Put the collected traces into the template.json file (100 target
traces and 100 non-target traces)

12. Open https://colab.research.google.com/

13. Upload the USENIX_Artifact_Evaluation/test.ipynb file to
Google Colab and open it

14. On the left side of Google Colab interface, click on “Files”,
then “Upload to session storage”, and choose the template.json
file that contains your collected traces

15. Set the sweep and interval parameters as suggested in the com-
ments

16. From the menu on top of Google Colab interface, click on
“Runtime”, then “Run all”, and wait until it is finished

After finishing these steps, an average plot is generated. It should
be somewhat similar to Figure 5 in the paper, demonstrating the
differences between the two states. Also, accuracy of the logistic
regression classifier is reported.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

106 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

C Artifact Appendix

C.1 Abstract
Throughout the paper, the results obtained in summary statis-
tics, statistical tests, and qualitative coding directly inform
our observations on user behavior. To establish the validity of
these findings, we provide the data and subsequent analysis
to replicate all results reported in this paper. Specifically, we
provide our collected data (for review only), our quantitative
analysis via an R notebook, and the results of our qualitative
analysis via an excel spreadsheet (for review only). Using
these, one can recreate all results in tables, figures, statistical
tests, and reported code counts throughout the paper.

C.2 Artifact Check-List (Meta-Information)
• Data set: Our collected user study data; non-public.

• Run-time environment: Tested on macOS 12.0 Monterey
and Ubuntu 20.04.

• Security, privacy, and ethical concerns: Maintaining the
confidentiality of participant data.

• Metrics: Perceived trustworthiness of a social media profile;
log likelihood of accepting a social connection.

• Output: The artifact produces all result-containing tables,
figures, and the code counts of the reported user answers.

• Experiments: Statistical and qualitative analysis of user re-
sponses.

• How much disk space required (approximately)?: 5 GBs.

• How much time is needed to prepare workflow (approxi-
mately)?: 60 minutes.

• How much time is needed to complete experiments (approx-
imately)?: 2 minutes.

• Publicly available (explicitly provide evolving version ref-
erence)?: All scripts and code are made publicly available16.

• Code licenses (if publicly available)?: University of Illi-
nois/NCSA Open Source License.

• Archived (explicitly provide DOI or stable reference)?: ht
tps://github.com/JaronMink/DeepPhish/releases/tag/USEN
IX-22-artifact-evaluation

C.3 Description
C.3.1 How to Access

Along with various supplemental material, we make all the
scripts and code used to analyze data and perform statistical
tests publicly available16.

As shown in Figure 10, the artifact is comprised of
three main parts: (1) the ‘data” folder which contains
anonymized participant responses; (2) the R notebook “quan-
titative_analysis.Rmd” which provides the results reported

16https://github.com/JaronMink/DeepPhish

DeepPhish

artifact

quantitative_analysis.Rmd

expected_quantitative_analysis.pdf

codebook_kappa.py

qualitative_codings.xlsx - (for review only)

data - (for review only)

dependencies

README.md

Figure 10: Artifact File Structure – We present the file structure
of the artifact folder in the paper’s supplemental materials16. The
“qualitative_codings.xlsx” file and “data” folder contain sensitive
participant data and thus are only provided for review.

in tables and figures throughout the paper with the ex-
pected output “expected_quantitative_analysis.pdf”; and (3)
the spreadsheet “qualitative_codings.xlsx” with the script
“codebook_kappa.py” which respectively contains the coded
responses and calculates the inter-rater agreement of the codes.
Additionally, the README.md provides a detailed overview
of all files.

C.3.2 Hardware Dependencies

This analysis requires approximately 5 GBs of disk space.

C.3.3 Software Dependencies

To run the quantitative analysis, we make use of R (4.1.2)
RStudio (2021.09.2 Build 382), Pandoc (2.5) and a host of
R libraries. We provide download scripts for the specific li-
braries and dependencies used in macOS and Ubuntu.

To perform the qualitative analysis, we use Python (3.8.10)
and Pip (20.0.2) to run the Cohen’s-Kappa calculation and
Microsoft Excel (16.55) to view the coding spreadsheet (any
.xlsx viewer will suffice).

C.3.4 Data Sets

We use the data collected in our user studies. While the data
is provided to reviewers, to maintain participant privacy, we
do not release this data publicly.

C.3.5 Models

We train our linear mixed-effects model (Section 4.1)
and our logistic mixed-effects model (Section 4.2) on the

USENIX Association 31st USENIX Security Symposium 107

https://github.com/JaronMink/DeepPhish/releases/tag/USENIX-22-artifact-evaluation
https://github.com/JaronMink/DeepPhish/releases/tag/USENIX-22-artifact-evaluation
https://github.com/JaronMink/DeepPhish/releases/tag/USENIX-22-artifact-evaluation
https://github.com/JaronMink/DeepPhish

gathered user-study data via the R notebook “quantita-
tive_analysis.Rmd”.

C.3.6 Security, Privacy, and Ethical Concerns

While there is no inherent risk in our analysis, all participant-
provided data should be treated with care. We took steps to
anonymize all direct identifiers; however, due to the nature of
user and qualitative responses, we cannot exclude the possi-
bility of such data being used to deanonymize participants.

C.4 Installation
C.4.1 Quantitative Analysis

Installation time: ~45 minutes
The quantitative evaluation is performed in an R-notebook

and thus requires various software libraries, frameworks, and
system dependencies to support it.

Software. R, RStudio, and Pandoc are all publicly available
and their instructions for version-specific installation can be
found at their respective websites.

System Dependencies. As many R libraries require
various system dependencies, we provide scripts
to download the required dependencies for Ubuntu
(“install_ubuntu_dependencies.sh”) and macOS (“in-
stall_macos_dependencies.sh”).

R Libraries. To install the R libraries used in the
analysis, we provide an OS-independent bash script: “in-
stall_r_libraries.sh”.

C.4.2 Qualitative Analysis

Installation time: ~5 minutes Python
Software. Python (3.8.10) and Pip (20.0.2) are both publicly

available and their instructions for version-specific installation
can be found at their respective websites.

Python Libraries. To install the utilized Python libraries,
we provide a pip3-compatible requirements file: “require-
ments.txt”.

C.5 Evaluation and Expected Results
C.5.1 Quantitative Analysis

Execution Time: ~2 minutes
The results from Section 3, Section 4, Section 5, and Ap-

pendix B are produced in the R notebook via the following
steps:

1. Open the R Studio application or go to the assigned
localhost port with a web-browser (default is 8787).

2. Open the notebook: “quantitative_analysis.Rmd”

3. Produce the results by selecting “Knit → Knit to PDF”.

4. Once completed, you may view the produced PDF:
“quantitative_analysis.pdf”

The PDF will contain the results for the tables, figures,
and information found in the paper which directly inform
Observations 1-4.

Section 3.6: Demographic background and time distri-
butions of participants.
Section 4.1: Pairwise correlation of factors, Figure 5 and
descriptive statistics, Table 1, ANOVA test and descriptive
statistics.
Section 4.2: Figure 6 and descriptive statistics, Table 2.
Section 4.3: Artifact to artifact trust comparison, artifact to
artifact acceptance rate comparison.
Section 5.1: Table 3.
Appendix B: Figure 9 and descriptive statistics, Table 4,
Sybil trust plot and descriptive stats, Sybil trust modeling.

C.5.2 Qualitative Analysis

Execution Time: N/A
The qualitative results primarily report the counts of

the coded qualitative data found in the file “qualita-
tive_codings.xlsx”. These code counts along with direct par-
ticipant quotes inform Observations 5-10.
Section 5: Cohen’s-Kappa - To find the interrating reliability
of codes, we calculate Cohen’s-Kappa for each codebook via
the following script:

py thon3 codebook_kappa . py

Qualitative Reporting in Sections 5.1-5.3: For each of the
following subsections, we note what findings were made, in-
formation was reported, and what specific sheet and cells
(highlighted in colors) were used to inform these findings.
Section 5.1: Areas of Focus (sheet “factors_by_prompt”;
highlighted in red), Artifacts Noticeability (sheet “fac-
tors_by_cond”; highlighted in red)
Section 5.2: Perception of Non-Existent Artifacts in Images
(sheet “factors_by_cond”; highlighted in blue), Perception
of Non-Existent Artifacts in Text (sheet “factors_by_cond”;
highlighted in green)
Section 5.3: Noted UIs (sheet “strategies_by_prompt”; high-
lighted in red), Search for Personal Qualities (sheet “strate-
gies_by_prompt”; highlighted in blue), Search for Inconsis-
tencies (sheet “strategies_by_prompt”; highlighted in green),
Reasons for Actions (sheet “strategies_by_prompt”; high-
lighted in orange).

C.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

108 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Multiparty Private Set Operations is a software program that
implements the protocols that we present in the main pub-
lication. The program enables multiple parties to privately
compute the intersection of sets that they hold (MPSI) or
the intersection of one set with the union of all other sets
(MPSIU). If set elements have associated values, the library
supports privately aggregating those values (MPSI-Sum or
MPSIU-Sum). A delegated party learns the result of the set
operation, and the parties learn no other information. The
library implementation is in Go and supports execution in a
Docker container.

A.2 Checklist
• Algorithm: Multiparty Private Set Operations implements the

MPSI, MPSIU, MPSI-Sum, and MPSIU-Sum protocols in the
main publication.

• Compilation: Compiling the program requires Go version
1.18 or more recent.

• Data set: The program generates random data to simulate
protocol input in the user-specified data directory.

• Metrics: The program appends timing results to bench.csv
in the user-specified results folder.

• Output: The program prints output to stdout and appends to
bench.csv.

• Experiments: Please see the README file for guidance on repli-
cating results in the main publication. The program reads pro-
tocol configuration parameters from config.yml.

• How much disk space required (approximately)?: Disk
space requirements are proportional to the number of parties
and set sizes, which are specified in config.yml.

• How much time is needed to prepare workflow (approx-
imately)?: Both native and Docker builds take less than a
minute on commodity hardware.

• How much time is needed to complete experiments (approx-
imately)?: Please refer to Table 3 of the main publication.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/citp/mps-operations

• Code licenses (if publicly available)?: We provide the pro-
gram with the MIT License.

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/citp/mps-operations/releases/
tag/usenix22

A.3 Description
A.3.1 How to access

Multiparty Private Set Operations is available in the Git reposi-
tory at https://github.com/citp/mps-operations. The cur-
rent version (as of publication) is https://github.com/citp/
mps-operations/releases/tag/usenix22.

A.3.2 Software dependencies

Go (for native build) or Docker (for containerized build).

A.4 Installation
Native. Install Go (at least version 1.18) and run

go build -o mps_operations
./mps_operations

Docker. Install Docker (at least version 20.10.12) and run
docker build -t mps_operations .
docker run -it -rm -name mps_operations

mps_operations

A.5 Evaluation and expected results
Table 3 of the main publication provides execution times using large
input set sizes. These benchmarks ran on a server using 128 cores.
On personal computers, the execution times will be longer. In order
to reproduce the benchmarks in Table 3, set the specified values for
set sizes |X0| and |Xi| in config.yml. Please refer to the README for
build instructions.

A.6 Experiment customization
Please refer to config.yml.

A.7 Notes
• The number of parties n in config.yml does not include the

delegated party.

• The program ignores the upper bound on associated values l
in config.yml if the protocol is MPSI or MPSIU, because
l is only necessary for value aggregation in MPSI-Sum and
MPSIU-Sum.

A.8 Version
This artifact appendix is based on the LaTeX template for Artifact
Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 109

https://github.com/citp/mps-operations
https://github.com/citp/mps-operations/releases/tag/usenix22
https://github.com/citp/mps-operations/releases/tag/usenix22
https://github.com/citp/mps-operations
https://github.com/citp/mps-operations/releases/tag/usenix22
https://github.com/citp/mps-operations/releases/tag/usenix22

A Artifact Appendix

A.1 Abstract
Our artifact contains the implementation of constant-weight
PIR as proposed in the paper titled “Constant-weight PIR:
Single-round Keyword PIR via Constant-weight Equality Op-
erators".

We use this implementation to compare constant-weight
PIR with other PIR protocols. We provide an implementation
of folklore PIR for comparison. We provide scripts that use
this implementation to generate the tables shown in the paper.

Aside from PIR, we provide scripts that benchmark the
proposed equality operators and compare them with existing
ones in terms of runtime.

A.2 Artifact check-list (meta-information)
• Compilation: The GNU GCC compiler (version >= 6.0) is

required which supports OpenMP for parallelization. This com-
piler is publicly available.

• Binary: Binaries are not included but can be easily build using
the steps outlined in the README. Two executables should be
generated: main to experiment with PIR and benchmark_eq
to benchmark the proposed equality operators.

• Run-time environment: Our code has been tested for Ubuntu
20.04. Besides the specified compiler, it requires the Microsoft
SEAL library 1 to be installed.

• Hardware: Some runtimes in the paper are parallelized over
64 and 114 threads. To achieve the same results, it is required
to have hardware with similar specs. The precise specs of the
hardware are noted in the paper in each section.

• Metrics: In our PIR implementation, we measure the runtime
of each step and the total runtime as well. We also measure the
upload and download communication. In the benchmarks of
equality operators, we measure the runtime.

• Output: The specified metrics are written to file (the name of
the file is generated randomly) in the directory specified in the
command line.

• Experiments: Scripts are provided to reproduce the results in
the paper. These scripts run experiments and write the results
to the ‘results’ directory.

• How much disk space required (approximately)?: All exper-
iments are done in memory so not much disk space is required.
However, the largest experiments use more than 100 GB of
memory.

• How much time is needed to prepare workflow (approxi-
mately)?: Assuming all the prerequisites need to be installed,
the installation time should not take more than 30 mins.

• How much time is needed to complete experiments (ap-
proximately)?: To reproduce all the results, the experiments
take over a two weeks to run on a single machine. However,
the number of runs can be reduced in all the provided scripts

1https://github.com/microsoft/SEAL

to reduce this to a couple days. Currently, the experiments are
run 10 times.

• Publicly available: Our artifact is publicly avail-
able on Github at https://github.com/RasoulAM/
constant-weight-pir

• Code licenses: The code is published under a BSD-3 license.

• Archived (explicitly provide DOI or stable reference):
https://github.com/RasoulAM/constant-weight-pir/
releases/tag/artifact-accepted

A.3 Description

A.3.1 How to access

The artifact is publicly available on Github at https:
//github.com/RasoulAM/constant-weight-pir/
releases/tag/artifact-accepted.

A.3.2 Hardware dependencies

Some runtimes in the paper are parallelized over 64 and 114
threads. To achieve the same results, it is required to have
hardware with similar specs. The precise specs of the hard-
ware are noted in the paper in each section.

A.3.3 Software dependencies

This artifact runs on Ubuntu 20.04. It requires GNU GCC
compiler (version >= 6.0) as the C++ compiler and the Mi-
crosoft SEAL library 2 to be installed. Instructions to install
SEAL can be found in their repository.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

The instructions to build the repository are provided in the
main README. The prerequisites such as the gcc compiler
are specified in the README. Instructions on how to install
the other dependencies such as SEAL and googletest are also
specified.

2https://github.com/microsoft/SEAL

USENIX Association 31st USENIX Security Symposium 111

https://github.com/RasoulAM/constant-weight-pir
https://github.com/RasoulAM/constant-weight-pir
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted
https://github.com/RasoulAM/constant-weight-pir/releases/tag/artifact-accepted

A.5 Experiment workflow
We provide scripts to run the experiments outlined in the
paper. These scripts are provided in the src/build/scripts
directory. Details regarding these scripts and instructions on
how to run them are given in src/build/README.md

To interpret the result of the experiments, we provide scripts
in src/build/interpret-results.ipynb

A.6 Evaluation and expected results
We use this artifact to generate the tables shown in the paper,
specifically Table 4, 5, 7 and 9 (and Table 12 and 13 in the
appendix) . Instructions on which script to use to generate
each table is given in src/build/README.md

A.7 Experiment customization
We provide a command line interface to experiment with
different PIR protocols. Particularly, the user can experiment
with folklore PIR and constant-weight PIR. All parameters
can be assigned via the command-line. Instructions on what
these parameters are and how to set them are given in the
README. All results can be written to file and printed to the
standard output.

Our scripts are not customizable (except for the number of
runs) and are only used to automatically produce the results
shown in the paper.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

112 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

This implementation contains our incremental PIR
protocol as well as two baseline PIR protocols de-
scribed in the paper. Our implementation requires
the dependencies specified in Section A.3. We did
our experiments on CloudLab.

A.2 Artifact check-list

• Compilation: Follow the standard compilation
steps in c++. We include the detailed instructions
in readme.md.

• Experiments: See readme.

• How much disk space required (approxi-
mately)?: 2GB.

• How much time is needed to prepare workflow
(approximately)?: 30 minutes.

• How much time is needed to complete exper-
iments (approximately)?: 1 hour.

• Publicly available?: Yes.

A.3 Description

A.3.1 How to access

See stable version at
https://github.com/eniac/incpir/tree/

a7d1bcf45b1bd5a3e98bcb421276ecd09c6eebdd.

A.3.2 Hardware dependencies

Hardware should support AES-NI and AVX2.

A.3.3 Software dependencies

Protobuf, OpenSSL, libboost-all-dev, Python3, Mat-
plotlib.

A.4 Installation

We provide a guide for how to install dependencies
in install.md.

A.5 Experiment workflow

We provided scripts to generate numbers in bench-
mark table and graphs in the paper. See readme.md

for more details.

A.6 Evaluation and expected results

We provide scripts to generate the data for the figures
in the paper. In each folder (specified by readme.md),
run sh run.sh or the instruction specified.

A.7 Notes

• The timings for some parts of the protocol could
be slightly different from the results in the pa-
per, because the client’s queries are randomized
and the time (for example, for Query) depends
on which index it queries for. However, they
should be on average close to what is shown in
the paper.

• Some scripts will output “TimesNewRoman font
not found” (if TimesNewRoman is not installed
on the test machine), but you can still get figures
without any problem.

USENIX Association 31st USENIX Security Symposium 113

https://github.com/eniac/incpir/tree/a7d1bcf45b1bd5a3e98bcb421276ecd09c6eebdd
https://github.com/eniac/incpir/tree/a7d1bcf45b1bd5a3e98bcb421276ecd09c6eebdd

A Artifact Appendix

A.1 Abstract

MIGP (Might I Get Pwned) is a next-generation password
breach altering service to prevent users from picking pass-
words that are very similar to their prior leaked passwords;
such credentials are vulnerable to credential tweaking attacks.

In summary, we are providing guidlines to evaluate the
following results.

• [Figure 2]: Our proposed secure protocol for MIGP.

• Security simulation:

– [Figure 8]: Simulation of attacker’s success rate
for different query budgets compared to traditional
breach-altering service

– [Figure 9]: Comparison of attack success rate for
‘Das-R‘ and ‘wEdit‘ for different query budgets.

• Performance simulaiton:

– [Figure 12]: Average latency for different C3 ser-
vices.

• Similarity simulation

– [Figure 4]

– [Figure 5]

– [Figure 6]

A.2 Artifact check-list (meta-information)
• Data set: Since the files required to run the exper-

iments are sensitive password leaks from 2019, if you
need access to datasets please write to us. After down-
loading them, put the downloaded compressed file inside
path_to_MIGP/security_simulation/data_files folder
and then unzip it. For the models.zip file download it and put
it inside the similarity_simulation/artifact folder.

[Warning]. The zipped file is around 4.25 GB for the data files
and 5.84 GB for the model files.

• Software environment: We have provided the required pack-
ages in requirement.txt file. We encourage the reviewers to
use ‘conda‘ or ‘virtualenv‘ to create virtual environments and
use pip to install them. We have used Python version 3.8.

Before that, you will need to install the following three software
packages.

– petlib from here (For Figure 2, 12). Instructions are
already in the link on how to install it.

– Install argon2-cffi from here Installation - argon2-cffi
21.3.0 documentation.

– GO (version 1.15) to run the WR19 and WR20 protocols
in Figure 12. Make sure GOPATH variable points to
‘path_to_MIGP_folder/performance_simulation/WR-19-20‘.
To install GO version 1.15, we refer to the instructions
from this link How To Install Go 1.14 on CentOS 8 |
CentOS 7 | ComputingForGeeks. Additionally go the the
‘path_to_MIGP_folder/performance_simulation/WR-19-20/src/

pmt-go"

folder and run ‘go get github.com/willf/bloom‘.

• Hardware: Our experiments were run on an Intel Xeon Linux
machine with 56 cores and 125 GB of memory. You do not
need any special hardware. But some security simulations may
need large memory. Please let us know if you encounter such a
memory error. We already provide the trained models.

• Execution/compilation: We have provided bash scripts to
generate the figures. See section A.5.

• Security, privacy, and ethical concerns: Please DO NOT
share this Google Drive link of the datasets with others as
it contains leaked password datasets. Although these leaks
are “publicly available”, we request the reviewers to do so to
safeguard against any problem. We also share the minimum
version of the full leaked dataset that is required to evaluate
the artifact. Moreover we request to delete the downloaded
leaked dataset files after the evaluation is complete from the
permanent storage.

• How much disk space required: approximately ≤ 13 GB

A.3 Description
A.3.1 How to access

Available at https://github.com/islamazhar/MIGP_python/
releases/tag/artifact_eval. You can either clone or download
the zipped source code.

A.3.2 Hardware dependencies

The security simulation for Figure 8 may require large memory.
Please let us know if you encounter memory error while running
those experiments.

A.3.3 Software dependencies

Already specified in A.2 software environment paragraph.

A.3.4 Data sets

Since the files required to run the experiments are sensitive password
leaks from 2019, if you need access to datasets please write to us.
We can grant access to datasets after properly reviewing the request.

A.3.5 Models

Already provided in the Google Drive link above.

A.3.6 Security, privacy, and ethical concerns

Already mentioned in A.2 in the “Security, privacy, and ethical con-
cerns" paragraph.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 115

https://github.com/gdanezis/petlib
https://argon2-cffi.readthedocs.io/en/stable/installation.html
https://argon2-cffi.readthedocs.io/en/stable/installation.html
https://computingforgeeks.com/how-to-install-go-on-centos-centos-linux/
https://computingforgeeks.com/how-to-install-go-on-centos-centos-linux/
https://github.com/islamazhar/MIGP_python/releases/tag/artifact_eval
https://github.com/islamazhar/MIGP_python/releases/tag/artifact_eval

A.4 Installation
Follow the “Software environment" paragraph in A.2.

A.5 Experiment workflow
A.5.1 Figure 2

• Expected time: 2-3 mins after installing the required software
• Required packages: petlib, argon2, all packages in require-

ments.txt
• Compilation: Go to ‘performance_simulation‘ folder and run

the following commands.

– In one terminal run the server using ‘python3
MIGP_server.py‘.

– In another terminal run the query the server us-
ing ‘python3.8 post_client_MIGP.py -username
<username> -password <password>‘

• How to evaluate: If you issue the following comands the ex-
pected outcome will be the following.

python3.8 MIGP_client.py --username Alice --
↪→ password 123456 #will give exact
↪→ password matching.

python3.8 MIGP_client.py --username Alice --
↪→ password 123456$ # will give
↪→ similar password matching

python3.8 MIGP_client.py--username Alice --
↪→ password deercrossing # or any
↪→ other password, will give not
↪→ present in the leak

A.5.2 Figure 8

• Expected time: for budget qc = 10,100‘. It takes less time but
for qc= 103 expect 1-2 hours for n= 10 and 3-4 hours n= 100
depending on the memory and number of threads being run.

• Required packages: all packages in requirements.txt
• Compilation: We simulate the security simulation in three

steps.

– ‘bash script_step_1.sh‘. // This will create pass-
word variations. You can skip this one as we already
provide the variations file inside ‘data_files‘ folder

– ‘bash script_step_2.sh‘. // This create the top 103

guess ranks. We have also generated the guess ranks and
balls of each password in the ‘data_files‘ folder. [skip if
you want]

– Finally, run “bash script_step_3.sh <n> <qc>" to
generate the row corresponding to row with value ‘n‘
and ‘qc‘ in Figure 8. The results will be saved in ‘re-
sults/security_sumulation.tsv‘ file. This part may long
time as for n =100 and qc = 103 it took us 12 hours to
complete the simulation.

• How to evaluate: The results of each run will be saved at
‘results/security_simulation.tsv‘. Run ‘python3.8 Figure_9.py‘
to generate the Figure 8. If some values for ‘n‘ and ‘qc‘ the
values has not been generated it will show blank.

A.5.3 Figure 9

• Expected time: 2-3 minutes

• Required packages: None

• Compilation: : Go to ‘security_simulation/Figure_9
and run ‘python3.8 Figure 9.py‘

• How to evaluate: Inspect the generated ‘Figure_9.jpg‘ it should
correspond to the paper presented in the paper (was just drawn
using pgfplot for our paper)

A.5.4 Figure 12

We run the experiments on two EC2 instances as mentioned in
the paper. But they can be tested on localhost as well. Make
sure go (version 1.15) is installed and ‘GOPATH‘ points to
path_to_MIGP_folder/performance_simulation/WR-19-20‘.

• Expected time: 1-2 hours. Basically, WR-19 and WR-20 take
a lot of time.

• Required packages: specified in ‘requirements.txt‘ file

• Compilation:

– In one terminal run the servers using ‘bash
script_run_server.sh‘ and wait for some time for
the servers to finish the precomputation.

– On another terminal run ‘bash script.sh‘ and you will see
the Figure on the terminal.

• How to evaluate: Since it is running on localhost the values
may NOT exactly correspond to the values reported in the
paper. But should follow a similar trend shown reported on the
paper. Such As ‘IDB‘ protocols are the fastest ones. WR-19
and WR-20 are very expensive. MIGP_Hybrid should have
low latency.

A.5.5 Figure 4,5,6

• Required packages: Training the Pass2Path models is compu-
tationally expensive. Therefore, we train these models in GPU
and generated the prediction files for required test_files, to run
the experiments fast. The code for training the Pass2Path mod-
els is in https://github.com/Bijeeta/credtweak/tree/
master/credTweakAttack/. We also stored the sorted list of
rules for Das-R and EDR models, ranked based on the breached
dataset. Also make sure to install the packages mentioned in
‘requirements.txt‘

• Compilation: Go to “artifact” folder. Download the models.zip
and copy the “models” folder here. Go to “artifact/src” and

– For Fig-4, run "bash fig4.sh"

– For Fig-5, run "bash fig5.sh"

– For Fig-6, run "bash fig6.sh"

• How to evaluate: The values should match the ones in the
figure.

A.6 Evaluation and expected results
Expected results are already mentioned for each of the Figures in
A.5 section.

116 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack/
https://github.com/Bijeeta/credtweak/tree/master/credTweakAttack/

A.7 Notes
Please contact us via hotcrp if you face any problems or have any
questions. Thanks for reviewing our artifact.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 117

D Artifact Appendix

D.1 Abstract
This artifact comprises several files that aid in the replication
of our study: (1) a QSF-file containing all questions in a
survey format exported from Qualtrics and that can be easily
re-imported there); (2) a CSV-file with the the data collected
from our participants with identifiable information removed
(to improve compatibility, also a tab-separated version is
provided); (3) the analysis script with the majority of the
quantitative analyses of the paper; (4) a Jupyter Notebook file
with the CHI-squared test; (5) the codebook of the qualitative
analysis with counts for each of the codes. Using the data set
and the analysis script, all quantitative results in the paper
can be replicated.

D.2 Artifact check-list (meta-information)
• Program: The analysis was run with R version 4.2.0 running

in RStudio1 2022.02.3 Build 492 with knitr. The following
packages are needed to run the script: dplyr, AICcmodavg.
For the chi-squared test, we used a Jupyter Notebook, version
6.4.8 to conduct the analysis. The easiest way to use Jupyter
Notebook is to install Anaconda 2 which comes pre-installed
with the most popular Python libraries and tools. Anaconda
navigator version 2.2.0 as well as Python version 3.9.12 were
used for this analysis. The following packages are required to
run this script: pandas, numpy, scipy, statsmodels.

• Compilation: Some of the R packages and their dependencies
require compilation, but R should handle this automatically
when installing the packages.

• Data set: The data set collected from the participants of our
study is included in the artifact

• Run-time environment: Recommended is use of RStudio
2022.02.3 Build 492 with R 4.2.0. Other configurations are
likely to work but are untested. A Jupyter Notebook version
6.4.8 is recommended but not required to run the .ipynb. You
can easily access the Jupyter Notebook by installing Anaconda.
All our analyses were run on macOS.

• Hardware: No specific hardwre is needed.

• Output: The output on the R console and Jupyter Notebook
represent the analyses as they were reported in the paper.

• Experiments: For a full replication of our study, the QSF-file
can be used to import the survey back into qualtrics and dis-
tribute it among new participants. Note that the survey requires
Javascript and therefore will not work with free Qualtrics ac-
counts. For replication of the results reported in the paper, the
analysis script and the data set collected from our participants
should be used.

• How much disk space required (approximately)?: Negligi-
ble, less than 1MB.

1https://www.rstudio.com/products/rstudio/download/
2https://www.anaconda.com/products/distribution

• How much time is needed to prepare workflow (approx-
imately)?: This depends on whether the required environ-
ment (RStudio and Anaconda) and the required packages are
already installed. If none of the aforementioned are present,
setup should take 30 minutes or less on a modern computer.

• How much time is needed to complete experiments (approx-
imately)?: This depends on hardware, but should take less
than 5 minutes on any recent laptop.

• Publicly available (explicitly provide evolving version ref-
erence)?: The artifact will be made available in a GitHub
repo with a tag marking the version submitted for the artifact
evaluation.

• Code licenses (if publicly available)?: The R code and
Jupyter Notebook script are lincensed under the MIT license.

• Data licenses (if publicly available)?: The data is licensed
under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.3

• Archived (explicitly provide DOI or stable reference)?:
GitHub Commit ID for the version submitted for artifact evalu-
ation: 2ead79bbe026789bc78d87b420c487da4d980ff5
GitHub Commit ID for the version improved with the com-
ments from artifact evaluation reviews:
a90e474e2e2be23898b4b85570cd0daaba61970f

D.3 Description
D.3.1 How to access

The artifact can be downloaded from the GitHub repository.4

D.3.2 Hardware dependencies

N/A

D.3.3 Software dependencies

The analysis requires R to run. Recommended is RStudio 2022.02.3
Build 492 with R 4.2.0, since the authors used these versions. Other
versions are likely to work but are untested. RStudio can be obtained
for free online.5 The following R packages are needed to run the
script: dplyr, AICcmodavg. For the chi-squared script, Jupyter Note-
book version 6.4.8 is recommended but not required. To quickly use
Jupyter Notebook, download Anaconda. 6

D.3.4 Data sets

No third-party data sets were used.

D.3.5 Models

N/A

3http://creativecommons.org/licenses/by-nc-nd/4.0/
4https://github.com/gwusec/2022-USENIX-Password-Managers
5https://www.rstudio.com/products/rstudio/download/
6https://www.anaconda.com/products/distribution

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 119

https://www.rstudio.com/products/rstudio/download/
https://www.anaconda.com/products/distribution
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/gwusec/2022-USENIX-Password-Managers
https://www.rstudio.com/products/rstudio/download/
https://www.anaconda.com/products/distribution

D.3.6 Security, privacy, and ethical concerns

N/A

D.4 Installation
The setup consists of two steps. First, R needs to be installed. Rec-
ommended is RStudio 2022.02.3 Build 492 with R 4.2.0, since the
authors used these versions. Other versions are likely to work but
are untested. RStudio can be obtained for free online.7 After the
installation of RStudio, R should be available as well.

When RStudio is installed it must be started and the analysis
script can be opened using the File dialog. Then the following
R packages need to be installed: dplyr, AICcmodavg. To install
these packages using RStudio, open the Tools menu and then select
Install packages.... In the search box enter the first package.
Then click install. Repeat these two steps for the second package.
Installation of the packages might take some time if they need to be
compiled. Once the two packages are installed, the analysis script
can be run.

To run the .ipynb stats script that has the chi-squared test, first
ensure you have Python installed as well as all the required depen-
dencies. Python version 3.9.12 was used for this analysis. In addition
to Python, the following dependencies also need to be installed: pan-
das, numpy, scipy, statsmodels. You can install them one by one
from the terminal using pip (which is automatically installed with
Python):

pip install pandas
pip install numpy
pip install scipy
pip install statsmodels

Once Python and all the above dependenices have been installed,
you will be ready to run the Jupyter Notebook script. It is recom-
mended you download Anaconda which comes pre-installed with
Jupyter Notebook. Anaconda can be obtained for free online.8 Once
Anaconda is installed, open it and launch Jupyter Notebook, and
browse to the location of the script. Run all the cells, one by one
from top to bottom. It should print the results to the screen.

D.5 Experiment workflow
The R analysis script is divided into several segments called
“chunks”, each pertaining to the preparation of a specific variable or
performing a specific analysis. These chunks are delimited by three
accents before and after the block. Each chunk is labeled. The label
is enclosed by curly brackets. The respective syntax looks like this:

‘‘‘{r <section label>}
<R code>

‘‘‘

The easiest way to run the analyses is to run the script chunk-by-
chunk from the top in RStudio. Running a chunk can be achieved
in RStudio in three ways. Firstly, RStudio provides a small green
right-arrow button on the top right for each chunk. Clicking it will
run the respective chunk. Secondly, with the curser in a chunk,

7https://www.rstudio.com/products/rstudio/download/
8https://www.anaconda.com/products/distribution

you can use the shortcut Ctrl + Shift + Enter (on macOS: Cmd
+ Shift + Enter) to run the respective chunk. Thirdly, with the
curser in a chunk, you can use the menu Code → Run Region →
Run Current Chunk.

The Jupyter Notebook script is similarly divided into several cells.
Run the cells one by one, from the top to the bottom and the results
will be displayed on the screen.

D.6 Evaluation and expected results
Claim 1: Awareness and use of PMs is much broader than
previously reported The overall high awareness and use of
password managers are supported by the analyses in section “prepare
pwdm awareness variable” and “prepare password manager use
variable” respetively.

Claim 2: The vast majority of respondents reuse pass-
words across accounts The results pertainig to password reuse
can be found in section “RQ-2 reuse.”

Claim 3: Perceived ease-of-use overall plays a key role in
password manager adoption The results for the regression
analysis identifying ease-of-use as predictor when all PM-users are
considered can be found in section “pwdm use.” The regression anal-
yses for only browser-based password managers, system password
managers, and third-party password managers can be found in the
sections “browser pwdm use,” “system pwdm use,” and “third-party
pwdm use” respectively.

Claim 4: Third-party password manager users are signif-
icantly more likely to use the PM to generate passwords
The results for this can be replicated by running the Jupyter Note-
book file called chi_test.ipynb. These will be printed to the screen.

Claim 5: The majority of participants would adopt a PM
if it was offered to them for free by their organization The
analysis pertaining to the adoption of password managers when one
is offered by the participant’s organization can be found in section
“prepare pwdm use in organization variable.”

D.7 Experiment customization
N/A

D.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

120 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://www.rstudio.com/products/rstudio/download/
https://www.anaconda.com/products/distribution

A Artifact Appendix

A.1 Abstract

Our artifact contains the source files, scripts, and other neces-
sary files for reproducing the results described in the paper.
It consists of the two compilers (vWasm and rWasm), the se-
mantics fuzzer, as well as benchmarking scripts. To run these,
one needs a Linux x86-64 machine, or a Docker environment
capable of running it. Since one of the two compilers, namely
vWasm, contains a machine-checked proof, the artifact also
contains instructions to re-verify that all parts of the proof are
indeed accepted by F*.

A.2 Artifact check-list (meta-information)

• Program:

– vWasm: a formally-verified provably-safe sandbox-
ing compiler, built in F*

– rWasm: a high-performance informally-verified
provably-safe sandboxing compiler

– wasm-semantics-fuzzer: a tool for providing
greater assurance in the semantic correctness of
any Wasm implementation

• Compilation: vWasm requires F*, OCaml, nasm, etc.;
the rest require a Rust installation. We include a Docker
image with all requirements in the artifact.

• Data set: Benchmarks and micro-benchmarks
are included in the artifact. See benchmarks/,
microbenchmark-compare-read-arr/ and
image-conversion-scenario/ in the main reposi-
tory.

• Run-time environment: Our artifact was developed
and tested on recent Linux-based systems. We include a
Docker image with all requirements.

• Hardware: Requires an x86-64 machine. We tested on
an AMD Ryzen 3700x (64GB memory) and on an Intel
i9-9900K (128GB memory). While almost everything
should run on a machine with less memory, we recom-
mend 32GB or higher to allow parallelism to save user
time in some of the memory-intensive steps.

• Output: We provide more detail in the artifact
README.md files, but in short, building vWasm will verify
and compile the vWasm compiler, building rWasm will
compile the rWasm compiler, building wasm-semantics-
fuzzer will build the fuzzer, and running the benchmarks
will use the compilers to run the experiments described
in the paper.

• How much disk space required (approximately)?:
Approximately 5 GB for the Docker image; the rest
of the files are negligible in size. When running bench-
marks, space usage can increase a lot more, and thus it
is best to have free space on the order of approximately
100 GB.

• How much time is needed to prepare workflow (ap-
proximately)?: The provided Docker image contains
all requirements for the two compilers, and loading it
from the exported image should only take a minute or
two. Building the Docker from scratch takes significantly
longer (an hour or two). The other Wasm runtimes being
benchmarked against are not all included in the Docker
image, but instructions are included and should not take
more than 15 minutes to get running.

• How much time is needed to complete experiments
(approximately)?: Re-verifying vWasm, and running
the main execution-time benchmarks are the most time
consuming parts of the artifact. In total, expect this to
take multiple hours, with times varying depending on
the available parallelism on the machine being tested on.

• Publicly available: The latest version of the reposito-
ries:

– https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22
(top-level repository that contains the benchmarks,
and imports the rest as git submodules)

– https://github.com/secure-foundations/
vWasm

– https://github.com/secure-foundations/
rWasm

– https://github.com/secure-foundations/
wasm-semantics-fuzzer

The first of the above links contains the other three as
git submodules, pinned to specific git commits.

• Code licenses: BSD 3-Clause License

• Archived (stable reference): Top-level repository, with
the other repositories fixed to specific git commit hashes:
https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22/
tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53

A.3 Description
A.3.1 How to access

https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22 is a
link to the top-level artifact repository, which contains the

USENIX Association 31st USENIX Security Symposium 121

https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/vWasm
https://github.com/secure-foundations/vWasm
https://github.com/secure-foundations/rWasm
https://github.com/secure-foundations/rWasm
https://github.com/secure-foundations/wasm-semantics-fuzzer
https://github.com/secure-foundations/wasm-semantics-fuzzer
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22

rest of the related repositories as git submodules. To get them
all in one single command, run git clone --recursive
https://github.com/secure-foundations/provably-
safe-sandboxing-wasm-usenix22

Instructions for obtaining the vWasm Docker image can
be found at https://github.com/secure-foundations/
vWasm/tree/main/.docker, and a top-level Dockerfile
can be found at the root of the top-level repository.

A.3.2 Hardware dependencies

Requires an x86-64 machine. 32+ GB of memory is recom-
mended.

A.3.3 Software dependencies

Requires Docker installed, preferably on a Linux host. All
other requirements work inside the container.

A.3.4 Data sets

Included in the artifact.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
We provide detailed instructions throughout the artifact in the
form of README.md files.

In short, install Docker (https://www.docker.
com/get-started), recursive-clone the repositories
(git clone --recursive ... command from above),
go to provably-safe-sandboxing-wasm-usenix22/
vWasm/.docker and follow instructions there to download
and import the pre-built image, and then jump inside the
provided Docker container. Following this, everything else
can be run inside the container.

A.5 Experiment workflow
For each experiment, we provide a relevant README.md file
with detailed instructions. We recommend executing steps in
the following order:

1. Build the Docker image, and jump into the container.

2. Run the verification and build process for vWasm.

3. Run the build process for rWasm.

4. Generate .wasm files using wasm-semantics-fuzzer and
run them in vWasm and rWasm.

5. Run the microbenchmark.

6. Run the execution-time benchmarks in the benchmarks/
directory (here, you can choose to compare against
all other tools, or you can run fewer tools, see the
README.md for instructions).

7. Run the image-conversion-scenario.

A.6 Evaluation and expected results

Our paper claims to make the following contributions (copied
verbatim from Section 1):

1. An exploration of two distinct techniques to achieve
provably safe, performant, multi-lingual sandboxing. We
implement these as open-source tools, and evaluate them
on a collection of quantitative and qualitative metrics.

2. vWasm, the first verified sandboxing compiler for Wasm,
achieved via traditional machine-checked proofs.

3. rWasm, the first provably safe sandboxing compiler with
competitive run-time performance. We achieve this using
non-traditional repurposing of existing tools to provide
provable guarantees without writing formal proofs.

We provide detailed instructions throughout the artifact in
the form of README.md files.

To confirm that vWasm is formally verified, execute
the steps in vWasm/README.md. Each file in the project
is machine-checked and only once all files are verified
by F*, will it produce the extracted OCaml files, which
are then compiled to an executable compiler. The high-
level theorem statement being proven can be found in
vWasm/compiler/sandbox/Compiler.Sandbox.fsti.

Both vWasm and rWasm can be run independently to com-
pile any Wasm module. Built-in runtime support is provided
for Wasm modules that expect a WASI interface.

Using wasm-semantics-fuzzer, one can perform validation
checks that the semantics implemented by vWasm and rWasm
do indeed match expected Wasm semantics.

The image-conversion-scenario demonstrates a converter
from GIFs to JPEGs, using version of libraries susceptible to
CVE-2008-0554. Using ./see_cve_impacts.sh, one can
run a proof-of-concept input that demonstrates how the na-
tive, vWasm-built, and rWasm-built versions of the programs
perform. Expected behavior is detailed further in the script
before each execution, but in summary, the native version (not
protected by vWasm or rWasm) will suffer a bad crash, while
the vWasm and rWasm versions will successfully safely trap
the violation.

122 31st USENIX Security Symposium USENIX Association

https://github.com/secure-foundations/vWasm/tree/main/.docker
https://github.com/secure-foundations/vWasm/tree/main/.docker
https://www.docker.com/get-started
https://www.docker.com/get-started

Quantitative evaluation is performed using the benchmarks
and provided scripts. For execution time and run time bench-
marks, results should be within the error bars, if run on a
similarly modern hardware. The microbenchmarks are more
susceptible choice of hardware (as shown in Figure 8), and we
have tested only on an AMD Ryzen 3700x and an i9-9900k.

A.7 Experiment customization
After vWasm and rWasm are built, you can test them with any
WASI-enabled modules you like. Instructions are provided in

the relevant README.md files.
For the execution-time benchmarks, not all competing

Wasm execution runtimes are included in the vWasm Docker-
file, but the top-level Dockerfile does include them all. Addi-
tionally instructions for how to install them, or how to selec-
tively disable the runtimes are given.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association 31st USENIX Security Symposium 123

A Artifact Appendix

A.1 Abstract

This artifact is provided to help validate two goals of our
proposed platform SWAPP: compatibility (changes needed
to work with legacy code or other existing libraries); and
fast-prototyping (easiness to program a new app and its ef-
fectiveness). Consequently, the artifact contains two major
components corresponding to each goal. First, we provide
clean SWAPP and its app source codes. This will be used in
conjunction with Wordpress and Workbox to show how to
encapsulate Workbox as a SWAPP app and run SWAPP in
a popular web app (Wordpress) as discussed in Section 6.2.
Second, we provide four demo (pre-configured SWAPP and
its apps) that illustrates how four of the apps discussed in the
paper can work to prevent the corresponding attacks. To run
this artifact, we provide Docker images with shell scripts that
will help set up the environment automatically.

A.2 Artifact check-list (meta-information)
• Run-time environment: Ubuntu 18.04+ and Docker.

• Metrics: Compatibility with legacy code. Vulnerabilities miti-
gated.

• Output: Web page. Console. Measured characteristics.

• Experiments: Manual steps by users.

• How much disk space required (approximately)?: 1GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes.

• How much time is needed to complete experiments (approx-
imately)?: 30 minutes

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes. https://github.com/successlab/swapp

• Archived (explicitly provide DOI or stable reference)?: Yes.
https://doi.org/10.5281/zenodo.6860277

A.3 Description

A.3.1 How to access

SWAPP is publicly available at https://github.com/
successlab/swapp. The artifact is available at https://
doi.org/10.5281/zenodo.6860277.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

Ubuntu 18.04+. Docker.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
We have provide docker images with two shell scripts to
help install Docker (install.sh) and setup the environment
(deploy.sh). Users only need to execute these scripts in an
Ubuntu system as required.

A.5 Experiment workflow
There are two metrics to validate our artifact: compatibil-
ity (M1), and programmability (M2). The workflow of this
experiment is split into two sections correspondingly.

Section M1 showcases the compatibility of SWAPP. There
are two steps in this section.

1. Setup Wordpress. Simply visit http://localhost us-
ing a web browser and follow the page instruction.

2. Interact with SWAPP. The installed Wordpress is already
equipped with SWAPP. Four apps are also enabled. In-
teract with the website and see the browser console to
observe the interaction and performance of SWAPP.

Section M2 showcases the programmability of SWAPP. We
provide four demonstrating web pages corresponding to each
of the four apps discussed in the paper: DOM Guard, Cache
Guard, Autofill Guard, and Data Guard. The demo should
also illustrate the effectiveness of each apps in responding to
the corresponding attacks.

DOM Guard’s effectiveness in preventing DOM-XSS
attacks can be observed. Visit http://localhost/demo/
domguard/index.html using a web browser to access DOM
Guard’s demo web page. Further instructions are provided in
the web page.

Cache Guard’s effectiveness in preventing side-channel
attacks can be observed. To validate Cache Guard, simply
visit http://localhost/demo/cacheguard/index.html
using a web browser. Further instructions are provided in
the web page.

Autofill Guard’s effectiveness in preventing XSS attackers
from accessing user’s form input can be observed. Visit http:
//localhost/demo/autofillguard/ using a web browser
to access Autofill Guard’s demo web page. The website is
installed with phpBB and the following credentials need to
be used to correctly set up the demo.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 125

https://github.com/successlab/swapp
https://doi.org/10.5281/zenodo.6860277
https://github.com/successlab/swapp
https://github.com/successlab/swapp
https://doi.org/10.5281/zenodo.6860277
https://doi.org/10.5281/zenodo.6860277
http://localhost
http://localhost/demo/domguard/index.html
http://localhost/demo/domguard/index.html
http://localhost/demo/cacheguard/index.html
http://localhost/demo/autofillguard/
http://localhost/demo/autofillguard/

• Database server hostname: mysql

• Database username: wp_user

• Database password: wp_password

• Database name: wordpress

After the set up is done, remove the /pub-
lic_html/demo/autofillguard/install folder. Then, click "Take
me to the ACP" and click "Logout" of the admin account.
Next, revisit http://localhost/demo/autofillguard/.
There should be a login form within an iFrame. In the case
the iFrame does not show up, try refreshing the web page.
Interact with the login form using the admin credentials to
see if Autofill Guard works.

Data Guard’s effectiveness in preventing Indirect Ob-
ject Reference attacks can be observed. To validate
Data Guard, simply visit http://localhost/demo/data_
guard/index.html and follow the instruction given in the
web page.

A.6 Evaluation and expected results
There are two goals of SWAPP that this artifact aims to vali-
date.

SWAPP requires minimal changes to legacy and ex-
isting code (Compatibility). In section M1 workflow, we
demonstrate that SWAPP can be easily installed on a popular
web app like Wordpress. For instance, SWAPP only requires
one line of code change to work with WordPress. Further-
more, encapsulating Workbox, a popular caching library, as
a SWAPP app only requires a few lines of code change. The
specific files that we change are located at public_html/wp-
content/themes/twentytwentyone/footer.php (line 13) and
public_html/apps/workbox-sw.js (lines 88-124). By observ-
ing the console while using Wordpress, there should not be
any fatal errors from SWAPP.

SWAPP apps can be easily developed and are effective
(Fast-prototyping). In section M2 workflow, we provide sev-
eral demonstrating web pages for testing four SWAPP apps.
Interacting with the demo should show that SWAPP and the
apps are effective.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

126 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

http://localhost/demo/autofillguard/
http://localhost/demo/data_guard/index.html
http://localhost/demo/data_guard/index.html

A Artifact Appendix

A.1 Abstract

Our artifact is the code used for our data collection and the
analysis of the collected data. For the results of our paper, we
focus on the data of our first crawl (2nd January 2022). We
executed the scripts on a machine with 4 Intel(R) Xeon(R)
Platinum 8160 CPUs (192 Cores total), 1.5 TB of RAM,
and a one Gbps network connection. This execution took
less than two days but will take longer if a machine has less
CPU Power or a slower network connection. We provide a
docker-compose config file to execute our pipeline inside a
docker container regarding the software requirements. In this
case, any machine that can build and spawn docker containers
should work. We also provide files, installation scripts, and
requirements.txt files for direct execution on a Linux system.
In the appendix of our paper, we also listed other crawls and
their overlaps between the first and follow-up crawls (Paper
Appendix B). The results of the follow-up crawls, and thus
also the results of the artifact execution, highlight that our
results can be confirmed over multiple crawls. The expected
results of the execution of our artifact is a table similar to
Table 4 of our paper. Notably, the results might vary slightly
(see Paper Appendix B), especially now the numbers might
be lower due to our notification campaign (see Paper Section
6.4 Disclosure).

A.2 Artifact check-list (meta-information)
• Data set: Tranco List from 01-01-2022

• Hardware: In general no restrictions, but depending on the
CPU Power and Network speed it will take longer.

• Security, privacy, and ethical concerns: Crawl process might
put load on the crawled servers.

• Metrics: Number of sites that have inconsistent security con-
figurations.

• Output: The script will print on console output individual
numbers as well as a latex table similar to the paper’s Table 4.

• Experiments: Results might vary slightly (see Paper Appendix
B), especially now due to our notification campaign.

• How much disk space required (approximately)?: ~80GB

• How much time is needed to prepare workflow (approxi-
mately)?: Docker Setup: 5-10 min; Manual Setup: 10-15 min.

• How much time is needed to complete experiments (approx-
imately)?: Highly depends on CPU/Network speed, for us the
crawl took less than two days.

• Publicly available (explicitly provide evolving version ref-
erence)?: GitHub Repository incl. version history1

• Code licenses (if publicly available)?: AGPL-3.0 license

1https://github.com/cispa/the-security-lottery

• Archived (explicitly provide DOI or stable reference)?: Sta-
ble reference to Git Commit2.

A.3 Description
A.3.1 How to access

We made our pipeline publicly available via GitHub1. The stable
reference for the submitted version is the commit where we incorpo-
rated the feedback of our reviewers2.

A.3.2 Hardware dependencies

In general no restrictions, except ~80GB free space and enough CPU
Power and RAM to perform HTTP requests. We executed the scripts
on a machine with 4 Intel(R) Xeon(R) Platinum 8160 CPUs (192
Cores total), 1.5 TB of RAM, and a one Gbps network connection.
The execution took us less than two days but will take longer if a
machine has less CPU Power or a slower network connection.

A.3.3 Software dependencies

We provide a docker-compose config file to execute our pipeline
inside a docker container regarding the software requirements. In
this case, any machine that can build and spawn docker contain-
ers should work. We also provide files, installation scripts, and re-
quirements.txt files for direct execution on a Linux system. The
installation script will install python3, pip, curl, tor, openvpn,
psmisc, wget, and fping. For the execution of the python scripts
the requirements.txt contains requests, tldextract, psycopg2,
beautifulsoup4, lxml, and pysocks.

A.3.4 Data sets

As a list of sites where we want to investigate if they have inconsis-
tent behavior we used the Tranco List of Top sites from 01-01-2022
(see scripts/xvwn_20220101.csv in our repository).

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

Not too many of the crawls should be conducted in parallel because
it might put load on the crawled Web sites, which might interfere
with their availability or response speed.

A.4 Installation
For the docker way you need to install the docker,
docker-compose, and if you want to also crawl VPNs the
openvpn package. Afterwards you can configure the crawl by
editing the docker-compose.yaml file according to the GitHub
README.md. Then you can build the docker via executing
docker-compose build in the root folder of our repository. For
manual setup you can execute install.sh which installs all

2https://github.com/cispa/the-security-lottery/tree/
66cc012fe7603e1758dde68fe9eec2d23542968e

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 127

https://github.com/cispa/the-security-lottery
https://github.com/cispa/the-security-lottery/tree/66cc012fe7603e1758dde68fe9eec2d23542968e
https://github.com/cispa/the-security-lottery/tree/66cc012fe7603e1758dde68fe9eec2d23542968e

dependencies. Then you should also set your environment variables
to the values that are specified within the environment part of
the docker-compose.yaml file. Afterwards you can execute the
pipeline by executing start.sh or following the steps specified in
the Repo’s README.md.

A.5 Experiment workflow

Start

DO_BROWSERS == 1

Output

Setup: Check HTTPS
sites

Setup: Setup
Database

Crawl
different
Browsers

DO_LANGUAGE == 1

DO_ONION == 1

Crawl
different

Tor
Endnodes

DO_VPN == 1

Crawl
different

Languages

Crawl
different

Geolocations

Compute Content
Clusters

Analyse Results

Yes

No

Yes

No

Yes

No

Yes

No

A.6 Evaluation and expected results
Our measurement shows that a significant fraction of the Top Web
sites suffer from different types of client-side security inconsisten-
cies. Remarkably, the inconsistencies of 194 sites can be attributed
to specific client characteristics, which identify weak spots in the se-
curity configuration, while the inconsistencies of 127 other sites can
be attributed to non-deterministic factors, which may nevertheless
be exploitable by an attacker.

Detailed numbers for the detected intra-test and inter-test incon-
sistencies for each factor and security mechanism are presented in
Table 4 of the paper. Here we also present the numbers with and
without page similarity for HSTS to highlight the impact of this
choice on the measurement. The numbers in this table are also the
output of our main analysis script (scripts/sql_table.py), which
is executed as the last part of our pipeline. Furthermore details about
the specific inconsistencies are saved into the /data directory as
JSON files. Notably, the current numbers might be lower due to our
notification campaign (see Paper Section 6.4 Disclosure), where we
notified the affected parties about the problem and got responses
that the issue had been fixed. Also, due to the nature of some of the
inconsistencies, especially the intra-test inconsistencies, the number
in general, varies as we depicted in Appendix B of the paper.

A.7 Experiment customization
One can specify which of the crawls should
be performed by changing the corresponding
DO_<BROWSER|LANGUAGE|ONION|VPN> values to
1=enabled or 0=disabled. Notably, when you want to execute the
crawls individually, you need to set SKIP_SETUP to 1 after the first
crawl, such that the database is not cleared. Also, note that the VPN
crawl requires valid hidemyass.com credentials.

A.8 Notes
The results might vary slightly from ours due to the nature of in-
consistencies (see Paper Appendix B). Especially now, the numbers
might be lower due to our notification campaign (see Paper Section
6.4 Disclosure), where we notified the affected parties about the
problem and got responses that the issue had been fixed.

Also, note that the VPN crawl requires valid hidemyass.com cre-
dentials in order to work.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

128 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact is based on PyTorch and requires GPU support.
We implemented Algorithm 1 (double-masking algorithm)
and Algorithm 2 (robustness certification procedure) of our
PatchCleanser paper. The artifact can reproduce all experi-
mental results (clean accuracy and certified robust accuracy)
reported in the main body of the paper.

Our source code is available at https://
github.com/inspire-group/PatchCleanser/tree/
2370c78da15ccec08b7a05145c92cafb9b0f73a9. We
further provide a detailed guide for evaluating our artifact at
https://github.com/inspire-group/PatchCleanser/
blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/
misc/reproducibility.md.

A.2 Artifact check-list (meta-information)
• Algorithm: We implement Algorithm 1 (double-masking al-

gorithm) and Algorithm 2 (robustness certification procedure)
of our paper.

• Program: N/A.

• Compilation: N/A.

• Transformations: N/A.

• Binary: N/A.

• Model: ResNet, Vision Transformer, ResMLP. We provide
downloading links to pretrained weights.

• Data set: ImageNet, ImageNette, CIFAR-10. They are pub-
licly available benchmark datasets.

• Run-time environment: We test our artifact using anaconda
virtual environment on Linux.

• Hardware: Requires one GPU.

• Run-time state: N/A.

• Execution: N/A.

• Security, privacy, and ethical concerns: N/A.

• Metrics: (top1) clean accuracy and (top1) certified robust
accuracy. They are defined in the paper (at the end of Section
4.1).

• Output: We output results to console; they are numerical
accuracy values.

• Experiments: We provide scripts for running experiments.

• How much disk space required (approximately)?: Datasets
takes around 7GB. Each model weight take 100-300MB. The
mid-product of the experiments takes less 300 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: Each experiment takes 3 hours to 2 days (from
scratch).

• Publicly available (explicitly provide evolving ver-
sion reference)?: https://github.com/inspire-group/
PatchCleanser.

• Code licenses (if publicly available)?: MIT License.

• Data licenses (if publicly available)?: N/A.

• Workflow frameworks used?: N/A.

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/inspire-group/PatchCleanser/
tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9.

A.3 Description
A.3.1 How to access

We host our source code on GitHub at https://github.
com/inspire-group/PatchCleanser.

Specifically, we use this commit for the artifact evaluation:
https://github.com/inspire-group/PatchCleanser/
tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9.

A.3.2 Hardware dependencies

The artifact requires 2 CPU cores and 1 GPU.

A.3.3 Software dependencies

The artifact is based on Python, PyTorch, timm, and other
Python packages. All packages can be easily installed
with pip; we provide a list of required packages in
requirement.txt.

A.3.4 Data sets

We use three publicly available datasets in our evaluation:
ImageNet, ImageNette, CIFAR-10. See our reproducing in-
structions for more details.

A.3.5 Models

We use three representative image classifier models: ResNet,
ResMLP, and Vision Transformer. We build models using
timm; we provide download links to our pretrained weights.
See our reproducing instructions for more details.

A.3.6 Security, privacy, and ethical concerns

N/A.

A.4 Installation
1. Install Python. [help link]

2. Install GPU-compatible PyTorch. [help link]

3. Install other Python dependencies. [help link]

USENIX Association 31st USENIX Security Symposium 129

https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md
https://github.com/inspire-group/PatchCleanser
https://github.com/inspire-group/PatchCleanser
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser
https://github.com/inspire-group/PatchCleanser
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/requirement.txt
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#datasets
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#datasets
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#checkpoints
https://www.python.org/downloads/
https://pytorch.org/get-started/locally/
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#dependency

4. Clone the source code from https://github.
com/inspire-group/PatchCleanser/tree/
2370c78da15ccec08b7a05145c92cafb9b0f73a9

5. Download datasets. [help link]

6. Download pretrained weights. [help link]

A.5 Experiment workflow

Our experiment is mostly based on the script
pc_certification.py, in which we implemented
our double-masking algorithm (Algorithm 1) and certification
procedure (Algorithm 2). By running this script with proper
command (we provide all necessary shell commands to run
pc_certification.py in our reproducing instructions), we
can read clean accuracy and certified robust accuracy from
the console. We can compare the obtained results with the
results reported in the paper to validate the reproducibility of
our paper.

A.6 Evaluation and expected results

Our main claim is that our PatchCleanser defense achieves
state-of-the-art defense performance, in terms of certified
robust accuracy and clean accuracy, against adversarial patch
attacks. This claim is supported by Table 2 of our paper. We
can use commands listed in this section of our reproducing
instructions to generate our key results, which should match
the results reported in Table 2 of our paper.

In addition to our key results, our artifact also supports other
experimental analyses presented in Section 4 and Section
5 of our paper. We provide detailed instructions and shell
commands in our reproducing instructions.

Our algorithms are deterministic. Therefore, we do not
expect any large variation in results. However, it is possible
to have tiny mismatches (< 0.1%) due to the imprecise float
point computation on different hardware (e.g., GPUs).

A.7 Experiment customization

Our source code provides an easy way to customize the ex-
periment.

First, we already support three datasets (ImageNet. Ima-
geNette, CIFAR-10) in this artifact. In our GitHub reposi-
tory, we further support three additional datasets (CIFAR-100,
SVHN, Flowers-102). We can also add other datasets if their
pretrained weights are available; we only need to register the
new datasets in utils/setup.py.

Second, we can also support other image classification
models (other than ResNet, ResMLP, ViT). We only need to
have pretrained weights for these models and register them in
utils/setup.py.

Third, we can easily change the parameters of our system.
In our source code, we can change the underlying classi-
fication model using the flag -model, change the number
of masks using -num_mask, change the mask stride using
-mask_stride, change the estimated patch sizes using flags
-patch_size, -pa, and -pb. We have already evaluated the
effect of different parameters in our paper and this artifact.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

130 31st USENIX Security Symposium USENIX Association

https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/tree/2370c78da15ccec08b7a05145c92cafb9b0f73a9
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#datasets
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#checkpoints
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#experiments
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#table-2-and-figure-2-our-main-evaluation-results
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#table-2-and-figure-2-our-main-evaluation-results
https://github.com/inspire-group/PatchCleanser/blob/2370c78da15ccec08b7a05145c92cafb9b0f73a9/misc/reproducibility.md#experiments

A Artifact Appendix

A.1 Abstract
This artifact includes the code necessary to reproduce
the experimental results presented in our paper ti-
tled “Transferring Adversarial Robustness Through
Robust Representation Matching”. It is made avail-
able in the form of a GitHub repository (final sta-
ble URL: https://github.com/Ethos-lab/robust-
representation-matching/releases/tag/final). Our
experiments involve training neural network based image
classifiers that are robust against adversarial attacks. There-
fore, we provide the necessary training and evaluation scripts,
along with all the supporting code. The expected results,
as reported in the paper, are : (1) total training time, and
(2) accuracy of the trained classifier on clean and adversarial
test sets. All our code is written in Python.

On the hardware side, the code requires a machine with
at least one GPU with 12 GB memory and storage space
> 150 GB to run. We recommend at least 8 GB of RAM.
On the software side, the code requires Python compiler, pip,
conda and several other 3rd party Python libraries like Py-
Torch, IBM’s Adversarial Robustness Toolbox, Nvidia’s apex
etc. Detailed instructions regarding setting up the run-time
environment are provided in Section A.4 and the repository
README.

A.2 Artifact check-list (meta-information)
• Algorithm: Our paper presents a novel algorithm called Ro-

bust Representation Matching (RRM). The purpose of this
algorithm is to speed up the process of adversarially training
neural network based image classifiers.

• Data set: We perform experiments using two image datasets:
CIFAR-10 and Restricted-ImageNet. The CIFAR-10 dataset
downloads itself if not available. It requires 341MB storage
space. For experiments involving Restricted-ImageNet, the full
ImageNet dataset needs to be downloaded. Instructions for
this are provided in the README of the code repository. It
requires 145 GB storage space.

• Model: The CIFAR-10 experiments are conducted using
the following neural networks: VGG11, VGG19, ResNet18,
ResNet50. The Restricted-ImageNet experiments use the fol-
lowing neural networks: AlexNet, VGG16, ResNet50. All the
code associated with these networks is provided in the reposi-
tory. We also make available weights of pre-trained classifiers
for quick evaluation.

• Run-time environment: Our code has been tested on a Linux
machine. To prepare the run-time environment, one needs to
create a Python virtual environment and install all required
Python libraries. The instructions for setting up the run-time
environment are provided in Section A.4 and the README in
the repository.

• Hardware: The code requires a machine with at least one
GPU with 12 GB memory and storage space > 150 GB. We

recommend running the Restricted-ImageNet training
scripts on 4 GPUs. Also, we recommend 8 GB of RAM.

• Execution: Here we provide estimated time taken by different
components of our experiments. These estimates were com-
puted on our machine. We ran our experiments on two different
machines. The CIFAR-10 experiments were run on a machine
with an Intel Xenon(R) Gold 6136 CPU, 16 GB RAM, and an
Nvidia Titan V GPU. The training scripts took ∼ 5 hours on
average. In total 19 classifiers need to be trained using differ-
ent methods. The Restricted-ImageNet experiments were run
on a second machine with an Intel Xenon(R) E5-2690 CPU,
16 GB RAM, and an Nvidia V100 GPU. The training scripts
took ∼ 1 week to run on average. In total 5 classifiers need to
be trained using different methods. For both the datasets, the
evaluation scripts take ∼ 3 hours to run in the worst case, with
every trained model needing to be evaluated once.

• Metrics: We report two metrics in our paper: (1) Training run
time and (2) Accuracy of clean and adversarial test sets. Note
that due to differences in hardware, the absolute training times
will be different than what is reported in the main paper. How-
ever, the speedup (ratio of train times) should be approximately
the same.

• Output: All the expected output will be printed out as stdout
on running the evaluation script. The following quantities will
be outputted: (1) average time per training epoch, (2) its 95%
confidence interval, (3) total training time, (4) accuracy on
clean test set, and (5) accuracy on adversarial test set.

• Experiments: The step-by-step instructions to reproduce the
experimental results are provided in the GitHub READMEs.
The accuracy numbers will be within a few percentage points of
the numbers reported in the main paper. The absolute training
time numbers will vary from what is reported in the main paper
due to hardware differences. However, the speedup numbers
(ratio of training times) will be approximately the same.

• How much disk space required (approximately)?: 150 GB
• How much time is needed to complete experiments (ap-

proximately)?: On our machine, training all the reported clas-
sifiers on CIFAR-10 took ∼ 4 days. Training all the reported
Restricted-ImageNet classifiers took ∼ 5 weeks. Evaluating
all the classifiers (corresponding to both datasets) took ∼ 3
days. During reproduction, expect significant variations in
these times because of hardware differences.

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes. https://github.com/Ethos-lab/robust-
representation-matching

• Code licenses (if publicly available)?: MIT License
• Data licenses (if publicly available)?: CIFAR-10: no license.

ImageNet: https://www.image-net.org/download.php.

A.3 Description

A.3.1 How to access

Clone GitHub repository, available here (final stable URL):
https://github.com/Ethos-lab/robust-
representation-matching/releases/tag/final

USENIX Association 31st USENIX Security Symposium 131

https://github.com/Ethos-lab/robust-representation-matching/releases/tag/final
https://github.com/Ethos-lab/robust-representation-matching/releases/tag/final
https://github.com/Ethos-lab/robust-representation-matching
https://github.com/Ethos-lab/robust-representation-matching
https://www.image-net.org/download.php
https://github.com/Ethos-lab/robust-representation-matching/releases/tag/final
https://github.com/Ethos-lab/robust-representation-matching/releases/tag/final

A.3.2 Hardware dependencies

The code requires a machine with at least one GPU with
12 GB memory and storage space > 150 GB. We recommend
running the Restricted-ImageNet training scripts on 4 GPUs.
Also, we recommend 8 GB of RAM.

A.3.3 Software dependencies

Our code is written in Python and requires a Python com-
piler installed along with the python package managers pip
and conda. In addition, our code makes use of several 3rd
party Python libraries. For instructions regarding how to in-
stall all the software dependencies and set up the run-time
environment, refer to Section A.4 and the GitHub README.

A.3.4 Data sets

We use two datasets in our experiments: CIFAR-10 and
Restricted-ImageNet. CIFAR-10 will download itself if not
available. For Restricted-ImageNet, the entire ImageNet
dataset needs to be downloaded. Instructions for this are pro-
vided in the GitHub README.

A.3.5 Models

The CIFAR-10 experiments are conducted using the following
neural networks: VGG11, VGG19, ResNet18, ResNet50. The
Restricted-ImageNet experiments use the following neural
networks: AlexNet, VGG16, ResNet50. All the code associ-
ated with these networks is provided in the repository. We
also make available weights of pre-trained classifiers for quick
evaluation.

A.3.6 Security, privacy, and ethical concerns

All the data we use is publicly available for research. The
work presented in our paper introduces no security, privacy,
or ethical concerns.

A.4 Installation
Follow the following steps to set up the run-time enviroment
required to run our code:

1. Clone the github repository and navigate into it:
git clone https://github.com/pratik18v/
robust-representation-matching.git &&
cd robust-representation-matching

2. Create a Python virtual environment and activate it:
conda create -n rrm python=3.6 &&
conda activate rrm

3. Install dependencies:
pip install -r requirements.txt

4. Install apex using instructions here:
https://github.com/NVIDIA/apex#quick-start

All the instructions to setup the run-time enviroment are also
provided in the GitHub README.

A.5 Evaluation and expected results
We demonstrate that our proposed algorithm (RRM) trains
adversarially robust image classifiers faster than previous
state-of-the-art method, at the same time attaining better ro-
bustness. For this, we train neural networks using several
prior methods and compare them to our method. We perform
comparison using two metrics: (1) total training time, and
(2) accuracy on clean and adversarial test sets. We show that
our method has the lowest total training time. Compared to
the previous fastest method, our method trains classifier with
higher adversarial accuracy. The accuracy numbers can be
reproduced within a few percentage points of the numbers
reported in the main paper. The absolute training time num-
bers will vary from what is reported in the main paper due to
hardware differences. However, the speedup numbers (ratio
of training times) can be reproduced to a value approximately
similar to the reported value. The detailed steps to reproduce
our results are laid out in the READMEs available in our
GitHub repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

132 31st USENIX Security Symposium USENIX Association

https://github.com/NVIDIA/apex#quick-start

A Artifact Appendix

A.1 Abstract
Our work leverages three artifacts to conduct our analyses.
First, back-end data seized by Dutch National Police (DNP)
from the Hansa marketplace. Second, data scraped externally
by the research team. And third, code used to simulate ar-
tificial marketplaces. The back-end data is used to test the
completeness and uncover biases in the scraped data. The
simulation is used to explore how other scraping methodolo-
gies could achieve improved coverage, based on distributions
from the Hansa back-end. To allow further research in online
criminal marketplaces, we are making our public scrapes and
simulation code available. However, all of our analyses of
the back-end data were conducted on-site at Dutch law en-
forcement agencies, so we never stored nor owned the data
ourselves. Due to Dutch privacy laws on law enforcement
data we are thus unable to release that dataset.

A.2 Artifact check-list (meta-information)
• Data set: Yes, the data scraped externally is provided. The

back-end data is not.

• Publicly available (explicitly provide evolving ver-
sion reference)?: Yes, the scraped data can be visu-
alized and queried at: https://arima.cylab.cmu.edu/
markets/viewmarketplace.php?name=Hansa. The simula-
tion code is found at: https://github.com/aledcuevas/
dnm-simulation/releases/tag/v0.2

• Security, privacy, and ethical concerns: The scraped data
contains no Personal Identifiable Information. Research using
the scraped data should never seek to provide any legal proof
of criminal conduct.

• Code licenses (if publicly available)?: The simulation has a
MIT License.

• Data licenses (if publicly available)?: The scraped data
has the following license: https://arima.cylab.cmu.edu/
markets/license.php

• Archived (explicitly provide DOI or stable reference)?:
The stable reference for the scraped data will be avail-
able at: https://www.impactcybertrust.org/dataset_
view?idDataset=1498. Our DOI request is pending.

A.3 Description
A.3.1 How to access

• The simulation code can be cloned or downloaded from the fol-
lowing Github release: https://github.com/aledcuevas/
dnm-simulation/releases/tag/v0.2.

• The anonymized version of our dataset can be
queried and visualized by navigating to the follow-
ing URL: https://arima.cylab.cmu.edu/markets/
viewmarketplace.php?name=Hansa.

Downloads of anonymized and non-anonymized versions of our
dataset are done through IMPACT Cyber Trust. A free account is
required to download the dataset. Researchers pursuing legitimate
R&D in a valid organization at a DHS-approved location are eligible
for accounts. Accounts may take a few business days to be approved.
For more details refer to: https://www.impactcybertrust.org/
help_faq. Additionally, requests for the non-anonymized versions
of the dataset are handled on a case-to-case basis and require the
signature of a Memorandum of Agreement.

• The anonymized version of our dataset can be requested from
the following URL: https://www.impactcybertrust.org/
dataset_view?idDataset=1498.

• The non-anonymized version of our dataset can be requested
from the following URL: https://www.impactcybertrust.
org/dataset_view?idDataset=1499.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

No software dependencies are needed beyond those shipped with
the Python 3.8 standard library, pandas, and numpy. To use the
Jolly Seber abundance estimator, RMark is required. Instructions on
abundance estimators is available in the repository.

A.3.4 Data sets

No other data sets are required beyond those described in the “How
to Access” subsection.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

The scraped data contains no Personal Identifiable Information. Re-
search using the scraped data should never seek to provide any legal
proof of criminal conduct.

A.4 Installation
No installation is required, assuming software dependencies are met.
The code can be cloned or downloaded as a .tar.gz or .zip. The
simulation code is executed by calling main.py. The datasets don’t
require any installation.

A.5 Evaluation and expected results
To evaluate the artifact, users should run main.py. We pro-
vide a set of test files that parameterize the simulation for test-
ing purposes. The user will observe a count of days elapsed
in stdout. The code will also create a folder structure (de-
scribed in the GitHub documentation) which will contain the
results of the simulation. Upon reaching the end of the simula-
tion, the simulation will save to disk a .json file with a market

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 133

https://arima.cylab.cmu.edu/markets/viewmarketplace.php?name=Hansa
https://arima.cylab.cmu.edu/markets/viewmarketplace.php?name=Hansa
https://github.com/aledcuevas/dnm-simulation/releases/tag/v0.2
https://github.com/aledcuevas/dnm-simulation/releases/tag/v0.2
https://arima.cylab.cmu.edu/markets/license.php
https://arima.cylab.cmu.edu/markets/license.php
https://www.impactcybertrust.org/dataset_view?idDataset=1498
https://www.impactcybertrust.org/dataset_view?idDataset=1498
https://github.com/aledcuevas/dnm-simulation/releases/tag/v0.2
https://github.com/aledcuevas/dnm-simulation/releases/tag/v0.2
https://arima.cylab.cmu.edu/markets/viewmarketplace.php?name=Hansa
https://arima.cylab.cmu.edu/markets/viewmarketplace.php?name=Hansa
https://www.impactcybertrust.org/help_faq
https://www.impactcybertrust.org/help_faq
https://www.impactcybertrust.org/dataset_view?idDataset=1498
https://www.impactcybertrust.org/dataset_view?idDataset=1498
https://www.impactcybertrust.org/dataset_view?idDataset=1499
https://www.impactcybertrust.org/dataset_view?idDataset=1499

transcript (e.g., a record of the day that items, vendors, and
reviews were created/hidden/deleted from the market). Ad-
ditionally, the market will also run a simple artificial scraper
which will output a .json file with the pages it captured as it
scraped the market. Given that we are using dummy parame-
ters, the expected result is a market transcript which contains
between 1-10,000 vendor pages, 10,000-200,000 item pages,
and 50,000 to 300,000 review pages.

A.6 Notes
While we provide a stable reference to our dataset, the DOI is
still pending. Furthermore, given the number of days it may
require to obtain an account from IMPACT Cyber Trust, we
are happy to provide reviewers access to our raw anonymized
dataset for evaluation through another channel, if necessary.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

134 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact contains the source code of RapidPatch and the
stuff for running it. Since RapidPatch is designed for hotpatch-
ing embedded devices, to evaluate the basic functions, you
need to have a Cortex-M3/M4 based arm development board.
If you do not have these devices, we also provide a simple
version that can run on qemu, and can demonstrate the func-
tionable of RapidPatch by running the hotpatching process
using fixed patch points (only one of the three hotpatching
strategies supported by our tool). To fully evaluate and re-
produce the results, you need to have at least one of these
STM32F407/STM32L475/STM32F429/NRF52840 develop-
ing boards. Note that you can use any of the MacOS/Win-
dows/Linux Platform to develop or evaluate it, we provide
Docker and PlatformIO-based VSCode cross-platform build-
ing environments.

A.2 Artifact check-list (meta-information)
• Binary: Pre-build RapidPatch firmware for different de-

vices (you can also build from scratch).

• Hardware: Qemu and real devices, such as,
STM32F429/NRF52840/STM32L475 and ESP32 de-
veloping boards.

• How much time is needed to prepare workflow (approxi-
mately)?: 3h

• Publicly available?: Yes

• Code licenses (if publicly available)?: GPL v3.0

• Archived (provide DOI or stable reference)?: Yes

A.3 Description
A.3.1 How to access

All the documents and source code are available on github.
https://github.com/IoTAccessControl/
RapidPatch/tree/ae-v1.0.
(Commit: 591f82e5cf4f91cfa440bb376cb4975ce78ce871)

A.3.2 Hardware dependencies

RapidPatch relies on the Debug Monitor Handler of Cortex-M3+
MCU to dynamically trigger patches without modifying the Flash
ROM. The recommended devices are NRF52840, STM32F429, or
STM32L475. You can also port RapidPatch to other devices with
Cortex-M3/M4 MCUs via PlatformIO.
Note that for devices other than Cortex-M3+, you can only use
compiling time patch points placement.

A.3.3 Software dependencies

To compile the source code from scratch, you need to install the
following software.

• Docker (manually)

• gcc-arm-none-eabi (installed by Docker)

• qemu-system-arm (installed by Docker)

• VSCode and the PlatformIO plugin (manually)

• Keil (optional)

If you do not have any required hardware and just want to quickly
try it, we provide Docker scripts with a push-button to run the core
functionalities of RapidPatch on any platform that supports Docker.
In this case, you do not need to install any aforementioned software.

A.4 Installation
To run on Docker, you can use our docker images or build from the
Dockerfile. The detail steps is shown in docker-qemu.md document.

To try RapidPatch on real devices, you can build and flash these
projects with the Keil project or Platform-IO projects or just use the
pre-build firmware.

A.5 Experiment workflow
You can follow the HOWTO.md document to test the functions of
RapidPatch. There detailed steps of deploying a patch is as follows.

1. Integrate the RapidPatch Runtime to the firmware of your
devices.

2. Write a patch based on the origin C source code patch.
3. Generate the eBPF bytecode via the RapidPatch Toolchain’s

patch generator.

python3 main . py gen t e s t _ c v e 1 . c \
t e s t _ c v e 1 . b i n

4. Verify the eBPF bytecode via the RapidPatch Toolchain’s patch
verifier. Note that, for the filter patch, the verifier can automatically
insert the SFI instructions for loops.

python3 main . py v e r i f y t e s t _ c v e 1 . b i n

5. Deploy the patch to real devices with our Usart tool or directly
paste the patches’ bytecode to your firmware code.

python3 main . py m o n i t o r COM15
> i n s t a l l t e s t _ c v e 1 . j s o n

6. Test the patch functions with the Usart commend line interface.

A.6 Evaluation and expected results
After setting up the firmware, you can use a serial port tool (e.g.,
CoolTerm) to connect to the devices and trigger commends to con-
duct the evaluation. To preform the micro-evaluation, you need to
use the Usart shell commend (e.g., run exp_idx) to execute the corre-
sponding experiments.

The results of micro-benchmark is output to the Usart shell mes-
sage and contains the execution time and CPU cycles.

Event 0 −> c y c l e : 38 t ime (us) : 0 .475000

To evaluate the macro-benchmark, you can use the the pre-built
Zephyr Apps and the test tools to measure the performances. The
results are written to local files.

USENIX Association 31st USENIX Security Symposium 135

https://github.com/IoTAccessControl/RapidPatch/tree/591f82e5cf4f91cfa440bb376cb4975ce78ce871
https://github.com/IoTAccessControl/RapidPatch/tree/ae-v1.0
https://github.com/IoTAccessControl/RapidPatch/tree/ae-v1.0
https://github.com/IoTAccessControl/RapidPatch/tree/591f82e5cf4f91cfa440bb376cb4975ce78ce871
https://github.com/IoTAccessControl/RapidPatch/blob/591f82e5cf4f91cfa440bb376cb4975ce78ce871/Docker/docker-qemu.md
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/Keil-Baremetal-Projs
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/PlatformIO
https://github.com/IoTAccessControl/RapidPatch/blob/591f82e5cf4f91cfa440bb376cb4975ce78ce871/HOWTO.md
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/blob/master/PlatformIO/stm32f4xx/lib/hotpatch/src/dynamic_patch_load.c#L141
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/RTOS-Projs
https://github.com/IoTAccessControl/RapidPatch/tree/ArtifactEvaluation/board-prebuilts/NRF52840/Zephyr-CoAP-CVE-2020-10063/evaluation
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/evaluation/data

A Artifact Appendix

A.1 Abstract
Our artifacts include the source code of all components of our
Kage implementation, including the LLVM-based [36] com-
piler, the FreeRTOS-based [6] embedded OS, the microbench-
marks, the macrobenchmark, the binary code scanner, the cor-
responding libraries, and our scripts to find stitchable gadgets.
Our hardware requirements include a host Linux machine
and an STM32L475 Discovery board [43]. Our software re-
quirements include Linux, a C/C++ compiler (e.g., Clang,
gcc) and associated tools for compiling Clang and LLVM,
the OpenSTM32 System Workbench IDE, Python 3, and the
pyelftools library. We provide automated evaluation scripts
to generate the performance results, code size results, and
most of the security evaluation results included in the paper.
Specifically, the performance results produced by these arti-
facts correspond to the results found in Tables 2, 3, 4, 5, 6,
and 7 of the paper. Due to minor bug fixes and code structure
adjustments, the artifact results will vary slightly from the
results presented in the paper, but the key results and the main
claims of the paper remain valid.

A.2 Artifact check-list (meta-information)
• Program: CoreMark [28] (included), Microbenchmarks

(included).
• Compilation: Our LLVM-based compiler.
• Transformations: Our compiler passes (shadow stack, store

hardening, and CFI).
• Run-time environment: Fedora 35.
• Hardware: STM32L475 Discovery board.
• Metrics: CoreMark: Iter/s; microbenchmark: cycles; code

size: bytes; security: gadgets.
• Output: Serial output containing the numerical results.
• Experiments: Execute the automated evaluation scripts.
• How much disk space required (approximately)?: 5GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Two hours.
• How much time is needed to complete experiments (approx-

imately)?: 20 minutes.
• Publicly available?: Yes.
• Code licenses: Kage, LLVM compiler, CoreMark: Apache

License 2.0; Newlib: GNU General Public License 2; AWS
FreeRTOS: MIT License.

• Archived?: https://github.com/URSec/Kage commit
#195d489

A.3 Description
A.3.1 How to access

The source code of Kage is publicly available as a GitHub
repository: https://github.com/URSec/Kage.

A.3.2 Hardware dependencies

An STM32L475 Discovery board is required. Other STM32
development boards may work but are untested. A Linux x86
host machine is also required in order to build and flash the
benchmarks to the board and to read the experimental results.

A.3.3 Software dependencies

We require the host machine to run a Linux distribution. We
evaluated Kage using a host machine running the rolling
release of Arch Linux, updated in June 2021. We have also
tested Kage on Fedora 35.

Our build script uses the manufacturer-provided IDE
to build the binaries. Therefore, we require the Open-
STM32 System Workbench IDE to be installed on
the host machine. The IDE is publicly available at
https://www.openstm32.org/HomePage. Note that users are
required to register for a free web account to download the
IDE suite.

Our binary code scanner requires Python 3 and the
pyelftools library.

Finally, our automated evaluation script requires Python
3, the colorama Python library, and the pyserial Python
library.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

A.4.1 Setting Up Kage on a Local Machine

We provide a detailed guide to install the dependencies and
to set up Kage in the readme.md document of our GitHub
repository.5 As discussed in Section A.3.2, we require an
STM32L475 Discovery board to run the compiled ARMv7-
M binaries.

A.5 Experiment workflow

We provide a detailed guide to run the experiments in the
readme.md document of our GitHub repository.

5https://github.com/URSec/Kage

USENIX Association 31st USENIX Security Symposium 137

A.6 Evaluation and expected results
A.6.1 Key Results in the Paper

There are three main claims in our paper. First, Kage incurs
only minor performance overhead in the macrobenchmark,
CoreMark [28], even though some of its components show a
more significant overhead in microbenchmarks. Second, Kage
incurs acceptable code size overhead. Third, Kage eliminates
stitchable code-reuse gadgets.

For the first claim, the key result is that Kage incurs 5.2%
mean performance overhead compared to the baseline FreeR-
TOS [6] in CoreMark. Table 3 in the paper lists the detailed
CoreMark results. For the performance overhead of Kage’s
components, Table 5 and Table 6 in the paper list the mi-
crobenchmark results.

For the second claim, the key result is that Kage incurs
49.8% code size overhead compared to the baseline FreeR-
TOS and 14.2% code size overhead compared to FreeRTOS
with MPU enabled, when comparing the CoreMark binaries
that use three threads. Table 4 in the paper lists the detailed
code size results.

For the third claim, the key result is that, for the CoreMark
binaries that use three threads, Kage significantly reduces
the number of reachable code-reuse gadgets and eliminates
stitchable gadgets. Table 7 in the paper lists the detailed code-
reuse gadget results for the security evaluation.

A.6.2 Reproducing the Results

As Section A.5 states, we provide a detailed guide to run
the automated scripts in the readme.md document of our
repository. This document includes detailed steps to build our
toolchain, generate the performance and code size results, and
generate the security evaluation results.

Because we discovered and fixed additional minor bugs
in our workflow after we submitted the paper, and because
we adjusted the source code to enable automated evaluation,
the artifact results will include minor differences from the
original results included in the paper. For the microbench-
marks, the results may include variations up to 25 cycles. For
the performance evaluation of CoreMark, the results may in-
clude variation up to 0.05 Iter/s. For the code size evaluation
of CoreMark, the code size of the untrusted code includes
a difference of 16 bytes. Finally, for the security evaluation,
the number of reachable gadgets includes a difference of one
gadget. These differences do not significantly impact the key
results and claims of the paper.

We note that our automated evaluation scripts produce a
larger set of performance metrics than the set we included in
the paper. For example, Table 6 in the paper shows the mi-
crobenchmark results for FreeRTOS, FreeRTOS with MPU en-
abled, and Kage. Our evaluation script, run-benchmarks.py,
also shows the microbenchmark results for Kage’s OS mech-
anisms. Similarly, for code size, the paper only includes the

results of the CoreMark binaries that use three threads while
the script also shows the code size results for the microbench-
mark binaries as well as other binaries of CoreMark that use
one or two threads.

Finally, while our scripts generate most of the results au-
tomatically, our security evaluation script, run-gadget.py,
cannot automatically generate the number of stitchable gad-
gets because the process requires manual inspection. Section
6.2 of our paper explains how we analyze the reachable gad-
gets to determine if they are stitchable.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

138 31st USENIX Security Symposium USENIX Association

B Artifact Appendix
B.1 Abstract

Our artifact contains source files of the Orca blocklisting pro-
tocol as a library in Rust. The cryptographic protocol is built
on top of the open-source arkworks library for pairing-based
cryptography. The implementation consists of three major
parts: (1) an implementation of the Chase et al. algebraic
MAC protocol, (2) an implementation of the Orca group sig-
nature, and (3) an implementation of the Orca one-time-use
token protocol. The artifact also includes two benchmarks
for reproducing the performance numbers reported on. These
benchmarks can be easily run on any machine that can com-
pile Rust from source, though we report performance numbers
from running on high-memory AWS machines (for the server)
and mobile devices (for the client). The artifact does not in-
clude source files for the griefing attack and battery-drain
experiments against Signal, as they are potentially harmful
and are not core to our work’s claimed contribution.

B.2 Artifact check-list (meta-information)

• Algorithm: The Orca blocklisting protocol including group
signature and one-time-use tokens.

• Compilation: Benchmarks are built from source using the
Rust compiler.

• Run-time environment: Our artifact was run on a
c5.12xlargeAWS EC2 virtual machine with 24 cores and 96
GB of memory running Ubuntu Server 20.04 LTS, as well as
on a mobile device running Android 9.

• Hardware: The mobile microbenchmarks were run on a
Google Pixel 2 device. The server throughput benchmark re-
quires at least 64 GB, though comparable results can be repro-
duced with less memory.

• Execution: The microbenchmarks run in less than 5 minutes.
The server throughput benchmark runs in under 2 hours on our
test AWS machine.

• Security, privacy, and ethical concerns: We do not provide
the source files for the griefing attack and battery-draining
experiments.

• Output: The benchmarks produce summarized performance
outputs printed to the terminal.

• Experiments: There are two benchmarks: (1) microbench-
marks for measuring the performance of the cryptographic
primitives used in Orca, and (2) macrobenchmark for measur-
ing server throughput of requests.

• How much time is needed to prepare workflow (approx-
imately)?: The benchmark binaries are built from source in
under 5 minutes. Setting up the AWS machine and/or the mo-
bile device may take additional time.

• Publicly available?: The latest version of the library is
available at https://github.com/nirvantyagi/orca. The
version that underwent artifact review is marked with tag
usenix-sec22-ae.

B.3 Description

B.3.1 How To Access

The latest version of the library is available at https://
github.com/nirvantyagi/orca. The version that under-
went artifact review is marked with tag usenix-sec22-ae.

B.3.2 Hardware Dependencies

Our artifact was run on a c5.12xlarge AWS EC2 virtual
machine with 24 cores and 96 GB of memory running Ubuntu
Server 20.04 LTS. The server throughput benchmark requires
at least 64 GB, though comparable results can be reproduced
with less memory. The mobile microbenchmarks were run on
a Google Pixel 2 device running Android 9.

B.3.3 Software Dependencies

Full instructions for building from source are provided on
the project README. All dependencies are readily available
through the Rust package manager and binaries can be built
from source in under 5 minutes.

B.3.4 Security, Privacy, and Ethical Concerns

We do not provide the source files for the griefing attack and
battery-draining experiments.

B.4 Installation

The setup consists of installing Rust and compiling the bench-
mark binaries from source. Compiling and running the mi-
crobenchmarks on a mobile device requires additional in-
stallation of the Android Native Development Kit (NDK)
and related Rust toolchains. The macrobenchmark for server
throughput additionally requires installing and running a
Redis server locally. Detailed installation instructions are
given on the README available at https://github.com/
nirvantyagi/orca.

B.5 Evaluation and Expected Results

There are two benchmark binaries that we report results on.
The first is the microbenchmarks binary that is used to popu-
late Figure 5. The platform and desktop client user columns
are given from running the microbenchmark binary on a sin-
gle core of the specified AWS machine. The mobile client
user column is given from running the microbenchmark on
the specified mobile device.

The second benchmark binary measures server throughput
and is used to populate Figure 6. The reported numbers are
based on experiments setting benchmark parameters of 200
requests for a blocklist size of 100, a strikelist size of 1400,
and one million users, while varying the number of cores.
This setup requires 64 GB of memory, however, the number
of users can be reduced (e.g., to 200) to reproduce similar
results without large memory requirements.

USENIX Association 31st USENIX Security Symposium 139

Detailed evaluation instructions are given on the README
available at https://github.com/nirvantyagi/orca.

B.6 Experiment Customization

The benchmark source code is available and can be cus-
tomized beyond the exisiting parameterization.

B.7 Notes

The cryptographic code has not been reviewed; it serves as a
research prototype and is not suitable for deployment. If any
bugs are discovered, please raise an issue on Github or send
an email to the authors.

140 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact contains the code for paper “Adversarial Detec-
tion Avoidance Attacks: Evaluating the robustness of percep-
tual hashing-based client-side scanning”. We provide instruc-
tions for reproducing the results and running the attack on any
other dataset of images. To reproduce the results in a timely
fashion, we recommend using a Linux machine with at least
30 cores and 64G of RAM. A smaller machine will work
but will require more time to run the experiments. The code
is written to be modular such that it can be extended to run
the attack on any other dataset. Furthermore, the experiments
can be modified easily by changing a few parameters in the
provided configuration files. This allows, for instance, to run
the attack on a small number of images.

A.2 Artifact check-list (meta-information)
• Algorithm: The code for the attack algorithm is provided.

• Data set: ImageNet, the downloading and setting up instruc-
tions are provided.

• Run-time environment: Python

• Metrics: All metrics are provided in the code.

• Output: NPZ and PKL files containing the intermediate re-
sults. The final outputs are plots in PDF format.

• Experiments: All experiments are part of the code, and con-
figuration files can be tuned to run them on a small scale.

• How much disk space required (approximately)?: 1TB.

• How much time is needed to prepare workflow (approx-
imately)?: 2 hours, includes the setting up of the Python
environment and the downloading of the dataset.

• How much time is needed to complete experiments (ap-
proximately)?: 2 weeks.

• Publicly available?: No.

A.3 Description
A.3.1 How to access

The artifact will only be provided by the authors to the re-
viewers. We will not release it publicly for ethical concerns
and sensitivity of the topic.

A.3.2 Hardware dependencies

We recommend using a Linux machine with at least 30 cores
and 64G of RAM to be able to run the attacks and reproduce
the results. A smaller non-Windows machine will also work
but with significantly longer time required (e.g. 2 weeks)
to run all the large-scale experiments included in the paper.
Small-scale experiments (i.e., attacking a few images) can be
run in a shorter time.

A.3.3 Software dependencies

We use Miniconda 1 to setup the Python environment. The
libraries and instructions to setup the environment are pro-
vided in the README. The code is tested on linux machines
(specifically Ubuntu 16.04 and Ubuntu 20.04). But we expect
the code should run on any other OS without any change as
no OS dependent code is used to the best of our knowledge.

A.3.4 Datasets

We use ImageNet for all the experiments. For the updated
results with duplicates removed from the ImageNet dataset,
we refer the reader to our extended arXiv version2.

A.4 Installation
Installation is only required to setup the conda environment
for Python. We provide all the instructions in the README
along with environment yaml file.

A.5 Experiment workflow
The workflow involves

1. Setup the Python environment;

2. Downloading the ImageNet dataset;

3. Running the Python code (preferably in something like
tmux) to compute the image hashes;

4. Running the experiments to generate pickle files with
results;

5. Running a Jupyter notebook to generate plots from the
results.

A.6 Evaluation and expected results
To reproduce the results we need to run the experiments with
the provided configuration files. This in turn would generate
pickle files with the results of each experiment. Then, the
notebooks are used to generate plots from the paper and they
also print the reported values. One can expect to reproduce all
the results from the paper. For reproducibility We also provide
the seed used for all the experiments. All the results and plots
from our paper can be generated using this evaluation.

A.7 Experiment customization
The configuration files can be modified to reconfigure the ex-
periments, e.g. running the attack on fewer images. Similarly,
the modularity in the code enables us to extend the exper-
iments to other hashing algorithms and datasets by simply
inheriting the generic classes provided for each module.

1https://docs.conda.io/en/latest/miniconda.html
2https://arxiv.org/pdf/2106.09820.pdf

USENIX Association 31st USENIX Security Symposium 141

https://docs.conda.io/en/latest/miniconda.html
https://arxiv.org/pdf/2106.09820.pdf

A Artifact Appendix

A.1 Abstract
E2SE is a system for securely storing private data in the
cloud with the help of a key server (an App server). Our
E2SE artifact is a prototype in Java including both the client
and key server implementation. The software requirements
includes JDK 81 or later, Maven 3.8.1 or later 2 and some
dependencies which could be automatically downloaded by
maven, and OpenSSL 1.1.13 with libssl-dev. To reproduce
the evaluation results, the hardware requirements include an
AWS EC2 t3.xlarge instance in Seoul for running the client,
an AWS EC2 t2.micro instance in Osaka for running the key
server, and a AWS S3 cloud server in Tokyo. We provide the
EC2 instances satisfying the software requirements and S3
cloud server access for the evaluation.

The key server could be run to provide assistance for secure
storage. Given a plain file, the client could run to securely
deposit the file to cloud storage and securely retrieve it later.
The client will output the time cost of each procedure. The
average statistic result should be consistent with the efficiency
part of our paper.

A.2 Artifact check-list (meta-information)
• Algorithm: OPRF, AES, KDF, SHA256

• Program: Siege4, an open-source benchmarking tool used to
test the performance of web server, is needed. The throughput
test of key server in our paper is done with Siege 4.0.4.

• Compilation: JDK 8 or later, Maven 3.8.1 or laer

• Run-time environment: ubuntu 18.04 TLS.

• Hardware: An AWS EC2 t3.xlarge instance, an AWS EC2
t2.micro instance, and AWS S3 server are needed.

• Run-time state: It is network sensitive as the client needs to
communicate with the key server and cloud server (AWS S3
in our implementation). Both the network delay between the
client and key server & cloud server will affect the time cost.
The client transfers the file to/from the cloud server, where the
network speed also affect the measured time cost.

• Execution: The running time depends on the the file size and
network delay and speed. In our experiment described in the
paper, the time cost of running the whole procedure 25 times
for each file varies from several minutes to one hour with the
file increasing from 10mb to 300mb.

• Metrics: Running the compiled jar package with calling the
key server, it provides service in port 20202 to help the client.
Running the compiled jar package with calling the client, the
execution time for each procedure is reported. Using Siege to
test the key server performance, the throughput is reported.

1https://www.oracle.com/java/technologies/javase/javase8-archive-
downloads.html

2https://maven.apache.org/download.cgi
3https://www.openssl.org/source/
4https://github.com/JoeDog/siege

• Output:

1. For the efficiency test, the outputs are the running time
of IBOPRF, Give, Take, optimized secure deposit and
retrieve, secure deposit and retrieve, plain deposit and re-
trieve. The statistically average of the outputs should be
consistent with the efficiency part of the paper, including
the Figure 8,9 and the Table 2.

2. For the key server throughput test. The output is the
throughput of key server, say the number of transactions
per second (trans/sec). When the key server is deployed
on devices with different processing cores and mem-
ory, the throughput increases almost linearly with the
processing core increasing.

• Experiments: The full preparation is described in
the README.md instruction of the open source code
https://github.com/yananli117/E2SE. We provide two well-
prepared EC2 instances. The reviewer could upload the code to
the instances, and follow the Run instruction and test instruc-
tion to get the results.

• How much disk space required (approximately)?: It de-
pends on the data size. We test the files from 10mb to 300mb,
so the required disk should be less than 1GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Prepare from scratch, it probably costs 2 hours. We
provide a well-configured instances in EC2 to run, only cost
10 minutes.

• How much time is needed to complete experiments (ap-
proximately)?: Several minutes are needed to test whether
the artifact works. If redo all the experiments to produce the
data of the four figures and one table about efficiency and
scalability, approximately less than 6 hours are needed.

• Publicly available: . Github:
https://github.com/yananli117/E2SE.

• Code licenses: Our code is under MIT license.

• Archived (stable URL): https://github.com/yananli117
/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b

A.3 Description
A.3.1 How to access

We have open sourced our artifact at https://github.com/
yananli117/E2SE. To reproduce the performance evaluation results,
we provide the EC2 cloud instances with proper configurations and
credentials, etc. Since we do not know when the reviewers will
execute our code to repeat, to avoid keeping the cloud instances
running for a whole month (which is a bit unnecessary waste),
please inform us in the system before you plan to test. We will start
the well-configured EC2 instances and send you the corresponding
IP addresses.

A.3.2 Hardware dependencies

• To test the artifact is workable, two processes deployed in one
or two devices are needed for the key server and client.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 143

https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b
https://github.com/yananli117/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b
https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE

• To reproduce the evaluation results, we provides two EC2
instances for running the client and key server. The client is
deployed in EC2 t3.xlarge instance in Soul, and the key server
is deployed in EC2 t2.micro instance in Osaka.

• AWS S3 as cloud storage server (During the artifact review,
we provide the access credential to access it). To apply to other
cloud services, the code should be tuned a bit for the different
cloud APIS.

A.3.3 Software dependencies

The software dependencies include JDK 8 or later version, Maven
3.8.1 or later versions, OpenSSL 1.1.1 and libssl-dev. (Some depen-
dencies could be automatically installed in the compilation using
Maven.) To test the throughput, the key server is implemented as a
web server, so Tomcat + nginx framework are needed for the key
server. The Siege tool in the test server is needed.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
When you plan to test the artifact, please do the following steps:

• Inform us to open the two instances and we will return the two
ip addresses of the two instances for your access.

• Download all the credentials of AWS S3 with the
link we provide only for artifact evaluation. For
other users, please login in your own AWS account
and get the security credential following the link
https://docs.aws.amazon.com/general/latest/gr/aws-sec-
cred-types.html.

• Open the terminal, securely and remotely control the EC2
t3.xlarge instance in Seoul via SSH for running the client

1 ssh −i CredentialPath / EC2_Client_Seoul . cer
ubuntu@ip_client

• Open another terminal, and securely and remotely control the
EC2 t2.micro instance in Osaka via SSH for running the key
server

1 ssh −i CredentialPath / EC2_keyServer_Seoul . cer
ubuntu@ip_client

• Clone the git repository and change to the root directory for
both the client and key server

1 gi t clone https : / / github .com/ yananli117 /E2SE. g i t
2 cd E2SE/ E2se4j

• Follow the instruction in README.md shown in
https://github.com/yananli117/E2SE to config, compile,
run and test our artifact and use our prototype for protecting
data.

A.5 Experiment workflow

A.6 Evaluation and expected results

In our paper, we have two main claims efficiency and scala-
bility.

A.6.1 Claim on efficiency

We do experiments to demonstrate that our design is efficient.
We mainly measure the time cost of each procedure during
the secure storage, including the register, give, take, deposit
and retrieve procedures. We also compare the time cost of
plain deposit/retrieve with the time cost of secure and opti-
mized secure deposit/retrieve to show that the overhead of
secure deposit/retrieve is very small, which could be seen in
Figure 8,9 and Table 2.

When running the client with a specified plain file, 25 users
run the whole procedure sequentially as follows: register to
the system, run the give protocol to share the data encryption
key (ibOPRF + give), encrypt the specified file and deposit
the ciphertext to S3 in an optimized way (secureDepOpt),
run the take protocol to reconstruct the data encryption key
(ibOPRF + take), retrieve the ciphertext and decrypt it in
an optimized way (secureRetOpt), encrypt the specified file
and deposit the ciphertext to S3 (secureDep = Enc + DCT),
retrieve the ciphertext and decrypt it (secureRet = RCT +
Dec), deposit plain file to S3 (plainDep), retrieve plain file
from S3 (plainRet), encrypt a plain file (Enc) and Decrypt the
encrypted file (Dec).

We need to keep the key server running and run the client
8 times by specifying plain files of different sizes from 10mb
to 300mb shown in the paper. To produce a file with specific
size, we add the generation code in testGuide/ComFile1.java.
Please follow the RREADME.md instruction to generate the
file with a specific size.

With the output in the client terminal, we can calculate the
average time cost for each procedure and the breakdown to
form the Figure 8,9 and Table 2.

Since the time costs mainly comes from communication
between the client and two servers, they could vary depends
on the network delay between the deployed client to the de-
ployed key server and the specified S3 server. The network
speed could also affect the time cost especially when the size
of file is large. So we cannot give the range of time cost for
different network environments. We just claim that the test
results could be reproduced if the experiments are the same
as ours shown in the paper.

144 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://github.com/yananli117/E2SE

A.6.2 Claim on scalability

. We claim that our key server is scalable. We observe that in
secure storage, the key server overhead mainly comes from
interacting with the client to run the IBOPRF, which could af-
fect the scalability. To demonstrate our key server is scalable,
we deploy the key server as a web server with nginx + tomcat
framework. We use Siege as the throughput benchmarking
tool to test how many IBOPRF requests the key server could
handle at per second. The client use Siege to sends 400 paral-
lel https requests on IBOPRF to the key server and iterates 250
times. The specific commands are shown in README.md.
only providing the IBOPRF service.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 145

A Artifact Appendix

A.1 Abstract
The artifact contains the source code and installation scripts
for the secure logging systems QuickLog and QuickLog2
in the paper. We also provided scripts to evaluate their
application-independent signing and verification speeds, so
that reviewers can reproduce the experiment results in Section
7.1 of the paper. We also included the code and scripts for
installing and evaluating the competitor KennyLoggings.

A.2 Artifact check-list (meta-information)
• Run-time environment: CentOS 7 (Linux version 3.10.0-

1160.49.1.el7). We also tested our code on Ubuntu 18 (Linux
5.4.0-120-generic) to ensure that our code works with other
Linux distributions. The code requires root access.

• Hardware: Our code requires that the machine supports AES-
NI, which is generally available in modern CPUs.

• Execution: Our code runs in Linux. For the evaluation of the
signing cost, we provide two separate sets of scripts for Linux
version 5 and prior versions.

• Metrics: The evaluation scripts report the stand-alone execu-
tion time for the signing and verification operations.

• Output: For each iteration, the script runs the operation for
200,000 times and computes the median execution time. It runs
for 10 such iterations, and outputs the median and standard
deviation of those 10 median timings. Users can customize the
message size.

• Experiments: We provide instructions for how to install our
logging schemes in the Linux kernel and evaluate their signing
and verification speeds in the README file of the github link
below. This allows one to reproduce the experiment results in
Section 7.1 of the paper.

• How much disk space required (approximately)?: 10MB.
• How much time is needed to prepare workflow (approx-

imately)?: Two hours (for downloading the Linux kernel
source code and patching the kernel).

• How much time is needed to complete experiments (ap-
proximately)?: 10 minutes.

• Publicly available (explicitly provide evolving version
reference)?: Our code and scripts are publicly avail-
able at https://github.com/TsongW/QuickLog/tree/
1d1cb65ace83308306c1ae80e884a1f4ed68facd

• Code licenses (if publicly available)?: GNU v3.0

A.3 Description
A.3.1 How to access

The code and scripts are publicly available at the github link above.

A.3.2 Hardware dependencies

Our code requires that the machine supports AES-NI, which is gen-
erally available in modern CPUs.

A.3.3 Software dependencies

Our code requires the availability of the source code of Linux kernel.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A.

A.4 Installation
• Download the Linux kernel source v3.10.0-1160.49.1.el7.

• Use the patches in the patches directory of the github link.
Follow the guidelines to patch the Linux kernel at https://
wiki.centos.org/HowTos/Custom_Kernel.

A.5 Experiment workflow
We provided scripts for compiling and benchmarking the schemes
in the README file of the github link above.

A.6 Evaluation and expected results
The paper uses three benchmarks to evaluate the secure log-
ging schemes; the artifact however only contains scripts
to reproduce the first one. This benchmark measures the
application-independent execution time of the signing and
verification operations. For signing cost, we expect that
(1) QuickLog and KennyLoggings have comparable perfor-
mance for realistic log sizes (64B–384B), and (2) QuickLog2
is about twice faster than the other two schemes. For verifica-
tion cost, we expect that (1) QuickLog and QuickLog2 have
the same performance, whereas (2) KennyLoggings is 6–10
times slower. In our experiments, the standard deviation is
within 5% of the median timing.

A.7 Experiment customization
N/A

A.8 Notes
The submission version of our paper contained only Quick-
Log. In the final version, we added an improved scheme
QuickLog2 that has much faster signing time, better secu-
rity, and no storage cost.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 147

https://github.com/TsongW/QuickLog/tree/1d1cb65ace83308306c1ae80e884a1f4ed68facd
https://github.com/TsongW/QuickLog/tree/1d1cb65ace83308306c1ae80e884a1f4ed68facd
https://wiki.centos.org/HowTos/Custom_Kernel
https://wiki.centos.org/HowTos/Custom_Kernel

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

148 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

This artifact contains a functional version of DepImpact
and necessary data for the evaluation. The execution
needs a virtual machine. The host machine may at least
have 16GB memory and 64GB hard disk space. To facil-
itate the usage of this artifact, we prepare a linux virtual
machine with necessary component to execute the arti-
fact and visualize the result. Artifact users cam compare
the result with our paper draft.

A.2 Artifact check-list (meta-information)
• Algorithm: No

• Program: Yes

• Compilation: No

• Transformations: No

• Binary: No

• Model: No

• Data set: Yes, contained in virtual machine

• Run-time environment: Ubuntu

• Hardware: No

• Execution: No

• Metrics: Please refer our paper draft

• Output: The graph and other necessary data

• Experiments: Artifact contains data for experiments

• How much disk space required (approximately)?: 30
GB

• How much time is needed to prepare workflow (ap-
proximately)?: 2 - 3 hours

• How much time is needed to complete experiments
(approximately)?: 6 - 8 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: None

• Data licenses (if publicly available)?: None

• Workflow framework used?: None

• Archived (provide DOI)?: 10.5281/zenodo.5559214

A.3 Description

A.3.1 How to access

https://zenodo.org/record/5559214.YWYJT2LMKUk

A.3.2 Hardware dependencies

To effectively run the artifact, the host machine may at least
need 16GB memory and 64GB hard disk spaces.

A.3.3 Software dependencies

No specific software dependencies for this artifact

A.3.4 Data sets

Virtual machine contains evaluation data. The DARPA TC
raw data can be downloaded from its website.

A.4 Installation

Download Image file and import by the virtual machine.

A.5 Experiment workflow

In the virtual machine, there is a folder named DepImpact-
artifact in the home directory, which contains two jar pack-
ages and a zip file.

• DepImpact.jar is used to generate the dependency
graph from the log file and to filter out un-relative part
for the POI event.

• CalculateMissing.jar is used to calculate false posi-
tive/negative rate based on the defined critical edges for
each attack.

• allcases.zip contains logs and property files which are
needed for the DepImpact as the input.

A.5.1 Command

java DepImpact.jar pathToRes pathToLog host logname1 log-
name2 ...

• pathToRes: the folder path of the output of DepImpact

• pathToLog: the folder path of the input of DepImpact

• host: true or false depends on the case that DepImpact
needs to work with

A.6 Concrete Steps

1. Unzip allcase.zip folder

2. Create a folder for the output of DepImact (i.e. path-
ToRes)

3. Run listed commands:

USENIX Association 31st USENIX Security Symposium 149

• java -jar /home/artifact/DepImpact-
artifact/DepImpact.jar pathToRes pathToLog
false fileName.txt
If the pathToLog is the path of the unzipped file
from the first5cases.zip, the res folder case1 is for
the attack Wget executable, the res folder case2
is for the attack Illegal Storage, the case3 is at-
tack Illegal Storage2, the case4 is Hide File, the
case5 is Steal information. If the pathToLog is the
path of the unzipped file from the case67.zip, the
res folder case6 is for the attack Backdoor Down-
load, case7 is for the attack Annoying Server User.
Information.

• java -jar /home/artifact/DepImpact-
artifact/DepImpact.jar pathToRes pathToLog
true logName.txt This command is for attack
shellshock, Dataleak, and VPN Filter mentioned
in our paper draft.

• java -jar /home/artifact/DepImpact-
artifact/DepImpact.jar pathToRes pathToLog
false fileName.dot This command is for the attack
done by DARPA (Five Dir, Theia, and Trace).

Some cases may require huge memory, it may be suit-
able to run these cases on a powerful server. For the
quick verification and try, we suggest reviewers run De-
pImpact on some small cases like Five Dir case1 or
case3. Reviewers can take Table4 in our submission as
a reference for the scale of different cases.

A.7 Evaluation and expected results
• The statistical information of dependency graph like

node number and edge number will be in a file whose
name ends with “json_log". In this log, it contains the
number of node and edge after backtrack POI(Point of
Interest), EdgeMerge, and time cost for each component
of DepImpact.

• DepImpact will do forward analysis from top-ranked
nodes. The filter result is under a folder whose name is
DepImpact. The parent folder is set by pathToRes.

• The dependency graph is saved as a dot file. To show
it, you may use the command:dot -Tsvg dotFilePath >
svgFilePath

To calculate the false negative/positive rate for the attack,
we need to provide identified critical edges for each at-
tack. The critical edges for the attack used in the evalu-
ation are defined in the corresponding property file.Users
need to execute calculateMissing.jar to calculate the false
positive/negative rate of DepImpact when using differ-
ent numbers of top-ranked entry nodes. The command
should follow this format: java -jar calculateMissing.jar
path_of_the_DepImpact_outputs path_of_thlogtopN

A.7.1 Concrete Examples

Example1:

1. run java -jar /home/artifact/DepImpact-
artifact/DepImpact.jar /home/artifact/outputs
/home/artifact/DepImpact-artifact/allcases/dataleak1
true dataleakhost1.txt

After this step, there will be a folder dataleak1-case1 created
in folder /home/artifact/outputs.

The first thing we should do is to rename the folder "De-
pImpact" in folder dataleak1-case1 to "sysrep".

For the property file’s name we can ignore the part “-
backward.property_", the folder name in the path_to_res(e.g.
/home/aftifact/outputs) should be equal to the part be-
for "-backward.property_" plus "-" plus the part after "-
backward.property_".

For this case, because the folder name dataleak1-case1
is not the same as the property file name dataleakhost1-
backward.property_case1, we should change the folder name
dataleak1-case1 to dataleakhost1-case1.

After this modification, run command:
java -jar /home/artifact/DepImpact-

artifact/calculateMissing-1.0-SNAPSHOT-jar-with-
dependencies.jar /home/artifact/outputs/dataleakhost1-case1
/home/artifact/DepImpact-artifact/allcases/dataleak1 2

then you will see some output in the terminal, at the same
time, there will be a new json file created in the folder “sys-
rep".

Example2
run command: java -jar /home/artifact/DepImpact-

artifact/DepImpact.jar /home/artifact/outputs
/home/artifact/DepImpact-artifact/allcases/shellshock1
true shellshockhost1.txt

Modify the folder "DepImpact" in the folder shellshock1-
case1 as "sysrep"

According to the property file, we need to modify the folder
shellshock1-case1 to shellshockhost1-case1.

run command: java -jar /home/artifact/DepImpact-
artifact/calculateMissing-1.0-SNAPSHOT-jar-with-
dependencies.jar /home/artifact/outputs/shellshockhost1-
case1 /home/artifact/DepImpact-artifact/allcases/shellshock1
2

then you will see some output in the terminal, at the same
time, there will be a new json file created in the folder "sysrep".

A.7.2 Results explaintation

In file (eg “case-backward_json_log.json"), the key “Back-
TrackVertexNumber&EdgeNumbe" shows the number listed
as Causality Anylysis #V & #E in Table 4 of our paper draft.
The key “CPRVertexNumber& EdgeNumver " shows the num-
ber listed as Edge Merge #V & #E in Table 4 of our paper
draft.

150 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Our data set contains nearly 10K binaries which are compiled
by our toolchains to obtain the ground truth of binary disas-
sembly. The binaries vary from x86/x64, arm32/aarch64 to
mipsle32/mipsle64. To compare popular disassemblers with
different ground truths, we also include the result of binary
disassembly of popular disassemblers and ground truths in the
data set. To validate the result of the paper, we prepare scripts
to compare disassemblers with ground truth on major dis-
assembly tasks(instruction recovery, function detection, and
jump table reconstruction) and present the accuracy(precision
and recall) in the console.

The minimal disk space is about 100 GB. We have tested
it in Ubuntu18.04 and Ubuntu20.04. The software require-
ments are python3 and python3-pip.

A.2 Artifact check-list (meta-information)
• Data set: The data set contains 10K binaries and ground

truths of binary disassembly. We open sourced the data set in
https://doi.org/10.5281/zenodo.6566082. The approx-
imate size is 85GB.

• Run-time environment: Linux. We tested in Ubuntu 18.04
and Ubuntu 20.04.

• Metrics: The accuracy(precision and recall) or the number of
false positives and false negatives of disassemblers.

• Output: The output is shown in console. The result is numeri-
cal results. The expected result is shown in the paper.

• Experiments: We prepared bash scripts to automate the ex-
periments as possible.

• How much disk space required (approximately)?: 100GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 hour(s).

• How much time is needed to complete experiments (approx-
imately)?: 9 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/junxzm1990/x86-sok/
tree/25656adbe14/artifact_eval

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International.

• Archived (explicitly provide DOI or stable reference)?:
https://doi.org/10.5281/zenodo.6566082

A.3 Description
A.3.1 How to access

https://github.com/junxzm1990/x86-sok/tree/
25656adbe14/artifact_eval

A.3.2 Hardware dependencies

As we prepared large scale data set and result of binary disassembly
and ground truths, our artifact requires at least 100GB storage.

A.3.3 Software dependencies

python3, python3-pip, docker, qemu

A.3.4 Data sets

https://doi.org/10.5281/zenodo.6566082

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
• Download source code. https://github.com/junxzm1990/
x86-sok. After downloading the source code, please change
current directory to x86-sok/artifact_eval.

• Download data sets. (i) x86/x64 data sets are in
https://zenodo.org/record/6566082/files/x86_
dataset.tar.xz?download=1. The decompressed size is
56GB. (ii) arm32/aarch64 and mipsle32/mipsle64 data set
is in https://zenodo.org/record/6566082/files/arm_
mips_dataset.tar.gz?download=1. The decompressed
size is 35GB. To evaluate the result easily, please create a new
directory named table_7 and move the second data set into
it.

• Set up environment. Please refer to https://github.com/
junxzm1990/x86-sok/tree/25656adbe14/artifact_
eval#set-up-environment.

A.5 Evaluation and expected results
• Impacts on Training Accuracy. To show the impacts

on different ground truths for training accuracy, we evalu-
ate instruction recovery of XDA. We prepared trained mod-
els of XDA and test suite. The expected result is shown
in paper Table 3. The steps to reproduce the evaluation
are in https://github.com/junxzm1990/x86-sok/tree/
25656adbe14/artifact_eval#xda1h.

• Impacts on Tool Evaluation. We evaluated dyninst,
ZAFL, and IDA with different ground truths on x86/x64
testsuite. (i) The steps to reproduce the comparisons
between dyninst with different ground truths of
dyninst is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#performance-
of-dyninst-on-complex-constructs40mins and the
expected result is in paper Table 4. (ii) The steps to
reproduce the comparisions between ZAFL with different
ground truths is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#performance-

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 151

https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok
https://github.com/junxzm1990/x86-sok
https://zenodo.org/record/6566082/files/x86_dataset.tar.xz?download=1
https://zenodo.org/record/6566082/files/x86_dataset.tar.xz?download=1
https://zenodo.org/record/6566082/files/arm_mips_dataset.tar.gz?download=1
https://zenodo.org/record/6566082/files/arm_mips_dataset.tar.gz?download=1
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#xda1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#xda1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h

of-zafl-on-instruction-recovery1h and the expected
result is in paper Table 5. (iii) The steps to reproduce
the result of jump table recovery between IDA pro with
OracleGT is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#distribution-
of-precision-of-ida20mins and the expected result is in
paper Figure 2.

• Impacts on Tool Comparison. We compared popular disas-
semblers on instruction recovery on openssl. The steps of
reproduction is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#accuracy-
of-popular-disassemblers-on-recovering-
instructions20mins and the expected result is in
paper Figure 3.

• Impacts on improvements of OracleGT. To show the impacts
on improvements of OracleGT, we present the accuracy of
popular disassemblers on recovering jump tables from glibc.
The expected result is shown in paper Figure 5. The steps of re-
production are in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#accuracy-
of-popular-disassemblers-on-recovering-jump-
tables-from-glibc10mins.

• Evaluation of mainstream disassemblers on binaries with
different architectures. We present Figure 6 to show the recall
and precision of mainstream disassemblers on binaries with
different architectures. Note that the overall result in x86/x64
is nearly the same as the result presented in Sok [1], we skip
the reproduction on binaries in x86/x64. To reproduce the
result of arm32/aarch64 and mipsle32/mipsle64, we prepared
the tutorial in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#compare-
result-of-arm-and-mips-disassemblers-result-3h.
The expected result is shown in paper Table 7.

• OracleGT v.s. Compilation Metadata To reproduce the result,
the tutorial is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#oraclegt-vs-
compilation-metadata-20mins and the expected result is
in paper Table 6.

• Extendibility(Optional). We also provide an example to
show how to build a new test suite with our toolchains.
The tutorial is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#how-to-build-
new-testsuite.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Geor-
gios Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever
wanted to know about x86/x64 binary disassembly but were
afraid to ask. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 833–851. IEEE, 2021.

152 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite

C Artifact Appendix

C.1 Abstract
This artifact contains a functional version of PolyCruise and
the necessary dataset for the evaluation. To facilitate the usage
of this artifact, we have prepared a Docker image with the
necessary components to execute the artifact and visualize
the result. Artifact users can compare the results obtained
from executing this artifact with those presented in our paper.
It is recommended that the host machine has at least 16GB
memory and 32GB hard disk space.

C.2 Artifact check-list (meta-information)
• Algorithm: No
• Program: Yes
• Compilation: No
• Transformations: No
• Binary: No
• Model: No
• Data set: Contained in the package
• Run-time environment: Ubuntu 18.04
• Hardware: No
• Run-time state: No
• Execution: No
• Security, privacy, and ethical concerns: None
• Metrics: Please refer to our paper
• Output: Textual information on the terminal
• Experiments: Necessary scripts provided
• How much disk space required (approximately)?: 10 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 10 min
• How much time is needed to complete experiments (approx-

imately)?: 20 min
• Publicly available (explicitly provide evolving version refer-

ence)?: Yes, https://github.com/Daybreak2019/PolyCruise
• Code licenses (if publicly available)?: Yes
• Data licenses (if publicly available)?: Yes
• Archived (explicitly provide DOI or stable reference)?: Yes,

https://github.com/Daybreak2019/PolyCruise/releases/tag/v3.0

C.3 Description
C.3.1 How to access

• Download the Docker image for this artifact

docker pull daybreak2019/polycruise:1.1

• Download the source code of PolyCruise

git clone https://github.com/Daybreak2019/PolyCruise.git

C.3.2 Hardware dependencies

The host machine may at least need 16GB memory and 32GB
hard disk spaces.

C.3.3 Software dependencies

PolyCruise is mainly developed on LLVM 7.0 and Python 3.7.
Other software dependencies such as libxml and cmake are
also necessary to build the project. For ease of use of Poly-
Cruise, we have prepared a Docker image with all software
dependencies installed.

Moreover, real-world benchmarks have their own partic-
ular/additional dependencies. Hence, to fully reproduce the
results in the paper, users should install these dependencies
successfully and ensure each benchmark’s test cases can pass.
For demonstration purposes, we use Cvxopt as a concrete
example of such benchmarks and have installed all of its de-
pendencies in the Docker image.

More specifically, we note that the Docker image includes
all the libraries/framework underlying PolyCruise, thus it can
be used for experimenting with other real-world subjects as
well (i.e., saving the time/trouble for installing ubuntu, llvm,
etc.) On the other hand, since our real-world subjects are
sizable, including the complete compilation and run-time en-
vironment (e.g., all the third-party library dependencies) for
all of them in the single Docker image would make it clumsy
to deploy conveniently. Using a traditional virtual machine
would aggregate this concern since they are even heavier. This
is why we chose to include the setup for one such subject only
inside the image at this time.

C.3.4 Data sets

PolyCruise is published with a set of micro-benchmarks in-
cluded inside its code repository. The real-world benchmarks
can be retrieved from GitHub.

C.3.5 Models

N/A.

C.3.6 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns with using
this artifact.

C.4 Installation

• Step 1: Download the Docker image and run a Docker
container based on the image

docker pull daybreak2019/polycruise:1.1

docker run -it daybreak2019/polycruise:1.1

USENIX Association 31st USENIX Security Symposium 153

https://github.com/cvxopt/cvxopt

Table 1: Effectiveness results of PolyCruise on PyCBench,
including #inter-language paths (INT-LP), #Intra-language
paths (ITR-LP), #false positives (FP), #false negatives (FN)

Group #INT-LP #ITR-LP #FN #FP
General flow 10 4 0 0
Global flow 9 0 0 0
Filed sensitivity 8 0 0 2
Object sensitivity 9 2 0 1
Dynamic invocation 4 0 0 0
Total 40 6 0 3

• Step 2: Clone the source of PolyCruise and build the
project within the container

cd /root/
git clone https://github.com/Daybreak2019/PolyCruise.git
cd PolyCruise
./build.sh

C.5 Experiment workflow
We provided scripts for automating all the experiments dur-
ing the evaluation. Specifically in this artifact, we setup the
environment for the experiments on the micro-benchmarks
and a real-world Python-C program Cvxopt.

• Experiment on micro-benchmarks

In this step, we can run all micro-benchmarks together
with the following script:

cd PolyCruise/PyCBench
./RunTest.sh

If we want to run the micro-benchmarks one by one
manually, we can switch to the appropriate directory and
execute the script, for example:

cd PolyCruise/PyCBench/GlobalFlow/3_leak_PyClang
./build.sh

• Experiment on Cvxopt

cd PolyCruise/Experiments/scripts/cvxopt
./build.sh build

The parameter "build" indicates the script to instrument
and install Cvxopt before running the tests.

C.6 Evaluation and expected results
C.6.1 Evaluation on micro-benchmarks

We use micro-benchmarks (referred to as PyCBench in our
research paper) to evaluate the effectiveness of PolyCruise,
and it achieved 93.5% precision on PyCBench. The results
are summarized in Table 1. Out of all of the 46 cases in
PyCBench, PolyCruise succeeded in 43 and failed in 3.

Reproduction.

After building PolyCruise following the steps in Section C.4,
use the following command to run PolyCruise on PyCBench:
cd PolyCruise/PyCBench
./RunTest.sh

Expected results.

Obtain the output in the end:
"Finish test, (Correct/Total) = (43, 46)"

Failed cases:

PyCBench/FieldSensitivity/7_leak_PyClang
PyCBench/FieldSensitivity/8_int-overflow_PyClang
PyCBench/ObjectSensitivity/11_leak_Python

C.6.2 Evaluation on Cvxopt

To verify the capability of cross-language vulnerability de-
tection, we also demonstrate evaluating PolyCruise on real-
world Python-C programs. In this artifact, we take Cvxopt as
an example to exemplify our claim, PolyCruise succeeded in
detecting real-world bugs and got one CVE assigned (Table 6
of our paper).

Reproduction.

Use the following command to build and run tests on Cvxopt:
cd PolyCruise/Experiments/scripts/cvxopt
./build.sh build

Expected results.

Report cross-language information flow paths of the
incomplete comparison vulnerability as shown in Fig-
ure 1.

Figure 1: Example of result on Cvxopt

C.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

154 31st USENIX Security Symposium USENIX Association

https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt

A Artifact Appendix

A.1 Abstract
We have packed all the required software environments for
reproducing our experiment results in a single docker im-
age. The readers will rebuild the docker image and run the
provided scripts to collect the results on time consumption,
memory consumption, and code coverage. The collected re-
sults should match the records presented in the paper. To
reproduce the results, the readers should have a server with at
least 16GB RAM and 512GB storage space. Due to hardware
discrepancies, the readers may observe some minor variations.

A.2 Artifact check-list (meta-information)
• Run-time environment: Linux, Docker

• Hardware: At least 16GB main memory and at least 512GB
free disk space.

• Metrics: Execution time, memory consumption, and code
coverage

• Output: Execution time and memory consumption records
and raw generated inputs.

• How much disk space required (approximately)?: 512GB

• How much time is needed to prepare workflow (approxi-
mately)?: About 4 hours

• How much time is needed to complete experiments (approx-
imately)?: About 7-14 days. The actual time needed depends
on the hardware configurations.

• Publicly available (explicitly provide evolving version
reference)?: Yes. We have made our code and scripts
to reproduce the results in the paper publicly available
at Github. The stable link pointing to the Git com-
mit is https://github.com/R-Fuzz/fastgen/commit/
01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d

• Code licenses (if publicly available)?: 3-clause BSD license

• Data licenses (if publicly available)?: 3-clause BSD license

• Archived (explicitly provide DOI or stable refer-
ence)?: Yes. Our code and scripts are archived in the
Github. The stable link pointing to the Git Commit
is https://github.com/R-Fuzz/fastgen/commit/
01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d

A.3 Description
A.3.1 How to access

We have open-sourced all our code at https:
//github.com/R-Fuzz/fastgen/commit/
01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d. We have
also included the instructions to build the experiments environment
and reproduce our results in the same repository.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

Docker

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
We have provided a docker image which contains the complete
environment for reproducing the experiments results.
To build the docker image, just run:

$ do ck e r b u i l d − t u s e n i x .

The details are under the "installation" section of the README
file in the provided repository.

A.5 Experiment workflow
We have described the instructions for reproducing the results in the
README file in the provided repository. A reader can follow the
instructions, run the scripts and collect all the experiment results.

A.6 Evaluation and expected results

The main claim of the paper is that our system SymSan can
significantly speed up the concolic execution and reduce the
memory consumption. To support the claims, we conducted
the experiments described in sections 5.2.1, 5.2.3, and 5.3
with the results presented in Table 2, Figure 4, Figure 5, and
Figure 6 respectively.

By following the instructions in the README, a reader
should be able to collect the results in Table 2, Figures 4,5,
and 6. Specifically,

• To reproduce the results in paper’s section 5.2.1, follow
instructions in section 3.1.1 (nbench) of the README.
The results in this section show that our system SymSan
has a smaller instrumentation overhead than SymCC and
SymQEMU.

• To reproduce the results in paper’s section 5.2.3, follow
instructions in section 3.1.2 (CGC) and section 3.1.3
(Real-world applications) of the README. The results in
this section show that our system SymSan has a smaller
performance overhead than SymCC and SymQEMU.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 155

https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d
https://github.com/R-Fuzz/fastgen/commit/01d31bc6bb42ee3535bb3aa8a0f88d345e9cb23d

• To reproduce the results in paper’s section 5.3, follow
the instructions in section 3.2 (Memory consumption
without solving) of the README. The results in this sec-
tion show that SymSan has a smaller memory overhead
than SymCC.

Because we perform all our evaluations on a server with
an Intel(R) Xeon(R) E5-2683 v4 @ 2.10GHz (40MB cache)
and 512GB of RAM, running Ubuntu 16.04 with Linux 4.4.0
64-bit, we recommend our readers hire a server with similar
configurations for minimal variations.

The variations of performance numbers depend on the fol-
lowing factors: 1. The CPU frequency and size of CPU caches
2. The memory size and bandwidth, and 3. Whether or not the
external storage is a hard disk or solid-state driver (for pro-
gram loading). The maximum variations in absolute numbers
should not exceed 100%. The variations for the relative num-
bers (SymSan’s speed-up over SymCC) should not exceed
50%.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

156 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact

A.1 Abstract
In our Artifact, we provide the source code of CELLIFT, a
native RISC-V toolchain, and other dependencies. We also
provide the framework for performing all the experiments
described in this paper and analyzing the obtained results. Ev-
erything is packaged as a Docker image to allow for optimal
reproducibility. To reproduce the experiments, we expect a
machine with 256 GB memory and 500 GB of free storage.

A.2 Artifact checklist
• Algorithm: CELLIFT is a newly developed algorithm to effi-

ciently generate IFT shadow logic as part of a Yosys pass.

• Program: We use a set of five external RISC-V CPU designs
(Ariane, BOOM, Ibex, Rocket, PULPissimo) as evaluation
targets, as well as benchmarks from the RISC-V Architectural
testing framework. All of this code is included in our artifact.

• Compilation: We include the required compilers and inter-
preters.

• Transformations: We include the required Verilog transfor-
mations (CELLIFT and GLIFT), implemented as Yosys passes.

• Binary: We include prebuilt Verilator binaries of the five CPU
designs in all instrumentation modes (i.e., vanilla, CELLIFT,
and GLIFT) where possible. Note that GLIFT instrumentation
or synthesis sometimes fails, as explained in Section 7.2.

• Run-time environment: The bulk of our artifact is a Docker
image that runs on Linux. We tested our image on an Ubuntu
22.04 system with 5.15.0-37-generic kernel.

• Hardware: We do not require any special hardware, but do
need a relatively large amount of DRAM (256 GB) to run all
the experiments.

• Metrics: The experiments record runtime performance and
IFT precision for microbenchmarks for CELLIFT as well as
GLIFT. Further experiments record execution time and mem-
ory footprint of the instrumentation and synthesis process for
all instrumentation modes. We also measure the simulation
performance on for all instrumentation modes. Lastly, we show
resource usage and clockable frequency after FPGA synthesis
for all the five CPU designs under all instrumentation modes.

• Output: For all experiments used in the Evaluation section of
this paper (Section 7), we include code to regenerate the charts.
Also, we include code to reproduce all results in the Scenarios
section of this paper (Section 8).

• Experiments: With the exception of the FPGA results, all
experiments are executed automatically when building the
Docker image. This means the way to reproduce all experi-
ments is encoded in the Dockerfile, and a Docker container
based on this Dockerfile would contain the generated results,
and can be used to re-run individual experiments if desired.

• How much disk space required: The docker image with
all the layers is 330 GB, and Xilinx Vivado requires around
150 GB for downloading and installation. In total, we estimate
a total of 500 GB of free storage is required.

• How much time is needed to prepare workflow: To prepare
the workflow, conscious effort is only needed to retrieve the
Git repository and the Docker image, which should take only a
few minutes.

• How much time is needed to complete experiments: Repro-
ducing the experiments takes approximately 3 days.

• Publicly available: Stable URL: https://github.com/c
omsec-group/cellift-artifacts/commit/eaa9a26a
e85fd6a7ae8cd248416315414ae4c135. The README
points to a stable (sha256-verified) Dockerhub Docker image
that contains the rest of the code and data, namely docker.i
o/ethcomsec/cellift-artifact-evaluation@sha256:
9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f
4fa4132de7b399ce.

• Code licenses: CELLIFT is licensed under GPL3.

• Workflow frameworks used: Docker, Make, Luigi.

A.3 Description
A.3.1 How to access

The project is located at https://comsec.ethz.ch/cellift.
Our artifact is a single Git repository designed primarily to build a
Docker image that has run all the experiments automatically. This
Git repository is hosted at the ‘Publicly available’ checklist entry.
The README.md in that repository contains further instructions to
obtain the prebuilt Docker image from Dockerhub.

A.3.2 Hardware dependencies

The artifact will run all experiments on a machine with 256 GB of
memory.

A.3.3 Software dependencies

We tested the Docker image on Ubuntu 22.04 LTS kernel 5.15.0-
37-generic, but we expect it to work on a wide range of Linux
distributions.

To reproduce the FPGA experiments in the paper, we furthermore
depend on the Xilinx Vivado FPGA synthesis tool (version 2019.3).

A.4 Installation
The installation of our artifact requires the following two steps:

1. Cloning the git repository specified in the checklist and using
its README.md to pull the Docker image artifact hosted on
Dockerhub.

2. Reproducing the FPGA experiments, requires the installation
of the full edition of Vivado 2019.3 from the Xilinx website
and a license.

A.5 Experiment workflow
Follow the instructions in the git repository README.md that spec-
ifies in detail how to start a Docker container with the image, and
how to reproduce each experiment, and examine the results.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 157

https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
https://comsec.ethz.ch/cellift

In principle, cloning the git artifact repository and rebuilding
the Docker image using the Dockerfile in the git repository will
rebuild all CELLIFT code and designs from scratch and perform
the experiments (except the FPGA experiments). For maximum
reliability, we also provide the prebuilt Docker image with all code,
binaries and results that we have found to work, which can be used
to reproduce all the experiments (and use CELLIFT in general if
desired).

To run the FPGA experiments, first source the settings64.sh file
from the Vivado installation dir, and follow the instructions in the
Artifact README.md.

A.6 Evaluation and expected results
The key results from our experiments are as follows. For each result,
we point to scripts (Python or bash) that drive the experiments and
show the analysis.

1. Instrumented designs that we can synthesize to C++ (i.e.
be compiled) for all five RISC-V CPU designs, con-
trary to GLIFT, and with less CPU time and mem-
ory (follows from plot_instrumentation_performance.py and
plot_rss.py), and with higher tainting precision (follows from
plot_num_tainted_states_ibex.py).

2. For the designs that can be compiled in all instru-
mentation modes, we show that CELLIFT has lower
performance overhead than GLIFT (follows from
plot_benchmark_performance.py).

3. The Meltdown and Spectre simulations reproduce Figure
11, showing they can both be detected (follows from
plot_tainted_elements.py).

4. We show several bug scenarios detected by CELLIFT
(run_scenarios.sh).

5. We show FPGA synthesis results, showing that CELLIFT in-
strumented designs can be synthesized, with fewer resources
than the GLIFT instrumented designs.

We refer to the README.md of the artifact git repository for the
detailed steps to reproduce each of the key results described above.

A.7 Experiment customization
There is ample customization opportunity in the Docker image,
because the code of the instrumentation tool as well as the target
designs are there and can be modified and rebuilt. This does require
a deeper knowledge that goes beyond this appendix.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

158 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
We implement a GPU-based information flow query tool and
make its source code public for access. The project is avail-
able at https://github.com/mimicji/FlowMatrix/. In
this Artifact Evaluation, we are applying for:

• "Artifact Available" badge

For "Artifact Available" badge application, we do not re-
quire hardware and software for this badge evaluation. How-
ever, to run our tool, NVIDIA GPU(s) and NVIDIA CUDA
toolchain are required. In the paper, we claim the source code
is available on GitHub (on page 6, Implementation Section).
Thus, the "Artifact Available" badge would support our claims
of availability.

A.2 Artifact check-list (meta-information)
• Algorithm: We do not propose any new algorithm.

• Program: We do not use public benchmark.

• Compilation: Besides the general compiler
(GCC>=7.5), we also require a public compiler
for our project: NVCC, the CUDA compiler driver. The
version of the NVCC must be or greater than 11.3.

• Transformations: We do not require program transfor-
mation tool.

• Binary: We do not provide binaries.

• Model: We do not include models.

• Data set: We used recent CVEs and popular open-
source programs for evaluation. The exploit of CVEs
can be found in NVD.

• Run-time environment: We require Ubuntu (>=16.04).
The glibc version should be greater than 2.30. We do
not require root access.

• Hardware: We require special hardware for running
our project: NVIDIA GPU(s). Any NVIDIA GPUs that
CUDA toolkit supports would meet the requirement.
However, we evaluate FlowMatrix with two V100 cards
and different hardware other than V100 provided may
affect the performance of FlowMatrix.

• Run-time state: Our tool is not sensitive to run-time
state.

• Execution: We do not have specific conditions for
execution. However, to gain the best performance, we
recommend running FlowMatrix as the only task on
GPUs.

• Security, privacy, and ethical concerns: There is no
specific security, privacy, or ethical concerns.

• Metrics: The reported metrics include execution time,
data flow throughput, performance profiling.

• Output: The tool will show the results to the console in
numbers.

• Experiments: We have system scripts to run the experi-
ments automatically.

• How much disk space required (approximately)?:
Around 900GBs.

• How much time is needed to prepare workflow (ap-
proximately)?: Around 15 minutes.

• How much time is needed to complete experiments
(approximately)?: Around 20 hours, depending on the
devices.

• Publicly available (explicitly provide evolving
version reference)?: The source code for Flow-
Matrix can be found at https://github.com/
mimicji/FlowMatrix. The submitted version is
https://github.com/mimicji/FlowMatrix/tree/
c4a809f6c76ac447d0baf542db9e04b8d4600436.

• Code licenses (if publicly available)?: The code li-
cense is GPL3.0. Check the file LISENSE for more de-
tails.

• Data licenses (if publicly available)?: Not provided.

• Workflow frameworks used?: No workflow frame-
works are used.

• Archived (explicitly provide DOI or sta-
ble reference)?: Please check https:
//github.com/mimicji/FlowMatrix/tree/
c4a809f6c76ac447d0baf542db9e04b8d4600436.

A.3 Description
A.3.1 How to access

Please follow this URL https://
github.com/mimicji/FlowMatrix/tree/
c4a809f6c76ac447d0baf542db9e04b8d4600436.

A.3.2 Hardware dependencies

Any NVIDIA GPUs which are supported by CUDA.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 159

https://github.com/mimicji/FlowMatrix/
https://github.com/mimicji/FlowMatrix
https://github.com/mimicji/FlowMatrix
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436
https://github.com/mimicji/FlowMatrix/tree/c4a809f6c76ac447d0baf542db9e04b8d4600436

A.3.3 Software dependencies

NVIDIA CUDA toolkit, SQLite C++ package, Protocol
Buffers C++ package, Capstone C++ version.

A.3.4 Data sets

Not provided.

A.3.5 Models

No models are used.

A.3.6 Security, privacy, and ethical concerns

No Security, privacy, and ethical concerns.

A.4 Installation
After download, just run make command at the project home
directory.

A.5 Experiment workflow
After compilation, a folder named bin with executable bina-
ries will be generated under the project home directory. A
system script has been used to automatically initialize the
tool, pre-proceed all traces in the database, query the informa-
tion flows with specified sources and destinations, and finally
report results and performance numbers to the console. Fol-
lowing are the steps if a user would like to run the experiment
step by step manually (which is also the workflow of the auto
script).

Step 1: Initialization. To run FlowMatrix, the user needs
to specify an SQLite database file for storage as the only
parameter in the command line:

$./bin/QueryCLI [path_to_database]

This will open FlowMatrix console. Next, the user can choose
one trace project stored in the database to work with in the
console:

FMQuery > WorkOn [TraceName]

The user may check the list of traces via ListTraces command:

FMQuery > ListTraces

Step 2: Pre-processing. If the trace has never been pre-
proceeded (pre-summarized), users need to tell FlowMatrix
to pre-proceed parts of or all of it:

FMQuery > PrepareQuery [start] [end]

To check the trace length, we suggest the commend TraceSize
which shows users the current trace length:

FMQuery > TraceSize

Also, although traces have their own trace reader, FlowMatrix
allows users to view traces in the console:

FMQuery > TracePrintRange [start] [end]

Step 3: Querying. Once Step 2 has been done, the trace
is ready to be queried for its information flows. The users
may specify a sub-range of the pre-proceeded range to query
information flows using Query command:

FMQuery > Query [V 1Type] [V 1] [Direct] [V 2Type] [V 2]

In this command, we support four types of data
variables (V1Type, V2Type) to be queried, including
system calls, instructions, registers, memory slots. De-
tailed usage can be found in the README.md doc-
ument at https://github.com/mimicji/FlowMatrix/
blob/main/README.md#query-usage. In the experiments,
we usually choose mmap, read and receive system calls as the
sources for CVEs, depending on the exploit. We choose input
system calls or simply random instructions as the sources of a
common program. The destination differs from CVEs, which
can be write and send system calls, a register, or a memory
slot. When it comes to common programs, destinations are
output system calls and random instructions.

A.6 Evaluation and expected results
The claims have been made in this work:

• We analyze offline dynamic information flow operations
on binaries and identify their linearity property.

• We propose FlowMatrix, a novel way of representing
DIFT operations using matrices that enabling off-the-
shelf GPUs to be used as a hardware co-processor for
DIFT.

• We design an efficient solution to support interactive
DIFT queries on offline execution traces. Our prototype
demonstrates sub-second response time for several DIFT
queries in common DIFT workloads.

• Our tool is open-sourced at GitHub.

First two claims are elaborated in the manuscripts and do
not require experiments to support them.

The third claim can be supported by the performance re-
sults. Once the auto script finishes, it reports the performance
for pre-processing and queries. The expected results can be
found in the paper. The variation of empirical results depends
on the provided GPUs and hard disks. In our test environ-
ment with two NVIDIA Tesla V100 cards and SSD, the pre-
processing may have a 20% variance while the variance of
query time may be 50% (especially in small cases).

The fourth claim can be supported by link access.

160 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/mimicji/FlowMatrix/blob/main/README.md#query-usage
https://github.com/mimicji/FlowMatrix/blob/main/README.md#query-usage

A.7 Experiment customization
NA.

A.8 Notes
NA.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 161

A Artifact Appendix
A.1 Abstract

This artifact appendix describes the complete workflow to
setup Bedrock. It includes an artifact check-list, description of
hardware/software dependencies, experiment workflow, and
the expected results.

A.2 Artifact check-list (meta-information)
• Compilation: GCC v7.5.0, Tofino SDE v8.4.0, Netronome

SDE v6.1.0.

• Binary: Source code included to generate binaries.

• Run-time environment: End host codes are tested on x86
servers running 64-bit Ubuntu18.04 OS with BPF compiler
collection. Both servers and switch need root access.

• Hardware: Intel/Barefoot Tofino1 switch ×1, x86 server with
Mellanox ConnectX-4 RNICs ×4, x86 server with Netronome
Agilio CX ×1.

• Metrics: Throughput, latency, CPU utilization, attack and
defense effectiveness.

• Output: The server, client and attacker programs output mes-
sages indicating whether the attack succeeds. Throughput and
latency can be measure by tools like tcpdump. CPU utilization
can be measurement via tools like top.

• Experiments: See Section A.5 and Section A.5.

• How much disk space required (approximately)?: 1GB
(dependencies not included).

• How much time is needed to prepare workflow (approxi-
mately)?: Compiling all programs needs about 1 hour (instal-
lation of software dependencies and hardware is not included).

• How much time is needed to complete experiments (ap-
proximately)?: About 2 hours to see the effect of all attacks
and defenses.

• Publicly available?: Yes, code is available on GitHub.

• Code licenses: MIT license

A.3 Description

A.3.1 How to access

Bedrock is publicly available at the following GitHub repos-
itory: https://github.com/alex1230608/Bedrock. (commit:
4eef2619d7fb007b4c8ed690c6d78e8fea377455)

A.3.2 Hardware dependencies

To run Bedrock, it requires four x86 servers connecting to
an Intel/Barefoot Tofino switch or a Netronome Agilio CX
SmartNICs through Mellanox ConnectX-4 RNICs.

A.3.3 Software dependencies

Our experiments are performed on x86 servers running 64-
bit Ubuntu 18.04, but similar Linux distributions should also
work. To enable RDMA, Mellanox MLNX_OFED driver
must be installed on the servers. Bedrock’s P4 code is com-
piled by proprietary toolchains provided by the switch and
SmartNIC vendors.

A.4 Installation

We list the main steps to install Bedrock here. More details
can be found in our GitHub repository.

• Install the BPF Compiler Collection (BCC) on end hosts
for eBPF module compilation and loading.

• Install RNIC drivers to enable RDMA on end hosts.

• Install and setup the programmable switch and Smart-
NICs following the vendor instructions.

A.5 Experiment workflow

We briefly summarize the workflow of running experiments
on Intel/Barefoot Tofino switches in Bedrock; detailed instruc-
tions can be found in the provided README in our GitHub
repository. Note that all experiments in Bedrock share the
similar workflow as described in the following.

1. Compile P4 program: Compile the P4 programs using
Intel/Barefoot Tofino switch SDE.

2. Run Bedrock or baseline: Run P4 programs
on the switch. Both Bedrock’s programs (i.e.,
switch/bedrock_*.p4) and the baseline program (i.e.,
switch/baseline.p4) are provided.

3. Load eBPF modules (for authentication experiments
only): Load Bedrock’s eBPF module on the RDMA
servers and clients for authentication experiments.

4. Setup the logging server (for logging experiments
only): Setup and start the logging server for logging
experiments.

5. Compile and run RDMA servers, clients, and attack-
ers: All needed end host programs (i.e., RDMA server,
RDMA client, and attacker) can be compiled with make
in the corresponding folders. Folder and file names are
summarized in Table 4.

A.6 Evaluation and expected results

We evaluate Bedrock in different attacking scenarios. The
following describes the expected results:

Authentication: We uses attack S1 to demonstrate effective-
ness of proposed source authentication in Bedrock. When the
experiment starts, the server terminal will keep dumping the
memory content. The attack can be launched by setting the
victim client’s QPN, PSN, and rkey in the attacker program.
Without Bedrock (baseline.p4), the memory content will
keep changing, indicating that the attacker illegally accesses
the memory. By deploying Bedrock, the attack will be blocked
and the memory content will remain the same.

ACL: Bedrock enables more flexible ACLs inside the network.
In this experiment, when Bedrock is not started, all RDMA

USENIX Association 31st USENIX Security Symposium 163

https://github.com/alex1230608/Bedrock
https://github.com/alex1230608/Bedrock
https://github.com/alex1230608/Bedrock/tree/4eef2619d7fb007b4c8ed690c6d78e8fea377455

Experiment Folder Server Client Attacker

Auth. authentication server_auth client_auth client_attacker
ACL authorization/attack_demo server_acl client_acl N/A
Mon.-BW monitoring/bw_exhaustion victim client client
Mon.-QP monitoring/qp_exhaustion victim N/A attacker
Log. logging/pythia_attack_demo server client client

Table 4: The folder and file names of end host programs for each experiment.

requests will get responses (printed on the client terminal).
Bedrock enables operators to deploy new ACL rules and block
RDMA requests violating the rules. If a request is blocked by
Bedrock, the client will show Completion status 12.

Monitoring—bandwidth exhaustion: The effectiveness of
the attack and defense is evaluated by the bandwidth usage
of traffic from each client (refer to our Github repository for
details). Results should be similar to Figure 6(b) in the main
paper where the attack starts at t=2.7s and Bedrock mitigates
the attack at t=5.4s.

Monitoring—QP exhaustion: In this experiment, attackers
try to consume as many QPs (queue pairs) as possible to
cause QP exhaustion. Without Bedrock, the attacker can keep
creating queue pairs on the server until the server cannot
allocate queue pairs anymore. With Bedrock, a single client
can only consume a predefined number of queue pairs. When
the attacker tries to ask for more, the IP address will be banned
and no further RDMA traffic will be allowed from that user.

Logging: We demonstrate the logging system in Bedrock by
detecting and mitigating the Pythia side-channel attack (see
more details in the main paper). Running the experiment will
output the accuracy of the attack both at the terminal and in
the output folder logging/pythia_attack_demo/output.
Without Bedrock, the accuracy can be as high as 95%, but
Bedrock will detect and mitigate the attack.

164 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Our artifact consists of 1) the SBAS client and node code used
to operate the SBAS infrastructure 2) the simulation software
used in the security analysis section of the paper and 3) the
raw survey results and questions from our network operator
survey.

A.2 Artifact check-list (meta-information)
• Program: Our artifact contains two programs: 1) the SBAS

node and client software that is used to operate the SBAS infras-
tructure and connect clients respectively and 2) the topology
simulation software to run inter-domain topology simulations
are perform the security analysis.

• Compilation: The SBAS client and node must be compiled
and installed as per the instructions in the README.md file.
The README.md file (in the usenix22 branch) also contains
instructions for setting up a personal SBAS using two nodes
that are connected over SCIONLab (and have connectivity to
each other but are distinct from our current SBAS production
deployment). Additionally, the README.md file contains in-
structions for how to connect a client this SBAS deployment.
The topology simulator is written in python and can be run
directly on general-purpose computing hardware and requires
no compilation (although the script to graph the results requires
several pip and apt dependencies).

• Binary: The simulation code is in python (which is inter-
preted) so there is no binary, but the primary source code file
is simulate.py in the root directory of the simulation repo. The
SBAS client and node are largely python and bash scripts and
the repo contains an install script that installs SBAS as a sys-
temd service.

• Data set: Our SBAS client does not require any datasets. The
simulation artifact uses the CAIDA AS relationships dataset,
RIPE NCC and RouteViews BGP datasets, and PEERING
testbed connection data. Our survey result dataset is attached
as part of our artifact submission.

• Run-time environment: Our simulation requires python3
and the appropriate pip3 modules installed. While our code
should run on most Linux environments, all our testing was
done on Ubuntu 22.04 and this was used to generate the
required dependencies and install instructions mentioned in
the README.md files. We strongly encourage Ubuntu 22.04
as other variants might require different package dependencies
and even other Ubuntu versions ship with different versions of
python that could potentially impact script behavior.

• Hardware: Simulations are run using general purpose hard-
ware.

• Execution: The simulation models interdomain routing at-
tacks and outputs statistics about the security of SBAS nodes
which can be graphed as a CDF (see the README.md file in
the usenix22-simulations branch). The SBAS node and client
software install systemd services that manage routing rules

related to forwarding SBAS traffic and interact with the other
routing services SBAS depends on (e.g., the SCION-IP gate-
way and BIRD).

• Security, privacy, and ethical concerns: Simulations are run
on static data/configuration files and thus pose no burden on
the ASes and prefixes modeled therein. They are also based
entirely on publicly-available datasets. The SBAS node and
client software does not violate any networking best practices
and only sends IP packets for common well defined protocols.

• Output: The simulation outputs result files for standard and
ROV SBAS experiments. The SBAS node and client software
does not produce any output file per say but configures routing
such that secure prefixes and customers can be reached between
different SBAS nodes.

• How much disk space required (approximately)?: The
SBAS client and node software requires only minimal disk
space for dependencies to install. Running the abridged version
of the simulation requires under 1GB of disk space.

• How much time is needed to prepare workflow (approxi-
mately)?: Simulation workflow requires only time needed to
download the topology simulator repository.

• How much time is needed to complete experiments (approx-
imately)?: The simulation workflow requires roughly 1 hour
using a general purpose CPU.

• Publicly available (explicitly provide evolving ver-
sion reference)?: The artifact contents are hosted at
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938. The
client and node software and configuration files are available
in the sbas submodule; the simulation code and data, in the
sbas-simulation submodule; and lastly, the survey results
in sbas-survey.

• Code licenses (if publicly available)?: CC Zero.

• Workflow frameworks used?: Github.

• Archived (explicitly provide DOI or stable refer-
ence)?: A stable link to our artifact is available at
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938

A.3 Description

Obligatory. For inapplicable subsections (e.g., the “How to
access” subsection when not applying for the “Artifacts Avail-
able” badge), please specify ’N/A’.

A.3.1 How to access

Artifacts are available online at the URLs listed in A.2

A.3.2 Hardware dependencies

Standard computational hardware.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 165

https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.3.3 Software dependencies

Python 3.7 and standard numerical/data science packages
(numpy, matplotlib, pandas). See README.md files for more
details on dependency installs (which can all be done with
standard packages).

A.3.4 Data sets

We rely on the CAIDA AS-relationship data set and BGP
update data from RIPE NCC and RouteViews, to generate the
policy files and topology used for the simulation.

A.3.5 Models

N.A.

A.3.6 Security, privacy, and ethical concerns

The simulations employ only publicly available datasets and
thus do not leak any private information about interdomain
connectivity.

A.4 Installation
Obligatory. Describe the setup procedures for your artifact
targeting novice users (even if you use a VM image or access
to a remote machine).

The full installation instructions for the node and
client are included in the sbas submodule under the
artifact repository at the URL given in A.2 (specifically,
https://github.com/scion-backbone/sbas/tree/
80044509e5ac1681e8d970a09e4b3187439a0938). The
installation for the simulation software is described in the
sbas-simulation submodule.

A.5 Experiment workflow
Describe the high-level view of your experimental workflow
and how it is implemented, invoked and customized (if needed),
i.e. some OS scripts, IPython/Jupyter notebook, portable CK
workflow, etc. This subsection is optional as long as the experi-
ment workflow can be easily embedded in the next subsection.

The BGP simulation framework takes three main files as
input:

1. CAIDA Topology: serial-2 AS Relationships topology

2. policies file: BGP export/import policies to be applied
to BGP announcement points

3. origins file: enumerates prefix announcements to be
made at BGP announcement points (including hijackers)

The simulation engine runs as a Python script and writes
the outcome of each simulation scenario to a text file. An-
other Python visualization script generates a CDF of the

simulation results similar to those presented in Figures 8
& 9 of the main paper. The full experimental workflow
for the simulations is described in the sbas-simulation sub-
module of https://github.com/scion-backbone/sbas/
tree/80044509e5ac1681e8d970a09e4b3187439a0938.

For the SBAS node software, the workflow involves join-
ing SCIONLab, connecting two machines to SCIONLab,
running SBAS on those two machines and testing con-
nectivity through SBAS and then connecting a client to
one of the machines and testing connectivity to the other
SBAS node. The full workflow is described in the sbas sub-
module of https://github.com/scion-backbone/sbas/
tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.6 Evaluation and expected results

Obligatory. Start by listing the main claims in your paper.
Next, list your key results and detail how they each support
the main claims. Finally, detail all the steps to reproduce
each of the key results in your paper by running the artifacts.
Describe the expected results and the maximum variation
of empirical results (particularly important for performance
numbers).

We package a subsample of the data used in the Internet-
scale simulations (presented in Section 7.2) to model the
BGP hijack resiliency gains of SBAS provides over a client
making its own BGP announcements to the Internet. These
simulations should output textual data showing the proportion
of the Internet that will be affected by an adversary’s attack
for each SBAS announcement. This output is then parsed
by the plotting script plot_artifact_results.py to plot
CDFs illustrating the resilience of SBAS against different
adversaries.

There are several main results which can be seen in this
CDF plots even with the reduced input files used for the ar-
tifact evaluation. First, an SBAS announced-prefix has a sig-
nificantly higher resilience than a non-SBAS prefix. Second,
SBAS performance improves with additional nodes are added
to the network of PoPs. Finally, ROV enforcement further
improves the resilience of SBAS.

The primary expected result for the SBAS node code is
that the pings from one SBAS node’s VPN prefix to another
SBAS node’s VPN prefix (which are routed over SCIONLab)
are sent successfully. Furthermore, for the client code, the
client connected to the SBAS node should be able to ping the
VPN prefix at the other SBAS node securely which implies
it could communicate with other clients connected to that
node’s VPN.

166 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938
https://github.com/scion-backbone/sbas/tree/80044509e5ac1681e8d970a09e4b3187439a0938

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 167

A Artifact Appendix

A.1 Abstract
This artifact includes a binary release of our proposed disas-
sembler, DeepDi, and a sample script to show how we can use
it to obtain instruction and function boundaries. This binary
release is mainly to demonstrate the performance and effi-
ciency of DeepDi, so for now it can only be used on Windows
where CUDA is available.

A.2 Artifact check-list (meta-information)
• Run-time environment: Windows 10 x64, CUDA 11.1,

cuDNN v8.2.4, MSVC runtime 2019, and Python 3.8.

• Hardware: NVIDIA GPU with compute capability of 5.2 or
above.

• Metrics: Execution time and validation accuracy.

• Output: The evaluation script outputs precision, recall, and
execution time.

• Experiments: An evaluation script is provided.

• How much disk space required (approximately)?: 300
MB.

• How much time is needed to prepare workflow (approxi-
mately)?: An hour to download and install all the dependen-
cies.

• How much time is needed to complete experiments (ap-
proximately)?: A minute.

• Publicly available?: Yes, on GitHub.

A.3 Description
A.3.1 How to access

The full artifact is available on GitHub at the following URL:
https://github.com/DeepBitsTechnology/DeepDi/
tree/74f0af0d4cdf33fc5de6f55d5f4ec5142de68c18.

A.3.2 Hardware dependencies

A machine with NVIDIA GPU with compute capability of 5.2
or above is required. Here is a list of NVIDIA GPUs and their
compute capabilities: https://developer.nvidia.com/
cuda-gpus.

A.3.3 Software dependencies

• Windows 10 x64

• Python 3.8

• CUDA 11.1

• cuDNN v8.2.4 for CUDA 11.4

• MSVC runtime 2019

- https://aka.ms/vs/16/release/vc_redist.
x64.exe

• pyelftools

- pip install pyelftools

• NumPy

A.3.4 Data sets

This artifact contains the benchmark and real-world bina-
ries and the corresponding ground truth for instruction- and
function-level evaluation, but feel free to try any x86 or x64
binaries. Please change DATA_PATH in eval.py to your real
data path.

You can download the benchmark binaries at
https://drive.google.com/file/d/
1UfS4YsbKWw6Xlp7NXf4tTHDN7gzDRY7p/view?usp=
sharing
and the real-world binaries at
https://drive.google.com/file/d/1x3N_
0FAmSuT56D-KHRPvSaMz8Xl3gQFj/view?usp=sharing.

A.4 Installation
This binary release requires no installation. Detailed instruc-
tions on using and running the tool are included in the
README file.

A.5 Experiment workflow
The included evaluation script gets the code section of the
included sample file and feeds it into DeepDi. DeepDi then
outputs where instructions and functions are.

A.6 Evaluation and expected results
The evaluation script will measure the precision and recall of
instruction and function prediction, and the execution time of
DeepDi.

A.7 Experiment customization
Though only one binary is included for demonstration pur-
poses, DeepDi can be easily extended to evaluate arbitrary
x86 and x64 binaries.

USENIX Association 31st USENIX Security Symposium 169

https://github.com/DeepBitsTechnology/DeepDi/tree/74f0af0d4cdf33fc5de6f55d5f4ec5142de68c18
https://github.com/DeepBitsTechnology/DeepDi/tree/74f0af0d4cdf33fc5de6f55d5f4ec5142de68c18
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://aka.ms/vs/16/release/vc_redist.x64.exe
https://aka.ms/vs/16/release/vc_redist.x64.exe
https://drive.google.com/file/d/1UfS4YsbKWw6Xlp7NXf4tTHDN7gzDRY7p/view?usp=sharing
https://drive.google.com/file/d/1UfS4YsbKWw6Xlp7NXf4tTHDN7gzDRY7p/view?usp=sharing
https://drive.google.com/file/d/1UfS4YsbKWw6Xlp7NXf4tTHDN7gzDRY7p/view?usp=sharing
https://drive.google.com/file/d/1x3N_0FAmSuT56D-KHRPvSaMz8Xl3gQFj/view?usp=sharing
https://drive.google.com/file/d/1x3N_0FAmSuT56D-KHRPvSaMz8Xl3gQFj/view?usp=sharing

A Artifact Appendix

A.1 Abstract
In this artifact we compare three performance degradation
strategies on Intel CPUs. In particular we measure the perfor-
mance impact of performing a cache-flush based performance
degradation in Intel microarchitectures with HyperThreading
support. This artifact can be used to reproduce Tables 8-9
in the paper “HyperDegrade: From GHz to MHz Effective
CPU Frequencies”. It can be also employed to extend the
comparison to other microarchitectures.

A.2 Artifact check-list (meta-information)
• Benchmark: BEEBS

• Compilation: GNU toolchain

• Hardware: Intel with HyperThreading

• Metrics: clock cycles

• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

• How much time is needed to complete experiments (ap-
proximately)?: 2–50 hours

• Publicly available?: yes

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: 10.5281/zenodo.5549559

A.3 Description
A.3.1 How to access

We provide full documentation in README.md available at the fol-
lowing URL. https://doi.org/10.5281/zenodo.5549559

A.3.2 Hardware dependencies

1. Intel CPU

2. HyperThreading

3. Recommended: Skylake, Kaby Lake, Coffee Lake, or Whiskey
Lake

A.3.3 Software dependencies

1. Linux (root)

2. GNU toolchain

3. git

4. perf

5. python3

A.4 Installation
See README.md at https://doi.org/10.5281/zenodo.
5549559.

A.5 Evaluation and expected results
1. This artifact reproduces the results in Section 4 of the paper.

2. In particular, Tables 8-9 in the paper.

USENIX Association 31st USENIX Security Symposium 171

https://doi.org/10.5281/zenodo.5549559
https://doi.org/10.5281/zenodo.5549559
https://doi.org/10.5281/zenodo.5549559
https://www.acm.org/publications/policies/artifact-review-badging

D Artifact Appendix

D.1 Abstract
The artifact consists of the full source code of Pacer’s proto-
type and instructions for building from source. In addition,
we provide applications, datasets, scripts, and instructions
for reproducing two sets of results from the paper: Pacer’s
bandwidth overheads and its empirical security evaluation.

D.2 Artifact check-list (meta-information)
• Algorithm: video-clustering, doc-clustering, CNN classifier
• Model: custom CNN classifiers (included in the repository)
• Data set:

(1) clustering dataset: csv containing sizes of files in the corpus,
(2) attack dataset: network traffic traces to run classifier on

• Run-time environment: Linux, python
• Execution: manual
• Metrics:

(1) bandwidth overheads vs privacy (cluster size)
(2) attack performance (classifier accuracy, precision, recall)

• Output: table, graphs
• Experiments:

(1) clustering (cluster size vs. bandwidth)
(2) classifier prediction
(3) Video latency
(4) Medical service throughput and client latencies

• How much disk space required (approximately)?:
All source code: 30GB
Total including compiled models and dataset: 50GB

• How much time is needed to complete experiments (approx-
imately)?: 24 hours in total

• Publicly available (explicitly provide evolving version ref-
erence)?: https://gitlab.mpi-sws.org/pacer/pacer

• Code licenses (if publicly available)?:
Pacer: MIT
Linux: GPLv2
Xen: GPLv2 Apache HTTP Server: Apache License 2.0
wrk2: Apache License 2.0
Mediawiki: GPLv2
Memcached: BSD license

• Data licenses (if publicly available)?:
Wiki datasets: CC-BY-SA

• Archived (explicitly provide DOI or stable reference)?:
https://gitlab.mpi-sws.org/pacer/pacer/-/tags/
security22-ae

D.3 Description
D.3.1 How to access

The artifact is publicly available at: https://gitlab.mpi-sws.
org/aasthakm/pacer

D.3.2 Hardware dependencies

To reproduce the runtime performance results, Pacer must be set up
on servers with a Broadcom Corporation NetXtreme II BCM57800
1/10 Gigabit Ethernet NIC and with bnx2x driver.

D.3.3 Software dependencies

Pacer’s prototype relies on:

• Xen: 4.10.0

• Linux: 4.9.5

• OS: Ubuntu 16.04 LTS

• gcc: 5.4.0

Experimental evaluation has been done with the following software:

• Apache HTTP Server: 2.4.33

• Mediawiki: 1.27.1

• Memcached: 1.6.9

• OpenSSL: 1.1.0g

D.3.4 Data sets

Relevant datasets are provided as part of this artifact.

D.3.5 Models

Models are provided as part of this artifact.

D.4 Installation
Instructions are provided at: https://gitlab.mpi-sws.org/
pacer/pacer/-/blob/main/install.md

D.5 Experiment workflow
Experiments can be run using the scripts provided in the repository.
All the instructions are provided at: https://gitlab.mpi-sws.
org/pacer/pacer/-/blob/main/experiments.md

D.6 Evaluation and expected results
We provide prepared artifacts to reproduce results of Pacer’s band-
width overheads and empirical security evaluation:

• Bandwidth overhead (section 6.2): https://gitlab.
mpi-sws.org/pacer/pacer/-/tree/main/eval/
bandwidth

• Attack classifier performance evaluation (section 6.4, ap-
pendix A): https://gitlab.mpi-sws.org/pacer/pacer/
-/tree/main/eval/attack

D.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association 31st USENIX Security Symposium 173

https://gitlab.mpi-sws.org/pacer/pacer
https://gitlab.mpi-sws.org/pacer/pacer/-/tags/security22-ae
https://gitlab.mpi-sws.org/pacer/pacer/-/tags/security22-ae
https://gitlab.mpi-sws.org/aasthakm/pacer
https://gitlab.mpi-sws.org/aasthakm/pacer
https://gitlab.mpi-sws.org/pacer/pacer/-/blob/main/install.md
https://gitlab.mpi-sws.org/pacer/pacer/-/blob/main/install.md
https://gitlab.mpi-sws.org/pacer/pacer/-/blob/main/experiments.md
https://gitlab.mpi-sws.org/pacer/pacer/-/blob/main/experiments.md
https://gitlab.mpi-sws.org/pacer/pacer/-/tree/main/eval/bandwidth
https://gitlab.mpi-sws.org/pacer/pacer/-/tree/main/eval/bandwidth
https://gitlab.mpi-sws.org/pacer/pacer/-/tree/main/eval/bandwidth
https://gitlab.mpi-sws.org/pacer/pacer/-/tree/main/eval/attack
https://gitlab.mpi-sws.org/pacer/pacer/-/tree/main/eval/attack

A Artifact Appendix
A.1 Abstract
This artifact includes the gem5 simulator and McPAT files
that are used for performance impact and area/power es-
timation for the paper "Composable Cachelets: Protecting
Enclaves from Cache Side-Channel Attacks". The aforemen-
tioned frameworks will generate result files which we explain
how to extract the relevant results in the appendix. In order
to provide the artifact with minimal dependencies, we have
provided the reviewers with a safe remote access to a server
that contains all of the relevant dependencies, benchmarks,
executables, source code and scripts, all of which can be in-
spected, overwritten and executed.

A.2 Artifact check-list (meta-information)
All of the following material in the checklist is included in
the server. There is nothing to be downloaded. We are going
to be mentioning them for context.

• Algorithm: The main algorithms we introduce are the allo-
cation and the remapping code in the gem5 simulator. The
bulk of our cachelet allocation algorithm is contained at
gem5/src/mem/cache/tags/indexing_policies. In this
directory, we have a base class in base.cc where the allo-
cation and class constructor reside. For the remapping algo-
rithm, we modify set_associative.cc where in the enclave
mode, we emulate way deflection by returning the ways allo-
cated for the enclaves to the replacement policy (in function
getPossibleEntries). For the indexes of the cache we use
the function named extractSet where we replace the higher
bits with the VPT entry.

• Program: In the server, we include the following benchmarks
(with corresponding versions) for your access:

– SPEC2017 - 1.0.2 - private

– PARSEC - 3.0-beta-20150206 - public

– MiBench - 1.0 - public

– Post-Quantum Cryptography (PQC) programs: BIG
QUAKE, CRYSTALS-KYBER, CFPKM, Compact-
LWE, DAGS - N/A - public

• Compilation: During the evaluation process, you are not
obligated to compile anything. If desired, we have included
compilation steps for gem5 in the Section A.8 in the appendix.
The artifact already possesses every dependency for the compi-
lation which are the same as the baseline gem5 CPU simulator.

• Transformations: There are no transformation tools required.

• Binary: The main binary file for the simulations is already
pre-generated (gem5/build/X86/gem5.opt) on the platform.
The McPAT simulators used in our evaluation also have pre-
compiled binaries in area_power_estim/mcpat and area_
power_estim/mcpat_extra_tag. The purposes of the two
versions of McPAT are described in Section A.6.2.

• Run-time environment: On the reviewer’s side, any OS that
has SSH can run remote access the environment we provide
and run all simulations. For context, the environment on the
server is Debian 8.

• Hardware: We use the gem5 CPU simulator, an open source
architecture simulator which is already included in the server
(we don’t require any installation or any extra hardware).

• Execution: The only condition we have is the establishment
of the SSH connection to our platform. Simulations take few
hours to few days depending on the experiment.

• Security, privacy, and ethical concerns: There are no security
implications on the reviewer-side.

• Metrics: For performance metrics, we consider normalized
Instructions Per Cycle (IPC). As for area/power estimation,
we consider mm2 for area and Watts for power generated by
McPAT, an integrated power, area, and timing modeling frame-
work for various architectures.

• Output: The files and directories that contain the metrics are
explained in detail in Section A.6.

• Experiments: The experimentation process is explained in
detail in Section A.5 .

• How much disk space required (approximately)?: While
there’s no requirement on the disk-space on the reviewer’s
machine, the platform memory has to be kept track of.

• How much time is needed to prepare workflow (approxi-
mately)?: No time needed to prepare the workflow.

• How much time is needed to complete experiments (ap-
proximately)?: Depending on the experiments, it can take a
few hours to 3 days where full system simulations (like PAR-
SEC experiments) take days and system emulation of security
benchmarks (like PQC and MiBench security programs). The
McPAT estimation experiments take a few seconds to com-
plete.

• Publicly available (explicitly provide evolving version ref-
erence)?: No.

• Code licenses (if publicly available)?: No.

• Data licenses (if publicly available)?: No.

• Workflow frameworks used?: We use custom scripts that
spawn shell commands to be run concurrently. The McPAT
simulations are run manually from the command line.

• Archived (explicitly provide DOI or stable reference)?: No.

A.3 Description
A.3.1 How to access

N/A

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

The only software required is Secure SHell (SSH) which we are
going to use to connect to the artifact platform.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 175

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

A.4 Installation
We do not require any reviewer-side installation other than SSH
(please refer to online sources for proper installation). The artifact is
going to be accessed remotely. One can access our servers through:

ssh <username>@<dns_tag>

where the username, the DNS tag and the password are granted
in the submission.

We use our platform as the artifact testing environment. First
off, the reviewer is going to access the server (required information
provided in artifact submission form).

Once accessed, we highly recommend that you create a tmux
session so that in case of an unintended disconnect or any other dis-
turbance, the experiment process can keep running independent from
the remote user. To create a tmux session, the following command
line can be used:

tmux new -s <name_of_session>

We have already created a session named reviewer. In order for
a user to attach to a session, the following command line can be
used:

tmux a -t <name_of_session>

To detach from a session, press "Ctrl+B" and then "Q" on your
keyboard; this will send you back to the main terminal interface.
When attached to a session, the user will run terminal command to
run the experiments we set up. This way, if you run an experiment
on the tmux session, it will keep running on the server even when
you disconnect.

For PARSEC experiments, we use gem5’s full system simulation
for multi-threaded applications. We have already prepared the disk
image and the kernel image for this simulation. The gem5 version we
use requires the path to the simulator as an environment variable; so
after each connection or session creation where a PARSEC-related
simulation is going to be run, please set the environment variable
M5_PATH as:

export M5_PATH=/home/reviewer/gem5

Keep in mind that you don’t need to do this constantly if your are
running on a prepared tmux session.

A.5 Experiment workflow
We have 2 different simulation environments. The first one is the
performance results gathered from the gem5 CPU simulator which
we modified to emulate Composable Cachelets.

A.5.1 Performance Results from the gem5 Simulator

Experiment Scripts Explained We have three Python
scripts for each benchmark suite: runspec.py. runmi.py, and
runparsec.py. These scripts create simulation threads for vari-
ous configurations by calling the gem5 binary (gem5.opt). On top
of that, for non-enclave simulations, we use runnonenc.py.

gem5 is modified to have extra convenience options to the base-
line such as l3_vpt_size that defines the number of VPT entries.
Another example is l3_cachelet_assoc which defines the associa-
tivity of allocated cachelets. The user will not be interacting with
these options directly, but it is important to note.

SPEC2017 Enclave Experiments For SPEC2017 benchmark
suite evaluations, we use runspec.py. It tests 14 benchmarks from
the suite and tests one 10 cachelet configurations along with the
baseline configuration. The script has 3 mandatory options which
are real_insts, warmup_insts, and jobs where they denote the
number of real instructions (instruction considered for performance
evaluation), number of instructions considered as initialization (these
are ignored) and number of concurrent experiments. The platform
we provide has 48 cores and all of the experiments are required, we
recommend that you initialize -jobs as 40. Having said that, to run
1 billion real instruction and after 1 billion warm up instructions
with 40 concurrent jobs, the following command would be executed:

python3 runspec.py --real_insts=1000000000
--warmup_insts=1000000000 --jobs=40

Unfortunately, we cannot support further customization. For spec
benchmarks. Please refer to the source code of the scripts for further
customization.

Security Enclave Experiments For security benchmarks
(MiBench and PQC), we have runmi.py where it takes only the
same jobs argument. This script runs 4 configurations (including
the baseline) per 8 benchmarks we consider.

The following command is an example of security benchmark
experiment with 40 concurrent jobs:

python3 runmi.py --jobs=40

PARSEC Enclave Experiments Finally, for PARSEC bench-
marks, we have a similar option layout for the script (runparsec.py
in this case) to the security benchmarks. However, since PARSEC
experiments are done in full system simulation we recommend 3
concurrent jobs at maximum. There is only 1 configuration per bench-
mark, and we consider 5 of them. To run PARSEC benchmarks, the
following command line can be run:

python3 runparsec.py --jobs=2

SPEC2017 Non-Enclave Experiments For non-enclave ex-
periments, we considered 5 SPEC benchmarks. The script we use
for these experiments has the same option layout as runspec.py.
To run these experiments:

python3 runnonenc.py --real_insts=1000000000
--warmup_insts=1000000000 --jobs=40

is going to be used as the command.

176 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A.5.2 Area and Power Estimation from McPAT

The files involved in this experimental workflow are located in
/home/reviewer/area_power_estim/, under the following sub-
directories:

• mcpat: contains the unmodified mcpat simulator source code
and binaries from the public git repository.

• mcpat_extra_tag: contains a version of the mcpat source
and binaries that we modified to simulate additional cache
tags. The source differs from the baseline mcpat only in
the /cacti/const.h header file, where the value of the
EXTRA_TAG_BITS variable was changed from 5 to 9.

• cc_descriptions: contains the architecture descriptions used
to run the simulations.

• cc_mcpat_final_results: contains the area/power result
files from which we extracted the estimates.

We estimated the area and power overheads for major CC com-
ponents (the VPT, CFL, and extended cache tags) using the mcpat
computer architecture simulator. We describe the configurations used
for our simulations below. The results of the simulations, and the
procedures for running them, are presented in Section A.6.2

Baseline processor: As a point of comparison for our area and
power results, we took one of the default processor specification
files (Intel Xeon processor) provided with mcpat, and modified the
Caches, Register File, TLB, BTB, LSQ, ROB, and fetch/decode/is-
sue/commit width parameters to match the architecture used else-
where in our evaluations. This file is located at:

/home/reviewer/area_power_estim/cc_descriptions/
cc_base_processor.xml

VPT and CFL: We observed that the components VPT and
CFL components of CC are closely analogous to existing hardware
components simulated by McPAT. The VPT is comparable to
a register alias table (retirement RAT), while the CFL corre-
sponds to a register free list. Thus, we used the McPAT area
and power metrics for a Integer Retirement RAT and Free List
as our estimates for the area and power of the VPT and CFL,
respectively. When generating results for each component, we
configured the simulation so that the components would have
a similar size and organization to VPT and CFL described in
our paper:

• For the configuration that generated the VPT re-
sults (/home/reviewer/area_power_estim/cc_
descriptions/cc_single_issue_vpt.xml), we
specified 16 architectural registers and 64 physical
registers. The resulting RAT would be comparable to a
16-entry VPT in a CC system with 64 total cachelets.
Because a VPT does not require multiple write ports,
we also gave the processor a single instruction width, so
that the rename logic has a single write port.

• To obtain a 64-entry register free list (comparble to the
64-entry CFL assumed in our area/power evaluation),

we modified the baseline processor specification to have
64 physical registers. The configuration file used for
the CFL results was /home/reviewer/area_power_
estim/cc_descriptions/cc_free_list.xml

Extended Cache Tags: To estimate the area and power
overhead of the additional cache tag bits required by CC,
we changed the number of extra cache tag bits defined in
the McPAT source code. We then recompile the simulator.
Specifically, we edited the file

/home/reviewer/area_power_estim/mcpat_extra_tag/
cacti/const.h

to change the value of the EXTRA_TAG_BITS variable from 5
to 9, reflecting the number of extra tag bits needed to support
up to 16 cachelets per enclave. Using the baseline processor
configuration cc_base_processor.xml, we ran the simula-
tion with the modified and the unmodified versions of McPAT,
then took the difference between the total area and power
results for each simulation to determine the area and power
increase attributable to the the added tag bits.

A.6 Evaluation and expected results
A.6.1 Performance Results from the gem5 Simulator

After the simulation ends, gem5 generates output directo-
ries which contain the architecture parameters and results.
In these directories there are two important files, namely
config.ini (architectural parameters) and stats.txt (com-
putational metrics). stats.txt contains the IPC values that
we are going to inspect. The scripts we use generate such
output directories with names with the prefix m5out. Hence,
to extract the IPC values from any benchmark, we use grep
commands such as:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_*/stats.txt

To elaborate, this command will print out all of the IPC
results. Ideally we would like to specify the configuration or
the benchmark of the experiments we desire to examine. We
explain below how to extract IPC values from all experiments.

SPEC2017 Enclave Outputs To extract IPC values from
a specific benchmark (say deepsjeng), the following com-
mands should be run (baseline case first, other cases for the
latter):

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_deepsjeng_baseline/stats.txt

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_deepsjeng_enclave*/stats.txt

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 177

If we want to compare different benchmarks with the same
configuration (say 4 way 8 cachelets), the following command
should be run:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"

artifact_cc/m5out_*enclave_4_8/stats.txt

Security Enclave Outputs As an example, to extract IPC
from the aes benchmark, the following command should be
run:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"

artifact_cc/m5out_aes_encrypt*/stats.txt

MiBench related benchmarks’ (blowfish, sha and aes) di-
rectories are followed by an _encrypt suffix. PQC related
benchmarks do not have such suffixes. Thus, for instance,
getting IPC values from the benchmark BIG QUAKE is done
by:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"

artifact_cc/m5out_BIG_QUAKE*/stats.txt

PARSEC Enclave Outputs PARSEC benchmarks are
saved with a parsec_ prefix, so to extract results from the
benchmark blackscholes:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_parsec_blackscholes*/stats.txt

Non-Enclave Outputs Non-enclave experiments have
_nonenclave suffix. So, for inspecting omnetpp with 12
ways the following command should be used:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_omnetpp_nonenclave_12/stats.txt

So to check the same benchmark for all cases:

grep
"switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_omnetpp_nonenclave*/stats.txt

Expected Results For expected results, please refer to the
main paper where every detail is already discussed in detail.
Since we are using simulations, there might be slight differ-
ences to the results in the paper. However, the patterns the re-
viewers extract shall generate the same patterns as the ones in
the paper, even though the process is not fully-deterministic.

area mm2 (% base) peak W (% base) runtime W (% base)
Base arch 45.183 (100) 70.0737 (100) 35.1191 (100)

VPT 0.00042 (0.00093) 0.0022 (0.0031) 0.0066 (0.019)
VPT × 2 0.00084 (0.0019) 0.0044 (0.0063) 0.013 (0.037)

CFL 0.019 (0.042) 0.060 (0.085) 0.057 (0.16)
Tag bits 0.36 (0.80) 0.21 (0.29) 0.11 (0.33)

Table 1: Results of McPAT simulations of CC components.
Peak and runtime refer to peak dynamic and runtime dynamic,
Percentages are relative to the baseline architecture (Base
arch)

A.6.2 Area and Power Estimation from McPAT

Our area and power estimates indicated that the main CC
hardware components impose a modest overhead in terms of
processor area and power. Table 1 presents our results. Note
that the same results are in the submitted paper were rounded
to a different level of precision.

These results above were obtained as follows:

Baseline Architecture The area and power metrics for the
baseline architecture were obtained with the following com-
mand:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_base_processor.xml > ../
cc_mcpat_final_results/cc_5_tag

The "Base arch" results shown in Table 1 come from the
"Processor" section of the output file.

VPT estimates The area and power metrics for the VPT
were obtained with the following command:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_single_issue_vpt.xml > ../
cc_mcpat_final_results/cc_single_issue_vpt_res.
txt

The "VPT" results shown in Table 1 come from the "Int Retire
RAT" section of the output file. Note that in the paper, we
multiply the results by two to reflect the presence of two VPTs
in a two core processor.

CFL estimates The area and power metrics for the CFL
were obtained with the following command:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_free_list.xml > ../cc_mcpat_final_results/
free_list_as_64_entry_cfl.xml

The "CFL" results shown in Table 1 come from the "Free
List" section of the output file.

178 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

Tag bit overheads The tag bit overheads were obtained
with the following command:

cd /home/reviewer/area_power_estim/mcpat_extra_tag
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_base_processor.xml > ../
cc_mcpat_final_results/cc_9_tag

The "Tag bits" results shown in Table 1 are the difference be-
tween the values in the "Processor" section of the cc_9_tag
output file and the corresponding values in the baseline
cc_5_tag file.

A.7 Experiment customization
We provide customization in terms of number of concurrent
jobs and instruction numbers (when necessary). Yet, Due to
the sheer number of the considered benchmarks, we cannot
provide extensive customization for benchmark specification.
However, if some benchmarks are not needed by the reviewers,
they can be commented out.

A.8 Notes
If desired, the reviewers can compile gem5 (which is not
necessary). To construct gem5, after entering the gem5 subdi-
rectory by:

cd gem5

the following command should be used:

python2 ‘which scons‘ build/X86/gem5.opt -j 40

Unless any change is applied to gem5, this command will
print the message:

scons: ‘build/X86/gem5.opt’ is up to date.

Also, please make sure that only one reviewer runs a spe-
cific experiment at a time to prevent interference, since afore-
mentioned tools/frameworks overwrite namesake files/direc-
tories.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 179

A Artifact Appendix

A.1 Abstract
This artifact contains our reverse-engineering (RE) tools, the
covert and side-channel attacks, and the analytical model
described in the paper. The RE tools can be used to ex-
plore the mesh interconnect by testing various sender/receiver
placements. After RE, the covert and side-channel proof-of-
concepts can be run. All of our tools were tested on a bare-
metal machine with Ubuntu 18.04 and a 24-core Intel Xeon
Gold 5220R (Cascade Lake) processor. Other necessary soft-
ware dependencies are outlined for each component. The
artifacts should produce the graphs shown in the paper as well
as reproduce the attack performance.

A.2 Artifact check-list (meta-information)
• Compilation: GCC 7.5.0
• Run-time environment: These artifacts have been tested on

Ubuntu 18.04. The main software dependencies are GCC 7.5.0
and Python (≥ 3.6). Root access is needed to facilitate the
reverse-engineering process.

• Hardware: Intel Xeon Gold 5220R (Cascade Lake)
• Run-time state: The experiments are sensitive to the state of

the on-chip network. This means that cache activity (which
creates network traffic) can add noise to the experiments.

• Security, privacy, and ethical concerns: The experiments in
this artifact do not attempt to maliciously exploit any systems.

• How much disk space required (approximately)?: 4 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (approx-

imately)?: 48 hours
• Publicly available (explicitly provide evolving version

reference)?: https://github.com/CSAIL-Arch-Sec/
dont-mesh-around

• Code licenses (if publicly available)?: MIT License
• Archived (explicitly provide DOI or stable refer-

ence)?: https://github.com/CSAIL-Arch-Sec/
dont-mesh-around/releases/tag/usenix2022

A.3 Description
A.3.1 How to access

The artifact can be downloaded by cloning our Github reposi-
tory.

A.3.2 Hardware dependencies

These artifacts target the Intel Xeon Gold 5220R (Cascade
Lake) processor. In particular, the processor must be an Intel
Skylake SP or Cascade Lake processor which use the mesh
interconnect. Evaluating the artifact should require less than
4 GB of disk space.

A.3.3 Software dependencies

These artifacts were tested on Ubuntu 18.04. The software
requires Python (≥ 3.6) and GCC 7.5.0.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

None of the experiments in the artifact attempt to maliciously
exploit any systems. However, they require access to a server-
class processor that is normally shared by many users and
will change some system configurations. Be sure to check
the original values of the configurations modified in the setup
script and restore them afterwards.

A.4 Installation
All installation instructions are included in the artifact. Users
should be comfortable using APT and Python/Pip to install
dependencies. Familiarity with Git is needed to clone the
repository. Additionally, some experiments are long-running
and should be run inside a tmux session. More specialized
experiments come with guidance on how to set them up.

A.5 Experiment workflow
Each experiment is contained in its own directory and is built
with its own Makefile. A README within each directory
contains detailed information on how to build and run the
experiment. It is recommended that the experiments be run in
the order presented.

A.6 Evaluation and expected results
Our paper makes the following claims:

1. We can reverse-engineer previously-unknown details
about Intel’s mesh interconnect.

2. The reverse-engineering results can inform the construc-
tion of covert and side-channel attacks.

3. The reverse-engineering results allow for the construc-
tion of an analytical model that accurately predicts
interconnect-based leakage.

4. The analytical model offer insights into mitigating
interconnect-based side channel attacks.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 181

https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around/releases/tag/usenix2022
https://github.com/CSAIL-Arch-Sec/dont-mesh-around/releases/tag/usenix2022
https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around

The key results of our paper are detailed below. Detailed
instructions on how to reproduce each key result are included
in the artifact.

A.6.1 NoC Reverse-Engineering

We reverse-engineered the lane-scheduling policy and priority
arbitration policies that dictate how traffic flows on the inter-
connect. These policies are not specified by Intel and have not
been publicly reverse-engineered prior to our paper but are
critical to understanding the precise conditions necessary to
generate contention. We verify these results by reproducing
the two case studies shown in the paper.

A.6.2 Covert Channel

In this section, we demonstrate a working covert channel
using only contention on the interconnect that can achieve a
capacity comparable to that of previous interconnect-based
covert channels (1.5 Mbps ± 0.3). Our artifact can reproduce
the latency trace and capacity plot shown in the paper.

A.6.3 Side Channel

Secret keys can be extracted from vulnerable ECDSA and
RSA implementations via the interconnect channel. Single-
bits can be classified with an accuracy of at least 69% and
71% respectively and full keys can be recovered with majority
voting.

A.6.4 Analytical Model

The reverse-engineering results can be used to construct an an-
alytical model of network contention that accurately predicts
observed results. The analytical model can be used to cre-
ate non-invasive mitigations that reduce the effectiveness of
our side-channel. These artifacts should be able to reproduce
Figures 12, 13, and 14 in the paper.

A.7 Experiment customization

Running the experiments in the artifact requires first reverse
engineering the layout of the tiles on the die, including where
the partially and fully disabled tiles are. Because the location
of these disabled tiles may differ between different units of
the same processor, this must be done before attempting to
run the experiments on a different machine. Guidelines for
how to do this reverse-engineering are described in Section 3
and Appendix B of the paper.

A.8 Notes

N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

182 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact provides the code for the tool and the experi-
ments, as described in the paper. The artifact describes two
workflows. The first workflow, WEBGRAPH, runs the classi-
fication pipeline: we crawl a set websites, build their graph
representations and extract features from these representa-
tions, and train a classifier to detect advertising and tracking
services (ATS) on the sites. The second workflow, Robustness,
consists of experiments to perform content and structural mu-
tations on graph representations to evade a classifier. The
artifact consists of three components. First, the source code in
a GitHub repository that allows a user to set up and run the de-
scribed workflows from scratch. Second, two docker images
with all dependencies installed, one with just the code and the
other with a sample database of 100 crawled sites to test the
pipelines. Three, a Google Drive folder with datasets from
a larger crawl of 10,000 sites, to validate the performance
of the classifier and use for other experiments. All the steps
required to run and evaluate the pipeline are described in this
document and the repository READMEs.

A.2 Artifact check-list (meta-information)
• Program: WEBGRAPH (sources included), Forked

OpenWPM (link to repo included)

• Data set: Sample crawl of 100 sites to test the pipeline.
SQLite and LDB databases (included in the docker im-
age). Google Drive link to datasets form a 10k website
crawl for further evaluation.

• Run-time environment: The project has been run and
tested on Ubuntu 18.04. For the setup, you need to have
python3, miniconda, binutils, pip, gcc and g++ installed.
All requirements are outlined in the repository. We also
provide a Docker image with all the dependencies in-
stalled.

• Hardware: Having a pod on a Kubernetes cluster is
preferable but not necessary due to necessity to stay
running for long periods of time.

• Execution: During the crawl, the user should use the
openwpm virtual environment created during the instal-
lation of OpenWPM.

• Metrics: Classification metrics (accuracy / precision /
recall /F1-score / feature importances).

• Output: The crawl outputs SQLite and LDB databases.
The WEBGRAPH pipeline takes in the crawl output, and
outputs three csv files: graph.csv, features.csv and la-
belled.csv (the details of the files are outlined in the
code-base). The classification task outputs a log for the

metric statistics in a report file. The robustness evalua-
tion task generates CSV graph files that can be fed into
a trained model, and information about classification
switches caused by the mutation.

• Experiments: Scripts and instructions to fully repro-
duce the paper’s results are provided in the artifact
README files.

• How much disk space required (approximately)?:
The code-base size is around 18.5 MB. The output size
varies depending on the number of websites crawled
(around 3-4 MB per website on average). The input
database size varies also depending on the number of
crawls (around 4.5 MB per website on average).

• How much time is needed to prepare workflow (ap-
proximately)?: The setup of the repository code and
the environment should take around 20 to 45 minutes.
The crawling time depends on the number of websites
(from hours to days). In case you want to accelerate the
setup time, you can use the provided docker image with
a pre-built project.

• How much time is needed to complete experiments
(approximately)?: The total pipeline time depends on
the number of websites being analyzed (hours to days
approximately). Our tests show that on average, WEB-
GRAPH takes 0.72 seconds to build the graph, 15 sec-
onds to extract features, and 0.25 seconds to train and
test each website. The structure robustness experiments
use the WEBGRAPH workflow, but perform graph build-
ing and training at every iteration, so the time increases
accordingly.

• Publicly available?: Yes, on https://github.com/s
pring-epfl/WebGraph

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/spring-epfl/WebG
raph/releases/tag/usenix-artifacts-final

A.3 Description
A.3.1 How to access

The source code is available as a stable tag on GitHub at
the following URL: https://github.com/spring-epfl/
WebGraph/releases/tag/usenix-artifacts-final. To
access it, you can either download the zipped source code or
clone the repository.

We also provide two docker images with all the dependen-
cies installed to avoid the setup phase. The image details are
as follows:

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 183

https://github.com/spring-epfl/WebGraph
https://github.com/spring-epfl/WebGraph
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final

• WEBGRAPH image: Available at https://hub.do
cker.com/r/springepfl/webgraph. This image con-
tains all the dependencies and the code, and can be used
to run the entire pipeline.

• WEBGRAPH-demo image: https://hub.docker.c
om/r/springepfl/webgraph-demo. In addition to all
the dependencies and code, this image contains a
database of 100 sites (crawled using OpenWPM). The
image can be used to work with some test data.

Finally, we provide a Google Drive link with a dataset from
a large crawl of 10k websites to evaluate the classifier. The
dataset consist of features and labels for different feature con-
figurations of AdGraph and WEBGRAPH. The dataset can be
used to replicate all the results of Table 2 in the paper. Link to
the dataset: https://drive.google.com/drive/folders
/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing.

A.3.2 Hardware dependencies

The code is meant to be run on Ubuntu 18.04 with the depen-
dencies mentioned in section A.2. We recommend running
the code on a server instance with a fast access to the Internet
to accelerate computations. The code-base size is around 18.5
MB. The dataset size can span from 400 MB to several GB
depending on the number of crawled websites. We provide a
sample dataset of around 100 sites (400 MB).

A.3.3 Software dependencies

• Custom OpenWPM: If you intend to run crawls
on your own, you need to download a custom Open-
WPM tool from this URL: https://github.com/san
drasiby/OpenWPM/tree/webgraph. The installation
instructions can be found in the README section of
the repository. A sample crawl is included in the WE-
BGRAPH code-base; you can copy it and run it in the
OpenWPM code base. Further instructions are included
in the README section of the repository. For conve-
nience, OpenWPM is also installed in the WEBGRAPH
Docker image.

• Docker: If you opt to use the Docker image, you need
to install Docker. After that, you can launch a Docker
container using the image and run the experiments in the
container.

A.3.4 Data sets

We include a sample dataset in the artifact. Additionally, you
can crawl your own dataset using the custom OpenWPM tool
following the instructions in the README.

A.3.5 Models

While we do not include a model in the artifact, the dataset
on Google Drive can be used to build a model.

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
• Installing locally on Ubuntu: Initially you need to

setup the environment as described above. Next, fol-
low the instructions in the OpenWPM README to
download and install the OpenWPM tool-set. Finally,
download the WEBGRAPH code-base and follow the
instructions in the README to setup the project and
run the various evaluation tasks.

• Using the Docker container: We provide a pre-built
Docker image that you can load in a docker environment
and start running the experiments immediately.

A.5 Experiment workflow
There are two workflows in the artifact. The main workflow
is the WEBGRAPH process. This process consists of crawl-
ing sites, building their graph representation, and training a
classifier based on features extracted from the graph represen-
tations. The second workflow handles the robustness experi-
ments (Section 3 and Section 5 of the paper). This workflow
uses the graphs generated by the WEBGRAPH process, and
performs different types of mutations in order to evade the
classifier. We perform two types of mutations – content muta-
tion (Section 3 in paper) and structure mutation (Section 5 in
paper). We describe the workflows below:

• WEBGRAPH:

1. Gather crawl data, either using OpenWPM, or the
sample database we provide: To run a crawl with
OpenWPM, follow the instructions on the WEB-
GRAPH repository README to install and activate
the environment for OpenWPM. Then, update the
script demo.py in the OpenWPM codebase to feed
in the list of sites you want to crawl, and run the
script. The crawl process results in a datadir di-
rectory containing the output files of the crawl.

2. Build graph representations, and extract features
and labels: Edit the file in the WEBGRAPH reposi-
tory, features.yaml to select the feature set that
you want to extract. Run the script code/run.py.
The README contains information on the argu-
ments accepted by the script. This script first reads
in the OpenWPM output files and creates graph

184 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://hub.docker.com/r/springepfl/webgraph
https://hub.docker.com/r/springepfl/webgraph
https://hub.docker.com/r/springepfl/webgraph-demo
https://hub.docker.com/r/springepfl/webgraph-demo
https://drive.google.com/drive/folders/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing
https://drive.google.com/drive/folders/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing
https://github.com/sandrasiby/OpenWPM/tree/webgraph
https://github.com/sandrasiby/OpenWPM/tree/webgraph

representations of each site that we crawled. It then
extracts the feature representations based on the
parameters provided in features.yaml. Then , it
extracts labels for each node in the graph repre-
sentation using filter-lists. The output of the script
is three CSV files: a graph representation file, a
features file, a labels file.

3. Train the classifier based on the features
and labels files, and get the classifier evalu-
ation reports. Run the classification process
(code/classification/classify.py) to per-
form 10-fold cross-validation. This consists of
classifier metrics (accuracy, precision, recall), the
ground truth and predicted labels of the classifier,
and feature importances.

• Robustness (content mutation):

1. Run the WEBGRAPH workflow to obtain graph
files and classifier predictions. Use the argument
−−save_model when running classification so as
to have a trained model against which the mutation
attacks can be run.

2. For the sites that you want to perform content
mutation on, run code/run.py to generate the
graphs/features/labels.

3. Get original classifier predictions by running
code/classification/classify_with_model
.py

4. Run robustness/content_mutation/content_
mutation.py. The README in the folder de-
scribes the inputs required for the script. Running
the script yields a new graph file with content
mutation applied on the graph nodes. This can
be fed as input to feature extraction and labelling
(code/run_extraction.py) and then to the
trained classifier model to evaluate performance
on mutated data.

5. Structure mutation will yield an output file indicat-
ing how many classifier predictions (on adversarial
and non-adversarial nodes) switched as a result of
the mutation. This file helps analyze the impact of
the mutation on the adversary’s performance.

• Robustness (structure mutation):

1. Run the WEBGRAPH workflow to obtain graph
files and classifier predictions. Use the argument
−−save_model when running classification so as
to have a trained model against which the mutation
attacks can be run.

2. Run robustness/structure_mutation/greedy
_mutation.py (the README in the folder pro-
vides the instructions on what to adjust in the

config file for the script). This will perform the
structure mutation.

3. Structure mutation will yield an output file,
diff_stats, indicating how many classifier pre-
dictions (on adversarial and non-adversarial nodes)
switched as a result of the mutation. This file
helps analyze the impact of the mutation on the
adversary’s performance. The output file called
overall_stats gives you an overview of how
many nodes originally had to be flipped. The suc-
cess rate and the collateral damage can be calcu-
lated from these output files, as described in Sec
5.3 (page 10/11) of the paper.

We provide a detailed explanation of how to run these
workflows in the repository READMEs.

A.6 Evaluation and expected results
The main tool in the paper is WEBGRAPH, which classifies
URLs on sites as advertising and tracking (ATS) or benign
(non-ATS). WEBGRAPH performs comparably to other clas-
sifiers despite not using brittle content features, due to the
addition of a new set of features, flow, based on ATS behavior.
Our artifact enables a user to run the WEBGRAPH pipeline:
from the crawl to the graph creation and feature extraction to
the classifier training. We provide a test dataset of 100 crawled
sites to analyze how the pipeline works. At the same time,
this test dataset is too small to validate the performance of the
classifier. In order to facilitate verification of WEBGRAPH’s
performance, we also provide feature and labels from a crawl
of 10,000 sites. These can be fed into the classifier to obtain
results, and used to train a model that can be used in further
experiments (such as the robustness workflow). We opt to
provide the processed features and labels for two reasons.
First, the raw crawl database of 10,000 sites would be large
(in the order of several GB) without necessarily providing
much value for evaluation. Second, the processed features
and labels can be used for other experiments (an evaluator
can use as many or as few sites as they desire to train the
model). We note that these files themselves are ≈ 600MB.
The datasets provided can also be used to replicate the results
shown in Table 2 of the paper, but running the classification
process (Step 3 of WEBGRAPH workflow) with the feature
and labels file.

The paper performs many experiments related to content
and structure mutations. The artifact, therefore, also provides
code to generate these mutations. A user can run the muta-
tions on graphs generated from either their own crawled data,
or on the data that we provide. The READMEs in the robust-
ness sections of the artifact include information on what the
expected output of the mutations are. The code also allows
a user to run the entire pipeline in two modes: WEBGRAPH
and AdGraph. The content mutation robustness workflow, run

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 185

with AdGraph mode, can be used to replicate the results of
Section 3. The content and structure mutation workflows, run
with WEBGRAPH mode, can be used to generate the results
of Section 5. Note that in order to generate the results close
to the values in the paper, you would have to run crawls with
10,000 sites (for the content mutation experiments) and 100
sites (for the structure mutations experiments).

A.7 Experiment customization
The workflows can be customized as follows:

• WEBGRAPH:

1. The script to run the experiment, code/run.py,
takes in an argument, −−mode, which allows you
to specify the system you want to run: AdGraph or
WEBGRAPH.

2. The feature extraction process can be modified to
use different categories and types of features, as
required. In the default version, we do not use con-
tent features (which are used in other tools such as
AdGraph), but content features can be extracted by
modifying code/features.yaml. New features
can also be added to the classifier.

3. The labelling process can be modified to include
additional filter lists.

• Robustness:

1. The content mutation process can be modified to
mutate the URLs in different ways. The process
also offers the option to perform the two scenarios
described in Section 3 (third party random muta-
tion, and third party as a subdomain of the first
party).

2. The structure mutation process currently offers
four types of mutations that the user can choose
from. This can be updated as required.

3. The structure mutation process currently calculates
desired and undesired switches for an adversary as
described in the paper. This definition can be mod-
ified in the code to account for other adversarial
goals.

We provide descriptions of the various customization pa-
rameters in the repository READMEs.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

186 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

C Artifact Appendix

C.1 Abstract

Our work in this paper consists of four separate components:

1. The cookie consent web crawlers. The web crawler
component uses a series of Python scripts and the
OpenWPM framework to gather browser cookies and
associated purpose categories from websites. The out-
put of this component is a dataset of browser cookies
including category labels.

2. The feature extraction and XGBoost classifier. This
component uses the collected dataset of cookies and
transforms it into a sparse matrix representation, using
all properties of a browser cookie in the process. This
sparse matrix, combined with the category labels, is then
used to train a decision tree model using the XGBoost
algorithm. This allows us to predict purpose categories
for previously unseen cookies.

3. The GDPR violation detection scripts. Using knowl-
edge of the articles of the GDPR and the cookie dataset
collected by the consent web crawler, these scripts iden-
tify potential GDPR violations on websites in the wild.
The output of this component is a dataset of statistics
detailing the prevalence of potential GDPR violations,
based on 8 different methods of analysis.

4. The "CookieBlock" browser extension. This addon
provides a privacy protection mechanism for users which
automatically deletes cookies that they did not consent
to. The extension uses the classifier as the central engine
to decide which cookie belongs to what category. It
supports Chromium-based browsers as well as Firefox.

The components have been constructed using Python 3
and JavaScript. The webcrawler in particular is based on
the OpenWPM framework version 0.12.0, and must be run
on Linux. For this reason, we provide an Ubuntu VM that
comes with all dependencies preinstalled. We also provide
a precomputed dataset of statistics and metrics which stem
from our previous executions of these components, and
are the datasets used for the results presented in the paper.
This includes the candidate domains used for the web crawl,
the complete set of performance metrics for the XGBoost
classifier and the Cookiepedia baseline, as well as all statistics
and data on the GDPR Violation Detection.

No specialized hardware is required to reproduce the results
of the paper, but at least 8GB of RAM and 40 GB of disk
space are needed. Due to the nature of the dataset collection,
results may differ significantly if reproduced at a later date.
Instructions on how to compare and validate the results are
provided in the form of a detailed “README” document,
containing a step-by-step guide detailing each part of the
process. Said document also provides links to the source code
release for each component.

C.2 Artifact check-list (meta-information)
• Binary: Cross-platform virtual machine image, containing all

program components and datasets.

• Data set: Yes, included. The data set and VM are found at:
https://doi.org/10.5281/zenodo.5838646

• Run-time environment: The OpenWPM crawler only runs
on Linux. The other scripts and the browser extension work on
Windows and Linux. An Ubuntu VM image is included.

• Hardware: At least 8GB of RAM needed, and approximately
40 GB of disk space. Additional CPU cores can speed up the
computation, but works with a single core also.

• Run-time state: The results are dependent on the website con-
tent, as well as the CMP implementations, which may change
over time, and are out of our control.

• Execution: With the complete input dataset, the web crawls
alone may take between 1 and 2 weeks to complete. With a
reduced dataset, the full process takes a few hours.

• Metrics: Accuracy, precision, recall, macro-precision, macro-
recall and F1 score.

• Output: Printed to the console, stored in SQLite databases,
JSON and log files. Expected results are included for each step
of the process.

• Experiments: Collection of the browser cookie dataset, the
training and evaluation of the classifier, the GDPR Violation
detection and the generation of the extension’s classifier model
can all be replicated using commands manually input by the
user. We provide a detailed step-by-step guide on the process.

• How much disk space required (approximately)?: At least
40 GB is required for the VM. While the included datasets are
much smaller than this, the data that is collected and generated
may quickly take up disk space.

• How much time is needed to prepare workflow (approxi-
mately)?: When installing the VM image, only a few minutes.
When setting the scripts up natively, at most an hour.

• How much time is needed to complete experiments (ap-
proximately)?: A few hours.

• Publicly available?: Yes, all components are publicly avail-
able on Github. Links are provided in the step-by-step guide.

• Code licenses (if publicly available)?: The OpenWPM
crawler is GPL3 licensed. Other components are MIT licensed.

• Data licenses: CC by 4.0 International

• Archived: Yes, available at: https://doi.org/10.5281/
zenodo.5838646

C.3 Description
C.3.1 How to access

The artifact is publicly available and can be downloaded as a
self-contained package from:
https://doi.org/10.5281/zenodo.5838646

It includes a VM image that has all components preinstalled,
as well as a README that guides the user to replicate and

USENIX Association 31st USENIX Security Symposium 187

https://doi.org/10.5281/zenodo.5838646
https://doi.org/10.5281/zenodo.5838646
https://doi.org/10.5281/zenodo.5838646
https://doi.org/10.5281/zenodo.5838646

reproduce the results. The document also contains links to
the original repositories, should the user intend to install the
scripts natively.

C.3.2 Hardware dependencies

The artifact requires no specialized hardware to run. A single
core machine with 8GB of RAM and mor than 40 GB of disk
space should be enough. The VM requires considerable size
when set up, which is due to the libraries that are used, and
because of the data collection that needs to be performed to
replicate the results.

C.3.3 Software dependencies

If the VM image is used, only a virtualization product such
as VirtualBox or VMWare is required. All other components
should be ready to use. For native installations, some Python
and Node libraries are required. The exact details are provided
within the step-by-step guide included as part of the artifact.

C.4 Installation
The recommended method of setting up the artifact is to load
the virtual machine image using VirtualBox. All further steps
are documented in great detail within the README file of
the artifact. In the interest of space, we will not repeat the
steps here, and instead refer to the README.

C.5 Evaluation and expected results
First, we crawled 6M domains from a Tranco list collected on
May 5th. Out of these, 30k were found to have the selected
CMPs on them. From these websites, we collected a ground
truth of 304k cookies with labels, which we used to train
an XGBoost model with 84.4% weighted accuracy. In an
analysis of the 30k websites, we found that a vast majority,
namely 94.7% of them, contain at least one potential privacy
violation. All the steps to reproduce these results together
with the intermediate files of our results are documented in
great detail within the README file of the artifact.

Note that the changes to websites content cause variance
in the results. We try to document this variance below:

1. Variance for the cookie consent web crawlers. Within
the large Tranco list, the number of websites with CMPs
remains roughly the same over time. Among the more
popular sites, the percentage of websites using the se-
lected CMPs is higher, allowing the use of smaller in-
put files. In the paper, we observed suitable CMPs on
0.63% of the Tranco 6M list (see Sections 2.1 and 2.2
of the paper). In the Master Thesis report, it was 1.6%
for Tranco 1M Worldwide or 1.25% for Tranco Europe,
and BuiltWith website reports the selected CMPs in over
3% of the top 1M websites. We observed on average 22

cookies with label per website, which depends strongly
on the number of sub-pages visited for each site (dis-
cussed in the par. 3 of Section 2.3. of the paper). We did
not measure the variance for the settings in the crawler,
but the results should be consistent as long as you run
the provided crawler from within EU.

2. Variance in the XGBoost classifier. The feature extrac-
tion is deterministic, extracting the same features with
each execution. Training the model appears to be stable,
as we observe a standard deviation of 0.23% in the accu-
racy. The model’s balanced accuracy will drop from the
reported 84.4% if you use a smaller training dataset. Ad-
ditional standard deviations for each metric are provided
in the dataset.

3. Variance in the GDPR violation detection scripts.
The observed violations depends on website selection,
but the results between the master thesis report and the
paper varied by 4% for the number of websites with at
least one type of violation. For individual violations this
variance can be higher.

188 31st USENIX Security Symposium USENIX Association

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

A Artifact Appendix

A.1 Abstract
We propose KHALEESI, a machine learning (ML) approach
that captures the essential sequential context needed to effec-
tively detect advertising and tracking request chains. We re-
lease KHALEESI’s classification code, ML model, browser ex-
tension, and data sets. Classification code is written in Python
3.6, the ML model is trained using Scikit, the browser exten-
sion is written in JavaScript/HTML, and the data is crawled
using OpenWPM.

A.2 Artifact check-list (meta-information)
• Binary: A browser extension to block advertising and tracking

request chains. The extension is designed and tested in Mozilla
Firefox.

• Model: ML model to detect advertising and tracking request
chains. Released ML model was trained on request chains from
homepages of Alexa top-10K websites.

• Data set: Data sets to train and test ML model. We release
crawls of homepages, home and sub pages, home and sub
pages with cookies blocked, and home and sub pages with
browser spoofed as Safari. All data sets are crawls of Alexa
top-10K websites. The data contains requests, responses, and
JS execution.

• Run-time environment: Scripts can be run using Python 3.6
and above. The code was tested on Ubuntu 16.04.7 LTS.

• How much disk space required (approximately)?: We rec-
ommend a disk space of ∼100GB to train the classifier. The
browser extension does not have any disk space constraints.

• How much time is needed to complete experiments (ap-
proximately)?: The classifier can be trained in ∼ 10 hours.
The browser extension blocks the ads instantaneously.

• Publicly available (explicitly provide evolving version ref-
erence)?: KHALEESI’s code, data, and browser extension is
available at https://uiowa-irl.github.io/Khaleesi/.

• Archived (explicitly provide DOI or stable reference)?:
KHALEESI’s code, data, and browser extension is available
at https://github.com/uiowa-irl/Khaleesi/tree/
bd28513878a363b39b0ee9e7a6a4350f71672912

A.3 Description
A.3.1 How to access

KHALEESI’s code, ML model, and browser extension are avail-
able on Github at: https://uiowa-irl.github.io/Khaleesi/.
Data sets are available on Zenodo at: https://doi.org/10.5281/
zenodo.6084582.

A.3.2 Hardware dependencies

KHALEESI ML model was trained on a machine with 16 cores and
96 GB RAM. We recommend a disk space of ∼100 GB to train the
classifier. The model can be tested on hardware with less resources.

A.3.3 Software dependencies

KHALEESI browser extension was designed and tested on Mozilla
Firefox. We trained and tested KHALEESI ML model on Ubuntu
16.04.7 LTS.

A.3.4 Data set dependencies

KHALEESI is trained on data set crawled through OpenWPM version
0.10.0. The code might require some minor modifications to process
data from newer versions of OpenWPM.

A.4 Installation
We provided instructions to run KHALEESI on Github.

A.5 Experiment workflow
In addition to instructions on Github, we provide detailed instruc-
tions to run the code below:

A.5.1 Training & Testing ML model

We list the step-by-step process to train and test KHALEESI’s ML
model below:

1. Data collection: Collect network and JavaScript initiated re-
quests using OpenWPM.

2. Request chain construction: Organize network and JavaScript
initiated requests into chains. Request chains can be con-
structed with HTTP and JavaScript chain construction scripts.

3. Request chain labeling: Once constructed, label request chains
using EasyList (EL) and EasyPrivacy (EP) filter lists. Use filter
list labeling script and EL/EP filter lists to label the chains.

4. Feature extraction and transformation: After labeling, extract
features from the request chains using using feature extraction
script and encode them using feature encoding script.

5. Model training: Since, KHALEESI relies on previous confi-
dence as a feature, extract the previous confidence for each
request in a chain before training the final model. The previous
confidence can be extracted using compute previous confidence
script. The last block of previous confidence script stores the
final trained model. An already trained model is available in
data directory.

6. Testing the model: KHALEESI uses 10-fold cross validation to
test the data sets. The encoded features with previous confi-
dence can be tested using test classifier script and the accuracy
can be computed using compute accuracy script.

A.5.2 Analysis of Request Chains

We release scripts to analyze cookie syncing and bounce tracking
instances in request chains. Use the cookie syncing and bounce
tracking scripts to identify cookie syncing and bounce tracking
instances, respectively.

USENIX Association 31st USENIX Security Symposium 189

https://scikit-learn.org/stable/
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://uiowa-irl.github.io/Khaleesi/
https://doi.org/10.5281/zenodo.6084582
https://doi.org/10.5281/zenodo.6084582
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/blob/main/code/http_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/js_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/filter_lists_labeling.ipynb
https://github.com/uiowa-irl/Khaleesi/tree/main/ground_truth
https://github.com/uiowa-irl/Khaleesi/blob/main/code/feature_extraction.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/encode_features.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute_previous_confidence.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/data/final_clf.joblib
https://github.com/uiowa-irl/Khaleesi/blob/main/code/test-classifier.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute-accuracy.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/cookie_syncing_heuristic.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb

A.5.3 Browser Extension

To add KHALEESI to Firefox, enter about:debugging in the URL
bar, click This Firefox, click Load Temporary Add-on, navigate to
the extension’s directory and open manifest.json. To view the re-
quests blocked by KHALEESI, open extension’s console by clicking
Inspect in about:debugging or see the network tab in the Firefox
Developer Tools.

A.6 Evaluation and expected results
Training & Testing ML Model: Upon successful execution, the work-
flow should produce a trained ML model and output its accuracy.

Analysis of Request Chains: Upon successful execution, the scripts
should list the cookie syncing and bounce tracking instances in
request chains.

Browser Extension: After installation, the browser extension should
block advertising and tracking request chains.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

190 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact provides the steps for demonstrating the function-
ality of our system, minTAP, and reproducing the main results
in the paper. It includes proof-of-concept implementations
of both the client and the server based on the minTAP proto-
col. The client is implemented as a Chrome extension, while
the server hosts a minTAP-compatible service in a docker
container.

A.2 Artifact check-list (meta-information)
• Data set: We use a non-public dataset that takes about 300 MB.

• Run-time environment: The client requires a Chrome
browser with developer mode enabled. The server requires
Ubuntu 20.04 with Docker installed.

• Metrics: Privacy benefits (in terms of data minimized) and
execution time.

• Output: Graph and console outputs that should closely match
the results given in the original paper.

• Experiments: this artifact consists of three experiments: veri-
fying minTAP functionality, replicating privacy benefits, and
replicating execution time.

• How much disk space required (approximately)?: 500 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 hours.

• How much time is needed to complete experiments (approx-
imately)?: 1-2 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: The code will be publicly available in https:
//github.com/EarlMadSec/minTAP.

• Archived (explicitly provide DOI or stable reference)?:
https://doi.org/10.5281/zenodo.6523010.

A.3 Description
A.3.1 How to access

An archived version of the code is available at https://doi.
org/10.5281/zenodo.6523010.

A.3.2 Hardware dependencies

We use an AWS EC2 t3.large instance, but any machine
with similar hardware specifications should also work.

A.3.3 Software dependencies

The following are the software dependencies for minTAP. The
provided Docker setup file will manage other dependencies.

• Client: Chrome 98

• Server: Ubuntu 20.04 with Docker 20.10 installed

A.3.4 Data sets

We did not publish the dataset.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Server installation. Please follow the instructions lo-
cated under Server/README.md for building and running
the docker container. The docker will set up a minTAP-
compatible service on the host machine’s port 5000. Make
sure both inbound and outbound network traffics are allowed
on this port.

Test account setup. You need to create a developer account
at https://ifttt.com/developers and follow the steps
below to register the minTAP-compatible service with IFTTT.

1. Create a new service named mintap_service in https://
ifttt.com/services/new and add a new trigger based on
the instructions in Server/README.md.

2. Go to https://platform.ifttt.com/services/mintap_
service/api and fill the IFTTT API URL field with the URL
path to the minTAP-compatible service (i.e., port 5000 on the
server host machine).

3. Go to https://platform.ifttt.com/services/
mintap_service/api/authentication and fill
the Authorization URL field with [IFTTT API
URL]/mintap/auth/authorize and the Token URL
field with [IFTTT API URL]/mintap/auth/token.

Once the server information is set up, go to the following
links to run the IFTTT’s built-in sanity checks. If the server
is set up correctly, all tests should pass.

• https://platform.ifttt.com/services/mintap_
service/api/endpoint_tests

• https://platform.ifttt.com/services/mintap_
service/api/authentication_test

Client installation. Please follow Step 2 in this Chrome
help page to install minTAP’s browser extension. The client’s
source code is located inside the Client/ folder. Note that
the client does not need to be installed on the same machine
as the server.

USENIX Association 31st USENIX Security Symposium 191

https://github.com/EarlMadSec/minTAP
https://github.com/EarlMadSec/minTAP
https://doi.org/10.5281/zenodo.6523010
https://doi.org/10.5281/zenodo.6523010
https://doi.org/10.5281/zenodo.6523010
https://ifttt.com/developers
https://ifttt.com/services/new
https://ifttt.com/services/new
https://platform.ifttt.com/services/mintap_service/api
https://platform.ifttt.com/services/mintap_service/api
https://platform.ifttt.com/services/mintap_service/api/authentication
https://platform.ifttt.com/services/mintap_service/api/authentication
https://platform.ifttt.com/services/mintap_service/api/endpoint_tests
https://platform.ifttt.com/services/mintap_service/api/endpoint_tests
https://platform.ifttt.com/services/mintap_service/api/authentication_test
https://platform.ifttt.com/services/mintap_service/api/authentication_test
https://support.google.com/chrome/a/answer/2714278?hl=en
https://support.google.com/chrome/a/answer/2714278?hl=en

A.5 Experiment workflow
The experiment comprises 3 components:

1. Functionality test. The first workflow shows how our
minTAP client and server integrate with IFTTT. It re-
quires using the test account to create and modify rules
in IFTTT. Click the Personal Applets link in IFTTT
Developer Dashboard and create a new rule that uses
mintap_service as the trigger service. You may mod-
ify the filter code inside the rule to change its behav-
ior. Once you hover over the save button, minTAP’s
client will automatically fill the minTAP’s related fields.
See the Usage section in Server/README.md on how to
manually trigger the rule.

2. Analysis of privacy benefit. The second work-
flow describes the procedure to reproduce the anal-
ysis in Section 7.2. Refer to the description under
rule_analysis/README.md for detailed instructions.
Due to potential privacy concerns, we did not publish
the original dataset we used in the paper.

3. Execution time. We provide a test API to measure the
latency overhead of minTAP in terms of the execution
time of its additional operations. The test API can be
accessed using the curl command:

$ curl "[IFTTT API URL]/ifttt/v1/triggers/bench"

A.6 Evaluation and expected results
Following is a description of the expected results after running
each workflow.

1. Functionality test. After the rule is run, check the rule’s
activity logs on IFTTT’s website (by clicking the view
activity button in the rule’s page) to confirm that all
unneeded trigger attributes are removed.

2. Analysis of privacy benefit. A plot similar to Figure 9
should be generated.

3. Execution time. The test API will return the average
latency overhead (in seconds) over 20 runs. The value
should be less than 0.03 seconds.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

192 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
In this evaluation, we will allow you to run our experiments
on our verifiable secret sharing schemes. One scheme is KZG
based with trusted setup, and the one is Virgo based without
trusted setup. We will use the c++ standard library chrono to
time our execution. You need to read about 20 lines of C++
code to verify our time measurement.

A.2 Artifact check-list (meta-information)
• Algorithm: KZG polynomial commitment, Virgo zero-

knowledge proofs protocol, FFT
• Program: C++ program
• Compilation: cmake, and we will provide a bash file for

fast setup the environment and fast execution.
• Run-time environment: Ubuntu
• Hardware: Amazon c5a.24xlarge
• Execution: We provide a bash file for execution
• Metrics: measure time in seconds
• Output: the dealer’s (prover) execution time and the veri-

fier’s execution time
• Experiments: our improved KZG execution, and our virgo

based VSS execution
• How much disk space required (approximately)?: 20GiB

for the OS, we do not require any additional space.
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (ap-

proximately)?: 10 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv3

A.3 Description
A.3.1 How to access

We put the ssh key in our github repo root directory, named
"evss_AE.pem". To access the machine, visit this link:

https://bit.ly/3AFpnwk
If the link fails, use information below:

1. USER NAME: AE_EVSS

2. Password: uNe*g!)0H8pzu=0

3. Access key ID: AKIAWVJ5RUVJDZXGF2X7

4. Secret access key: TcVJ-
FocQ/ztXUlYA4HdOu3I9dP/SW8NFo1KuanWu

5. Console login link: https://458079970642.signin.aws.amazon.com/console

With the access link, you can now access our AWS account. At
region North California, you should be able to find a machine la-
beled evss_AE. You can start the machine and find it’s IP address.
Assuming you have the machien IP, use this command to access:

ssh -i evss_AE.pem ubuntu@IP

A.3.2 Hardware dependencies

Amazon AWS c5a.24xlarge, 20Gib disk space.

A.3.3 Software dependencies

libgmp, ate-pairing, xbyak
All dependencies will be installed via our provided script: depen-

dency.sh

A.4 Installation
Obligatory. Describe the setup procedures for your artifact targeting
novice users (even if you use a VM image or access to a remote
machine).

In the home directory, you should be able to find a folder named
eVSS. This folder contains all needed files to run the experiment.
Dependencies are pre-installed.

A.5 Experiment workflow
The machine should be ready to directly run the experiment. At the
eVSS directory, you can run "./compile.sh" to compile the whole
project. (It’s already pre-compiled for you, but in case you want to
compile it, you can run this command.)

Then to run the experiment for improved KZG-based VSS, run
"./trusted_setup_version.sh"

To run the experiment for transparent VSS, run "./transpar-
ent_version.sh"

We will only run experiment for verifiable secret sharing. Let tp
be the VSS’s prover time, and tv be the VSS’s verification time, you
can calculate the DKG time for n parties by the following formula:

DKGtime= (2n× tv)+2× tp

A.6 Evaluation and expected results
1. For the KZG-based VSS, we claim:

(a) the running time for 210 players is 3 second

(b) the running time for 215 players is 100 second

(c) the running time for 220 players is 4000 second

(d) the verification time is constant, 0.001 second

(e) the proof size is constant, 192 Byte

2. For the transparent VSS, we claim:

(a) the running time for 210 players is 0.2 second, proof size
223840 Bytes, and verification time 0.003 second.

(b) the running time for 215 players is 8 second, proof size
324832 Bytes, and verification time 0.004 second.

(c) the running time for 220 players is 300 second, proof
size 467520 Bytes, and verification time 0.01 second.

A.7 Note
For final stable URL, visit

https://github.com/sunblaze-
ucb/eVSS/tree/e8f1cd4d6ef086b2ae017ed56560328fdffec491

USENIX Association 31st USENIX Security Symposium 193

A Artifact Appendix

A.1 Abstract
This artifact contains a reference implementation of the pp-
SAT protocol, as well as supporting benchmarks and helper
scripts necessary for reproducing our experimental results.
Our implementation uses the EMP-toolkit framework for the
underlying secure computation. Specifically, the artifact con-
tains an implementation of the protocol as a secure distributed
program, compiling which produces a ppSAT solver binary.
This binary is then used by our testing infrastructure, and
would in production be distributed amongst the parties and
invoked over their local, private formulas to execute the SAT
solving decision procedure over their conjunction. The artifact
also includes functionality to support running microbench-
marks on individual giant steps of the ppSAT protocol over
random formulas, as well as our haplotype inference bench-
marks (and supporting scripts). It further includes code to
execute the ppSAT protocol ‘in the clear’ to allow evaluating
the overhead of the secure computation.

The artifact is composed of C++ code supported by Python
scripts, intended for execution on suitable x86-based hardware
running Ubuntu 20.04 or a similar, modern desktop Linux
distribution. The compilation and benchmarking are verified
by the Github Action CI.

A.2 Artifact check-list (meta-information)
• Algorithm: the ppSAT solver algorithm, including the under-

lying oblivious stack

• Program: implementations of private ppSAT and its tests, as
well as of ppSAT ‘in the clear’

• Compilation: cmake and make

• Data set: HapMap dataset, publicly available at
https://web.archive.org/web/20170706011547/http:
//www.stats.ox.ac.uk/~marchini/phaseoff.html

• Run-time environment: tested on Ubuntu 20.04, should work
on all modern desktop Linux distributions

• Hardware: tested on Intel(R) Core(TM) i7-8700K CPU @
3.70GHz * 6 processor

• Execution: shell scripts, python scripts, x86 binary

• Security, privacy, and ethical concerns: the HapMap dataset
is publicly released and widely used in genetic studies

• Metrics: running time

• Output: the running time and model (or UNSAT) for satisfi-
able formulas (or unsatisfiable formulas)

• Experiments: all experiments are verified by a Github Ac-
tion composed of four items: functionalities (unit testing
of our protocol components); microevaluation (benchmark-
ing of our protocol components, produces figures in §5.1);
simulation_difference (used to verify that our estimated
time is close to wallclock running time, as mentioned in §5.2);
and benchmark (reproduces Sections 5.2 and 5.3 – we only

include one test because running all benchmarks exceeds 6
hours of running time)

• How much disk space required (approximately)?: 10 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• How much time is needed to complete experiments (ap-
proximately)?: 4 hours for benchmarking our cryptographic
protocols; 12 hours for obtaining the number of steps that our
solver needs for Haplotype benchmarks

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/PP-FM/ppsat

• Archived URL : https://github.com/PP-FM/ppsat/
releases/tag/v1.0.0

A.3 Description
A.3.1 How to access

https://github.com/PP-FM/ppsat

A.3.2 Hardware dependencies

A modern x86 CPU.

A.3.3 Software dependencies

cmake, emp-toolkit, gtest, openssl

A.3.4 Data sets

The HapMap dataset. Our repo includes the data that are used
for our benchmarking.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

We use a publicly released, widely-used dataset.

A.4 Installation
Installation can be easily done by following the instructions at
https://github.com/PP-FM/ppsat#installation. Our
Github Action scripts contain all steps to install our code on
a clean Ubuntu machine.

A.5 Evaluation and expected results
The latest Github Action results, at the point of submis-
sion, can be found at https://github.com/PP-FM/ppsat/
actions/runs/1894455944. The output of each subtask in-
cludes the running time and status of each test. They can be
used to plot the figures presented in the paper.

In the paper, we made the following claims.

USENIX Association 31st USENIX Security Symposium 195

https://web.archive.org/web/20170706011547/http://www.stats.ox.ac.uk/~marchini/phaseoff.html
https://web.archive.org/web/20170706011547/http://www.stats.ox.ac.uk/~marchini/phaseoff.html
https://github.com/PP-FM/ppsat
https://github.com/PP-FM/ppsat/releases/tag/v1.0.0
https://github.com/PP-FM/ppsat/releases/tag/v1.0.0
https://github.com/PP-FM/ppsat
https://github.com/PP-FM/ppsat#installation
https://github.com/PP-FM/ppsat/actions/runs/1894455944
https://github.com/PP-FM/ppsat/actions/runs/1894455944

1. Our ppSAT solver can correctly and reasonably ef-
ficiently solve SAT formulas based on our newly
designed heuristics, and all components scale well
when the size of the formula increases (§5.1). This
claim is tested in artifact/functionalites and
artifact/microevaluation.

2. Our ppSAT solver can be used towards a real
application of solving haplotype inference (§5.2).
The accuracy of our timing estimation is tested in
artifact/simulation_difference, while the rest
is benchmarked in artifact/benchmark.

3. Our ppSAT solver still incurs a high overhead compared
with a plaintext solver (§5.3). The results from §5.3 only
require a plaintext SAT solver, for which we use Kissat.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

196 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

Hyperproofs artifact contains two components: (1) source
code of the Hyperproofs vector commitment (VC) scheme
and (2) scripts to compare the performance of Hyperproofs
aggregation with SNARKs based Merkle-proof aggregation
(implemented by Ozdemir et al. [3, 4]).

We use the Golang bindings of the mcl library [2] to imple-
ment Hyperproofs. Hyperproofs source code contains three
major components: (1) the vector commitment scheme, (2)
implementation of the argument system for Lb,ℓ

BATCH using the
inner-product argument (IPA) proposed by Bünz et al. [1],
and (3) KZG commitment scheme to optimize the verifier of
the IPA.

A.2 Artifact check-list (meta-information)

• Algorithm: We implement the Hyperproofs vector com-
mitment scheme described in the paper.

• Compilation: Hyperproofs require go 1.16 or above
and mcl requires GCC 9.3.0 and above. Baseline imple-
mentation from Ozdemir et al. requires rust [3].

• Run-time environment: Ubuntu 20.04 or similar with
sudo privileges (for mcl installation).

• Hardware: Our benchmarks used a machine with Intel
Core i7-4770 CPU @ 3.40 GHz with 8 cores and 32 GiB
of RAM.

• Execution: Benchmarks are single-threaded and
memory-intensive thus the benchmarking results can
vary due to simultaneous usage of resources by other
processes. Approximately, micro and macro benchmarks
(excluding Com and OpenAll) take 1.5+ hours, and com-
parison with SNARKs based Merkle-proof aggregation
takes 6.5+ hours.

• Metrics: Experiments report the execution time of VC
operations.

• Output: The artifact returns the execution time of
benchmarks reported in the paper.

• Experiments: At a high level, we evaluate the perfor-
mance of our VC scheme through micro-benchmarks,
macro-benchmarks, and baseline comparison. Instruc-
tions to set up and run the experiments are included in
the readme of the corresponding project repositories (see
App. A.3.1).

• How much disk space required (approximately)?: In
total, 150 GiB of storage is required. This is because
the public parameters of the vector commitment scheme
requires 100 GiB and SNARKs based Merkle-proof ag-
gregation requires 50 GiB of storage.

• How much time is needed to prepare workflow (ap-
proximately)?:

Step Estimated time
(hours)

Software installation 1+

Generating Hyperproof
public parameters 1.5+

Generating SNARK [3]
public parameters 8+

Total 10.5+

• How much time is needed to complete experiments
(approximately)?:

Step Estimated time
(hours)

Benchmark Open,Com 6.5+

Other micro/macro-benchmarks 1.5+

Hyperproofs aggregation 4+

SNARK + Merkle aggregation 2.5+

Total 14.5+

• Publicly available (explicitly provide evolving version
reference)?: Yes (see App. A.3.1).

• Code licenses (if publicly available)?: Apache License,
Version 2.0

• Archived (explicitly provide DOI or stable refer-
ence)?: Yes (see App. A.3.1).

A.3 Description
A.3.1 How to access

The stable URL to access the artifact:

https://github.com/hyperproofs/hyperproofs/releases/tag/1.0.0

The latest version of the artifact is available at:

https://github.com/hyperproofs/hyperproofs/

A.3.2 Hardware dependencies

Requires at least 32 GiB of RAM and 150 GiB of storage.

A.3.3 Software dependencies

Requires Ubuntu 20.04 with sudo privileges, go 1.16 or above,
rust nightly, GCC 9.3.0 or above, CMake, libgmp, libflint, git,
python3 (pandas and matplotlib), curl, and other standard
tools.

A.3.4 Data sets

N/A

USENIX Association 31st USENIX Security Symposium 197

https://github.com/hyperproofs/hyperproofs/releases/tag/1.0.0
https://github.com/hyperproofs/hyperproofs/

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

We include the detailed installation instructions in the project
repository (see App. A.3.1).

A.5 Experiment workflow

Once the necessary software tools are installed:
• Setup: First, run the scripts/hyper-go.sh in hyperproofs-

go. This generates the public parameters for the VC
scheme, which will be located in the folders pkvk-26 and
pkvk-30. Second, run the merkle-snarks-setup.sh script
in bellman-bignat. This generates the public parameters
for the SNARKs baseline in the folders pedersen-30 and
poseidon-30.

• Benchmarks: First, run the scripts/hyper-bench.sh in
hyperproofs-go. This generates the execution times of
various VC operations that constitute micro- and macro-
benchmarks reported in the evaluation section of the
paper. Moreover, this script also generates the prov-
ing and verification times of Hyperproofs aggregation
scheme. Second, run the merkle-snarks-bench.sh script
in bellman-bignat. This script computes and reports the
proving and verification times of SNARK based Merkle-
aggregation.

A.6 Evaluation and expected results

The evaluation section of the paper presents: (1) micro-
benchmarks, (2) macro-benchmarks, and (3) comparison with
SNARK based Merkle-tree aggregation. By running the
scripts/hyper-bench.sh, raw data for micro-benchmarks can
be obtained. Thus, the micro-benchmarking numbers can be
used to directly derive the macro-benchmarks. Additionally,
micro-benchmarking script returns the performance of aggre-
gation in Hyperproofs for varying batch sizes. The SNARKs
baseline can be obtained by running merkle-snarks-bench.sh.

A.7 Experiment customization

N/A

A.8 Notes

N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

References
[1] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi

Vesely. Proofs for Inner Pairing Products and Applications. Cryptology
ePrint Archive, Report 2019/1177, 2019. https://ia.cr/2019/1177.

[2] Mitsunari Shigeo. mcl: a portable and fast pairing-based cryptography
library. https://github.com/herumi/mcl/, 2015. Accessed: 2020-
10-14.

[3] Alex Ozdemir. bellman-bignat, 2020. https://github.com/alex-
ozdemir/bellman-bignat.

[4] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. Scaling
Verifiable Computation Using Efficient Set Accumulators. In 29th
USENIX Security Symposium (USENIX Security 20), 2020.

198 31st USENIX Security Symposium USENIX Association

https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/bellman-bignat
https://github.com/hyperproofs/hyperproofs-go
https://github.com/hyperproofs/bellman-bignat
https://github.com/hyperproofs/hyperproofs-go/blob/main/scripts/hyper-bench.sh
https://github.com/hyperproofs/bellman-bignat/blob/singlecore/merkle-snarks-bench.sh
https://ia.cr/2019/1177
https://github.com/herumi/mcl/
https://github.com/alex-ozdemir/bellman-bignat
https://github.com/alex-ozdemir/bellman-bignat

A Artifact Appendix

A.1 Abstract
“Loki: Hardening Code Obfuscation Against Automated At-
tacks” is a paper on code obfuscation that focuses on harden-
ing VM handlers with the goal of thwarting automated attacks
such as symbolic execution.

Our artifact includes both the source code of our prototype,
which allows to create obfuscated binaries, and the attack
tooling used in the evaluation (on Github) as well as the data
generated during the evaluation (published as dataset on Zen-
odo). Our experiments cover various aspects from measuring
Loki’s overhead to measuring its resilience w.r.t. to automated
attacks. All experiments come with a README.md explain-
ing the individual scripts and a wrapper script to improve
usability. We use a Docker container to minimize setup prob-
lems and make the artifact accessible to different setups.

Evaluating this artifact will require

1. Building a docker container (and potentially download-
ing up to 50GB of data from an accompanying Zenodo
artifact)

2. Creating a number of obfuscated binaries (we provide
convenience wrapper scripts doing all the work)

3. Running 14 experiments (most of which have multiple
steps):

• Validating correctness and measuring overhead

• Running multiple attacks

Individual experiments may run multiple hours (depending on
whether (1) you want to use binaries created by us or create
them yourself and whether you focus on replicating the results
on a subset or intend to test all binaries).

A.2 Artifact check-list (meta-information)
• Data set: https://zenodo.org/record/6686932
• Hardware: 52 cores + 64GB RAM + 25GB disk space
• Experiments: 14 different ones, covering all aspects
• How much disk space required (approximately)?: 25GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1h
• How much time is needed to complete experiments (ap-

proximately)?: 40h (experiments can run unattended after
being launched)

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes

• Code licenses (if publicly available)?: AGPL 3
• Data licenses (if publicly available)?: AGPL 3
• Archived (explicitly provide DOI or stable reference)?:

10.5281/zenodo.6686932

A.3 Description
Our artifact is split into two parts: The core component is
the source code of our prototype and evaluation tooling (pub-
lished on Github). Beyond that, we published artifacts such
as produced binaries and raw results in a dataset on Zenodo.
In essence, our artifact includes 14 experiments, which cre-
ate obfuscated binaries, evaluate their overhead/correctness,
or attack them using a number of automated simplification
attacks.

Our code is intended to be run in a (provided) Docker
container.

A.3.1 How to access

• Download the source code from Github:
https://github.com/RUB-SysSec/loki/commit/
86134c1318347547debaf9b77e867d5b16d79d1d

• Download the dataset from Zenodo: https://zenodo.
org/record/6686932

A.3.2 Hardware dependencies

We recommend a server with many CPU cores (to reduce the
experiment runtime and speed-up evaluation); We recommend
more than 52 cores, at least 64 GB RAM, and about 25 GB
disk space. These are no hard requirements: Less cores may
work, but will increase the runtime of all experiments. Internet
access is recommended.

A.3.3 Software dependencies

We provide our code in form of a Docker image. We
have not tested the artifact on any OS other than
Linux; most distributions should work fine. Opti-
mally, your kernel supports Kernel Samepage Merg-
ing (https://www.kernel.org/doc/html/latest/admin-
guide/mm/ksm.html).

A.3.4 Data sets

There is a data set containing evaluation results, binaries, and
other artifacts resulting from our evaluation on Zenodo at
https://zenodo.org/record/6686932. It is 4.9GB when
zipped and 16GB when unzipped on disk.

A.4 Installation
1. Download the source code from Github:

git clone https://github.com/RUB-SysSec/loki.git

2. Use our wrapper script to build the Docker container:
cd loki && ./docker_build.sh

3. Start the docker container using our wrapper script:
./docker_run.sh

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 199

https://zenodo.org/record/6686932
https://github.com/RUB-SysSec/loki/commit/86134c1318347547debaf9b77e867d5b16d79d1d
https://github.com/RUB-SysSec/loki/commit/86134c1318347547debaf9b77e867d5b16d79d1d
https://zenodo.org/record/6686932
https://zenodo.org/record/6686932
https://zenodo.org/record/6686932

4. Running this script again will connect you to the con-
tainer:
./docker_run.sh

5. Within the docker container, install Loki and all depen-
dencies:
./setup.sh

Noteworthy, docker_run.sh will mount the loki direc-
tory within the container as volume: Simplified speak-
ing, anything within the container that is located within
/home/user/loki/ will be available outside the docker con-
tainer in the loki folder. This can be convenient, e. g., if
you want to copy the dataset from Zenodo into the Docker
container: Simply place it in the loki/ folder and it will be
accessible from within the container. A more detailed expla-
nation can be found in the Github README.md.

A.5 Experiment workflow
All experiments are located in loki/experiments/ with the
experiment number matching the one in the paper. Each ex-
periment is documented in a README.md and usually consists
of two to four steps. For your convenience, we provide Python
scripts automating that part (experiment_N.py). As some ex-
periments can share data (such as binaries generated), we rec-
ommend you do not change the default paths suggested (data
will almost always be placed in /home/user/evaluation).
Experiments can be customized by setting command line
flags, changing values of globals in the Python wrapper script,
or patching the scripts themselves (which we don’t recom-
mend generally). Our experiments usually run at least hours
up to days (the standard timeout used is always 1 hour for
each task; oftentimes there are at least 1,000 tasks per experi-
ment. We suggest you test the experiment on a subset of tasks
(e.g., by generating only 10 binaries instead of 1,000). All
experiment scripts already propose a more sensible value
of tasks. If this is not desired, changing NUM_INSTANCES (or
similar-named constants at top of the scripts) allows you fine-
granular control of how much tasks are executed.

A.6 Evaluation and expected results
Our experiments cover all relevant aspects. A detailed ap-
proach on how to reproduce them can be found in the
README.md files we provide for each experiment. The ex-
pectations of the experiment are outlined in the paper.

• Dead code elimination: Only a few instructions (1-2%)
of Loki’s handler can be removed

• Experiment 1 Correctness: The obfuscated binaries pro-
duced by Loki maintain the same functionality

• Experiment 2 Coverage: Full code and path coverage is
achieved.

• Experiment 3 Overhead: The obfuscated binaries pro-
duced by Loki have an overhead factor of 300 to 500
(runtime) and 20 to 50 (size)

• Experiment 04 Key Encodings: The SMT solver cannot
solve the Factorization-based key encoding and 70% of
the point functions

• Experiment 05 Key Encodings on Binary Level: The
SMT solver finds a correct key in 31% of the cases

• Experiment 06 Taint Analysis: Taint analysis taints all
but 17% of the instructions

• Experiment 07 Backward Slicing: Backward slicing
slices all but 5% to 8% of the instructions

• Experiment 08 Symbolic Execution: SE simplifies no
handler (static scenario) or 18% (dynamic attacker;
depth 3) / 15% (dynamic attacker; depth 5)

• Experiment 09 MBA Diversity: Loki uses
5,482/7,000 = 78% unique MBAs

• Experiment 10 MBA Formula Deobfuscation: LokiAt-
tack significantly outperforms MBA Blast (the best com-
petitor); resuls should be similar to Figure 3

• Experiment 11 Complexity of Core Semantics: Using
superoperators increases the number of core semantics
from 16 to 59; with superoperators, the semantic depth
ranges from 5 to 13 with a peak at depth 9

• Experiment 12 Limits of Program Synthesis: Synthesis
falls of w.r.t. synthesizing expressions of higher semantic
depth; shape should be similar to Figure 5

• Experiment 13 Superoperators on the binary level: Syn-
tia manages to synthesize about 19% of Loki’s expres-
sions

Due to non-determinism (in both our obfuscator and analy-
sis tooling) and the scope of this artifact evaluation (evaluating
10 binaries instead of 1,000), we expect quite some fluctu-
ations. In some cases, it may be necessary to evaluate 100
binaries instead of 10 to reproduce our results.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

200 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
The artifact evaluation consists of two parts: (1) evaluation of
attacks on signed OpenDocument Format (ODF) documents
and (2) evaluation of Document Signature Validator (DocSV).

To evaluate the attacks on signed ODF documents, we
provide multiple proof of concept (PoC) files. By opening
the PoC files the reviewer can evaluate the success of the at-
tack. This success is either code execution via signed macros,
content spoofing, or timestamp manipulation. To evaluate all
attack classes, at least one Windows 10 system with the af-
fected ODF applications is required. Optionally, a macOS,
Linux, iOS, and an Android system is required to evaluate the
artifacts under all analyzed ODF applications.

The second part of the artifact evaluation focuses on DocSV
– our tool is capable to evaluate the signature status of
signed documents in ODF, Office Open XML (OOXML),
and Portable Document Format (PDF) formats. We provide a
collection of test documents that can be used by the reviewers.
Both the source code and the compiled executable are pro-
vided for this purpose. For the evaluation of the DocSV tool,
a Windows 10 system with the respective ODF, OOXML and
PDF applications to be tested is required.

A.2 Artifact check-list (meta-information)
✓ Run-time environment

– Required: Windows 10

– Optional: macOS Catalina, Ubuntu 20.04.3 LTS, iOS 15,
and Android 10

✓ Software Installation

– ODF office applications (see Section A.3.1)

– DocSV executable (see Section A.3.1)

✓ Resources for the Evaluation

– How much disk space required – approx. 50 GB

– How much time is needed to prepare workflow – approx.
2h

– How much time is needed to complete experiments – ap-
prox. 1h

✓ Code licenses (if publicly available)?: trial licenses are sufficient

A.3 Description
A.3.1 How to access

Access to the Vulnerable Applications Below we have listed
links to the installation files of various ODF applications. Please note
that not all ODF applications are freely available in the vulnerable
version.

• Apache OpenOffice: choose version 4.1.8 here.

• IBM Lotus Symphony 3.0.1: here, fp2-Update: here.

• LibreOffice 7.0.4.2: here.

• Microsoft Office 2019: Microsoft Office 2019 can be down-
loaded as a trial version here.

• Collabora Online (CODE) 6.0-18: Virtual machine (VM) im-
ages for the online variant of Collabora are available here.

Artifacts Stable URL to all artifacts: https://github.com/
RUB-NDS/DocumentSignatureValidator/releases/tag/
Artifact_Evaluation

• PoC files for all attacks described in the paper are available
here.

• DocSV source code and a compiled executable can be down-
loaded on GitHub.

• A collection with test files for DocSV is available here.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

To evaluate all attack classes, at least a Windows 10 system with
the vulnerable ODF applications is required. Optionally, a macOS
Catalina, Ubuntu 20.04.3 LTS, iOS 15 and Android 10 system is
required to be able to evaluate the artifacts under all analyzed ODF
applications.

Due to their same code base, LibreOffice and Collabora Office
cannot be installed on Windows at the same time.

For OpenOffice on macOS, the Mozilla Certificate Store must
be associated to properly validate the trusted entity certificate (see
configuration tutorial).

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
ODF Signature Attacks All ODF applications (see Sec-
tion A.3.1) need to be installed on a Windows 10 VM or on a physical
machine. Optionally, the same for macOS Catalina, Ubuntu 20.04.3
LTS, iOS 15 and Android 10. To evaluate the PoC files on Collabora
Online, run the prepared VM on VMware or VirtualBox and follow
the instructions.

USENIX Association 31st USENIX Security Symposium 201

https://www.openoffice.org/download/index.html
https://securedl.cdn.chip.de/downloads/4263602/IBM_Lotus_Symphony301_w32_de.exe
https://www.ibm.com/support/fixcentral/swg/selectFixes?product=ibm/Lotus/Lotus+Symphony&fixids=Lotus_Symphony301_component_w32_fp2.exe
https://downloadarchive.documentfoundation.org/libreoffice/old/7.0.4.2/
http://officecdn.microsoft.com/pr/492350f6-3a01-4f97-b9c0-c7c6ddf67d60/media/en-us/Professional2019Retail.img
https://appcenter.software-univention.de/univention-apps/4.3/collabora/
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/poc_files_ODF_signature_attacks
https://github.com/RUB-NDS/DocumentSignatureValidator
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
 https://wiki.openoffice.org/wiki/Certificate_Detection

DocSV To evaluate DocSV, no installation is required, just run
DocumentSignatureValidator.exe. In addition to ODF applica-
tions, DocSV can also be evaluated with PDF applications (Adobe
Acrobat Reader DC and Foxit PDF Reader), as well as with OOXML
applications (Microsoft Office).

Installation steps of Collabora Online (CODE) VM
1. Import the VM Image.

2. Change the network adapter to NAT in your virtualization
software and add a port forwarding rule to forward port 443 to
the VM.

3. Start the VM.

4. Enter a City.

5. Use the IP provided by DHCP or one of your own.

6. Select Manage users and permissions directly on
the system.

7. Enter test as organization and add a mail address.

8. Choose a password.

9. Set code.test.local as FQDN.

10. Add code.test.local with IP 127.0.0.1 to the etc/hosts
file of the operating system.

11. After the setup is finished, open https://code.test.local
via the browser and register for a free license.

12. After that you can upload the ODF documents via https:
//code.test.local/nextcloud/login. Login: User name
Administrator, Password: which was assigned during the
installation.

A.5 Experiment workflow
Ground Truth First, the reviewers can see different documents
that are: not signed, signed with a trusted key, signed with an un-
trusted key, and manipulated by invalidating the signature.

Configuration We need to trust the certificate of the
trusted.person.odf@gmail.com and allow the execu-
tion of macros for this person. For this purpose, open
the file ODF_macro_signature_valid_and_trusted.odt.
A dialog then opens asking whether the creator
trusted.person.odf@gmail.com should be trusted. To do
this, check the "Always trust macros from this source" box and then
press the "Enable Macros" button.

DocSV: Usage and Configuration DocSV uses XML config-
uration files for execution. Sample configuration files for evaluating
various applications are available here.

• Input Files: In <files><path></path></files> users can
specify the directory of the documents that will be analyzed.
Test documents with different signature statuses and formats
are available here.

• Results: The directory for saving the screenshots created
during the check, as well as the CSV report are specified in
<output><path></path></output>.

• Detection Rules: In <sigvalidstring/>,
<siginvalidstring/> and <sigproblem/> the detec-
tion rules for each application can be specified. Note that the
default configuration is dependent on the language. To avoid
false results, use the English version of the office applications.

• Timeout: DocSV analyzes the application’s process memory.
To guarantee that the analyzed document is fully loaded into the
memory, users can configure a timeout in <wait/>. Users with
limited PC resources are encouraged to increase the timeout.

DocSV requires one parameter as input – the configuration file:
DocumentSignatureValidator.exe config_file_examples/
config_LibreOffice.xml

Prepare Foxit and Adobe for DocSV Foxit and Adobe use
their own certificate stores, so unknown signer certificates must first
be set up as trusted.

Adobe:

1. Open PDF test file containing a valid signature.pdf with Adobe
Acrobat.

2. Open the Signature Panel.

3. Click on the arrow of the Rev. 1... signature.

4. Open Signature Details→Certificate Details...

5. Click on Trust→Add to Trusted Certificates... to
trust the certificate.

Foxit:

1. Open PDF test file containing a valid signature.pdf with Foxit.

2. Open the Siganture Panel (left side Manage digital
signatures).

3. Right click on the signature Rev. 1...→Show Signature
Properties.

4. Click on Show Certificate...

5. Click on Trust→Add to Trusted Certificates to trust
the certificate.

DocSV must be added to Foxit as a trusted app. Click on
File→Preferences→Trust Manager→Open Foxit PDF
Reader from applications without valid digital
signatures→Change Settings... add the path to the DocSV
.exe and click Allow.

A.6 Evaluation and expected results

A.6.1 ODF Signature Attacks

All five attacks described in the paper can be evaluated. The
PoC files are sorted by the vulnerable ODF applications for
this purpose. For each attack class, two ODF documents are
included, as well as two folders. Files starting with 01_ repre-
sent the initial document. Files starting with 02_ represent the
documents manipulated by the attacker. The corresponding
directories contain the unzipped ODF file.

202 31st USENIX Security Symposium USENIX Association

https://code.test.local
https://code.test.local/nextcloud/login
https://code.test.local/nextcloud/login
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_without_signature.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_and_trusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_but_untrusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_but_untrusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_invalid.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_macro_signature_valid_and_trusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/config_file_examples
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/test_documents/PDF/PDF%20test%20file%20containing%20a%20valid%20signature.pdf
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/test_documents/PDF/PDF%20test%20file%20containing%20a%20valid%20signature.pdf

01: Macro Manipulation with Certificate Doubling The
attacker signs the document with its own key and thus can
choose the macro code. The public key of a trusted entity (e.g.,
trusted.person.odf@gmail.com) is included to mask the
document as trustful.

✓ Execution: Open the document
02_doc_macros_signed_by_attacker_manipulated.odt.

✓ Expected Result: After opening the doc-
ument, macro code is automatically exe-
cuted which opens a simple message box. In
Tools→Macros→Digital Signatures..., the
trusted entity trusted.person.odf@gmail.com is
displayed to the victim as the signer, even though the
signature was created by the attacker.

Figure 1: Expected result for 01: Macro Manipulation
with Certificate Doubling

02: Content Manipulation with Certificate Doubling The
attacker signs the document with its own key and thus can
choose the content of the document. The public key of a
trusted entity (e.g., trusted.person.odf@gmail.com) is in-
cluded to mask the document as trustful.

✓ Execution: Open the document
02_doc_signed_by_attacker_manipulated.odt.

✓ Expected Result: After opening the document,
a valid and trusted document signature is dis-
played to the victim. Under File→Digital
Signatures→Digital Signatures..., the trusted
entity trusted.person.odf@gmail.com is displayed to
the victim as the signer, even though the signature was
created by the attacker.

03: Content Manipulation with Certificate Validation By-
pass The attacker signs the document with its own key and
thus can choose the content of the document. The attacker dis-
ables the verification of the certificate chain and successfully
masks the document as trustful.

✓ Execution: Open the document
02_doc_signed_by_attacker_manipulated.odt.

Figure 2: Expected result for 02: Content Manipulation
with Certificate Doubling

✓ Expected Result: After opening the document, a valid
and trusted document signature is displayed to the
victim. Under File→Digital Signatures→Digital
Signatures..., a trusted entity arbitrarily chosen by the
attacker is displayed to the victim as the signer, even
though the signature was created by the attacker.

Figure 3: Expected result for 03: Content Manipulation
with Certificate Validation Bypass

04: Content Manipulation with Signature Upgrade The
attacker possess an ODF with signed macros that is created
by trusted entity. The attacker abuses the partial coverage
of the digital signatures and manipulates the content of the
document directly due to the missing integrity protection.
Thus, the attacker can choose the content of the document
arbitrarily.

✓ Execution: Open the document
02_doc_macros_signed_by_trusted_person_manipulated.odt

with Microsoft Office 2019.

✓ Expected Result: After opening the document, a valid
and trusted document signature is displayed to the vic-
tim. Under File→View Signatures, the trusted entity
trusted.person.odf@gmail.com is displayed to the
victim as the signer.

05: Timestamp Manipulation with Signature Wrapping
The attacker possess an ODF with signed content that is cre-
ated by trusted entity. The attacker applies an XML Signature

USENIX Association 31st USENIX Security Symposium 203

Figure 4: Expected result for 04: Content Manipulation
with Signature Upgrade

Wrapping attack. As a result the attacker can choose any
timestamp for the signature.

✓ Execution: Open the document
02_doc_signed_by_trusted_person_manipulated.odt.

✓ Expected Result: After opening the document,
a valid and trusted document signature is dis-
played to the victim. Under File→Digital
Signatures→Digital Signatures..., the trusted
entity trusted.person.odf@gmail.com is displayed
to the victim as the signer with the attacker’s chosen
timestamp 66/66/6666 00:00:00.

Figure 5: Expected result for 05: Timestamp
Manipulation with Signature Wrapping

Further Macro Exploit Examples If the reviewers are
interested in more powerful exploits, we created additional
examples. These PoC files contain two more variants of the
attack class 01 and are specially designed for Windows.

First variant exe_download_execute: The included
macro downloads an .exe file from https://github.com/
attodf/odf-test when the document is opened and saves
it to C\Users\%USERNAME%\AppData\Local\Temp, then au-
tomatically executes the program. The program is harmless
and does not contain any malicious code. It just outputs a text
on the console. A working Internet connection is required for
this variant.

Second variant ransomware: The included macro
creates the file example_ransomware.py under

C:\Users\%USERNAME%\AppData\Local\Temp.
Then, this Python script is executed, using the
Python environment of the respective office ap-
plication, which can be found under C:\Program
Files\%ODF-Application%\program\python.exe.
This ransomware simulation serves as a PoC and is
not supposed to do any damage, so it only creates a
hashed file with .hashed extension from each file under
C:\Users\%USERNAME%\Desktop. The function to delete
the original files is not active in the Python code.

A.6.2 DocSV

DocSV can be used to check the signature status of signed
documents in ODF, PDF and OOXML formats. DocSV is
started by DocumentSignatureValidator.exe via the con-
sole. The configuration is done using an XML configuration
file which must be passed as argument (see Section A.5).
DocSV automatically opens the individual signed documents
and determines the signature status through a memory analy-
sis. The analysis results are exported as a CSV file. In addition,
a screenshot of the opened document is also saved.

✓ Execution: Start DocSV and pass one of the prepared
configuration files. DocSV will test the files stored in the
folder test_documents. As part of the artifact evaluation,
you can generate your own files and test these with DocSV.

✓ Expected Result: DocSV produces a report containing
the result of the analysis and saves this report together with
the taken screenshots in results_dovsv. Our collection of
test documents contains one unsigned, signed, and manip-
ulated document. DocSV should detect these correctly.

A.7 Experiment customization
N/A

A.8 Notes
The certificate of the trusted entity is valid until 11st May
2022. For the evaluation of the attacks after this date, it is nec-
essary to reset the date of the operating system accordingly.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

204 31st USENIX Security Symposium USENIX Association

https://github.com/attodf/odf-test
https://github.com/attodf/odf-test
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/config_file_examples
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/results_docsv
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents

A Artifact Appendix

A.1 Abstract
Obligatory. Briefly describe your artifact including minimal
hardware and software requirements, how it supports your
paper, how it can be validated, and what is the expected result.
At submission time, it will also be used to select appropri-
ate reviewers. It will also help readers understand what was
evaluated and how.

The artifact is the source code of the tool (i.e., Pay-
mentScope) we proposed in the paper. It can detect payment
bypass vulnerability in Unity mobile games. It is implemented
atop Ghidra. To evaluate PaymentScope, we have attached
15 games in which 10 of them are vulnerable. PaymentScope
can detect that 10 of them are vulnerable and it can tell the
vulnerability type (i.e., local-verification or no-verification).
To run PaymentScope, we have prepared a VirtualBox VM in
which all the requirements have been setup. The VM needs 2
cores CPU and 8GB memory (mostly required by Ghidra)

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Program: the source code of PaymentScope

• Run-time environment: VirtualBox VM with 2 cores CPU
and 8GB memory

• Security, privacy, and ethical concerns: please don’t use the
tool to attack any real games.

• Output: identify 5 local-verification and 5 no-verification
games

• Experiments: run /home/paymentscope/Desktop/
runPaymentScopeOnTestData.py in the VM

• How much disk space required (approximately)?: 30GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour depending on the Internet bandwidth

• How much time is needed to complete experiments (approx-
imately)?: less than 1 hour

A.3 Description
Obligatory. For inapplicable subsections (e.g., the “How to access”
subsection when not applying for the “Artifacts Available” badge),
please specify ’N/A’.

A.3.1 How to access

N/A

A.3.2 Hardware dependencies

2 cores CPU and 8GB memory

A.3.3 Software dependencies

VirtualBox

A.3.4 Data sets

15 games. Among them, 10 are vulnerable. In particular, 5 are local-
verification and 5 are no-verification games.

A.3.5 Security, privacy, and ethical concerns

Please don’t use the tool to attack any real games.

A.4 Installation
Obligatory. Describe the setup procedures for your artifact targeting
novice users (even if you use a VM image or access to a remote
machine).

• Read the README.md file for the source code in Source Code
folder

• Read the README.md file for the Virtual Machine in Virtual
Machine folder

• Install the VirtualBox

A.5 Experiment workflow
Describe the high-level view of your experimental workflow and how
it is implemented, invoked and customized (if needed), i.e. some OS
scripts, IPython/Jupyter notebook, portable CK workflow, etc. This
subsection is optional as long as the experiment workflow can be
easily embedded in the next subsection.

• Login to VM

• Run /home/paymentscope/Desktop/
runPaymentScopeOnTestData.py to conduct the ex-
periments

• For each output folder, find the isVulnerable field in
analysisRes.json file. The field indicates whether the game
is vulnerable and the vulnerability type.

A.6 Evaluation and expected results
Obligatory. Start by listing the main claims in your paper. Next, list
your key results and detail how they each support the main claims.
Finally, detail all the steps to reproduce each of the key results in your
paper by running the artifacts. Describe the expected results and the
maximum variation of empirical results (particularly important for
performance numbers).

Main claim: PaymentScope can detect payment bypass vulnera-
bility in Unity mobile games. It is implemented by the guidance of
the Algorithm 1 in the paper.

To support the claim, we have attached a PDF in the source
code to map our implementation to the Algorithm 1. In addi-
tion, we have attached 15 games for testing, in which 5 are local-
verification and 5 are no-verification games. We have manually
verified the 10 games and they are indeed vulnerable. The games and
the vulnerability types is explained in file PaymenScope/Virtual
Machine/README.md.

USENIX Association 31st USENIX Security Symposium 205

After run runPaymentScopeOnTestData.py, the vulnerability
type can be found in isVulnerable field in analysisRes.json
file which is located in the output folder. 5 of them should be no-
verification, 5 of them should be local-verification and the rest should
be ‘secure’.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

206 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

The public repository1 contains all the code necessary to
reproduce the data for all performance graphs/tables in the pa-
per, as well as PoCs to demonstrate that the mitigation works.
This includes patches and build instructions for LLVM11, the
Intel SGX SDK and PSW, as well as the benchmarks. The
artifact requires SGX to evaluate, and is easiest to run on
Ubuntu 18.04 or 20.04.

A.2 Artifact check-list (meta-information)
• Program: Adapted versions of nbench and sgxbench are

downloaded & installed via included scripts.

• Compilation: Requires a modified Clang 11, install & down-
load script is included.

• Transformations: A tool to fix up relocations is included
(relocator).

• Run-time environment: Needs a native Linux installation
that supports SGX, Ubuntu 18.04 or 20.04 are strongly recom-
mended. Build scripts need internet access at several points.
Requires root for installation and evaluation. PoCs require the
PTEditor kernel module.

• Hardware: Intel CPU with SGX support, needs to be vulner-
able to LVI-Null for PoC tests (affected CPUs).
The PoCs need a kernel module, which means either self-
signing or disabling secure boot. This may require physical
access to the machine.

• Run-time state: As this artifact includes performance bench-
marks, a stable CPU frequency and isolated cores are recom-
mended.

• Execution: For ideal testing, the system should have isolated
cores, fixed frequency, and not much other activity.

• Metrics: Benchmarks report cycle count or iterations/s, PoCs
report leakage percentage.

• Output: Benchmark outputs are .csv tables with performance,
an included spreadsheet can convert to a graph similar to the
paper.

• Experiments: Installation scripts are included and described
here and in READMEs.

• How much disk space required (approximately)?: 4-5GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2-3h

• How much time is needed to complete experiments (ap-
proximately)?: 3-6h, depends on hardware

• Publicly available?: https://github.com/IAIK/LVI-
NULLify

• Code licenses (if publicly available)?: zlib

1https://github.com/IAIK/LVI-NULLify

A.3 Description
A.3.1 How to access

Clone https://github.com/IAIK/LVI-NULLify/tree/ae_
final and follow the README.md from there.

A.3.2 Hardware dependencies

As this is a mitigation for Intel SGX, SGX support is a hard
requirement. To fully evaluate the PoCs, and not just mitigation
performance, the CPU also needs to be vulnerable to LVI. You
can check if your CPU is vulnerable here: https://software.
intel.com/content/www/us/en/develop/topics/software-
security-guidance/processors-affected-consolidated-
product-cpu-model.html

A.3.3 Software dependencies

We strongly recommend Ubuntu 18.04 or 20.04 as these are officialy
supported by Intel, and all our tools were tested on them.

Beyond standard compilation tools (ninja, cmake etc) our PoCs
require the PTEditor kernel module 2. Other requirements are listed
in the README files at the appropriate points.

A.4 Installation
Follow the detailed README in the top-level directory to set up our
modified clang compiler and relocator and install the SGX driver as
well as our modified SGX SDK and PSW.

Once that is done, you can already test your installation with the
PoCs by following the README file in the POC directory.

With a working PSW and driver, you can follow the README in
the benchmarks directory to download and build the benchmarks.

A.5 Experiment workflow
After building the benchmarks, follow along in the README to start
all or a subset of them. An important aspect to keeping benchmarks
comparable is to fix the CPU’s frequency to a sustainable level, and
idealy run them on an isolated core.

PoCs can be run according to the README in the POC folder.

A.6 Evaluation and expected results
The main results in our paper are contained in Figure 4/Table 3.
These are the performance overheads of our LVI-NUll mitigation
compared to other, similar mitigations. The second, more implicit
result is the efficacy of LVI-NULLify.

For the benchmarks, the absolute performance overheads vary
significantly between different machines and architectures (compare
Figure 4 and Figure 5), but the relative differences should be roughly
similar. That is: LVI-Nullify should be the fastest mitigation, or at
least very close to Intel CFI, typically followed, with some distance,
by Intel’s optimized-cut mitigation.

For the PoCs, starting once without and once with mitigation
should produce qualitatively similar results to the examples shown
in the README. That means, for the 3 PoCs where LVI-Nullify is

2https://github.com/misc0110/PTEditor/

USENIX Association 31st USENIX Security Symposium 207

https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify/tree/ae_final
https://github.com/IAIK/LVI-NULLify/tree/ae_final
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/misc0110/PTEditor/

effective, leakage rate should drop to zero, or a level that is compa-
rable to the noise-catching output "other". While absolute leakage
rates before applying the mitigation may differ significantly from
system to system, they should be clearly differentiable from "other".

The respective READMEs for benchmarks and PoCs detail how
to reproduce these results.

A.7 Experiment customization
Attack PoCs need a cache miss threshold, which is automatically
determined. If this doesn’t work, it can be set manually in the corre-
sponding App.cpp file. All PoCs include a conf.h file, in which the
character that should be leaked can be changed if desired.

Both benchmark run-scripts contain a variable called "iso-
lated_core" that sets the core on which they should be run on. Set
this to an isolated core, if available.

sgx-nbench contains a parameter to change the number of itera-
tions in the file, see the benchmarking README.

208 31st USENIX Security Symposium USENIX Association

https://www.acm.org/publications/policies/artifact-review-badging

A Artifact Appendix

A.1 Abstract
This document demonstrates the artifact evaluation of LIGH-
TENCLAVE, which uses MPK to provide intra-enclave isola-
tion within SGX enclaves. We incorporate LIGHTENCLAVE
into two SGX libOSes (Graphene-SGX and Occlum) and
carry out evaluations to show the performance of Graphene-
SGX/Occlum with and without LIGHTENCLAVE. We provide
a remote machine as the SGX, PKU (MPK), and MPX CPU
features are needed. According to the specification, AE re-
viewers can firstly build the tested applications and libOSes,
and then carry out all experiments mentioned in paper. The
experiments will reproduce the results and generate figures
and tables in the paper.

We do not apply for the Available badge because one of the
founders currently does not allow to open source the work.

A.2 Artifact check-list (meta-information)
• Program: The libOSes used in the experiment are Occlum

(commit 0a06c898) and Graphene-SGX (commit 9c226c9a).
The applications and libraries used in the experiments are SGX-
OpenSSL (commit 5bacfaf), SGX-SQLite3 engine (v3.23.0),
Lighttpd (v1.4.40), GCC (v4.4.5), Fish shell (v3.0.0) and Busy-
Box (v.1.23.1)

• Hardware: An Intel x86 platform that supports Intel SGX,
PKU and MPX.

• Run-time environment: The experiment is carried out on
Linux. The kernel should set CR4.FSGSBASE = 1 to allow
userspace applications use wrfsbase and wrgsbase to modify
fs.base and gs.base. On newer versions of Linux (>= 5.9),
CR4.FSGSBASE = 1 is always set. The SGX SDK 2.4 and
SGX Driver 2.4 should be installed on the host. Docker is
used as the building environment. We also use the runtime
environment provided by Occlum and Graphene-SGX.

• Metrics: We use the applications’ throughput and execution
latency of operations to study LIGHTENCLAVE’s performance.

• Output: Some of the outputs are numerical results that can
be compared with tables in the paper. The other outputs are
figures that are available in the paper.

• Experiments: We provide scripts that reproduce the experi-
ment results and generate figures and tables in the paper.

• How much disk space required (approximately): Around
18G. We suggest different AE reviewers use different working
directories. Since the disk space of our remote machine is
limited, please remove the working directory once the artifact
evaluation completes (in case leading to out-of-disk for others).

• How much time is needed to prepare workflow (approxi-
mately): We provide a remote machine which is setted up for
artifact evaluation so that reviewers do not need to prepare the
workflow.

• How much time is needed to complete experiments (ap-
proximately): The building procedure is about 1 hour. The
complete evaluation takes about 3 hours.

A.3 Description
A.3.1 How to access

N/A

A.3.2 Hardware dependencies

The artifact evaluation requires an Intel x86 platform that supports
Intel SGX, PKU and MPX. Our remote machine has an Intel i7-
10700 IceLake CPU.

A.3.3 Software dependencies

Except for the environment mentioned in the checklist, LIGHTEN-
CLAVE requires the building system and toolchain from Occlum and
Graphene-SGX. To save the time for reviewers, we have prepared
the software dependencies for the artifact evaluation in the offered
machine.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
The installation procedure requires building the libOSes (Graphene
and Occlum with and without LIGHTENCLAVE) and the compilation
toolchain. After that, we compile the applications for the evaluation.
We provide a remote machine with software dependencies prepared,
where reviewers can start from the installation stage. Please check
Artifact access in the submission (on hotcrp) for detail.

After login into the machine, the home directory contains the
lightenclave-artifact directory that holds evaluation materials. Be-
fore starting the evaluation, please copy lightenclave-artifact to an-
other directory to avoid conflicts between different reviewers.

> sudo cp -r lightenclave -artifact your -
evaluation -directory

> cd your -evaluation -directory

We firstly build Occlum toolchain and applications running inside
Occlum. We use docker as the building environment.

> bash build_occlum_apps_in_docker.sh
Now inside the docker
Takes long time: about 45 minutes
> bash occlum/build_toolchain_and_app.sh
> exit

Then we build applications running inside Graphene using an-
other docker environment. This docker environment is used in the

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 209

following building and evaluation workflow, including building Oc-
clum and Graphene-SGX libraries and applications running without
libOSes (for Figure 8).

> bash reproduce_in_docker.sh
Now inside the docker
> bash graphene -sgx/build_app.sh
> bash occlum/build_libos.sh
> bash graphene -sgx/libos/build_libos.sh
> bash sdk-bench/prepare.sh

A.5 Experiment workflow
N/A

A.6 Evaluation and expected results
We claim that: 1. LIGHTENCLAVE is fast in terms of light-enclave
creation and communication. 2. LIGHTENCLAVE incurs low per-
formance overhead for intra-enclave isolation to applications. 3.
LIGHTENCLAVE improves the performance in real-world scenarios
in existing LibOSes.

For the 1st claim, Table 2 shows the task creation latency in SGX
libOSes. When incorporated with LIGHTENCLAVE, the application
creation time is shortened. The results can be reproduced by execut-
ing:

about 8 minutes
> ./scripts/table2.py

Then Figure 7 demonstrates that LIGHTENCLAVE can provide
fast enclave communication using shared memory between light-
enclaves. In contrast, the communication in Graphene is more time-
consuming due to data encryption. The figure can be reproduced by
executing:

Takes about 50 minutes
> ./scripts/figure7.py
> gnuplot -p ./plots/figure7.plt
The figures locate at plots/figure7a.eps

and plots/figure7b.eps

For the 2nd claim, we use LIGHTENCLAVE to isolate sensitive
code from third-party code for security. We compare it with Nested
Enclave, which uses an inner enclave to isolate third-party code.
Figure 8a isolates OpenSSL library from the application. Figure 8b
isolates SQLite3 library from a key-value store server. The figure
can be reproduced by executing:

Takes about 7 minutes
> ./scripts/figure8a.py
Takes about 3 minutes
> ./scripts/figure8b.py
> gnuplot -p ./plots/figure8a.plt
The figure locates at plots/figure8a.eps
> gnuplot -p ./plots/figure8b.plt
The figure locates at plots/figure8b.eps

For the 3rd claim, we apply LIGHTENCLAVE to Occlum and
Graphene and test real-world applications’ performance. The appli-
cations are Lighttpd, GCC, Fish Shell and some serverless functions.

We configure Lighttpd with two isolated workers and use
ApacheBench to get the throughput. LIGHTENCLAVE improves
performance in Occlum since there is no boundary checking. Figure
9 shows the results, which can be reproduced by executing:

Takes about 4 minutes
> ./scripts/figure9.py
> gnuplot -p ./plots/figure9.plt
The figure locates at plots/figure9.eps

The fast task creation in LIGHTENCLAVE benefits GCC, which
frequently forks processes for compilation. We isolate each GCC-
related processes (cc1, as, collect2 and ld) in the enclave. And we
compile five applications with various sizes of code bases. Figure
10 shows the results, which can be reproduced by executing:

Takes about 16 minutes
> ./scripts/figure10.py
> gnuplot -p ./plots/figure10.plt
The figures locate at plots/figure10a.eps

and plots/figure10b.eps

We then evaluate Fish Shell’s performance by invoking several
BusyBox commands (od, sort, grep, wc etc.) for text processing.
LIGHTENCLAVE improve the performance by creating tasks fast
(compared with Graphene) and avoiding SFI overhead (Compared
with Occlum). Table 3 shows the result, which is reproduced by:

Takes about 8 minutes
> ./scripts/table3.py

The fast task creation in LIGHTENCLAVE reduces initialization
overhead in FaaS scenarios. We evaluate four serverless functions’
execution latency to show the benefits. LIGHTENCLAVE is com-
pared with initializing a new enclave before execution (COLD) and
using an existing enclave for execution (WARM). In theory, LIGH-
TENCLAVE and WARM have similar execution latency while it
takes fewer resources. Figure 11 shows the results, which can be
reproduced by:

Takes about 40 minutes
> ./scripts/figure11.py
> gnuplot -p ./plots/figure11.plt
The figure locates at plots/figure11.eps

A.7 Experiment customization
N/A

A.8 Notes
If the experiments freeze (the execution time is far beyond the time
we offer), reviewers can kill the docker and restart the experiment.
Maybe the libOSes with the specified commits contain some un-
known issues.

Press Ctrl+C. Or use docker kill command
> exit
Re-enter the docker
> bash reproduce_in_docker.sh
e.g., ./scripts/figure10.py fails

210 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

> ./scripts/figure10.py

After the artifact evaluation, please remove the working directory
as it consumes large disk space.

> sudo rm -rf your -evaluation -directory

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 211

A Artifact Appendix

A.1 Abstract
SGXFuzz presents a novel approach to fuzz SGX enclaves
in a user-space environment including the synthesis of
ECall structures that automatically synthesizes a nested input
structure as expected by the enclaves using a binary-only
approach. The prototype consists of an enclave dumper that
extracts enclaves memory from distribution formats, a fuzzing
setup to fuzz extracted enclave, as well as a series of scripts
to perform result aggregation. The fuzzing setup is the core
of SGXFuzz and is built upon the kAFL fuzzer and the Nyx
snapshotting engine. We extend the existing code of kAFL
to accommodate our structure synthesis in Python. The Nyx
fuzzing engine utilizes the Intel PT CPU extension to get code
coverage information but does not contain any changes for
SGXFuzz. Finally, we provide several scripts to process the
crashes found during the fuzzing campaigns as well as the
synthesized structure layouts.

A.2 Artifact check-list (meta-information)
• Compilation:

recent cmake, gcc/g++, c++20, Ubuntu 22 recommended

• Transformations:
custom binary-to-binary included

• Binary:
Ubuntu 5.10.75 kernel

• Run-time environment:
Linux/Ubuntu, custom kernel included, root access, bare
metal/no VM

• Hardware:
Intel CPU, Skylake or newer (Intel-PT-capable)

• Metrics:
Structure Layouts, Crashes/Vulnerabilities/Bugs, Coverage

• Output:
Terminal, Files (msgpack/structures, edges, crashing payloads)

• Experiments:
• Extract enclaves

• Run the Fuzzer (compile runner, start fuzzing)

• Post-process/aggregate results
• How much disk space required (approximately)?

3.5 GB install size + temporary 10–30 GB

• How much time is needed to prepare workflow (approxi-
mately)?
3 h

• How much time is needed to complete experiments
(approximately)?
Full experiment:
24 h per run, 30 main evaluation runs, 80 ablation runs
= 110 days using a single machine (+ data aggregation)
Minimal sample evaluation: 1 h

• Publicly available (explicitly provide evolving version
reference)?
https://github.com/uni-due-syssec/sgxfuzz/

• Code licenses (if publicly available):
MIT, BSD, GPL, AGPL, Apache (see individual components)

• Workflow frameworks used?
Bash and Python

• Archived (explicitly provide DOI or stable reference):
https://github.com/uni-due-syssec/sgxfuzz/tree/
usenix2022

A.3 Description
We will now describe the components of the artifact, how they are
related and what each component is used for. The SGXFuzz artifact
consists of the enclave dumper, enclave runner, the fuzzing setup, and
the enclaves evaluated in the paper. The enclave dumper extracts the
enclave memory from enclave distribution formats (cf. Section 5.1).
This step has to be done only once per enclave, and we have already
performed that step for all enclaves. The enclave runner uses the
previously extracted enclave memory to run the enclave as a regular
user-space process (cf. Section 5.2). The runner is a C++ program
that loads the enclave memory, handles the emulation of the context
switch that would usually be performed by the SGX instruction set
and performs the structure allocation for each input. Finally, our
fuzzing setup consists of a front end that generates fuzzing inputs
and performs the structure synthesis, and a back end that executes
the target and collects coverage. We use kAFL as a foundation for
our fuzzing front end and add new code to the fuzzer to perform the
structure synthesis. The back end consists of a patched version of
QEMU and KVM to allow the collection of coverage data using the
Intel PT CPU extension. We did not perform any modifications on
the fuzzing back end.

A.3.1 How to access

All code relevant to the artifact and links to the components required
for the fuzzing setup are publicly available on GitHub https:
//github.com/uni-due-syssec/sgxfuzz/tree/usenix2022.

A.3.2 Hardware dependencies

Our fuzzing back end consisting of a modified QEMU and KVM
uses the Intel PT CPU extension to collect coverage data. Thus, an
Intel PT-enabled CPU is required to use our fuzzing setup. However,
Intel PT does not work in a virtualized environment and as such,
cannot run in VM. Notice that the Intel SGX is not required at any
point.

A.3.3 Software dependencies

Generally, any Linux distribution should be able to run our artifacts.
However, we only tested it on Ubuntu 22.04 and the scripts we
provided to set up the fuzzing setup were developed and tested with
Ubuntu 22.04 in mind.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 213

https://github.com/uni-due-syssec/sgxfuzz/
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022

A.4 Installation

We include a setup script that should perform the major steps.

First, disable SGX in the BIOS if supported by the CPU.

Clone the repository.

Install required packages:
sudo apt install \
python2 python3 libpixman-1-dev pax-utils bc \
make cmake gcc g++ pkg-config unzip \
python3-virtualenv python2-dev python3-dev \
libglib2.0-dev

Then, you can use setup.sh to compile and install the components,
or follow the steps manually. That is:

• Initialize the submodules:
git submodule update --init --recursive --depth=1

• QEMU-Nyx:
https://github.com/nyx-fuzz/QEMU-Nyx#build

• KVM-Nyx:
https://github.com/nyx-fuzz/KVM-Nyx#
setup-kvm-nyx-binaries

• (Virtual) environments for python2 and python3 and install

– python2: configparser mmh3 lz4 psutil ipdb msgpack
inotify

– python3: six python-dateutil msgpack mmh3 lz4 psutil
fastrand inotify pgrep tqdm hexdump

• Install zydis (cd zydis && cmake . && make install)

A.5 Experiment workflow

The experiment workflow includes three main parts: Enclave
dumping, Fuzzing, Result aggregation.

A.5.1 Enclave Dumping

First, enclave dumping is used to extract the enclave mem-
ory. It is based on the Linux SGX SDK. By provid-
ing the enclave dumper with enclave.signed.so, a memory
dump with the name enclave.signed.so.mem, a memory
layout enclave.signed.so.layout, and the address of the
enclave’s entry point (specifically the offset of the TCS)
enclave.signed.so.tcs.txt.

Compile is using:
make -C ./enclave-dumper/

Run it using:
./enclave-dumper/extract.sh [enclave.signed.so]

A.5.2 Fuzzing

To fuzz the previously extracted enclave, several steps are involved.
We bundled all of them together in a script that runs a minimal
fuzzing test:

./run-example.sh

The script runs the following steps automatically. First, the enclave
runner is compiled using

make-enclave-fuzz-target.sh enclave.signed.so.mem \
enclave.signed.so.tcs.txt

The result of the compilation is a fuzz-generic binary, which is
the user-space version of the enclave, and a liblibnyx_dummy.so,
which is required for the fuzzer.

In the next step, the fuzzing target is packed into a VM that is
executed using the QEMU-KVM setup. The packer script can be
called as follows
nyx_packer.py <enclave-runner> <fuzz-folder> m64 \
--legacy --purge --no_pt_auto_conf_b \
--fast_reload_mode --delayed_init

Finally, the fuzzing can be started using the kAFL fuzzing frontend.
The exact command can be found in the run_example.sh script.

If desired, manually crafted seeds can be added to the imports
folder. Each seed is a file consisting of the ECall ID, the serialized
structure definition, and the contents of the buffers.

A.5.3 Result Aggregation

Display synthesized structures:
display-structs.py <path/to/fuzzing-workdir> \
<ecall_index>

The script displays the evolvement of the synthesized structure in a
tree format for each ECall index, with the ECall index being zero-
based. The leaves show the final evolvement of the synthesized
structures. Each leave shows the synthesized structure in a specific
format.

Structures are serialized, e.g., 40 2 C8 4 0 C24 7 0, and read left
to right. This string denotes a structure of 40 Bytes, which has two (2)
child structures (C). The first child is at offset 8 of the parent and is
defined the same way: A size of 4 and zero (0) children. The second
child has a size of 7 and also zero children. Further, the sizes may
be annotated with their address (40:0x7ffff7faafd8). Additional
types include buffers partially (on the edge) of the enclave’s memory
(P) and SizeOf (S) buffers of which the size is written to a defined
offset.

This script shows how to parse and dump these strings:
kafl/kAFL-Fuzzer/fuzzer/technique/struct_recovery.py

Display crashes:
analyze_crashes.py <eval-dir> \
-0 --np --no-ptr-0x7ff --no-large-diff

analyze_crashes.py script iterates through all crashes found by
the fuzzer. This includes the crashes due to implementation artifacts
mentioned in Section 5.5. The script performs the filtering according
to Section 5.5 and will only display valid crashes. However, manual
duplication of the crashes is required to find the real number
of unique bugs. The flags supplied to the script do the filtering
according to the described filtering techniques in the paper. The
script displays useful information to understand the crash: the ECall
ID, the signal (usually Segmentation Fault), pc (absolute/relative),
the disassembled instruction, and addresses used for memory access.

214 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://github.com/nyx-fuzz/QEMU-Nyx#build
https://github.com/nyx-fuzz/KVM-Nyx#setup-kvm-nyx-binaries
https://github.com/nyx-fuzz/KVM-Nyx#setup-kvm-nyx-binaries

Calculate Coverage:
calculate-coverage.sh <path/to/fuzzing-workdir>
Note that we recalculated the numbers of basic blocks using the basic
block semantic of Binary Ninja to provide numbers comparable to
TeeRex.

A.6 Evaluation and expected results & Experi-
ment customization

The main goal of the fuzzing process is to find crashing
inputs, i.e. vulnerabilities, and the synthesized structure
layouts that the enclave calls expects for its input. To
ensure that the artifact is functional, any enclave from the
previously provided links with enclaves can be used for
fuzzing, i.e., synaTEEv2-20211105 which is the Synaptics
Fingerprint Driver Enclave from the paper. Fuzz the enclave
using the steps shown in run_example.sh for 960 core-
hours. To fuzz another target than the example, change the
ENCLAVE_PATH variable to the target path and change the
enclave name enclave.signed.so to the target enclave’s
name, i.e., synaTEE.signed.dll.

After that, it is possible to use the previously described
workflow to display synthesized structures using the
display-structs.py script on the fuzzing workdir. To
analyze the crashes, the workflow to display the crashes can
be used. However, manual reverse engineering is required to
deduplicate bugs.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 215

A Artifact Appendix

A.1 Abstract
This artifact describes the frameworks used for our evalua-
tions. The artifact consists of two relatively separable com-
ponents: (1) a covert channel discovery framework that runs
directly on real hardware, and (2) a gem5 simulation infras-
tructure that evaluates our mitigation strategies. The covert
channel framework can be used to replicate the results pre-
sented in Section 4, and in particular, the results summarized
in Table 1. The gem5 infrastructure can be used to replicate
the performance and security results presented in Section 7.

A.2 Artifact check-list (meta-information)
• Programs: SPEC CPU2017, SunSpider JS Benchmarks, Wolf-

SSL RSA and AES benchmarks.

• Compilation: LLVM with -O3 for SPEC.

• Hardware: AMD Ryzen Threadripper 3960X and Intel Core
i7-6770HQ for Covert Channel Framework. The gem5 simula-
tor runs on any modern x86 hardware.

• Run-time Environment: The provided covert channel frame-
work and gem5 simulator are tested on Ubuntu 20.04. The
scripts for running SPEC benchmarks on gem5 assume an
available Slurm workload manager.

• Output: The covert channel framework outputs the covert
channels bandwidth and error rate. The gem5 simulator outputs
the execution time and performance in terms of Cycles Per
Instruction (CPI).

• Experiments: Scripts and instructions are provided in the arti-
fact README files.

• How much disk space required (approximately)?: About
250 GB of disk space is required for the SPEC 2017 simpoints,
and around 5 GB is needed for the gem5 code and binaries.
The covert channel framework requires less than 100 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes to download the frameworks and
install requirements, and around 30 minutes to compile gem5.

• How much time is needed to complete experiments (ap-
proximately)?: Assuming enough available parallelism, the
gem5 experiments need at least 3 hours. The covert channel
measurements require about 2 hours to complete.

• Publicly available?: Yes, the code is available on Github (see
Section A.3.1).

• Code licenses: GPL v3.

A.3 Description
A.3.1 How to access

The artifact is available on github at the following
URL: https://github.com/mktrm/SecSMT_Artifact/
tree/86286e06f6f1d8ce9583af950edacb87f14e39ba.

A.3.2 Hardware dependencies

A bare-metal machine is required to run the covert channel
measurements. The bandwidth of the covert channels are mea-
sured on two specific processors: Intel Core i7-6770HQ and
AMD Ryzen Threadripper 3960X. While the covert channel
framework can be adapted for other processors, it requires
extensive parameter fine-tuning to achieve the best channel.

A.3.3 Programs

We provide Simpoints created from SPEC 2017 benchmarks
for the artifact evaluators, but we cannot publish them as they
are under copyright. Other programs used for evaluations are
publicly available.

A.4 Installation
The artifact provides scripts to install requirements as well as
building the provided tools.

A.5 Experiment workflow
This section provides a high-level overview of the experimen-
tal workflow. Please follow the instructions in the README
for a detailed, step-by-step guide.

The covert channel framework needs to first install a ker-
nel module that facilitates reading values for performance
counters. Note that those performance counter values are only
used for debugging purposes and our covert channel com-
munication is entirely based on execution time (cycle time).
To make a fair comparison between the covert channels, we
make sure the processors are configured to be always on per-
formance mode (scripts are provided). Then, the provided
makefile detects the hardware (Intel or AMD) and compiles
the covert channel measurement codes for all the available
covert channels for that platform. It then runs multiple rounds
of the experiments for each channel and reports the average
bandwidth and error rate of all successful channels (if the
error rate is less than 10%).

For the evaluation of the mitigation strategies, we need
to first compile the gem5 code and prepare our benchmark
programs. Then, we run multiple gem5 simulations for each
pair of benchmark programs. Each experiment is configured
to represent one of the following multithreading approaches:
(1) a fully dynamically shared insecure baseline, (2) a fully
statically partitioned pipeline, (3) our Adaptive partitioning,
and (4) our Asymmetric SMT approach in which we apply
Asymmetric SMT on top of adaptive partitioning for some re-
sources. Finally, once the simulations are finished, we run the
provided scripts to extract the results from gem5 simulations
and draw the figures.

A.6 Evaluation and expected results
A successful run of the covert channel framework will result
in a set of bandwidth and error rate pairs. If the measurements

USENIX Association 31st USENIX Security Symposium 217

https://github.com/mktrm/SecSMT_Artifact/tree/86286e06f6f1d8ce9583af950edacb87f14e39ba
https://github.com/mktrm/SecSMT_Artifact/tree/86286e06f6f1d8ce9583af950edacb87f14e39ba

take place on the mentioned processors, the bandwidth num-
bers should be around the results reported in Table 1. Note that
the fluctuation in bandwidth and error rate numbers can be
caused by various sources of noise such as voltage/frequency
scaling, OS scheduling, etc.

The gem5 simulation of the mitigation strategies should
result in performance numbers that match those presented in
the paper.

218 31st USENIX Security Symposium USENIX Association

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

A Artifact Appendix

A.1 Abstract
All experiments were conducted in Ubuntu-18.04 with 1TB
memory and Intel(R) Xeon(R) Gold 6248 20 Core CPU @
2.50GHz * 2. But it’s ok if we don’t have that much computing
resource. The minimal configuration is at least 4 core CPU,
8G memory and at least 200G disk space. It’s recommend
to enable more CPU cores, they will speedup the compiling,
fuzzing and symbolic execution significantly.

In our paper, we test more than 1000 bugs and each of them
require 3 hours kernel fuzzing, 1 hour static analysis and 4
hours symbolic execution. If we plan to accomplish all 1000
cases, it costs more than two weeks, therefore we only choose
a subset of them for Artifact Functional.

A.2 Artifact check-list (meta-information)
• Program: SyzScope now open source at
https://github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6. This
version is the one we conduct the experiment. It’s recommend
to download the docker container we provided. The details
shows in the github README. If you have a fast internet
speed, you may want to pull the ready2go docker image,
otherwise mini docker image requires extra compliation.

• Compilation: If you pull the mini docker image or run SyzS-
cope in your custom system, you have to compile the essential
tools. Using command python3 syzscope –install-requirements.
The detailed instructions can be found at our github page
https://github.com/seclab-ucr/SyzScope/

• Data set: Since running all cases takes more than two weeks,
we only prepare a subset of them for the artifact functional
badge. The dateset we provide is the ones we got CVEs
from: https://sites.google.com/view/syzscope/home. We made
a google sheet of this dataset at https://docs.google.
com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_
Zjdddta9nIy-poEuq66E/edit?usp=sharing

• Run-time environment: SyzScope is designed on Ubuntu
18.04, written by python3, C++, golang, and bash script. Every
other Linux system should support SyzScope just fine. But we
still recommend to use our docker image in case any environ-
ment differences.

• Output: We wrote detailed tutorial for how to read output
from fuzzing, static analysis and symbolic execution. You can
access them on
https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/fuzzing.md

https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/static_taint_analysis.md

https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/sym_exec.md

• Experiments: To run the experiment, you first need to prepare
the case hash for SyzScope. Since we already give the dataset,
you just need to simply copy and paste the case hash into a file

(one hash per line), let’s say the name of that file is dataset,
and run SyzScope with nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully &, If you have enough CPU cores, you can
even try run multiple cases at the same time by specify -pm,
for example -pm 8 means run 8 cases at the same time. The
log output will be written into nohup.out since we use nohup
to make the process running in background.

• How much disk space required (approximately)?: SyzS-
cope requires 24GB for essential packages and tools. Besides
them, SyzScope may require 2GB for each case. Consider-
ing 8 cases in our dataset, it’s better to have 20GB remaining.
Therefore in total we suggest having 50GB reamining on your
disk.

• How much time is needed to complete experiments (ap-
proximately)?: At maximum each case takes 3 hours kernel
fuzzing, 1 hours static analysis and 4 hours symbolic execution
(8 hours in total), but some cases may terminate early. If we
run these 8 cases together -pm 8, we should finish all of them
in 8 hours, if we run them one by one, it probably takes more
than 3 days (64 hours).

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Data licenses (if publicly available)?: MIT License

• Archived (provide DOI)?: https://
github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6 is
the stable version that conduct all experiments.

A.3 Description

A.3.1 How to access

Access the github repo at https://
github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6. The
current version is the one conduct all experiment. Another
option is to download the docker image, you can find the
instructions on github repo.

A.3.2 Hardware dependencies

The minimal configuration is at least 4 core CPU, 8G memory
and at least 200G disk space. It’s recommend to have more
CPU cores, they will speedup the compiling, fuzzing and
symbolic execution significantly. To run multiple cases at
the same time, use -pm argument. We recommend you run n
cases at the same time which n equals to the number of cores
divide 4 (e.g, if you have 16 cores, we recommend you use
-pm 4 to run 4 cases that the same time)

USENIX Association 31st USENIX Security Symposium 219

https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/fuzzing.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/fuzzing.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/static_taint_analysis.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/static_taint_analysis.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6

A.3.3 Software dependencies

Software dependencies will be installed by running python3
syzscope -install-requirements. Or you can use the
ready2go docker image within all dependencies installed

A.3.4 Data sets

https://docs.google.com/spreadsheets/d/
16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/
edit?usp=sharing

A.4 Installation
The detailed installation instructions are presented in
the github repo https://github.com/seclab-ucr/
SyzScope.

A.5 Experiment workflow
First, gather all cases we want SyzScope to run, copy
the hash value from dataset page we provided, and
paste them into a file, one hash per line. Second,
run SyzScope with nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully &, this process may take a long time.
If you have more than 4 cores, you can run mul-
tiple cases at the same time by provide -pm argu-
ments. For example, nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully -pm 6 & runs 6 cases at the same time,
but it requires at least 4*6 cores on your machines.

Third, cases that found high-risk impacts will be moved to
succeed folder, cases that failed to find high-risk impacts
will be moved to completed folders. Rerun those failed
cases by using -force. For example, python3 syzscope
-i f99edaeec58ad40380ed5813d89e205861be2896
-RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully -force. If any error occurs, check out
the common issues on our github page https:
//github.com/seclab-ucr/SyzScope/blob/master/
tutorial/common_issues.md.

Final, check out the results from symbolic ex-
ecution and compare it with the ones shown on
our webpage https://sites.google.com/view/
syzscope/home. The results of symbolic execution is in
work/succeed/xxx/sym-xxx/symbolic_execution.log.
The high-risk impacts stores under
work/succeed/xxx/sym-xxx/primitives.

For example, to verify case
ce5f07d6ec3b5050b8f0728a3b389aa510f2591b, you
will find a function pointer dereference impact at work/su
cceed/ce5f07d/sym-ori/primitives/FPD-try_to_wa
ke_up-0xffffffff8137be7d-17 which related to the one
we present on our webpage https://sites.google.com/
view/syzscope/kasan-use-after-free-read-in-io_
async_task_func.

A.6 Evaluation and expected results
Due to race condition, some bugs may be hard to trigger or
trigger different contexts. We just need to run multiple times
to increase the possibility of bug reproducing.

The final component is symbolic execution. To verify
the final results from symbolic execution, check out the
file "symbolic_execution.log". (Read more details at
https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/sym_exec.md) The number of new
impacts shown at the end of the file.

In terms of the results, you may have slightly different
output due to different configuration of experiment machine.
We ran all experiments on Ubuntu-18.04 with 1TB memory
and Intel(R) Xeon(R) Gold 6248 20 Core CPU @2.50GHz *
2. If you use machine that less powerful than ours, you might
have less high-risk impacts comparing to our results. One
approach to verify our results is through the CVE we obtained.
We create a page to document the detailed analysis about the
cases that received CVE, and each of them has at least one
high-risk impact. These high-risk impacts are the reasons for
CVE obtainment, so if you can verify those high-risk impacts
on your end, it means the results are reproduceable.

See the link to each detailed analysis on our dataset page.

A.7 Notes
457491c4672d7b52c1007db213d93e47c711fae6 has mul-
tiple UAF contexts due to race condition. Our web page
shows only one of them(ucma_close), but another UAF con-
text(ucma_destroy_id) may also lead to control flow hijack-
ing.
f99edaeec58ad40380ed5813d89e205861be2896

may be hard to trigger. If it failed to run
symbolic execution, try python3 syzscope -i
f99edaeec58ad40380ed5813d89e205861be2896 -RP
-SE -timeout-symbolic-execution 14400 -guided
-force.

4bf11aa05c4ca51ce0df86e500fce486552dc8d2
has an arbitrary value write on a local variable in
hci_extended_inquiry_result_evt shown on our
webpage. However we abandoned any local variable write
due to short life span of local variable and they are merely
exploitable. So Running SyzScope on this case now will no
longer find any high-risk impact.

220 31st USENIX Security Symposium USENIX Association

https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://github.com/seclab-ucr/SyzScope
https://github.com/seclab-ucr/SyzScope
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://sites.google.com/view/syzscope/home
https://sites.google.com/view/syzscope/home
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md

A Artifact Appendix

A.1 Abstract
Our artifact is a pure software for fuzzing protocol implemen-
tations. It has no hardware requirement and very few software
dependencies (Ubuntu Linux system, Python, and Docker).
All of our approaches described in our paper are implemented
in this artifact. The major claim is that our artifact is able to
cover more of the state space. Without any manual interven-
tion, the results can be found in artifact’s execution log. We
also provide scripts that may be used to reproduce the results.

A.2 Artifact check-list (meta-information)
• Algorithm: A new state approximation method for fuzzing

protocol implementation.

• Program: We used the benchmark FuzzBench
(https://github.com/bajinsheng/SGFuzz_Fuzzbench)

• Compilation: Clang >= 6.0

• Run-time environment: Ubuntu 20.04

• Metrics: State transition coverage, branch coverage

• How much disk space required (approximately)?: 20GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 2 days

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/bajinsheng/SGFuzz

• Code licenses (if publicly available)?: Apache License 2.0

• Archived (explicitly provide DOI or stable reference)?:
Source code: https://github.com/bajinsheng/SGFuzz/tree/8f45141
Experimental data: https://zenodo.org/record/5555955

A.3 Description
A.3.1 How to access

git clone https://github.com/bajinsheng/SGFuzz
cd SGFuzz
git checkout 8f45141

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

• Ubuntu (>=16.04)

• Docker (>=20.10.7)

• Python (>=3.8)

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
We provide a script to compile and configure our artifact, and
only two steps are needed to setup:

1. git clone https://github.com/bajinsheng/SGFuzz

2. cd SGFuzz && ./build.sh

A.5 Evaluation and expected results
We explain our major claims, corresponding results in the
paper, and the detailed steps to reproduce them.

A.5.1 Key Claims

We made these key claims in our paper:

1. State Transition Coverage. SGFUZZ is able to cover
more of the state space. SGFuzz significantly outperform
LibFuzzer on state transition coverage in 23 hours.

2. Branch Coverage. SGFuzz slightly outperform Lib-
Fuzer on branch coverage in 23 hours.

3. State Identification Effectiveness. Changed variables
with name constants are accurate approximation of state
variables.

4. Prevalence of Stateful Bugs. Stateful bugs are prevalent
in protocol implementations.

5. Prevalence of State Variables. Named constants are
widely used for state variables.

A.5.2 Key Results

We have these key results in our paper to support our claims.

1. State Transition Coverage. SGFuzz covers 33x more
sequences of state transitions than LibFuzzer in 23 hours
on average. (Research Question 1)

2. Branch Coverage. SGFuzz achieves 2.20% more
branch coverage than LibFuzzer in 23 hours on aver-
age. (Research Question 2)

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 221

https://github.com/bajinsheng/SGFuzz

3. State Identification Effectiveness. An average 99.5%
of nodes in the State Transition Tree (the data structure
constructed in SGFuzz for tracing states) in 23 hours are
referring to values of actual state variables. (Research
Question 3)

4. Prevalence of Stateful Bugs. Every four in five bugs that
are reported in OSS-Fuzz for protocol implementations
among our subjects are stateful. (Appendix Section 3)

5. Prevalence of State Variables. Top-50 most widely
used open-source protocol implementations define state
variables with named constants. (Appendix Section 4)

A.5.3 Prerequistities to reproduce

We have integrated our code into the FuzzBench framework,
so only the dependencies of FuzzBench are necessary to eval-
uate our code. Please refer to the following commands to
install and configure the FuzzBench.

git clone https://github.com/bajinsheng/
SGFuzz_Fuzzbench→

cd SGFuzz_Fuzzbench
git submodule update --init
sudo apt-get install build-essential

python3.8-dev python3.8-venv
→

→

make install-dependencies
source .venv/bin/activate

More information about the installation of Fuzzbench
can be found at: https://google.github.io/fuzzbench/
getting-started/prerequisites/.

Note that the FuzzBench framework depends on docker, so
it is hard to run FuzzBench within docker.

A.5.4 Steps to reproduce

1. State Transition Coverage.

(1) SGFuzz’s results. Executing this command in the
root of SGFuzz_FuzzBench folder:

sudo make run-sfuzzer-h2o_h2o-fuzzer-http2

After prompting some building information (several min-
utes for the first time), the fuzzing status will be gradually
shown in the terminal, like this:

#2 INITED cov : 641 f t : 642 co rp : 1 /12569 b
exec / s : 0 r s s : 38Mb s t a t e s : 13 l e a v e s : 2

#3 NEW cov : 649 f t : 659 co rp : 2 /24Kb
l im : 12569 exec / s : 0 r s s : 39Mb s t a t e s : 13
l e a v e s : 2 L : 12569/12569 MS: 1 CopyPart −

The number of leaves represents the number of unique
state transition sequences observed in the current fuzzing
campaign.

(2) LibFuzzer’s results. As a reference, the results of
LibFuzzer have to be got manually, because of the lack of
leaves information. We copy the generated corpus from
LibFuzzer to SGFuzz, and observe the leaves information.

Starting an interactive docker shell for LibFuzzer:

sudo make debug-libfuzzer-h2o_h2o-fuzzer-http2→

In the docker container, running the LibFuzzer:

$ROOT_DIR/docker/benchmark-runner/startup-runner.sh→

After 23 hours, in the docker container, typing ’CTRL+C’
to stop LibFuzzer. In the host, copying the generated
corpus from docker to host:

sudo docker cp docker-id-libfuzzer:/out/corpus
.

→

→

The docker-id-libfuzzer needs to be replaced by the actual
hash id of the docker container. Then starting a docker
container for SGFuzz:

sudo make debug-sfuzzer-h2o_h2o-fuzzer-http2→

In the host, copying the corpus to the new docker con-
tainer:

sudo docker cp corpus docker-id-sgfuzz:/out

The docker-id-sgfuzz should be replaced by the SGFuzz’s
docker hash id as well. In the SGFuzz’s docker container,
running SGFuzz to observe the results:

./h2o-fuzzer-http2 corpus/

In the output, the line with the INITED represents the
total number of state transition sequences observed in
LibFuzzer’s campaign:

#1137 INITED cov : 1456 f t : 5274 co rp : 375/2703Kb
exec / s : 12 r s s : 340Mb s t a t e s : 235 l e a v e s : 47

(3) Evaluation. Comparing the number of leaves indicated
in each fuzzing campaign. Note that our experiments were
conducted in 23 hours, so we may notice a substantial
gap in state transition coverage between SGFuzz and
LibFuzzer after several hours, not a few minutes.

(4) More subjects. Changing h2o_h2o-fuzzer-http2
to curl_curl_fuzzer, mbedtls_fuzz_dtlsserver,
gstreamer_gst-discoverer in the commands and
redo steps 1-3 to evaluate other subjects.

(5) Variance. Our results are based on average number
across 20 runs. Beware of variance! Difference between
the two highest- and lowest-coverage runs may be up to
50% because of the randomness in fuzzing.

222 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://google.github.io/fuzzbench/getting-started/prerequisites/
https://google.github.io/fuzzbench/getting-started/prerequisites/

2. Branch Coverage.
The same steps as the state transition coverage experiment.

The only difference is that the branch coverage information
can directly got from the output of LibFuzzer, so we directly
run

sudo make run-libfuzzer-h2o_h2o-fuzzer-http2

instead of the step (2) in State Transition Coverage. The
branch coverage information is indicated as number of cov in
the output.

3. State Identification Effectiveness.
Please check the folder RQ3_State_Iden_Effic at https:

//zenodo.org/record/5555955, which includes all state
variables and the variables that are included in the STT.

4. Prevalence of Stateful Bugs.
Please check the folder A3_Bug_Preva at https://

zenodo.org/record/5555955, which includes all state vari-
ables and the variables that are included in the STT.

5. Prevalence of State Variables.
Please check the folder A4_Top50 at https://zenodo.

org/record/5555955, which includes all state variables and
the variables that are included in the STT.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 223

https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955

A Artifact Appendix

A.1 Abstract
Our artifacts provide a program to identify files of differ-
ent formats and pair them together if these formats makes it
possible, as polyglot or optionally as near polyglots. Other
programs we provide can then turn these files into ambiguous
ciphertexts, and then decrypt these ciphertexts to verify the
validity of the payloads.

Many examples of input files and ambiguous ciphertexts
are also provided.

A.2 Artifact check-list (meta-information)
• Program: Mitra, Key Commitment

• Compilation: Python 3 (Mitra), SageMath (Key Commit-
ment)

• Output: [near] polyglots and ambiguous ciphertexts

• How much disk space required (approximately)?: 6 Mb

• How much time is needed to prepare workflow (approxi-
mately)?: 5 min

• How much time is needed to complete experiments (ap-
proximately)?: 5 mins

• Publicly available?: Y

• Code licenses (if publicly available)?: MIT

A.3 Description
A.3.1 How to access

Complete source and examples are available at :

• the Mitra repository (https://github.com/corkami/
mitra/ at tag Usenix22) – for file manipulation and
ciphertext generation with GCM.

• the Key Commitment repository (https://github.
com/kste/keycommitment/ at tag Usenix22) – for ci-
phertext generation with GCM, GCM-SIV and OCB3.

A.3.2 Software dependencies

Python 3 and SageMath with the Cryptography, Py-
Cryptodome, PyMuPDF and BitVector packages.

A.4 Installation
Clone or download the repositories and install the extra pack-
ages if needed. Note that, depending on your SageMath in-
stallation, you might have to install the Python packages
within SageMath, e.g.: sage -python3 -m pip install
pycryptodome.

A.5 Evaluation and expected results

A.5.1 Ambiguous PDF/PE file

The PDF/PE combination was used because it can be included
in the release of the IACR archive (https://ia.cr/2020/
1456) – the article file itself is a proof of concept.

1. Generate a near polyglot

From any PDF file, in mitra/utils/extra run
pdfpe.py <file.pdf> SumatraPDF18fixed.exe (it
works with other Windows executables – this one is pro-
vided as an example).

You get a near polyglot file named like
Z(2-33-211420).exe.pdf.

Keep the file name intact, as it uses a special syntax to
store extra information: in this case 2, 33 and 221420
are the offsets where the polyglot content switches to the
other file type.

2. Generate an ambiguous ciphertext

From the Key Commitments repository, run the follow-
ing command :

sage mitra_gcm.sage
-k 4e6f773f000000000000000000000000

4c347433722121210000000000000000
-n 00000000000000000000e7c6
-a 4d79566f69636549734d795061737321
"Z(2-33-211420).exe.pdf" -p > poly.gcm

3. Decrypt and validate the different payloads from the
ambiguous ciphertext

From the directory mitra/utils/gcm, run the
decrypt.py poly.gcm command line.

You obtain from the same ciphertext the original PDF
document and a windows executable – that is a PDF
viewer in this case.

The files have changed of course, but they behave like
the original input files.

A.5.2 Ambiguous HTML file

The HTML/HTML combination was used because it’s tiny
and demonstrates the vulnerability which can occur in a ser-
vice like Subscribe with Google if an AEAD without key-
commitment is used.

1. Use the following example files

• normal.htm :
<html>Hello World!</html>

USENIX Association 31st USENIX Security Symposium 225

https://github.com/corkami/mitra/
https://github.com/corkami/mitra/
https://github.com/kste/keycommitment/
https://github.com/kste/keycommitment/
https://ia.cr/2020/1456
https://ia.cr/2020/1456

• evil.htm :
<html>Click
here!</html>

2. Generate an ambiguous HTML file

From mitra/utils/extra, run htmhtm.py
normal.htm evil.htm, and you’ll get a file called
(4-26)7.d3f286cd.htm.htm.

3. Generate an ambiguous ciphertext

in mitra/utils/gcm, run the following command:

meringue.py
-i 7 "(4-26)7.d3f286cd.htm.htm"
attack.gcm

4. Validate the ambiguous ciphertext by extracting the dif-
ferent plaintexts

From the mitra/utils/gcm directory, run decrypt.py
attack.gcm.

A.5.3 Ambiguous JPEG/? file

This combination is mentioned because the brute-forcing was
reduced to 4 bytes (as opposed to 6 bytes in prior works) and
requires a special workflow with post-processing of the near
polyglot.

1. Generate a (non-working) near polyglot

Use with any file that is supported with JPEG near poly-
glots, for example ICC files.

mitra.py <file.jpg> <file2.bin> --verbose
--overlap

If ran on a JPEG, it will output the following warning :

> Jpeg overlap file: reducing two bytes
> (don’t forget to post-process

after bruteforcing)

and generate a near polyglot file.

2. Find a valid nonce for the near polyglot

From mitra/utils/gcm/, run the command nonce.py
<near_polyglot>.

This bruteforcing operation will use the 2-bytes shortcut
but requires extra post-processing. This script will output
a nonce value.

3. Post-process the near polyglot

Run jpg4fix.py <near_polyglot> <nonce>. It will
generate a fixed near polyglot starting with 4-.

4. Generate the ambiguous ciphertext

Run the following command:

meringue.py
-k 01010101010101010101010101010101

02020202020202020202020202020202
-i <index_offset>
-n <nonce>
<fixed_near_poly>
ambiguous.gcm

This execution will generate an ambiguous ciphertext.

The index argument is the block index of the file where
the TAG will be written. The indexed block should be
blank : if the near polyglot file doesn’t have such a block,
you might want to add appended data to the polyglot
itself or to the parasite inside.

5. Generate and validate the different payloads

In the mitra/utils/gcm/ folder, run the following
decrypt.py ambiguous.gcm command.

Once again, you’ll get different files that just work like
the input files.

A.6 Experiment customization
These file operations will work with different cryptographic
parameters (keys, nonces, index), and other block ciphers with
reasonable code modifications.

Many other file formats are supported by Mitra and can be
combined as polyglots or near polyglots. Make sure you use
standard input files: weird files created by Mitra might not
be supported by Mitra itself as they may not have a standard
structure anymore – you may want to use the input/* files
provided in Mitra as a start.

Use the --verbose flag to get more feedback (e.g. why
a polyglot was not generated). Use the --reverse flag if
you’re not sure which files should come first and last in the
command line.

Other block cipher modes such as OCB and GCM-SIV
are supported and included in the Key Commitment reposi-
tory.

Use the mitra_ocb.sage or mitra_siv.sage scripts to
generate ambiguous ciphertexts, and the decrypt_ocb.sage
or decrypt_siv.sage scripts accordingly to decrypt pay-
loads.

Unlike other modes that have byte granularity, GCM-SIV
and OCB3 require block alignment. You may want to add
two blocks of pre-padding and post-padding to the parasite
when generating the [near] polyglot files.

For GCM-SIV, the complexity of generating an ambiguous
ciphertext requires solving a system of linear equations of size
relative to the files size, while it’s constant for the other modes.
The other expensive operation is bruteforcing the nonce of
ambiguous ciphertext from near polyglots, which depends on
the size of the overlap.

226 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact contains the C++ source code of our novel DP-
PIR protocol that we introduce in the paper. Our protocol
allows clients to privately query the contents of a remote
database, without revealing information about their query to
the service beyond a well-defined differentially private leak-
age. Unlike previous PIR protocols, DP-PIR amortizes queries
from independent clients leading to constant amortized server
and client side computation and communication complexity
when the query volume is sufficiently large with respect to
the size of the database.

Our artifact includes the code for the different entities of
our protocol. This includes the client(s) code, as well as the
two or more parties that constitute the service. In addition, the
artifact includes scripts to run the various experiments and
produce the plots and tables we show in the paper, including
the comparisons with existing three existing protocols: Check-
list, DPF, and SealPIR. Our implementation uses Google’s
Bazel build system, and includes Bazel ports for building the
three aforementioned baselines. We developed our implemen-
tation using Ubuntu 20.04 and g++-11. We will provide a
Docker container with all required dependencies by the arti-
fact submission deadline.

The primary purpose if this artifact is to (1) support the
claims of our paper about the efficacy of amortization with
DP-PIR compared to current state of the art protocols, and (2)
demonstrate how the performance of DP-PIR is governed by
the different application parameters. To that end, we designed
and ran several experiments that run our implementation or
the baselines with different parameters and report the total
service time taken to process the generated query loads. We
ran our experiments on AWS instances to mimic a realistic
setup where the different parties making up the protocol are
deployed over separate machines and communicate over real-
istic networks. Most experiments can be run locally without
AWS, except a couple of the larger data points that will most
likely run out of memory when all the parties are run on the
same local machine. We will provide detailed instructions
on how to run experiments locally or over AWS, and how to
interpret and plot the results by the deadline.

A.2 Artifact check-list (meta-information)
• Algorithm: This artifact provides an implementation of DP-

PIR, a new private information retrieval protocol.

• Compilation: We tested our artifact using G++-11. Our im-
plementation uses Google’s Bazel build system.

• Binary: No binaries are included. The protocol binary should
be build from the source code using Bazel in optimized mode.

• Run-time environment: We developed our artifact on Ubuntu
20.04. We will provide a docker container with all the relevant

dependencies.

• Run-time state: Our implementation, and especially the on-
line portion of our protocol, is extremely sensitive to network
bandwidth. In our experiments, we deployed our AWS in-
stances in a cluster placement group to minimize network costs.

• Execution: Each data point on any of the plots in the paper is
a separate running job spawned by our scripts. For the smaller
data points, the execution takes a few seconds, but for the larger
ones (e.g. 100M queries), it may take close to an hour.

• Security, privacy, and ethical concerns: There are no such
concerns.

• Metrics: We report the total service side execution time. Con-
cretely, this is the wall time between the first party/server in
the protocol receiving the last query in the batch, right before
processing of the batch starts, and the wall time at that same
server right after the batch has been processed, and before the
responses are sent to client(s). We report similar measurements
for the baselines as well.

• Output: The experiments produce log files for the different
parties, each file containing various debugging information
as well as time measurements. Our artifact includes scripts
that automatically process these files to extract the relevant
information, and produce plots similar to the ones shown in
the paper.

• Experiments: Our experiments are run via an “orchestrator”
command line program provided in the artifact. This orchestra-
tor is a simple nodejs web server that workers (local or AWS)
ping for jobs. Aside from running these workers once, eval-
uators need only interact with the orchestrator via its control
interface, e.g. they can use command ‘load figure1‘ to direct
the orchestrator to load and run the experiments needed to
produce figure 1 in the paper.. The orchestrator is responsible
for translating input commands into jobs, assigning them to
workers, and tracking the progress of these workers including
acquiring their output files.

• How much time is needed to complete experiments: In our
setup, the experiments require about 14 hours of mostly passive
running time to produce the results shown in the paper.

• Publicly available: at https://github.com/multiparty/
DP-PIR/tree/usenix2022.

• Code licenses: MIT

A.3 Description
A.3.1 How to access

Clone this repository https://github.com/multiparty/DP-
PIR/tree/usenix2022.

A.3.2 Hardware dependencies

We ran our experiments using one r4.xlarge AWS instance per
server/party. These instances have 2 vCPUs and 30.5GB RAM. If
run locally, more memory will be required to run the larger experi-
ments, since all the parties (and thus all their memory) will be run

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 227

https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022

on the same machine. In such cases, we recommend that proportion-
ally smaller experiments are run to fit the hardware constraints. The
artifact documentation includes more details on this.

A.4 Installation
We provide a Docker container that includes all require dependencies.
Instructions on building and running this container are provided in
the artifact. We also provide instructions on how to deploy and run
the experiments locally or via AWS.

A.5 Experiment workflow
To simplify running experiments, we provide an orchestrator pro-
gram included in the artifact. The orchestrator takes care of config-
uring the protocol per the experiment parameters. The orchestrator
is ideal for experiments with many parties or parallel machines, as
it automatically assigns the experiment tasks to the workers and
monitors their progress.

At a high level, our workflow with the orchestrator follows these
steps:

1. The orchestrator application is run via the command line.

2. Several workers are spawned, either as AWS instances or lo-
cally via the provided scripts. As many workers are needed
as the sum of parties and clients. For most experiments in the
paper, this translates to 3 workers needed for 2 parties and 1
client.

3. The workers execute background daemon scripts that periodi-
cally ping the orchestrator to request jobs or report progress.

4. Evaluators issue commands to the orchestrator to run instances
of our protocol with specific parameters. All the parameters for
all of the results in the paper are packaged inside the artifact
and can be loaded by name (e.g. ‘load figure1‘). However,
evaluators can also run experiments with different parameters,
which they need to specify to the orchestrator via an interactive
dialog.

5. The workers receive the jobs corresponding to the different
parameters issued by the evaluator. Workers run these jobs,
which include running various steps of the protocols, such
as creating queries, shuffling queries, and exchanging various
messages over the network. Whenever a worker finishes a job,
it reports that to the orchestrator along with the output file,
which include the measured computation time.

6. The orchestrator notifies evaluators whenever workers and
experiments are completed. The evaluators can then run the
plotting script provided in the artifact to plot the results similar
to the plots in our paper.

It is possible to run experiments directly using the protocol imple-
mentation without relying on the orchestrator. Consult the artifact
documentation for more details.

A.6 Evaluation and expected results
The main goal of this artifact is to produce plots showing the per-
formance of DP-PIR as a function of the different application and
setup parameters. Specifically, we are interested in demonstrating

(1) how the performance of DP-PIR compares to that of existing pro-
tocols, and (2) how the performance of DP-PIR scales with different
parameters.

With our protocol, we have the following parameters:

1. The database size: the number of rows in the database being
privately queried. In our figures, this size ranges between 2.5
million rows for the larger experiments and 100K or 10K rows
for the smaller ones.

2. The number of queries: how many queries to process via the
protocol. This can range between several thousands and hun-
dreds of millions. Note: on setups with limited RAM, the arti-
fact will not be able to handle the larger query numbers as it
will run out of memory.

3. The number of parties: how many parties constitute the service.
Our protocol requires at least two parties and tolerates up to
n−1 malicious and colluding parties. This is almost always
set to 2 in our experiments, except figure 5 where it ranges
between 2 and 5.

4. Parallelism: how many instances/workers/servers does a party
possess. The more servers here the faster the protocol will run
as the queries get split among these servers. We almost always
set this to 1 except in table 2.

5. ε and δ: the differential privacy parameters governing how
much leakage is tolerated. Smaller parameters imply more
privacy at the cost of performance.

6. The mode: whether we are measuring the offline or online
portions of our protocol.

When creating a job, the orchestrator will interactively request
these parameters from the evaluators. Alternatively, the orchestrator
can be instructed to load one or more bundled experiment which
specifies all these parameters in accordance to the paper.

The main expected result here is a confirmation of the efficacy
of our protocol and its amortization. Specifically, that our protocol
becomes significantly faster than existing systems as the number
of queries approaches or exceeds the database size. This is demon-
strated by producing a plot similar to figure 1 in the paper: all the
parameters are fixed (in the paper: DB size = 2.5M, parties = 2, par-
allelism = 1, ε = 0.1, δ = 10−6), while varying the number of queries
(e.g. from 104 to 108). For each number of queries, we run both our
online protocol and an existing PIR protocol (e.g. Checklist), and
plot the reported runtimes as a function of the number of queries.
We shows our results from the paper for demonstration below.

104 105 106 107 108 109

Queries

100

102

104

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Checklist
DP-PIR

Figure 1: Checklist and DP-PIR Total completion time (y-
axis, logscale) for varying number of queries (x-axis, logscale)
against a 2.5M database

228 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

The exact numbers shown in the plot are setup dependent, and
may significantly vary between setups. Our protocol is extremely
susceptible to any changes in network bandwidth and latency. How-
ever, we expect to see three trends: (1) The total runtime of checklist
is proportional to O(|queries|×

√
|DB size|. (2) DP-PIR runtime ini-

tially is constant and does not seem to grow much with the number
of queries. As the number of queries becomes similar in magnitude
to the database size, our performance starts to grow with the number
of queries. (3) Our protocol is (much) slower than Checklist for few
queries, and much faster than Checklist for huge number of queries.
Checklist’s graph crosses over DP-PIR’s somewhere in the middle,
for a number of queries roughly in O(|DB size|). A reasonable num-
ber of queries would be between 0.5 to 2.5 times the database size,
depending on the setup.

If these three trends are observed, then the result match our expec-
tations and confirms our claims about the performance of DP-PIR
and its amortization. If either of them is absent, specifically, if DP-
PIR remains slower than or comparative to Checklist even as the
number of queries becomes large, that would disprove our perfor-
mance and efficiency claims.

Another expected result is to demonstrate that DP-PIR scales
with the different parameters as expected. Specifically, that it scales
linearly in the number of queries and database size, for both online
and offline stages, scales super-linearly in the number of parties in the
offline stage, and exhibits close to linear speedups when additional
parallel resources are used. These can be validated by fixing all the
parameters except the parameter under investigation, and plotting the
performance of DP-PIR as a function of that singular parameter. The
produced plots should exhibit similar trends to the plots in section 7
of the paper.

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 229

A Artifact Appendix

A.1 Abstract
This appendix describes the software artifact that implements
and evaluates all algorithms proposed in this paper. Specifi-
cally, it provides Java implementations for the Greedy, Sort-
Greedy and Hungarian algorithms for anonymization by both
ℓ-diversity and β-likeness; it also contains implementations
of the algorithms we compare against, namely NH (in C++),
BuReL (in Java) and PrivBayes (in C++), as obtained by their
authors and properly enhanced to record the same metrics.

No specialized hardware is required to reproduce the results
of the paper; however, the anonymization of the largest dataset
requires at least 64GB of RAM. We provide instructions
on how to install the artifact, execute the experiments, and
validate the results in the form of a README document that
describes the process step by step. This is intended to help
the reader reproduce the results presented in the paper. The
artifact is available as a GitHub repository.

A.2 Artifact check-list (meta-information)
• Algorithm: We present three novel algorithms for disclo-

sure control through syntactic anonymization based on the
notion of heterogeneous generalization. These algorithms are
(i) Greedy, denoted as GR, which employs an O(n2) heuris-
tic for assignment extraction, (ii) SortGreedy, denoted as SG,
which employs an O(n2 logn) heuristic for tuple matching
and (iii) Hungarian, denoted as HG, which utilizes the O(n3)
Hungarian algorithm to build assignments. These algorithms
are customized to both ℓ-diversity and β-likeness.

• Data set: We use real and synthetic datasets of up to 500k
tuples and 8 dimensions. All data are included in the repository.

• Run-time environment: Our artifact is not OS-specific. How-
ever, all experiments have been performed on an Ubuntu 16.04
LTS server with jre 1.8.0_11. Perl scripts are provided for
batch experiment submission (perl v5.20.2). No root access is
required.

• Hardware: No special hardware is required. However the
anonymization of the largest dataset (500k tuples) requires at
least 64GB of RAM.

• Execution: The anonymization of the largest dataset (500k)
may take 3-4 days to complete. Most of the experiments are
performed with the default dataset of 10k tuples and each of
them lasts up to a couple of minutes.

• Security, privacy, and ethical concerns: Since only synthetic
as well as open and publicly available datasets have been used,
there are no security, privacy, or ethical implications in running
the experiments.

• Metrics: The evaluation metrics include execution time, infor-
mation loss incurred by the anonymization, accuracy of queries
and attacks on the anonymized dataset.

• Output: The output is printed in text (.txt) files, following a
specific format.

• Experiments: All experiments can be replicated and results re-
produced simply by cloning the repo, compiling the code (C++
for NH and PrivBayes, and Java for all the rest) and running
the perl scripts provided - one for each of the experiments -
following the instructions in the README file.

• How much disk space required (approximately)?: In the
order of MB.

• How much time is needed to prepare workflow (approxi-
mately)?: A few minutes.

• How much time is needed to complete experiments (approx-
imately)?: 4-5 days.

• Publicly available (explicitly provide evolving version ref-
erence)?: Our artifact, excluding the source code of the NH,
BuReL and PrivBayes algorithms that we compare against, are
publicly available under an open source license.

• Code licenses (if publicly available)?: Apache Licence 2.0.

• Archived (explicitly provide DOI or stable reference)?:
(https://github.com/discont/disclosurecontrol/
releases/tag/artifact-evaluation).

A.3 Description

A.3.1 How to access

The artifact is publicly available and hosted by GitHub here:
https://github.com/discont/disclosurecontrol

To download the latest version, clone the repository using the
command

git clone https://github.com/discont/disclosurecontrol.git

A.3.2 Hardware dependencies

No specific hardware features are required to evaluate the
artifact. To be able to execute our algorithms using the largest
input dataset at least 64GB of RAM are required. For the de-
fault dataset of 10k tuples, used in the majority of experiments,
8GB of RAM will suffice. As for disk space, our artifact has
minimal requirements of a few MB.

A.3.3 Software dependencies

All experiments ran on an Ubuntu 16.04 LTS server. Java
code has been compiled with jdk1.8.9_291. Perl scripts were
used for batch experiment submission (perl v5.20.2).

A.3.4 Data sets

We use real data drawn form the CENSUS and the COIL 2000
datasets, which are publicly available. Additionally, we gen-
erate synthetic datasets of up to 500K tuples and 8 attributes
based on the CENSUS data, varying the bias of the sensitive
value distribution. All datasets are included in the repository.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 231

https://github.com/discont/disclosurecontrol/releases/tag/artifact-evaluation
https://github.com/discont/disclosurecontrol/releases/tag/artifact-evaluation
https://github.com/discont/disclosurecontrol

A.4 Installation
First, clone the relevant GitHub repository. Compile the
source code using plain javac or your favorite Java IDE. Place
the .class files in a folder within the local directory where
the GitHub repo has been cloned, named bin. To reproduce
the experiments, use the provided perl scripts, along with the
input datasets. The README file offers a step-by-step guide.

A.5 Experiment workflow
All experiments can be executed by invoking the relevant perl
scripts as described in the accompanying README file.

A.6 Evaluation and expected results
Our experiments start by evaluating the application of our
algorithms on the achievement of ℓ-diversity. Our findings
show that our methods outperform the state-of-the-art NH in
utility under various values of the privacy parameter ℓ, the
number of QI dimensions d, the dataset size n and the skew-
ness of the data distribution (Figures 2, 3, 4a, 4c, 5a and 5c).
Our schemes can be applied on partitions of the input dataset
in a data-parallel environment, slightly sacrificing utility for
the sake of scalability (Figures 4a, 4b, 5a and 5b).

Then, we adapt our algorithms to achieve β-likeness. The
experiments demonstrate that our methods offer better util-
ity than the state-of-the-art β-likeness algorithm, BuReL, re-
gardless of the β value and the distribution of tuple values

(Figure 6). The utility gain of our schemes compared to
BuReL grows with data size (Figure 7a) but shrinks with the
skewness of dataset values (Figure 7c). In all cases, at least
one of our methods outperforms BuReL in terms of utility.
Moreover, our algorithms provide anonymized datasets that
can serve range and prefix queries of various selectivities with
significantly better accuracy — in terms of median query rel-
ative error — compared to BuReL and PrivBayes (Figures 8
and 9). Last, our schemes provide stronger resistance than
state-of-the-art differential privacy schemes (PrivBayes) to
learning-based attacks under our adversary model on real-
world data (Figure 11).

Each of the aforementioned results can be reproduced by
simply running automated perl scripts accompanying the code.
The scripts execute the provided code with the necessary
parameters and record the metrics of interest. The README
file walks the user through this process.

Due to the intentional introduction of randomness in the tu-
ple assignment extraction stage, information loss results may
slightly differ in each run. The same applies to the accuracy
of range and prefix queries, which are randomly generated at
run time. Query accuracy may exhibit larger deviations, thus
we suggest to execute relevant experiments multiple times
and adopt the median value.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

232 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
In our paper we explore how users consider security and
privacy in light of third-party API access to their Google
accounts given the disclosure and control mechanisms cur-
rently available. First, we surveyed n = 432 participants to
recall the last times they used Google SSO or authorized a
third-party app access to their Google account data. We then
invited n = 214 participants from the first survey to return
for a follow-up survey. As part of this second survey, partici-
pants installed a browser extension that parsed entries in their
Google account’s "Apps with access to your account" dash-
board. In our archive we make available functional artifacts
that can be used to reproduce our qualitative and quantitative
study results. The artifact includes the custom survey and
browser extension software we developed for this study along
with detailed instructions on how to deploy this software. A
single PC, Mac, or Linux machine should be sufficient hard-
ware. Software requirements include Docker, RStudio, and
a Chrome or Firefox web browser. The artifact can be eval-
uated by running the survey software in a docker container,
loading the browser extension in a web browser, running the
R-programming files, and evaluating the qualitative coding
results.

A.2 Artifact check-list (meta-information)
• Data set:

Provided in the survey-data folder of the GitHub archive.
• Run-time environment:

Docker, R-Studio
• Hardware:

a single PC, Mac, or Linux machine.
• How much disk space required (approximately)?:

100 MB
• How much time is needed to prepare workflow (approxi-

mately)?:
2 hours

• How much time is needed to complete experiments (approx-
imately)?:
4 hours

• Publicly available (explicitly provide evolving version
reference)?:
https://github.com/gwusec/
api-privacy-archive-usenix22/

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/gwusec/
api-privacy-archive-usenix22/tree/
116104e7112b311ccf0567b58aebaf3f13ee3a50

A.3 Description
This archive contains the software developed for this API privacy
research, and the data obtained from an online survey conducted

during our study. The archive includes qualitative open coding anal-
ysis of open-ended survey results, as well as the r-scripts used to
processes the quantitative results. We have included all of the soft-
ware that we created to deploy the online survey, and the code for
a custom browser extension that we built that works along with the
survey. We have provided instructions for running this software in a
docker container.

A.3.1 How to access

The artifact can be accessed at the following URL:
https://github.com/gwusec/

api-privacy-archive-usenix22/tree/
116104e7112b311ccf0567b58aebaf3f13ee3a50

Please read the provided README.md file for full details: https:
//github.com/gwusec/api-privacy-archive-usenix22/
blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/README.
md

A.3.2 Hardware dependencies

A single PC, Mac, or Linux machine should be sufficient hardware.

A.3.3 Software dependencies

Software requirements: Docker, RStudio, Chrome or Firefox web
browser.

A.3.4 Data sets

https://github.com/gwusec/
api-privacy-archive-usenix22/tree/
116104e7112b311ccf0567b58aebaf3f13ee3a50/survey-data

A.4 Installation
https://github.com/gwusec/
api-privacy-archive-usenix22/blob/
116104e7112b311ccf0567b58aebaf3f13ee3a50/survey/
README.md

A.5 Experiment workflow
We created and deployed two online surveys. We collected the data
from the surveys and used qualitative open coding to analyse the
qualitative results, and R-programming to analyse the quantitative
results. Both the qualitative spreadsheets and R scripts are provided,
along with the raw data from the surveys.

A.6 Evaluation and expected results
The key results of the paper are the online survey result data and
the detailed analysis of this data. The software that we developed
allowed us to collect this data and this software can be validated.
The figures and regression analysis as described in the paper is our
next key results, and those can be validated using the raw data along
with the provided R-scripts.

USENIX Association 31st USENIX Security Symposium 233

https://github.com/gwusec/api-privacy-archive-usenix22/
https://github.com/gwusec/api-privacy-archive-usenix22/
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey-data
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey-data
https://github.com/gwusec/api-privacy-archive-usenix22/tree/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey-data
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey/README.md
https://github.com/gwusec/api-privacy-archive-usenix22/blob/116104e7112b311ccf0567b58aebaf3f13ee3a50/survey/README.md

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

234 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
The artifact is composed of 3 directories. The Blockchain di-
rectory contains the implementation of Sawtooth blockchain,
including smart contracts and 3 entities implemented also in
containers. They’re namely the administrator (manufacturer
in the paper) and 2 clients with roles of Verifer and Prover.
The code is deployed using docker and docker-compose. De-
ploying this part requires a Linux server with 24GB RAM
and allows to verify the workflow of the proposed attestation
scheme in our paper. The IoT-Clients directory containes the
implementation of IoT client in 2 boards (LPCXpresso55S69
+ Mikroe WiFi 10 Click and Atmel MEGA-1284P Xplained).
The implementation is written in C. The installation and ver-
ification of the code helps confirm the low overhead of the
attestation process. The Simulation directory contains the
code used in the scalability evaluation. It is implemented in
Python and helps evaluate the scalability of our proposed
scheme against LegIoT.

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Compilation: AVR-Toolchain, arm-none-eabi,
SDK_2.x_LPCXpresso55S69 [API version=2.0.0, For-
mat version=3.8]

• Run-time environment: Ubuntu 18 with sudo rights
• Hardware: server with 24GB RAM and 16 CPUs, LPCX-

presso55S69 + Mikroe WiFi 10 Click and Atmel MEGA-
1284P Xplained. They are all publicly available.

• Output: console
• Experiments: manual steps for each experiment are provided

in README file in each directory.
• How much disk space required (approximately)?: 20GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: 3 hours
• Publicly available (explicitly provide evolving version ref-

erence)?: https://github.com/sss-wue/scraps
Release tag 1.0.2-beta

• Code licenses (if publicly available)?: Licensed under the
Apache License, Version 2.0

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/sss-wue/scraps/releases/tag/1.0.2-beta

A.3 Description
A.3.1 How to access

The source code is publicly available at https://github.com/sss-
wue/scraps/releases/tag/1.0.2-beta

A.3.2 Hardware dependencies

The deployment of the blockchain network requires a server
with at least 24GB RAM and 16 CPUs. Experiments with
the IoT clients require installing the code on the respective
boards: LPCXpresso55S69 + Mikroe WiFi 10 Click, Atmel
MEGA-1284P Xplained and Atmel ICE.

The artifact is roughly 32MB of size. The deployment re-
quires downloading and running several docker containers.
20GB of disk is sufficient for the deployment and experiment-
ing.

A.3.3 Software dependencies

The deployment of the blockchain requires docker engine and
docker compose to be installed. Installing the IoT clients on
the boards requires MCUXpresso IDE v11.4.1 [Build 6260]
[2021-09-15] and avrdude.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
In order to experiment with the artifact, it is only required to
install the compilers and the software dependencies. Each of
the boards needs to be connected to a computer using their
debugging ports. LPCXpresso55S69 can be linked using a
normal mini usb cable while Atmel MEGA-1284P Xplained
is linked using Atmel ICE programmer.

A.5 Experiment workflow
The first step in the experiments is the deployment of the
blockchain network. A YAML file is provided to automate
the process using docker compose. Instructions on executing
attestation process are handed in details in the respective
README file.

Compiling and installing the IOT Client in LPCX-
presso55S69 board is achieved using MCUXpresso software.
A video is included in the respective directory showing the
steps and the expected results.

Compiling and installing the IOT Client in LPCX-
presso55S69 is automated using a Makefile. Used instructions
and expected results are all documented and provided in the
respective README file.

USENIX Association 31st USENIX Security Symposium 235

The simulation is executed using a Python script. Com-
mands and examples of the results are explained in README
file.

A.6 Evaluation and expected results
In our paper, we present a blockchain based attestation scheme
for IoT devices. Experimenting with the blockchain network
allows examining the workflow of the attestation scheme.
Different entities are deployed in the roles described in our
paper, such as Manufacturer, Prover and Verifier.

Moreover,installing and running the IoT clients on the re-
spective boards prove that COTS IoT devices can benefit from
our proposed scheme without any hardware modification.

Besides, running the simulations with different parameters
show how our scheme outperforms the state-of-art scheme
LegIoT.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

236 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
The most important experiment for our work is the searching
for programs experiments described in Section 5.1. This ex-
periment involves a binary compiled from C++ source code
called autoda. It requires about 20 CPU cores and one GPU
with at least 8 GiB of GPU memory to run efficiently. The
ablation study experiments described in Section 5.4 is also
a binary compiled from C++ source code, and have similar
requirement with the autoda binary. The benchmark experi-
ments requires GPUs. Its entry point is a python script.

The whole experiments in Section 5.1 and Section 5.4
should spend about one hundred GPU hours. The whole
benchmark experiments in Section 5.2 and Section 5.3 should
spend about several hundreds GPU hours. The searching for
programs experiments can hardly be exactly reproduced, since
randomly generating exactly the same program is extreme
rare. However, the lowest ℓ2 distortion ratio in each run can
be reproduced. What’s more, we provide the log files where
we found the AutoDA 1st and 2nd in the log/ directory.

A.2 Artifact check-list (meta-information)
• Program: See the README.md file.

• Compilation: See the README.md file.

• Binary: The autoda binary is for Experiment 5.1, and the
autoda_ablation binary is for Experiment 5.4.

• Model: Most of them are pre-trained models provided by
previous work, see README.md. The DenseNet, DPN, and DLA
models are trained by ourselves using public available code at
https://github.com/kuangliu/pytorch-cifar.

• Data set: The CIFAR-10 dataset and ImageNet dataset.
The ImageNet dataset requires pre-processing, see
prepare_models/README.md.

• Run-time environment: GNU/Linux. Need root access to
install necessary dependencies.

• Hardware: Need GPU with at least 8 GiB of GPU memory.
Need CPU with at least 20 cores.

• Execution: In our searching experiments described in Section
5.1, we run the same binary autoda for 50 times, and each run
spends about two hours with one GTX 1080 Ti GPU and about
20 CPU threads. The full benchmark experiments in Section
5.2 and Section 5.3 should spend about several hundreds GPU
hours.

• Metrics and Output: For the autoda binary, it would write
the program we found into the log file passed via command
line, as well as evaluation metrics (lines started with rs=, you
could get evaluation metric for each programs by parsing the
floating-point number in these lines). Since our searching for
programs experiments described in Section 5.1 cannot be ex-
actly reproduced, we provide the two runs’ log files in the
log/ directory where the AutoDA 1st and 2nd algorithms are
found. For the autoda_ablation binary, it would write the

ratios into the log file passed via command line (lines started
with ratios_mean=).

• Experiments: Besides the searching for programs experi-
ments and the ablation study experiments, we also have bench-
mark experiments (Section 5.2 and Section 5.3). These bench-
mark experiments all use the prepare_models/attacker.py
script. See README.md for more details on the usage of this
script. This script would output adversarial example’s distance
to the original image at each step for each sample into a hdf5
file, thus further analysis could be done. This script would
also print out the attack success rate and average/median ℓ2
distortion during the attack process for the current batch.

• How much disk space required (approximately)?: 20 GiB.

• How much time is needed to prepare workflow (approxi-
mately)?: Setting up environment for compiling the autoda
binary and the autoda_ablation is relative easy, several
hours should be enough. Setting up environment for bench-
mark experiments from scratch are much more complicated,
including training some models from scratch, downloading and
pre-processing ImageNet dataset, and installing dependencies
for every model.

• How much time is needed to complete experiments (approx-
imately)?: About one hundreds GPU hours for the search
for programs experiments and the ablation study experiments.
About several hundreds GPU hours for benchmark experi-
ments.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/Fugoes/AutoDA/commit/
257cf85e1c0c1d129a50a274764ed6bc893ccde5.

• Code licenses (if publicly available)?: MIT.

A.3 Description
A.3.1 How to access

https://github.com/Fugoes/AutoDA/commit/
257cf85e1c0c1d129a50a274764ed6bc893ccde5.

A.3.2 Hardware dependencies

Need Nvidia GPU with at least 8 GiB of GPU memory. Need CPU
with at least 20 cores.

A.3.3 Software dependencies

See README.md.

A.3.4 Data sets

CIFAR-10 and ImageNet.

A.3.5 Models

See README.md.

A.3.6 Security, privacy, and ethical concerns

This work does not have security, privacy, or ethical concerns.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 237

https://github.com/kuangliu/pytorch-cifar
https://github.com/Fugoes/AutoDA/commit/257cf85e1c0c1d129a50a274764ed6bc893ccde5
https://github.com/Fugoes/AutoDA/commit/257cf85e1c0c1d129a50a274764ed6bc893ccde5
https://github.com/Fugoes/AutoDA/commit/257cf85e1c0c1d129a50a274764ed6bc893ccde5
https://github.com/Fugoes/AutoDA/commit/257cf85e1c0c1d129a50a274764ed6bc893ccde5

A.4 Installation
See README.md.

A.5 Experiment workflow
For experiments in Section 5.1 and Section 5.4, first compile the
source code:

cd ~/
git clone git@github.com:Fugoes/AutoDA.git
cd AutoDA/
mkdir build/
cd build/
cmake -DCMAKE_BUILD_TYPE=Release ~/AutoDA
make -j‘nproc‘

These commands will build the autoda binary and
autoda_ablation binary.

To run the autoda binary,

CUDA_VISIBLE_DEVICES=0 ./autoda \
--dir ~/path/to/data \
--threads 16 \
--gen-threads 20 \
--class-0 0 --class-1 1 \
--cpu-batch-size 150 \
--gpu-batch-size 1500 \
--max-queries 500000000 \
--output 5ww_queries_00.log

The evaluation metrics would be written to
/path/to/data/5ww_queries_00.log. To quickly check
the lowest ℓ2 distortion ratios,

cat 5ww_queries_00.log |
grep rs= |
sort | head

Running the autoda_ablation binary is similar to running
autoda. To quickly check for the top 200 lowest ratios,

cat ablation.log |
grep ’^ratios_mean=’ |
awk -F ’=’ "{ print \$2 }" |
sort -n | head -200

As for the benchmark experiments, please check the README.md
file.

A.6 Evaluation and expected results
Though all attacks have randomness, when running the benchmark
experiments, the results should be quite close to our reported results
given large enough test set.

A.7 Experiment customization

A.8 Notes
The autoda and autoda_ablation does not exit cleanly, they
would crash themselves when reaching max queries and core
dumped.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

238 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

G Artifact Appendix

G.1 Abstract

The artifacts consist of various cache-timing experiments. The
initial experiments help to understand the non-inclusive LLC
structure and DDIO-based accesses to it. The later experi-
ments allow reverse-engineering the underlying mechanisms,
exploiting the findings and performance analysis.

As our work explores the use of FPGAs for cache
side-channel attacks, the artifacts require an FPGA ac-
celeration card. Though we used our local setup with
Intel Programmable Accelerator Card (PAC), we also
tested the artifacts with remote access to Intel Labs (IL)
Academic Compute Environment (ACE) (https://wiki.
intel-research.net/FPGA.html).

For people who have neither, we provide detailed docu-
mentation for each experiment, which provides the expected
execution output and the inferences we draw from them. No-
tably, Figures 3, 4, 7, 8 and 9 were produced based on
experiments like these.

G.2 Artifact check-list (meta-information)
• Algorithm: SW+HW Combined Cache Attacks, Eviction Set

Construction, Reverse-Engineering DDIO
• Compilation: make, gcc (tested versions are 7.5.0 and 4.8.5)
• Binary: For software: binaries are not provided. Not needed

as compilation is straightforward. For hardware: A bitstream
file synthesised for Intel Arria 10 PAC is provided. This should
save quite some time as synthesis may take several hours.
Instructions on how to synthesise for other PACs are available.

• Run-time environment: Ubuntu 18.04.5 LTS and CentOS
Linux 7.7.1908 The basic experiments do not require any
root access. However, experiments on non-default system con-
figurations and reverse engineering require sudo. We included
these experiments as they were requested by our reviewers.

• Hardware: Intel PAC (Programmable Accelerator Card)
• Execution: Compilation and execution of binaries on com-

mand line.
• Security, privacy, and ethical concerns: Demonstrates cache

attacks allowing to steal secrets of victims sharing the same
computer as attacker.

• Metrics: Cache access timings, execution time, accuracy.
• Output: Console output with exact numerical results.
• Experiments: The repository is a collection of various experi-

ments, such as eviction set construction, cache access timings,
eviction candidate determination, effect of shared access over
the eviction candidate, evidence for DDIO+ region, etc. A
separate documentation file is provided for each experiment.

• How much disk space required: The repository is 13 MB.
When de-compressed, the bitstream file reaches has a size of
133 MB. All in all, it is less than 150 MB.

• How much time is needed to prepare workflow: Almost no
additional preparation is needed if you already have access to
an Intel PAC0based FPGA-accelerated computation server.
Otherwise, an access request to Intel Labs Academic Compute

Environment (https://wiki.intel-research.net/FPGA.
html) and getting a response might take at least a day.

• How much time is needed to complete experiments: It can
take several hours.
Suppose evaluators do not have access to an Intel PAC based
FPGA accelerated computation server. In that case, they can
go through the documentation files and observe the expected
execution results and the inferences drawn from them. This
option would take an hour.

• Publicly available: https://github.com/
KULeuven-COSIC/Double-Trouble

• Code licenses: MIT License
• Archived: https://github.com/KULeuven-COSIC/
Double-Trouble/tree/ArtifactsAvailable

G.3 Description
The repository contains a set of experiments, listed in the following
table along with the relevant section of the paper.

Experiment Figure/Section

Basic Functionality
Shared Access Figure 4d
CPU Read Figure 4f
Secondary Write Figure 4e
CPU Write Figure 4c
Cache Timing Histogram Appendix A
Eviction Candidate Section 3.2.2
DDIO Replacement Policy Appendix C
Eviction with Reduced EvSet Section 6.2
EvSet Const Section 8.1.1
Reverse Engineering of DDIO Section 5

The first experiment is provided as a warm-up to the basic API
usage, the building of the attacker-victim framework, eviction set
creation, and cache-timing measurements. For each experiment, a
dedicated documentation file is provided. This file explains the
conducted experiment, how to execute it, and the expected results.

G.3.1 How to access

The artifacts are published on GitHub. The version, improved with
evaluators’ suggestions, is tagged as ‘ArtifactsAvailable’.

The Stable URL is: https://github.com/KULeuven-COSIC/
Double-Trouble/tree/ArtifactsAvailable

We wish to keep the repository solely for the artifacts of the paper,
so the most recent commit should always apply for this paper.

G.3.2 Hardware dependencies

Our work requires an FPGA acceleration card. Specifically, we tested
with the following Intel PACs (Programmable Accelerator Cards):

• Intel Arria 10 PAC
• Intel Stratix 10 PAC

One can either have a local setup that employs an Intel PAC
or work with remote access to such a platform. We did both. For
the latter, Intel Labs (IL) Academic Compute Environment (ACE)

USENIX Association 31st USENIX Security Symposium 239

https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://github.com/KULeuven-COSIC/Double-Trouble
https://github.com/KULeuven-COSIC/Double-Trouble
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/arria-10-gx.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html

(https://wiki.intel-research.net/FPGA.html) provides var-
ious remotely accessible platforms.

For people who do not have access to an FPGA accelerated plat-
form but are still interested in our findings, we provided detailed
documentation on our repository. The documentation includes a sep-
arate file for each experiment, where we provide an example output
of the execution for proving the claims we made out of them.

G.3.3 Software dependencies

On a platform with Intel PAC, we can assume that the corresponding
Intel OPAE SDK (https://github.com/OPAE) is available.

The compilation is straightforward with Makefiles. We tested
on two different setups with different gcc versions:

• On our local setup: Ubuntu 18.04.5 LTS with gcc 7.5.0
• On Intel Labs ACE: CentOS Linux 7.7.1908 with gcc 4.8.5
A few experiments require installing additional libraries. Instruc-

tions to install them are available for each repository, though they
need root privileges on the machine.

• intel-cmt-cat
https://github.com/intel/intel-cmt-cat is used for
the experiments in Section 5. This library allows to fix the
LLC ways used by a CPU core.

• intel-msr-tools
https://github.com/intel/msr-tools is used for chang-
ing the default cache configuration, with the purpose of giving
the FPGA (or DDIO in general) broader cache access. Experi-
menting with these non-default configurations was a suggestion
by the reviewers.

G.3.4 Security, privacy, and ethical concerns

Our work demonstrates a timing-based cache side-channel frame-
work, aiming for the disclosure of our security and privacy concerns
associated with the underlying platforms.

G.4 Installation
Cloning the repository is adequate for obtaining the source files.

G.5 Experiment workflow
All experiments consist of two steps; compilation with a provided
Makefile and execution of the generated binary. Depending on the
platform, there can be various customizations, e.g., pinning processes
to specific CPU cores.

Each experiment in the repository comes with a separate docu-
mentation file. These documents provide experiment-specific com-
pilation (with Makefile targets) and execution commands, besides
the experiment explanation and expected outputs.

G.6 Evaluation and expected results
The evaluation is divided into multiple experiments. The initial
experiments help understand the non-inclusive LLC structure and
its DDIO-based access. The later experiments entail:

• reverse engineering the underlying mechanisms,
• demonstrating the findings, and
• analyzing the performance.

G.6.1 Figure 4

We have four experiments respectively for the observations provided
in Figures 4c, 4d, 4e and 4f. The expected results are timing mea-
surements that support the claimed observations in Figures 4 and
Section 3.2.

G.6.2 Cache Timing Histogram

This experiment measures the timings for cache line accesses from
various levels in the cache hierarchy and constructs a histogram that
helps to distinguish accesses by their latency. The expected result
is a histogram similar to Figure 9 given in Appendix A, though the
timings can vary on different platforms.

G.6.3 Eviction Candiate

This experiment determines whether DDIO reads and writes are
recorded by the cache replacement policy, i.e., whether they change
the eviction candidate. The expected results consist of cache timing
measurements prooving the claims made in Section 3.2.2 including
Figure 3.

G.6.4 DDIO Replacement Policy

This experiment performs various access patterns with DDIO lines,
checks the cache contents after these accesses, and compares them
with the expected contents for different replacement policies. The
expected result is the re-construction of Table 10.

G.6.5 Reduced Eviction

This experiment implements the eviction with the reduced-eviction
approach explained in Section 6.2. It creates random bits, indicating
whether the victim accesses the target address or not. The attacker
monitors the victim’s activity and determines whether the victim has
accessed the target. The expected results are the measures indicating
the success of eviction with a reduced eviction set.

G.6.6 Eviction Set Construction

This experiment is used to evaluate the eviction set construction
performance for various configurations, which are:

• Non-default DDIO way settings
• Huge or small pages
• Different levels of stress
• Options of congruence checks integrated into the eviction set

construction

The expected results comprise a debug log of FPGAs eviction
set construction e.g., how many guesses were needed for every con-
gruent address, total construction time, and failed attempts. These
results are used in Section 8.1.1 and to construct Figure 8.

G.6.7 Reverse Engineering the DDIO and DDIO+ re-
gions

This experiment is used to reproduce the findings in Section 5. The
expected results indicate the ways available to DDIO and DDIO+

allocations, hence allowing to redraw Figure 7.

240 31st USENIX Security Symposium USENIX Association

https://wiki.intel-research.net/FPGA.html
https://github.com/OPAE
https://github.com/intel/intel-cmt-cat
https://github.com/intel/msr-tools

G.7 Experiment customization
The experiments offer limited customizability and interactions, in-
cluding picking the associations of processes to specific CPUs.

Specifically for the Eviction Set Construction experiment, various
measurements, indicated in Appendix G.6.6, can be perfomed by
customizing the command line arguments to the binary.

G.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

USENIX Association 31st USENIX Security Symposium 241

A Artifact Appendix

A.1 Abstract

This artifact goes through the 3 main steps of the
evaluation with FixReverter and RevBugBench: (1)
FixReverter bug injection, (2) FuzzBench experi-
ments, and (3) FixReverter bug triage. The eval-
uation results of 5 different fuzzers on a benchmark
generated by FixReverter, namely the RevBugBench,
show that FixReverter is able to generate hard-to-
find bugs and differentiate the performance of fuzzers.
As the full-scale experiments require a lot of time
and resources, the artifact provides all the interme-
diate products of each step for partial reproductions.
A machine with Ubuntu system, at least 24 CPU
cores and 200GB RAM is recommended for the ex-
periments.

A.2 Artifact check-list (meta-
information)

• Run-time environment:

Ubuntu 16.04, Docker 20.10.7 and python 3.9.

• Hardware:

At least 200GB RAM and a 24-core CPU are recom-
mended.

• Output:

Performance of 5 fuzzers on RevBugBench.

• How much disk space required (approxi-
mately)?:

500GB if running the full-scale evaluation. This can
be reduced by running only partial experiments.

• How much time is needed to prepare workflow
(approximately)?:

2 hours.

• How much time is needed to complete exper-
iments (approximately)?:

One week if running the full-scale evaluation. Run-
ning partial experiments with provided intermediate
products can take from 1 hour to several days.

A.3 Description

A.3.1 How to access

figshare URL: https://figshare.com/articles/

software/Supplementary_artifact_for_the_

paper_FIXREVERTER_A_Realistic_Bug_Injection_

Methodology_for_Benchmarking_Fuzz_Testing_

/20647821

DOI: 10.6084/m9.figshare.20647821

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

Ubuntu 16.04, Docker 20.10.7 and python 3.9. Other de-
pendencies (Clang, FuzzBench and Phasar) are automat-
ically handled in the provided docker images.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Installation guides are included in the README of the
artifact.

A.5 Experiment workflow

The workflow is described in detail with the README
of the artifact. Each section comes with numbered steps
explaining the workflow, and necessary actions come with
highlighted commands.

A.6 Evaluation and expected results

We made 3 major claims in the evaluation of the paper.

• FixReverter injects bugs that fuzzers can actually
find.

• FixReverter injects bugs that are hard to find.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 243

https://figshare.com/articles/software/Supplementary_artifact_for_the_paper_FIXREVERTER_A_Realistic_Bug_Injection_Methodology_for_Benchmarking_Fuzz_Testing_/20647821
https://figshare.com/articles/software/Supplementary_artifact_for_the_paper_FIXREVERTER_A_Realistic_Bug_Injection_Methodology_for_Benchmarking_Fuzz_Testing_/20647821
https://figshare.com/articles/software/Supplementary_artifact_for_the_paper_FIXREVERTER_A_Realistic_Bug_Injection_Methodology_for_Benchmarking_Fuzz_Testing_/20647821
https://figshare.com/articles/software/Supplementary_artifact_for_the_paper_FIXREVERTER_A_Realistic_Bug_Injection_Methodology_for_Benchmarking_Fuzz_Testing_/20647821
https://figshare.com/articles/software/Supplementary_artifact_for_the_paper_FIXREVERTER_A_Realistic_Bug_Injection_Methodology_for_Benchmarking_Fuzz_Testing_/20647821

• Fuzzers can find combination causes in RevBug-
Bench.

First, the results show hundreds of bugs can be found
by the 5 evaluated fuzzers. Second, some observations of
the difference in fuzzers’ performance shows the difficulty
for fuzzers to find the injected bugs, as described in Sec-
tion 5.2 of the paper. For example, each fuzzer detected
unique bugs that other fuzzers did not find, indicating
that injected bugs do not overfit a single approach in the
evaluated fuzzers. Finally, there are hundreds of com-
bined causes identified in the results. Because fuzzing is
a random process, this artifact is expected to produce re-
sults that support the above 3 claims and are reasonably
similar to the numbers reported in Section 5.

A.7 Experiment customization

A.8 Notes

A.9 Version

Based on the LaTeX template for Artifact Evaluation
V20220119.

244 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
This artifact description contains information about a proto-
type implementation of PRIVANALYZER. The implementa-
tion is composed of (1) a policy parser; (2) a static analyzer;
and (3) a set of function summaries. Code for performance
evaluation on Parcel is not provided due to non-disclosure
concern.

A.2 Artifact check-list (meta-information)
• Algorithm: Parse policy strings in LEGALEASE to disjunc-

tive normal form.
• Program: LEGALEASE parser + PRIVANALYZER + a set of

function summaries.
• Run-time environment: Ubuntu 16.04 LTS.
• Execution: See below.
• Output: Residual policy.
• Experiments: See below.
• Publicly available?: Code and example test cases are pub-

licly available.
• Code licenses (if publicly available)?: MIT License.

A.3 Description
A.3.1 How to access

The codebase can be accessed from Github https://github.
com/sunblaze-ucb/privguard-artifact with commit hash
b1b5f3a16af6ab5f7cb0f0737aba27dd9d76c25b. We are still actively
updating the codebase. To access the newest version, please use
https://github.com/sunblaze-ucb/privguard-artifact.

A.3.2 Software dependencies

To run PRIVANALYZER, python3.6 and python3.6-venv are required.
Additional Python package dependencies are as follow.

• pypandoc==1.6.4
• pyparsing==3.0.0rc2
• numpy==1.19.5

A.4 Installation
The statis analyzer has been tested in Ubuntu 16.04 system. To run
the static analyzer, pleaes install python3.6 and python3.6-venv using
the following lines.

sudo apt install python3.6
sudo apt install python3.6-venv

To download our codebase, run

git clone https://github.com/sunblaze -ucb/
privguard -artifact.git

Then create and activate a python3.6 virtual environment, install
python packages, and set environment variables by running

chmod u+x path -to-repo/setup.sh
path -to-repo/setup.sh

A.5 Evaluation and expected results
In this codebase, we provide test scripts for the policy parser and the
static analyzer separately.

Policy Parser. To test the policy parser, run

python path -to-repo/src/parser/policy_parser
.py

and input a valid policy string (e.g. "ALLOW FILTER age >= 18
AND SCHEMA NotPHI, h2 AND FILTER gender == ’M’ ALLOW
(FILTER gender == ’M’ OR (FILTER gender == ’F’ AND SCHEMA
PHI))") in Legalease. The program will output the policy translated
to Python objects.

To test converting a policy into its DNF form, run

python path -to-repo/src/parser/policy_tree.
py

Static Analyzer. We provide 5 example programs to test the
static analyzer. To run these examples, use the following script with
correct flag values. Please make sure your environment variable is
correctly set before testing the below functionality (see setup.sh for
more information).

python path -to-repo/src/analyze.py --
example_id XX

We provide details about two examples below.

ELECTRICAL HEALTH RECORD (0): The first example loads two
data files: patients/data.csv and conditions/data.csv whose policies
are as below.

ConjunctClause(redact: NAME(None:None),
filter: AGE [e18, einf])

ConjunctClause(filter: CONSENT [eY, eY],
filter: DESCRIPTION [
eViralSinusitisDisorder ,
eViralSinusitisDisorder], privacy:
Aggregation)

The residual policy is

ConjunctClause(UNSAT)

which means the policy is unsatisfiable. The reason is that in the last
line of the program, the DataFrame calls its groupby method which
prevents any further operation to satisfy the PRIVACY Aggregation
attribute.

TRANSACTION PREDICTION (6): The second example loads one
data file: train/data.csv whose policy is as below.

ConjunctClause(privacy: Aggregation , redact:
ID(None:None))

The program drops the ID column and trains a model on the data, so
the guard policy is fully satisfied and the residual policy is

ConjunctClause(SAT)

USENIX Association 31st USENIX Security Symposium 245

https://github.com/sunblaze-ucb/privguard-artifact
https://github.com/sunblaze-ucb/privguard-artifact
https://github.com/sunblaze-ucb/privguard-artifact

A Artifact Appendix

A.1 Abstract

We developed OVRSEEN, a methodology and system for
collecting, and analyzing network traffic and privacy policies
on OVR. OVRSEEN consists of two main parts: network
traffic and privacy policy. OVRSEEN’s network traffic part
consists of traffic collection and post-processing. First, traffic
collection consists of repackaging the app’s APK, and running
the traffic decryption scripts simultaneously with AntMonitor,
the traffic collection app. Second, post-processing consists of
scripts that perform analysis on the collected network traffic.

OVRSEEN’s privacy policy part consists of network-to-
policy consistency analysis, and purpose extraction. First, the
network-to-policy consistency analysis comes in the form
of PoliCheck that has been adapted with VR data and entity
ontologies to perform its analysis on VR apps. Second, the
purpose extraction comes in the form of scripts that send
privacy policies to Polisis website (https://www.pribot.
org/) using the provided REST APIs, and scripts that provide
a translation from PoliCheck data flows into text segments
that have been annotated by Polisis with purposes.

A.2 Artifact check-list (meta-information)
• Datasets: lists of apps, network traffic dataset, privacy policy

files, manual validation of PoliCheck and Polisis spreadsheets,
and intermediate output files.

• Run-time environment: Python scripts tested on Python 3.8
and 3.9; we also provide a VM that runs Ubuntu 20.04.3 LTS
with all the dependencies installed.

• Hardware: an Oculus Quest 2 device and a standard machine
with Linux/MacOS (or using the provided VM).

• Execution: We have provided a set of steps to demo OVRseen
(e.g., for artifact evaluation), which takes a few hours approxi-
mately.

• Metrics: number of packets, TCP flows, numbers of apps, do-
main names/entities, and data flows.

• Output: console output (e.g., debug/error messages), interme-
diate output files, final analysis results.

• Experiments: Please see OVRSEEN’s Github page (i.e., “Try
OVRSEEN Yourself” Wiki page in particular).

• How much disk space required (approximately)?: Our VM
provides 30GB of disk space (more than 25GB will be occupied
when running OVRSEEN).

• How much time is needed to prepare workflow (approx-
imately)?: Downloading and booting up the provided VM
should take less than 1 hour (plus additional time to install
VirtualBox/VMWare).

• How much time is needed to complete experiments (ap-
proximately)?: We have a quick demo for OVRSEEN that
would take a few hours (at least 2 hours).

• Publicly available?: We have released OVRSEEN, along with
the datasets, publicly.

• Code licenses (if publicly available)?: Code licenses infor-
mation is available on OVRSEEN’s Github page.

• Data licenses (if publicly available)?: Datasets licenses in-
formation is available on the datasets release page.

• Archived (provide DOI or stable reference)?: https://
doi.org/10.5281/zenodo.5565170

A.3 Description
A.3.1 How to access

We have made OVRSEEN available at https://athinagroup.
eng.uci.edu/projects/ovrseen/ and our datasets
at https://athinagroup.eng.uci.edu/projects/
ovrseen-datasets/. These two links have the complete
information about the paper, OVRSEEN, and datasets.
For convenience, the link to OVRSEEN’s Github page is
https://github.com/UCI-Networking-Group/OVRseen.

A.3.2 Hardware dependencies

OVRSEEN’s network traffic and privacy policy analyses can be
run on our datasets on a standard machine that runs Linux/MacOS,
or using the provided VM. The information to download the VM
can be found at https://github.com/UCI-Networking-Group/
OVRseen#getting-started. Please see the “Virtual Machine” sec-
tion: https://github.com/UCI-Networking-Group/OVRseen#
virtual-machine.

OVRSEEN’s network traffic collection needs a real Oculus Quest
2 device for the most part. Thus, our quick demo mainly assumes
that one just runs OVRSEEN on our datasets (without collecting
network traffic on the device).

A.3.3 Software dependencies

The dependencies for OVRSEEN are explained in detail
on OVRSEEN’s Github Wiki page at https://github.com/
UCI-Networking-Group/OVRseen/wiki#dependencies. These
dependencies have been properly installed and set up in the pro-
vided VM.

A.3.4 Datasets

OVRSEEN has a number of datasets: (1) list of apps in our corpus
(i.e., two files that contain apps information obtained by crawling
the Oculus and SideQuest app stores, and four files that contain
the information of the top 150 apps); (2) network traffic dataset in
the form of PCAP files from 140 VR apps; (3) 102 privacy policy
files; (4) manual validation results for PoliCheck and Polisis (i.e.,
two spreadsheets); and (5) intermediate outputs (i.e., a CSV file
containing TCP flows, pre-processed privacy policy files, a CSV
file containing data flows, PoliCheck output files, JSON files con-
taining Polisis output for text segment annotation, and a CSV file
that contains the translation/mapping from PoliCheck data flows
into the annotated text segments from Polisis). For artifact eval-
uation purposes, we provide the download link for our datasets
through hotcrp.com. In the future, these datasets will be shared

USENIX Association 31st USENIX Security Symposium 247

https://www.pribot.org/
https://www.pribot.org/
https://doi.org/10.5281/zenodo.5565170
https://doi.org/10.5281/zenodo.5565170
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://athinagroup.eng.uci.edu/projects/ovrseen-datasets/
https://athinagroup.eng.uci.edu/projects/ovrseen-datasets/
https://github.com/UCI-Networking-Group/OVRseen
https://github.com/UCI-Networking-Group/OVRseen#getting-started
https://github.com/UCI-Networking-Group/OVRseen#getting-started
https://github.com/UCI-Networking-Group/OVRseen#virtual-machine
https://github.com/UCI-Networking-Group/OVRseen#virtual-machine
https://github.com/UCI-Networking-Group/OVRseen/wiki#dependencies
https://github.com/UCI-Networking-Group/OVRseen/wiki#dependencies
hotcrp.com

to OVRSEEN users after they submit the consent form at https:
//athinagroup.eng.uci.edu/projects/ovrseen-datasets/.

A.3.5 Security, privacy, and ethical concerns

Please keep in mind that VR apps collect PII and other sensitive
information: OVRSEEN collects such sensitive information as well
when used to collect and analyze network traffic. Our network traffic
dataset, however, contains PII that is associated only with a test
account/persona (i.e., no human subjects were involved).

A.4 Installation
We have provided complete instructions on how to download, in-
stall, and use OVRSEEN on its Github page: https://github.com/
UCI-Networking-Group/OVRseen (please see the README and
Wiki pages). The instructions also include how to download and use
our VM that has all the dependencies installed.

A.5 Experiment workflow
We have created a Wiki page (called “Try OVRSEEN

Yourself”) on OVRSEEN’s Github page (i.e., https:
//github.com/UCI-Networking-Group/OVRseen/wiki/
Try-OVRseen-Yourself). This Wiki page contains a set of steps
that one can follow to quickly demo OVRSEEN’s workflow using
our datasets.

A.6 Evaluation and expected results
Main claims. Our paper presents OVRSEEN, a methodology and
system for collecting, and analyzing network traffic and privacy poli-
cies on OVR. In our paper, we first claimed that, using OVRSEEN,
we decrypted, captured, and analyzed network traffic of VR apps.
Then, we made the following claims based on our findings:

• More centralized, more tracking, but less advertising: the OVR
ecosystem is more centralized, and driven by tracking and
analytics, instead of by third-party advertising.

• Data types exposure: data types exposed by VR apps include
the traditional PII and, most notably, VR specific data types.

• Inconsistent disclosures: the majority of data type exposures of
an app are inconsistent with the disclosures in the app’s privacy
policy.

• Non-core purposes: many data exposures occurred for purposes
unrelated to an app’s core functionality.

Key results. Next, we outline the key results that support our
main claims:

• More centralized, more tracking, but less advertising: We found
that OVR exposes data primarily to tracking and analytics
services, and has a less diverse tracking ecosystem. We found
no evidence of data exposure to advertising services as ads on
OVR is still in its infancy (see Section 3.3).

• Data types exposure: We discovered that there were 21 data
types exposed, namely PII, Fingerprint, and VR Sensory Data
data types (see Section 3.4).

• Inconsistent disclosures: First, we found that approximately
70% of data flows from VR apps were inconsistent with their
privacy policies: only 30% were consistent. Second, apps’
privacy policies often neglected declaring privacy policies
from the libraries they used. We discovered that by including
these other parties’ privacy policies in OVRSEEN’s network-
to-policy consistency analysis, 74% of data flows became con-
sistent (see Section 4.1).

• Non-core purposes: We discovered that there were 69% of data
flows that have purposes unrelated to the core functionality, e.g.,
advertising, marketing campaigns, and analytics (see Section
4.2).

Reproducing key results. To reproduce the key results,
we recommend our artifact reviewers to follow the instructions
at https://github.com/UCI-Networking-Group/OVRseen/
wiki/Try-OVRseen-Yourself that we also describe in detail in
the following.

To prepare OVRSEEN, please follow the instructions in the
“Virtual Machine” section in the README (i.e., https://github.
com/UCI-Networking-Group/OVRseen#virtual-machine)
to first download and run our pre-configured VM (with all the
dependencies installed). Then, our reviewers can download, install
(e.g., in the home directory), and run OVRSEEN on the running VM.

First, collecting network traffic using OVRSEEN is not possible
without installing AntMonitor and running the certificate validation
bypass scripts on a real Oculus Quest 2 device. Further, it is im-
practical to repeat our network traffic collection steps on 140 VR
apps for the purpose of artifact evaluation. Thus, we release our
network traffic dataset in the form of PCAP files that we captured
using AntMonitor and the certificate validation bypass scripts. We
welcome our reviewers to download and use our datasets and run
OVRSEEN on them: this will be sufficient to reproduce all results
we reported in our paper.

Since OVRSEEN’s traffic collection is impractical to perform for
our reviewers, we invite our reviewers to look at the complete source
code for AntMonitor and the certificate validation bypass scripts.
We also invite our reviewers to look at https://github.com/
UCI-Networking-Group/OVRseen/wiki/Traffic-Collection
to review the instructions: these have been tested using our VM
and a real Quest 2 device. One part of the OVRSEEN’s traffic
collection that our reviewers can still run in the quick demo is the
app repackaging step—we provide a sample app to test with (please
see https://github.com/UCI-Networking-Group/OVRseen/
wiki/Try-OVRseen-Yourself#traffic-collection).

Next, using the provided network traffic dataset (and our other
datasets), our reviewers can perform the following steps when run-
ning OVRSEEN.

• More centralized, more tracking, but less advertising:
OVRSEEN’s post-processing scripts can be run to analyze
the network traffic dataset we provide; the final product of
OVRSEEN’s post-processing is a combined CSV file that con-
tains information on TCP flows: each TCP flow, among other
information, records app ID (i.e., app name), PII types, and end-
points; for now, we recommend that OVRSEEN is run partially
on our network traffic dataset (due to the limitations of RAM
and disk space in the VM), but we provide the intermediate
outputs generated when we ran OVRSEEN on our complete

248 31st USENIX Security Symposium USENIX Association

https://athinagroup.eng.uci.edu/projects/ovrseen-datasets/
https://athinagroup.eng.uci.edu/projects/ovrseen-datasets/
https://github.com/UCI-Networking-Group/OVRseen
https://github.com/UCI-Networking-Group/OVRseen
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen#virtual-machine
https://github.com/UCI-Networking-Group/OVRseen#virtual-machine
https://github.com/UCI-Networking-Group/OVRseen/wiki/Traffic-Collection
https://github.com/UCI-Networking-Group/OVRseen/wiki/Traffic-Collection
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself#traffic-collection
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself#traffic-collection

network traffic dataset and scripts that use these outputs to
reproduce Table 1 (discussed in Section 3.2.1), and Table 2
and Figure 2 (discussed in Section 3.3) in our paper.

• Data types exposure: OVRSEEN’s post-processing also in-
cludes scripts that use the intermediate outputs to reproduce
Table 3 that summarizes data types exposures, destinations, and
blocklists’ effectiveness for 21 data types; we discuss these in
Section 3.4 in our paper.

• Inconsistent disclosures: OVRSEEN’s network-to-policy con-
sistency analysis consists of PoliCheck that has been adapted
and improved for VR apps, and VR (data and entity) ontolo-
gies; our reviewers can run OVRSEEN’s network-to-policy
consistency analysis using the provided intermediate outputs to
reproduce our results reported in Section 4 in our paper: more
specifically, we provide scripts to reproduce Figures 4, 5, and 6;
further, we release the HTML files of the 102 privacy policies
we collected, the scripts that pre-process these into text files
suitable as an input to PoliCheck, and the text files themselves;
in addition to privacy policies, PoliCheck also takes a CSV
file that contains data flows information extracted from the
CSV file that contains TCP flows information (i.e., output of
OVRSEEN’s post-processing): we release the scripts to pro-
duce this data flows CSV file along with the CSV file itself;
finally, we also provide the output CSV files from PoliCheck’s
disclosure classification and the spreadsheet that contains the
results of our manual validation for PoliCheck.

• Non-core purposes: OVRSEEN’s purpose extraction consists
of scripts that perform the extraction of purposes for text seg-
ments in privacy policies using Polisis, and scripts that perform
translation/mapping from PoliCheck data flows to the text seg-
ments annotated by Polisis; Polisis website requires a special
token for the APIs to work with our scripts; unfortunately,
while the token can be acquired by contacting Polisis authors,
they had to discontinue their online service as of September
2021 due to some technical issue; thus, we provide the JSON
files that contain the Polisis analysis output we obtained for our
102 privacy policies; using these files, one can run our scripts to
reproduce the statistics/results we reported in Section 4.2 and
Figure 7 in our paper; further, we also release the spreadsheet
that contains the results of our manual validation for Polisis.

Thus, we believe that the instructions we provide at
https://github.com/UCI-Networking-Group/OVRseen/
wiki/Try-OVRseen-Yourself are sufficient to quickly demo
OVRSEEN. While, parts of OVRSEEN’s workflow will not be
possible to perform (e.g., the network traffic collection that
requires a Quest 2 device, the Polisis online service that has been
discontinued, etc.), these instructions, coupled with our datasets,
will allow our artifact reviewers to reproduce our (key) results to
support the main claims in the paper.

A.7 Experiment customization
If one has a local machine that allows the provided VM
to be provisioned with more RAM and disk space, they
can try to increase the RAM and disk space for the VM,
and run OVRSEEN on our entire datasets. Please see
https://github.com/UCI-Networking-Group/OVRseen/
wiki/Try-OVRseen-Yourself for more information.

Further, OVRSEEN can be used to collect network traffic from
other apps on Quest 2. The PCAP files can then be post-processed
and analyzed (together with the apps’ privacy policies) using
OVRSEEN. For other devices, other than Quest 2 (or even non-
VR devices), one has to adapt the network traffic collection part to
decrypt network traffic on the device. Other parts of OVRSEEN also
may need adjustments if the collected network traffic contains new
data types. For instance, new network traffic dataset and/or privacy
policies may change PoliCheck’s data and entity ontologies.

Additionally, we also release our app crawler scripts that we
used to collect app information we present in our lists of apps, and
the curated lists of top apps. Please see https://github.com/
UCI-Networking-Group/OVRseen/wiki/App-Corpus for more
information on how to use them. Nevertheless, we do not consider
these crawler scripts to be part of the main OVRSEEN’s workflow.

USENIX Association 31st USENIX Security Symposium 249

https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/Try-OVRseen-Yourself
https://github.com/UCI-Networking-Group/OVRseen/wiki/App-Corpus
https://github.com/UCI-Networking-Group/OVRseen/wiki/App-Corpus

A Artifact Appendix

A.1 Abstract
This paper presents Half-Double, a new Rowhammer effect
extending the reach of Rowhammer beyond the immediate
neighbors. We show that this effect can not only circumvent
current state-of-the-art mitigations like TRR, but defensive
refreshes to distance-1 rows also assist Half-Double. The
general idea is to induce flips into a victim by combining
many distance-2 accesses with a few distance-1 accesses.

In the artifact evaluation, we present experiments to under-
line the impact of Half-Double. Due to obligatory constraints,
we cannot share parts of the initial root-cause analysis. Nev-
ertheless, the artifacts presented show all the necessary steps
to mount the Half-Double Attack on commodity systems pro-
tected by TRR and ECC.

We split the artifacts into the described challenges, which
finally form the end-to-end exploit. First, the artifacts for
Challenge C1 “Memory Allocation” demonstrate three dif-
ferent ways to reconstruct contiguous memory. Second, for
Challenge C2 “Alternatives to Memory Templating”, we show
both ECC-aware hammering and Blind-Hammering and pro-
vide the utility to count the overall bitflips on a device. Third,
Challenge C3 “Memory Preparation” shows the Child Spray
technique to fill the memory with attackable data, i.e., page ta-
bles. Fourth, we provide the artifacts for C4 “Robust Bit-Flip
Verification”, namely the speculative oracle and the architec-
tural vfork alternative. Finally, the Half-Double Attack built
upon the previous parts to mount the end-to-end attack.

The end-to-end exploit is optimized for the chromeOS oper-
ating system and, more precisely, for our Chromebook setup.
Nevertheless, all the components are compileable for both
x86 and aarch64 architectures. We recommend ARM-v8 and
Intel x86 CPUs for this artifact evaluation.

A.2 Artifact check-list (meta-information)
• Program: We provide the programs and represent how

to install them.

• Compilation: We require gcc for cross-compilation.
Download instructions are provided.

• Run-time environment: We require a native Linux in-
stallation for compilation. Some artifacts can be directly
executed under Linux. For this purpose, we strongly rec-
ommend Ubuntu 20.04. For the end-to-end exploit, we
require a chromeOS installation. The provided installa-
tion instructions need internet access.

• Hardware: We require either Intel x86 CPUs or ARM-
v8 CPUs. Half-Double bitflips depend highly on the ac-
tual hardware and even differ between identical DRAM
modules.

• Execution: For executing some benchmarks, we require
a stable frequency.

• Security, privacy, and ethical concerns: Due to the
Half-Double bitflip effect, data corruption can occur
on the used system.

• Metrics: The benchmarks report nanosecond execution
time, data size in bytes, and throughput in mega- or giga-
bytes per second.

• Output: The artifacts print the results to the terminal.

• Experiments: We include the source code, build scripts,
and readmes describing the artifact and the process of
how to execute the benchmarks.

• How much disk space required (approximately)?:
Less than 1 GB.

• How much time is needed to prepare workflow (ap-
proximately)?: Below 4 hours.

• How much time is needed to complete experiments
(approximately)?: Up to two days, depending on the
hardware.

• Publicly available (explicitly provide evolving
version reference)?: https://github.com/iaik/
halfdouble

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable refer-
ence)?: https://github.com/iaik/halfdouble/
tree/ae

A.3 Description
A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/halfdouble and follow the provided readmes.

A.3.2 Hardware dependencies

We recommend ARM-v8 CPUs with (LP)DDR4(x) DRAM
supporting both TRR and ECC, like the Chromebooks in the
paper. Most of the artifacts can also be executed on Intel x86
CPUs. Our experience showed that the susceptibility to Half-
Double is highly dependent on the used DRAM modules.

A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as a platform for com-
pilation as we tested all the building steps there. The operating
system to execute the artifacts should either be an Ubuntu
or chromeOS operating system with root access for debug-
ging. The components of the paper have to be built from

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 251

https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble/tree/ae
https://github.com/iaik/halfdouble/tree/ae
https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble

the source. Hence the system requires tools for compiling
software (build-essentials on Ubuntu). Finally, access to
operating system interfaces as root is necessary for debugging,
e.g., /proc/self/pagemap and /dev/mem.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with Half-Double, we observed data
corruption in the operating system resulting in corrupted file
systems. Therefore, we highly recommend a fresh installa-
tion with an operating system image not used for personal
or important data. We never observed persistent damage on
the hardware. However, we cannot ensure this is generally
the case, but we find it highly unlikely to damage the used
hardware.

A.4 Installation
Follow the readmes in the repository’s top-level directory,
which will guide you through installing all the necessary tools
and components of the paper. The “Makefiles” should au-
tomate most of the process. However, we cannot rule out
that some parts might need manual adjusting, and therefore,
knowledge of C, C++, python3, bash, and Makefiles is benefi-
cial.

A.5 Experiment workflow
Each artifact contains a readme, the source code, and a build
script to build the source. After the binary is compiled, we
can reuse the build script to deploy the binary to the test
systems where the binary is executed. Note that some binaries
require additional arguments passed via the terminal. The
binary prints debug output to the terminal, and the results are
also reported in this way.

A.6 Evaluation and expected results
The evaluation is split into multiple parts. First, we use the pro-
vided Half-Double hammering tool to verify the results from
Table 1. The tool uses the Quad pattern to hammer and induce
flips on commodity devices, e.g., the provided Chromebooks.
The tool should report similar flip frequencies if performed
on the provided hardware. Second, we execute the artifacts of
Challenge C1 to verify the general functionality and the per-
formance numbers of Section 6.1 when detecting contiguous
memory. Third, for Challenge C2 we reuse the hammering

tool with a slightly different configuration to demonstrate both
Blind-Hammering and ECC-aware templating from Section
6.2. Fourth, Challenge C3 uses an executable to demonstrate
the Child spray of Section 6.3 to circumvent some ARM
CPUs’ reduced virtual address space and verify the perfor-
mance numbers. Finally, the artifacts of Challenge C4 scan
memory and test the bitflip verification of Section 6.4 if a
page table is corrupted.

A.7 Experiment customization
The artifacts use a timing side channel to find addresses be-
longing to the same DRAM bank. Therefore, the threshold of
the timing side channel is configurable and usually passed via
a command-line argument. We provide an additional utility to
evaluate this threshold empirically. Nevertheless, this thresh-
old might need manual adjustment. Finally, we can adjust
the number of repetitions of a benchmark and the performed
accesses in the hammer loop via compile-time parameters.

A.8 Notes
Rowhammer bitflips depend highly on the used DRAM, the
device’s battery state, and the environment. Similar to Ta-
ble 1, identical commodity systems can behave differently.
Therefore it is likely that results from the artifacts may differ.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

252 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Using RETBleed, an unprivileged user can leak arbitrary
memory from the system. The vulnerable systems are listed in
Table 1 in the paper. RETBleed has an offline phase, where ex-
ploitation primitives are discovered by our framework. We ran
the framework, designed exploits and proof of concept code
on Ubuntu 5.8.0-63-generic. To match our results closely,
an Intel i7-8700K (Coffee Lake) and an AMD EPYC 7252
(Zen2) are recommended. 16 GiB of RAM is recommended.
To run our framework on the entire test suite (optional), we
recommend 40 GiB of free disk space. However, we have in-
cluded example output from the framework with particularly
huge files omitted, which is 1-2 GiB and can be inspected
instead.

We provide a snapshot of the current RETBleed repository,
which hosts the majority of code used throughout the project.
The repository is public, and detailed instructions are found
in the README.md files inside the git repository.

A.2 Artifact check-list (meta-information)
• Binary: A Linux image is included to test the gadget scanner.

Source code is included to build the other binaries used by the
framework, PoCs, kernel modules and end-to-end exploits.

• Run-time environment: Ubuntu 20.04.3 LTS (Focal Fossa)
with linux-image-5.8.0-63-generic. Most experiments
are designed to run on bare-metal, not on a VM.

• Hardware: Intel Core generations 6–8; AMD Zen, Zen+ and
Zen 2

• Security, privacy, and ethical concerns: Responsible disclo-
sure ended on 12 July 2022.

• Experiments:

– ./retbleed_zen/pocs/ret_bti finds the patterns
that cause BTB collisions.

– ./retbleed_zen/pocs/cp_bti shows that collisions
happen across.

– ./retbleed_intel/pocs/ret_bti shows that returns
go via BTB.

– ./retbleed_intel/pocs/cp_bti shows that we can
train across kernel returns in user space.

– ./rsb_depth_check RSB use on AMD and Intel. For
Intel, it also indicates that some other “near branch” pre-
diction mechanism takes place.

– ./zen_ras_vs_btb/ is illustrated in Figure 5. It shows
that Return Address Stack (RAS, aka RSB) is not used
on Zen 2 when there’s a BTB entry. To evaluate Zen(+),
BTI_PATTERN must be manually set.

– ./ret_finder/ constitutes the part of framework to
detect vulnerable return instructions in the kernel.

– ./gadget_scanner/ was used to discover disclosure
gadgets.

– ./bhb_generate/ was used to trace taken branches pre-
ceding a vulnerable return in a kernel running inside a
VM.

• How much disk space required (approximately)?: 300 MiB.
40 GiB to reproduce our framework output.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: Up to 12 hours.

• Publicly available (explicitly provide evolving ver-
sion reference)?: https://github.com/comsec-group/
retbleed/.

• Workflow frameworks used?: git, linux-test-project,
BCC/eBPF, ftrace

• Archived: https://github.com/comsec-group/
retbleed/releases/tag/sec22-artifact-final

A.3 Description
A.3.1 How to access

Clone using git, git clone
https://github.com/comsec-group/retbleed.git. Also
clone submodules, git submodule update -init

A.3.2 Hardware dependencies

Intel i7-8700K (Coffee Lake) and AMD EPYC 7252 (Zen 2) or
similar. We were evaluating all experiments and exploits on bare-
metal hardware. Running in a VM may pose unexpected challenges.

A.3.3 Software dependencies

Ubuntu focal, linux-image-5.8.0-63-generic, clang, python3, bcc,
bpfcc-tools, pytest, pyelftools

A.4 Installation
Instructions available in README.md files. See repository for de-
tails. Software dependencies can be installed using apt-get and
pip3. Linux test project included as a submodule that can be cloned
using git submodule update -init from the repository

A.5 Experiment workflow
Instructions available in README.md files. See repository.

A.6 Evaluation and expected results
• Reverse engineering of return instruction behavior. Several

experiments are included that reverse engineer return behavior.

• Framework that finds vulnerable return instructions. We
include the framework that finds these. It should result in the
numbers from Figure 11.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 253

https://github.com/comsec-group/retbleed/
https://github.com/comsec-group/retbleed/
https://github.com/comsec-group/retbleed/releases/tag/sec22-artifact-final
https://github.com/comsec-group/retbleed/releases/tag/sec22-artifact-final

• Poisoning kernel returns from an unprivileged process. Our
PoCs and exploits all do this.

• Leaking arbitrary memory at 3.9 kB/s and 219 bytes/s on
AMD Zen2 and Intel Coffee Lake respectively. We provide
instructions in the repository for how to run these PoCs. We
also include exploits to leak /etc/shadow. Furthermore, we also
explain how we measure the leakage rate. The median the
leakage rate should closely match with the expected results.

A.7 Experiment customization
We clarify in the READMEs provided the cases where certain pre-
processor macros can/should be altered for additional results. For
example, to run rsb_depth_check on AMD, uncomment L11 in
ret_chain.c.

A.8 Notes
The documentation here is sparse, since everything written here
has already been provided in the artifact project itself. Please use
your own hardware. Should you not have access to hardware that is
similar to ours, please contact us.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

254 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artefact Appendix

A.1 Abstract
Pistis artefact is a set of source files and scripts that
can be evaluated partially on a standard Linux environ-
ment (local evaluation), and partially with the support of a
MSP430F5529LP micro controller unit (MCU). However, we
provide the reviewers with an SSH access to a VM connected
to one of such board (remote evaluation). The VM is shared
between the reviewers and does not allow multiple users to in-
teract with the MCU at the same time. The reviewers are thus
asked for their collaboration in sharing such VM instance. For
the local evaluation, the reviewers will be asked to compile
the core of Pistis and use the available scripts to compile the
user-applications. For the remote evaluation, using the VM,
they will be asked to check Pistis at runtime, debugging its
execution using a GUI-based IDE.

A.2 artefact check-list (meta-information)
• Program: TI MSP430 Benchmark, custom test bench

• Compilation: msp430-gcc-9.2.0.50, included, public

• Transformations: python-script

• Run-time environment: Linux, non-root

• Hardware: x86_64 Machine, (optional) MSP430F5529LP

• Output: console, graphical, interactive

• Experiments: Python scripts, bash scripts, CodeComposerStu-
dio (CCS), debugging

• How much disk space required (approximately)?: 10GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 2 hours

• Publicly available (explicitly provide evolving version refer-
ence)?: https://github.com/MicheleGrisafi/PISTIS_
AE

• Code licenses (if publicly available)?: The 3-Clause BSD
License

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/MicheleGrisafi/PISTIS_AE/
releases/tag/Artefact.v1

A.3 Description
Pistis is a Trusted Execution Environment (TEE) developed for
MSP4305529 Micro Controller Units (MCUs). Being a fully soft-
ware based TEE, its features are many spanning a complex software
structure. Although we provide the entirety of Pistis, with all of its
modules and test applications (as presented in the papers), we only
provide instructions on how to evaluate part of it. This is due to
the complex and time-demanding nature of a complete evaluation,
which would also require a MSP4305529LP MCU.

In particular, we provide instructions on how to: (i) build the core
of Pistis, (ii) use the custom toolchain to compile applications, (iii)
check the run-time verification process, (iv) check the run-time mem-
ory protection. While some of these operations can be performed
with a local environment (based on Ubuntu 20.04), others require
SSH access to a shared VM connected to a MSP4305529LP board.
This access must be shared between any reviewer who cannot in-
teract concurrently with the board. The local evaluation will only
require to run a few CLI commands, while the remote evaluation
will require the reviewers to operate on an Eclipse-based IDE and
its debugger. To facilitate the operations, we provide a few video
tutorials.

A.3.1 How to access

The artefact can be downloaded from the official artefact github
repository: https://github.com/MicheleGrisafi/PISTIS_AE.
It is worth noting that this repository is based on the official repos-
itory (link in the official paper). Given the strict hardware require-
ments for the evaluation of this artefact, we prepared a virtual ma-
chine (with ssh access) connected to a single MCU, the one we used
in our experiments. Although this setting poses some limitations to
the reviewers, it can be used to have a deeper inspection on how
Pistis functions.

In order to access the VM we set up, the following command
should be executed on a local graphical-based Linux environment:
no more available1. This will establish a two-hops ssh connection to
the private VM passing through a public VPS. The passwords for
the two hops, which will be required upon each connection, are the
following: Pistis1940 for the pistisAE user (first hop) and pistis
for the pistis user (the VM). The -Y option enables the forwarding of
the graphical environment, thus allowing the reviewers to visualise
on their own machine any GUI lunched on the remote machine.

A.3.2 Hardware dependencies

In order to compile our binaries, an x86_64 Linux based machine
should be used. Optionally, a MSP430F5529LP MCU can be used
to perform locally also the remote evaluation. Nevertheless, this
artefact provides the reviewer with a single shared VM instance con-
nected to one of such MCUs. This will help the reviewers to execute
code on the board. As a consequence, we proceed to describe two
environment: a local environment (local) for the MCU-independent
tests, and an MCU-connected environment (remote) for all the other
tests.

A.3.3 Software dependencies

To propose a baseline for the artefact evaluation, we base our exper-
iments on a machine running Ubuntu Desktop 20.04. On the local
environment, the following packages are required:

• make, python3, git

• any code editor

Notable is that some of them might already be included with
standard Linux-based OSs.

1The maintenance of a remote environment is expensive. We ask any
interested reader in either following the video tutorials or to follow the
official instructions on the official github repository.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 255

https://github.com/MicheleGrisafi/PISTIS_AE
https://github.com/MicheleGrisafi/PISTIS_AE
https://github.com/MicheleGrisafi/PISTIS_AE/releases/tag/Artefact.v1
https://github.com/MicheleGrisafi/PISTIS_AE/releases/tag/Artefact.v1
https://github.com/MicheleGrisafi/PISTIS_AE

On the remote environment, the following software is required:

• libc6-i386 python2.7-dev libtinfo5 libusb-dev libgconf-2-4
python3-pip

• any code editor

• Code Composer Studio IDE (CCS)

The listed elements are however already installed on the remote
machine. Still, we provide the setup instructions for the reviewers to
set up their own remote environment in case they had an available
MCU.

A.4 Installation
Local Environment We leave the installation of a valid Ubuntu
20.04 desktop distribution to the reviewers. This is trivial due to
the multitude of available tutorials online. Given that our fresh and
minimal installation of Ubuntu comes with some packages already
installed, we only perform the steps in Listing 1. These steps install
the required packages, fetch the github repository and create an alias
for a tool required in the later evaluation.

1 $ sudo apt install git make
2 $ cd ∼/Documents/ && git clone https://github.com/

MicheleGrisafi/PISTIS_AE.git
3 $ echo ’alias mspdump="∼/Documents/PISTIS_AE/

toolchain/compiler/msp430-gcc-9.2.0.50_linux64
/bin/msp430-elf-objdump"’ >> ∼/.bashrc

4 $ source ∼/.bashrc

Listing 1: Steps to install the required packages on the local
environment

As already mentioned, we provide a "plug-n-play" VM to be
used as remote environment by any reviewers. Still, for the sake of
transparency and in the eventuality that the reviewer wanted to set
up their own remote environment, in Listing 2 we provide the steps
used to set it up.

1 $ sudo apt install libc6-i386 python2.7-dev
libtinfo5 libusb-dev libgconf-2-4 python3-pip

2 $ pip3 install pyserial
3 $ cd ∼/Downloads && wget https://dr-download.ti.

com/software-development/
ide-configuration-compiler-or-debugger/
MD-J1VdearkvK/11.2.0.00007/CCS11.2.0.00007
_linux-x64.tar.gz

4 $ tar -xvf CCS11.2.0.00007_linux-x64.tar.gz
5 $./CCS11.2.0.00007_linux-x64/ccs_setup_11

.2.0.00007.run
6 $ echo ’PATH="/home/pistis/ti/ccs1120/ccs/eclipse:

$PATH"’ >> ∼/.bashrc
7 $ source ∼/.bashrc

Listing 2: Steps to set up the remote environment.

These steps download the required packages, fetch the CCS binary
from the official TI website, extract it and install it. Finally, they
add the installation directory to the Linux PATH. During the CCS
installation, we should select the minimal installation and only select

the "MSP430 ultra-low power MCUs" option. Afterward, we have
to install the MSP430 toolchain from the official repository or link
CCS with our version. We will proceed with the first option. In CCS,
we should go to Help/CCS App Center, select the checkbox under
MSP430 GCC and click Install Software. After the installation
we can restart CCS.

A.5 Experiment workflow
This artefact evaluation contains two types of experiments. The first
mainly allow the reviewers to evaluate the custom toolchain, the
second allow them to inspect the run-time behaviour of Pistis.

Please be aware that for the second set of experiments, an SSH
connection to our remote environment is required. Furthermore, we
remind the reviewers that it is a single shared instance connected to a
single MCU. As a consequence, they cannot operate simultaneously
on the remote environment. We leave the organisational task to the
reviewers.

Disclaimer: The debugging experience with Code Composer
Studio, the official debugger for the MSP430 MCU, can be non-
ideal and lead to inconsistent results. There might be executions
with weird behaviours. This can be attributed to the state of the
MCU and some internal CCS/debugger issues. The reader is kindly
asked to follow the instructions as close as possible, sending us
(michele.grisafi@unitn.it) an email in case of any issues. Finally, the
interaction with the remote environment might not be ideal (slow
and not quite responsive). We leave some video tutorials performed
on the exact same setup on how to perform the experiments. If the
reviewers cannot manage to operate on the remote environment, they
are more than encouraged to check our result in such videos.

A.6 Evaluation and expected results
Code inspection The README.md file in the github reposi-
tory contains the repository folder structure, with a description
of the various content. The repository only contains the source
files, which can be inspected at the reviewers discretion. The
reviewer might inspect the various module composing the
TCM, inside the TCM/ folder, and the toolchain scripts, inside
the toolchain/ folder. The inspection of the source files can
be skipped in favour of the following steps and evaluations.
Still, given that Pistis is a complex software, we encourage
the reviewer to inspect as much of it as possible. We authors
remain available for any question on this matter.

Compiling the Trusted Computing Base The Trusted
Computing Base (TCM) is the core of Pistis, containing both
its basic functionalities and some Trusted Applications, i.e.,
additional features. To compile Pistis into a deployable we
can follow the commands in Listing 3. Step (4) allow the in-
spection of the disassembly of the binary, while step (5) allow
the inspection of code sections of the ELF file. We leave this
data, which describes the TCM, for the more experienced and
curios reviewers. Any interaction with the deployable file is
more than welcome.

256 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

1 $ cd ∼/Documents/PISTIS_AE/TCM
2 $ make clean && make
3 $ mspdump -D deployable.out > /tmp/dump.txt
4 $ cat /tmp/dump.txt
5 $ readelf -S deployable.out

Listing 3: Steps for the TCM compilation

A functioning toolchain One of the claim in the paper is
a modified toolchain that transparently instruments the un-
trusted application code. This allow the new application image
to be executed on a Pistis-enabled device. We ask the review-
ers to perform a few steps to evaluate our toolchain (note that
the reviewer is free to use the following indications as mere
guidelines and perform his/her own tests). In particular, we
will compile and inspect the instrumentation for a single ap-
plication: XorCypher. Next, we describe the required steps for
this evaluation. Each step is linked to the commands in List-
ing 4 (the number of the line will be included in parenthesis,
e.g., (1)).

• Move to the UpdateApplication folder inside the
repository (1) and clean it (2) to make sure no other
residual file is present (traces of old compilations).

• Copy the source files of the XorCypher application in
the src sub directory (3).

• Compile the application without using the modified
toolchain (4). If the compilation was successful, the fol-
lowing message should pop out in the console: "Meta-
data added –> created file deployable.out". This informs
us that our custom binary was created with the addition
of some metadata (only required for the transmission of
the binary).

• We can use mspdump2 to retrieve the content of the
binary (5). Mspdump is a disassembler for MSP430
binaries. Since mspdump can only read valid ELF
files, and that our binary is a custom optimised
format, we use mspdump on the original binary:
appWithNoMetadata.out.

• Inspect the dump of the binary (6), where illegal in-
structions can be found. For instance, the reviewers
can check for the presence of the reta instruction,
which is not compatible with Pistis (i.e., it is an un-
safe instruction). Alternatively, the assembly file in
UpdateApplication/asm/cryptoXor.s3 can be in-
spected (9).

• (Optional) Compare the size of the two binaries (7): the
deployable.out and the appWithNoMetadata.out. It

2The alias was created during the installation phase
3Note that this assembly file does not contain the stdlib code.

can be seen how our binary is considerably smaller, as
the paper claims.

• Re-compile the application using our modified toolchain
(8).

• Inspect the file as before (5)(6) and observe how there is
no trace of reta instructions anymore: they have been
virtualised.

• To have a better look at the instrumentation, open the
assembly file UpdateApplication/asm which contains
the new instrumented assembly code (9). The instrumen-
tation will be contained within comments, e.g. starting
from ";Old instruction: RET" to the ";End safe
sequence". Furthermore, observe the CFI NOP Slides
inserted after each CALL statement. The reviewer is wel-
come to deeply inspect such assembly files.

1 $ cd ∼/Documents/PISTIS_AE/UpdateApplication
2 $ make clean && rm src/* -rf && mkdir src
3 $ cp ../TestApps/XorCypher/xorCypher.c src/
4 $ make USE_NEW_LIB=0 VERIFY=0
5 $ mspdump -D appWithNoMetadata.out > /tmp/

dump.txt
6 $ cat /tmp/dump.txt
7 $ stat -c%s deployable.out appWithNoMetadata.

out
8 $ make clean && make libraries && make
9 $ cat asm/xorCypher.s

Listing 4: Steps for the toolchain evaluation

For the second part of this evaluation, we will show how
Pistis toolchain rejects applications having illegal instructions,
i.e., instructions trying to explicitly violate the access control
policy enforced by Pistis. To demonstrate this, we crafted
one such application containing a single illegal instruction:
BR #0x3400. Such instruction is indeed trying to jump to the
0x3400 address which is in RAM, thus illegal4. Listing 5
show the required steps.

1 $ cd ∼/Documents/PISTIS_AE/UpdateApplication
2 $ make clean && rm src/* -rf && mkdir src
3 $ cp ../TestApps/Malicious/rejectmalicious.c

src/
4 $ make

Listing 5: Steps for the toolchain evaluation

If everything functioned properly, the compilation at the
last step should output an error "The compiled application

4We recall that Pistis enforces a non-executable RAM.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 257

has some unsafe code segments. Stop". This is because the
toolchain found an illegal instruction.5

The reviewers are more than welcome to perform any vari-
ation of this test. For instance, they could try and compile the
other applications or craft an application of their own. To do
so, the only step that needs to be adapted is (3), where the
reviewers should copy the source files of their liking.

Runtime verification in action One of the key features
of Pistis is the ability to inspect any deployed binary at run-
time, performing a verification. This step ensures that the
binary has indeed been compiled with our custom toolchain,
ultimately ensuring the presence of the instrumentation. To
evaluate the runtime verification of the untrusted code by
Pistis, we will use the debugging features of CCS. Given
the necessity of a MCU, we provide the reviewers with an
VM instance connected to a MSP430F5529LP board. Since
CCS is a GUI-based application, we provide a video-tutorial
on the various steps required for this evaluation: https://
youtu.be/tpEBLgRCVAU . This should help the reviewer in
performing the same evaluation. Nevertheless, we provide
some guidelines on what we will need to do.

In this evaluation we will use the malicious application
shown in listing 6. The application contains two lines of
assembly: a MOV operation loading an address (pointing to
RAM) into a CPU register, and a BR instruction jumping to
that address (via the register). This application is malicious
since it tries to jump to an address in RAM, thus violating the
memory protection imposed by Pistis.

1 __asm("MOV #0x3400, R9");
2 __asm("BR R9");

Listing 6: Malicious application that tries to jump in RAM
with a dynamic BR instruction.

For the evaluation we perform the following steps (also
shown in the video tutorial):

• Compile the application using the make VERIFY=0 com-
mand, which invokes a non-modified version of the com-
piler. This will produce an application binary without
any instrumentation.

• Start a debugging session of Pistis using CCS. In this
session we set a few breakpoints in some sensitive points
in the code. Specifically, we want to break the execution
when we reach either one of the following: verification
passed, verification failed.

• Start the execution of Pistis, which will proceed with its
RemoteUpdate feature and wait for an incoming image
on the serial communication.

5Note that illegal instructions are rejected right away, while unsafe in-
structions are virtualised. The latter cannot be rejected right away because
their outcome depends on the run-time state of the MCU.

• Deploy the new application binary (without instrumenta-
tion) through our python deploy script.

• Observe how the second breakpoint is triggered: the
verification fails and the application is not lunched.

This tutorial hence shows how Pistis bounds applications to
our instrumentation, i.e., to using our toolchain. Pistis will
only accept binaries which have indeed been compiled with
our toolchain.

In the next tutorial, we will show how Pistis run-time mem-
ory protection protects the MCU from the malicious activity
of an application compiled with our toolchain.

Memory protection in action To evaluate the memory
protection offered by Pistis on the MCU we will use the
debugging features of Code Composer Studio (CCS). These
will enable a run-time debugging of the MCU, allowing us to
check the operations of Pistis at run-time. For this purpose, we
deploy the same application of listing 6. However, contrarily
to previous experiment, we will instrument the malicious
application with our custom toolchain6. This will allow it to be
deployed, pass the verification and then be executed. However,
since the unsafe instruction (the jump to a register) is indeed
an illegal operation, this will be caught at run-time and the
application will be stopped. Given that an interaction with a
GUI is necessary for this step, we provide a video tutorial:
https://youtu.be/OhhJiyQC0bk. Nevertheless, we report
the main steps that we are going to do:

• Compile the application using the make command, which
invokes a modified version of the compiler. This will pro-
duce an application binary with Pistis instrumentation.

• Start a debugging session of Pistis using CCS. In this
session we set a few breakpoints in some sensitive points
in the code. Specifically, we want to break the execution
when we reach either one of the following: verification
passed, verification failed, virtual safe BR function in-
voked. The latter is the function that checks all unsafe
BR instructions in the code (which have been replaced
by a call to this virtual safe function by our toolchain).

• Start the execution of Pistis, which will proceed with its
RemoteUpdate feature and wait for an incoming image
on the serial communication.

• Deploy the new application binary using our custom
python deployer.

• Observe how the first breakpoint is triggered: the verifi-
cation succeed and the application is lunched.

• Observe how the third breakpoint is reached: the appli-
cation BR instruction is correctly virtualised.

6Notably, the application is not rejected by our toolchain, but its unsafe
instructions are instead virtualised.

258 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

https://youtu.be/tpEBLgRCVAU
https://youtu.be/tpEBLgRCVAU
https://youtu.be/OhhJiyQC0bk

• Observe how the safe BR function performs some se-
curity checks on the original instruction and stops the
execution of the application, given that the original jump
is illegal.

A.7 Experiment customization
The reviewers are encouraged to perform any experiment of
their liking on the local environment. For instance, they could
choose to execute or compile different applications, or even
craft their own. However, given the scarce resources of the
remote environment, we kindly ask them no to deviate from
the provided instructions. Any modification could impede the
work of the other reviewer. Moreover, the remote environ-
ment is provided with root access, thus allowing the reviewers
to completely compromise it if they operate outside of our
guidelines.

A.8 Notes
This artefact evaluation covers a few of the main functionali-
ties of Pistis, showing its potential. Pistis is almost fully im-
plemented (a few bugs and minor tweaks still to be addressed)
and it has been fully tested and evaluated (as documented in
the paper). However, the full evaluation is a cumbersome and
time-demanding process requiring several technical ability.
Furthermore, setting up a tutorial on how to properly test all
of its features is even a more challenging task (especially con-
sidering the remote nature of the majority of the tests). For
these reasons, this artefact only presents some of the possible
tests that could be performed on the executable. The creation
of complete tutorials is a future work.

Nevertheless, the repository contains a README.md file
that describes in details some additional steps required to
use Pistis. Note that this artefact document summarises only
some of these steps, providing some techniques to evaluate it
without owning the proper hardware.

A.9 Version
Based on the LaTeX template for artefact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 259

A Artifact Appendix

A.1 Abstract

Our artifact is a docker image that provides the fully pre-
installed SAPIC+ platform. The SAPIC+ platform for auto-
mated protocol security analysis allows to use multiple back-
ends (TAMARIN, PROVERIF and DEEPSEC) from a single
model.

We carried out a set of case-studies, described in Figure
7 of the paper, that are included in the docker and can be
verified using the pre-installed platform.

A.2 Artifact check-list (meta-information)
• Run-time environment: Our artifact is a Docker Image.

• Metrics: Execution time, verification results (security proofs
or attacks).

• Output: A csv file summarizing results.

• Experiments: Verification scripts.

• How much disk space required (approximately)?: 250MB
for the docker image.

• How much time is needed to prepare workflow (approxi-
mately)?: A few minutes.

• How much time is needed to complete experiments (approx-
imately)?: 2—3 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: Docker link.

• Code licenses (if publicly available)?: GNU GPL v3.

• Archived (explicitly provide DOI or stable reference)?: link
to docker image or, alternatively, link to github repository.

A.3 Description
A.3.1 How to access

If docker is installed the artifact can be obtained by the following
command:

docker pull robertkuennemann/sapicplusplatform

As SAPIC+ is an extension of the TAMARIN prover is has
been merged in the official develop branch of the repo and can be
directly obtained from https://github.com/tamarin-prover/
tamarin-prover. SAPIC+ can then be installed by first installing
Tamarin, and then Proverif v2.04 and DeepSec v2.0.0.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

Docker.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Installation instruction for Docker are provided at https://docs.
docker.com/engine/install/.

The image is obtained with

docker pull robertkuennemann/sapicplusplatform

and can then be browsed by running

docker run -it robertkuennemann/sapicplusplatform bash

A.5 Experiment workflow
Once inside the Docker, our case-studies can be reproduced by run-
ning two scripts in the example directory

• ./run-proverif-CS.sh

• ./run-tamarin-CS.sh

A.6 Evaluation and expected results
The scripts above execute all the case studies discussed in the paper
(Figure 7), and store the results of either using Tamarin or Proverif
to verify a given protocol. After completion, they should have cre-
ated respectively a “examples/res-pro.csv” (PROVERIF results) and
“examples/res-tam.csv” (TAMARIN results) files. Each line corre-
sponds to one verification, using the format “protocol name; verifi-
cation result; run time”.

Note that the case studies need approximately 2–3 hours and
12GB to run. On OS X, Docker runs on a virtual machine with
a builtin memory limit of 2GB, which must thus be increased
to at least 12GB in the configuration pane located at ‘Prefer-
ences/Resources/Advanced settings’.

Outside of a Docker, the PROVERIF script should complete in a
few minutes on a standard laptop, while the TAMARIN script may
take longer, but no more than one hour on a laptop. This may vary
inside the docker depending on allocated resources.

We provide an additional docker image that is built from the
previous one and by running the two scripts. It can be used to see
the expected results by browsing the csv files:

docker pull robertkuennemann/sapicplusplatformbench

A.7 Experiment customization
Users familiar with protocol verification can use the docker image
to verify new protocols. The image can be used to run SAPIC+

with TAMARIN, PROVERIF or DEEPSEC on new examples. See the
“README-platform” file in the docker image for more information.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 261

https://hub.docker.com/layers/sapicplusplatform/robertkuennemann/sapicplusplatform/latest/images/sha256-69b9a11f3a14e27c73b589a9d3fa2eda2b7cc27eec830ab0749ae3bfba23babc?context=explore
https://hub.docker.com/layers/sapicplusplatform/robertkuennemann/sapicplusplatform/latest/images/sha256-69b9a11f3a14e27c73b589a9d3fa2eda2b7cc27eec830ab0749ae3bfba23babc?context=explore
https://github.com/tamarin-prover/tamarin-prover/commit/b14a9e06f20c36a4811944f9216d8826eaa68eab
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

A.8 Notes
N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

262 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

The artifact discovers the vulnerability gap between manual
models and automl models against various kinds of attacks
(adversarial, poison, backdoor, extraction and membership)
in image classification domain. It implements all datasets,
models, and attacks used in our paper.

We expect the artifact could support the paper’s claim
that automl models are more vulnerable than manual models
against various kinds of attacks, which could be explained by
their small gradient variance.

A.2 Artifact check-list (meta-information)
• Binary: on pypi with any platform.

• Model: Our pretrained models are available
on Zenodo (link). Follow the model path style
{model_dir}/image/{dataset}/{model}.pth to place

them in correct location.

• Data set: CIFAR10, CIFAR100 and ImageNet32. Use
--download flag to download them automatically at first run-

ning. ImageNet32 requires manual set-up at their website due
to legality.

• Run-time environment:
At any platform (Windows and Ubuntu tested).

‘Pytorch’ and ‘torchvision’ required. (CUDA 11.3 recom-
mended)

‘adversarial-robustness-toolbox’ required for extraction attack
and membership attack.

• Hardware: GPU with CUDA support is recommended.

• Execution: Model training and backdoor attack would be time-
consuming. It would cost more than half day on a Nvidia
Quodro RTX6000.

• Metrics: Model accuracy, attack success rate, clean accuracy
drop and cross entropy.

• Output: console output and saved model files (.pth).

• Experiments: OS scripts. Recommend to run scripts 3-5 times
to reduce the randomness of experiments.

• How much disk space required (approximately)?: less than
5GB.

• How much time is needed to prepare workflow (approxi-
mately)?: within 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: 3-4 days.

• Publicly available?: on GitHub.

• Code licenses (if publicly available)?: GPL-3.

• Archived (provide DOI)?: GitHub commit
ade119d3c9aa1e851eba7db35f2de3c99eb0bf33.

A.3 Description
A.3.1 How to access

• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

A.3.2 Hardware dependencies

Recommend to use GPU with CUDA 11.3 and CUDNN 8.0. Less
than 5GB disk space is needed.

A.3.3 Software dependencies

You need to install python==3.9, pytorch==1.10.x, torchvision==0.11.x
manually.

ART (IBM) is required for extraction attack and membership
attack. pip install adversarial-robustness-toolbox

A.3.4 Data sets

We use CIFAR10, CIFAR100 and ImageNet32 datasets. Use
--download flag to download them automatically at first running.

ImageNet32 requires manual set-up at their website due to legality.

A.3.5 Models

Our pretrained models are available on Zenodo (link). Follow
the model path style {model_dir}/image/{dataset}/{model}.pth to
place them in correct location.

A.4 Installation
• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

(optional) Config Path

You can set the config files to customize data storage location and
many other default settings. View /configs_example as an example
config setting.

We support 3 configs (priority ascend):

• package (DO NOT MODIFY)

– autovul/base/configs/*.yml

– autovul/vision/configs/*.yml

• user

– ∼/.autovul/configs/base/*.yml

– ∼/.autovul/configs/vision/*.yml

• workspace

– ./configs/base/*.yml

– ./configs/vision/*.yml

USENIX Association 31st USENIX Security Symposium 263

https://pypi.org/project/autovul/
https://zenodo.org/record/5762440
https://image-net.org/download-images.php
https://github.com/ain-soph/autovul/tree/ade119d3c9aa1e851eba7db35f2de3c99eb0bf33
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul
https://image-net.org/download-images.php
https://zenodo.org/record/5762440
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul

A.5 Experiment workflow
Bash Files

Check the bash files under /bash to reproduce our paper results.

Train Models

You need to first run /bash/train.sh to get pretrained models.
If you run it for the first time, please run with --download flag

to download the dataset:
bash ./bash/train.sh "--download"

It takes a relatively long time to train all models, here we provide
our pretrained models on Zenodo (link). Follow the model path
style {model_dir}/image/{dataset}/{model}.pth to place them in
correct location. Note that it includes the pretrained models for
mitigation architectures as well.

Run Attacks

/bash/adv_attack.sh

/bash/poison.sh

/bash/backdoor.sh
/bash/extraction.sh
/bash/membership.sh

Run Other Exps

Gradient Variance
/bash/grad_var.sh

Mitigation Architecture
/bash/mitigation_train.sh (optional)

/bash/mitigation_backdoor.sh

/bash/mitigation_extraction.sh
Optionally, You can generate these architectures based on

DARTS_V2 using python ./projects/generate_mitigation.py .
We have already put the generated archs in
autovul.vision.utils.model_archs.darts.genotypes . Note that

we have provided the pretrained models for mitigation architectures
on Google Drive as well.

For mitigation experiments, the architecture names in our paper
map to:

• darts-i: diy_deep

• darts-ii: diy_noskip

• darts-iii: diy_deep_noskip

These are the 3 options for --model_arch {arch} (with

--model darts)
To increase cell depth, we may re-wire existing models generated

by NAS or modify the performance measure of candidate models.
For the former case, we have provided the script to rewire a given
model (link). Note that it is necessary to ensure the re-wiring doesn’t
cause a significant performance drop. For the latter case, we may
increase the number of training steps in the single-step gradient
descent used in DARTS.

To suppress skip connects, we replace the skip connects in a
given model with other operations (e.g., convolution) or modify the
likelihood of them being selected in the search process. Fro the
former case, we have provided the script to substitute skip connects
with convolution operations (link). Note that it is necessary to ensure
the substitution doesn’t cause a significant performance drop. For
the latter case, we may multiply the weight of skip connect αskip by
a coefficient γ ∈ (0,1).
Loss Contours

Take the parameter-space contour as an example. We pick the
parameters of the first convolutional layer and randomly generate
two orthogonal directions d1 and d2 in the parameter space. For
simplicity, we set all each dimension of d1 and d2 to be either +1 or
−1 in a random order and ensure that their orthogonality as d1 ·d2 =
0. We then follow Equation (12) in the paper to explore the mesh
grid of [−0.5,0.5]× [−0.5,0.5] and plot the loss contour. A similar
procedure is applied to plot the loss contour in the input space, but
with the grid set as [−0.2,0.2]× [−0.2,0.2]

A.6 Evaluation and expected results
Our paper claims that automl models are more vulnerable than man-
ual models against various kinds of attacks, which could be explained
by low gradient variance.

Training

(Table 1) Most models around 96%-97% accuracy on CIFAR10.

Attack

For automl models on CIFAR10,

• adversarial: (Figure 2) higher success rate around 10%
(±4%).

• poison: (Figure 6) lower accuracy drop around 5% (±2%).

• backdoor: (Figure 7) higher success rate around 2% (±1%)
and lower accuracy drop around 1% (±1%).

• extraction: (Figure 9) lower inference cross entropy around
0.3 (±0.1).

• membership: (Figure 10) higher auc around 0.04 (±0.01).

Others

• gradient variance: (Figure 12) automl with lower gradient
variance around 2.2 (±0.5).

• mitigation architecture: (Table 4, Figure 16, 17) deep ar-
chitectures (darts-i, darts-iii) have larger cross entropy for
extraction attack around 0.5, and higher accuracy drop for poi-
soning attack around 7% (±3%) with setting of 40% poisoning
fraction.

A.7 Experiment customization
Use -h or --help flag for example python files to check available
arguments.

264 31st USENIX Security Symposium USENIX Association

https://zenodo.org/record/5762440
https://github.com/ain-soph/autovul/blob/main/projects/generate_mitigation.py
https://github.com/ain-soph/autovul/blob/main/projects/generate_mitigation.py

A Artifact Appendix

A.1 Abstract

Our paper contains a literature evaluation and a survey study
with developers. One of the purposes of our literature evalu-
ation was to extract relevant survey questions from the eval-
uated papers to design a questionnaire for our survey study.
Therefore, in order to support our paper and make it more
useful for the readers, we provide all the necessary artifacts
available in a replication package. The complete replication
package contains the screening and final survey questions we
used, texts used in the recruitment emails or in the job posts,
the consent forms, the formatted collection of questions we
found in our literature evaluation, and additional result figures
and tables.

A.2 Artifact check-list (meta-information)
• How much disk space required (approximately)?: Size on

disk is 564 KB

• Archived (explicitly provide DOI or stable reference)?:
https://doi.org/10.25835/wg7xhqmh

A.3 Description

In this section, we provide the descriptions of all the appli-
cable subsections for our use case (i.e., "artifacts available"
badge).

A.3.1 How to access

Our artifact can be accessed using the following URL: https:
//doi.org/10.25835/wg7xhqmh.

The complete replication package can be downloaded as a
.zip file through the provided link. This replication package
is hosted on the Research Data Repository of our university
(data.uni-hannover.de).

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

N/A

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Our artifacts can be downloaded as a .zip file from the URL
we provided in the section A.3.1. The file contains the follow-
ing seven .pdf files:

1. surveys.pdf: This .pdf contains the screening and final
survey questions we used

2. recruitment-emails.pdf: This .pdf contains the texts
used in the recruitment emails

3. job-posts.pdf: This .pdf contains the texts used in the
job posts

4. consent-forms.pdf: This .pdf contains the consent
forms

5. question-bank.pdf: This .pdf contains the formatted
collection of questions we found in our literature evalua-
tion

6. additional-figures.pdf: This .pdf contains the addi-
tional result figures

7. additional-tables.pdf: This .pdf contains the additional
result tables

A.5 Evaluation and expected results

We make the necessary artifacts available to support the liter-
ature evaluation and the survey study in our paper. Following
is a checklist which represents how the provided artifacts
support the paper:

• Paper Section 3.2: Section 3.2 in our paper details
the literature survey. One of the contributions from this
section is the formatted collection of survey questions we
collected from the past papers. We provide this question
collection document (question-bank.pdf) as one of our
artifacts.

• Paper Section 4: Section 4 in the paper provides details
of our comparative survey study. To support this section,
we provide the screening and main surveys, texts used
for participant recruitment and consent forms as artifacts
(surveys.pdf, recruitment-emails.pdf, job-posts.pdf and
consent-forms.pdf).

• Paper Section 5: The additional result figures and tables
mentioned in Section 5 of the paper are provided as arti-
facts (additional-figures.pdf and additional-tables.pdf).

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 265

https://doi.org/10.25835/wg7xhqmh
https://doi.org/10.25835/wg7xhqmh
https://doi.org/10.25835/wg7xhqmh

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

266 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract

This artifact is an implementation of the proposed mutual
attestation mechanism, i.e., MAGE, for Intel SGX. It includes
an SDK library libsgx_mage that facilitates developers to
use mutual attestation.

A.2 Artifact check-list (meta-information)

• Run-time environment: Developed and tested under Ubuntu
18.04.6 LTS.

• Hardware: An Intel CPU that supports Software Guard eX-
tensions (SGX), e.g., Intel Core i5-6200U

• How much disk space required (approximately)?: 10 GB

• How much time is needed to prepare workflow (approxi-
mately)?: Couple of hours.

• How much time is needed to complete experiments (ap-
proximately)?: Couple of hours.

• Publicly available?: Yes, open-sourced on Github.

• Code licenses (if publicly available)?: BSD License

A.3 Description

A.3.1 How to access

libsgx_mage: https://github.com/donnod/linux-sgx-
mage/tree/713fbd7479a37d1b768c615b3fd656c1774d9601

A.3.2 Hardware dependencies

An Intel CPU that supports Software Guard eXtensions (SGX) is
needed for the evaluation. Disk space requirement: 10 GB.

A.3.3 Software dependencies

This artifact is developed and tested under Ubuntu 18.04.6 LTS.

A.4 Installation
Installation instructions can be found in the README.md file.

A.5 Experiment workflow
• Install libsgx_mage following the instructions in the

README.md file.
• Go to sub-folder: SampleCode/MutualAttestation, and run make

in the terminal to build the application.
• Run the built binary.

A.6 Evaluation and expected results

Main claim. A group of enclaves could derive the other’s measure-
ments without trusted third parties.

Steps. The example code builds three enclaves, each of which could
derive the others’ measurements. Particularly, in the output of the
executable, each enclave prints its own measurements and three
derived measurements.

Key and expected results. Three enclaves output the same list of
three derived measurements. Each of the derived measurement is the
same as one of the enclaves’ own measurements.

The performance evaluation instructions and expected results are
in the “Artifact Evaluation” section of the README.md file.

USENIX Association 31st USENIX Security Symposium 267

https://www.acm.org/publications/policies/artifact-review-badging

1 Artifact Appendix

1.1 Abstract

The evaluated artifact includes the prototype implementation
of ELASTICLAVE that we have presented in the paper. We
have publicly released it on GitHub.

Running the full set of experiments take significant long
time and relies on the AWS EC2 platform. Therefore, we also
provide the option to run them with QEMU, which, though
inaccurate for performance evaluation, serves well as a quick
way to test the system functionally. This option only requires
an x86-64 Linux system with Docker installed.

1.2 Artifact check-list (meta-information)
• Program: IOZone (included)

• Compilation: GCC cross compiler targeting RISC-V 64 (in-
cluded)

• Run-time environment: Linux (Ubuntu 20.04 LTS recom-
mended) with Docker

• Hardware: x86-64

• Metrics: Execution time

• Output: Performance numbers (execution time) in console
log files. Results are the differences in the performance among
different solutions

• Experiments: Run the benchmarks with the scripts we have
prepared. Compare the performance numbers produced with
different solutions and the difference should be on the same
order of magnitude as the results reported in the paper

• How much disk space required (approximately)?: 20 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 30 hours

• Publicly available?: Yes

1.3 Description
1.3.1 How to access

This artifact is publicly released on GitHub1. The commit hash of
the evaluated version is 29aab39.

1.3.2 Hardware dependencies

It is necessary to run the artifact on an AWS EC2 and use FireSim to
obtain accurate performance data. For evaluation of the functionality,
any modern x86-64 Linux platform should suffice. The required disk
space is approximately 20 GB.

1The main repository (which references more repositories as submodules):
https://github.com/jasonyu1996/elasticlave

1.3.3 Software dependencies

This artifact is expected to run on any GNU/Linux distribution with
Docker installed.

1.4 Installation
We provide two options to run the artifact.

The first option requires running FireSim on an AWS EC2 F1
instance, and hence can incur significant monetary cost. In addition,
it takes much longer to run the experiments than the second option.
Since this is the option that provides cycle-accurate simulation, it is
necessary if the goal is to evaluate the performance of the system
and reproduce the experimental results.

The second option is to emulate the system on QEMU. It does
not incur extra cost and consumes less execution time. This option
is unable to produce accurate performance data and is only suitable
for testing the functionality.

We have automated most part of the installation process. Below
are the installation instructions for both options.

FireSim. On your AWS EC2 instance with FireSim set up, clone
the repository and checkout to the evaluated snapshot:

git clone https://github.com/jasonyu1996/elasticlave.git
cd elasticlave
git checkout 29aab39

Pull the submodules recursively:
git submodule update --init --recursive

Build:
./docker.sh
./docker-run.sh ./make-firesim.sh
./docker-run.sh ./make-firesim.sh image

Launch the simulated system:
./run-firesim.sh

It might help to understand what happens under the hood in the
script executed above.

The script first launches FireSim:
firesim launchrunfarm && firesim infrasetup && \

firesim runworkload

After this is finished, it logs into the newly launched F1 instance:
ssh RUNFARM_IP

, where RUNFARM_IP is the IP address of the F1 instance as reported
in firesim runworkload.

The script then connects to the terminal of the simulated system:
screen -r fsim0

When the simulation ends, the script terminates the F1 instance:
Terminate the F1 instance:

firesim terminaterunfarm

Below are instructions for use inside the connected terminal of
the simulated system.

The login is root and the password is sifive.
To run the benchmarks, execute the following inside the shell of

the prototype system:
insmod keystone-driver.ko
./tests.ke

USENIX Association 31st USENIX Security Symposium 269

https://github.com/jasonyu1996/elasticlave

There are also individual benchmarks that are not included in
tests.ke. To run them, execute the scripts in the individual folders.

After the benchmark execution completes, you can end the simu-
lation through:

poweroff -f

A log of the data on the terminal can be found inside
FIRESIM_FOLDER/deploy/results-workload.

QEMU. Install Docker following the instructions on the official
website.

Clone the repository and run the build scripts:

git clone https://github.com/jasonyu1996/elasticlave.git
cd elasticlave
git checkout 29aab39
git submodule update --init --recursive
./docker.sh

Run the artifact:

./docker-run.sh ./run.sh

The login is root and the password is sifive. The password is
sifive.

To run the benchmarks, execute the following inside the shell of
the prototype system:

insmod keystone-driver.ko
./tests.ke

There are also individual benchmarks that are not included in
tests.ke. To run them, execute the shell scripts (*.sh) in the indi-
vidual folders.

1.5 Experiment workflow
As described in Section 6, The experiments involve a range of bench-
marks which are run on our prototype ELASTICLAVE implementa-
tion. The benchmarks involve data sharing across enclave bound-
aries, and the total running time with the ELASTICLAVE model is
compared against that with the traditional spatial isolation model,
as well as the running time when they are run in a native Linux
environment without the protection of a TEE.

The prototype system runs an unmodified Linux kernel (with
a driver for enclave management). Each benchmark includes both
enclaves and untrusted code which runs as the host process and
launches the enclaves. For using the spatial isolation model, the
untrusted code is also responsible for marshalling messages.

1.6 Evaluation and expected results
The key claims made in this paper include:

1. Compared to the spatial ShMem model, our ELASTICLAVE

implementation achieves 1–2 orders of magnitude better per-
formance for data sharing. The overhead of ELASTICLAVE is
about 10% compared with native execution without a TEE;

2. ELASTICLAVE incurs modest TCB and hardware complexity
impact.

This artifact can be used to verify the following key results that
support the above claims:

1. The performance comparison among ELASTICLAVE, the spa-
tial ShMem model, and native execution for data sharing on
synthetic benchmarks and IOZone (corresponding to Figures 6,
7, 8, 10, and 11). This supports Claim 1 above.

2. The TCB increase of ELASTICLAVE over Keystone (corre-
sponding to Table 4). This supports Claim 2 above.

1.6.1 Performance

To obtain accurate performance numbers, it is necessary to run the
benchmarks using FireSim. See Section A.4 for details. The results
obtained from this artifact are expected to reflect the same patterns
as in Figures 6, 7, 8, 10, and 11 as well as the associated descriptions
in Section 6.1.

IOZone. Set TESTS=iozone in
tests/tests/mkconfig.mk, rebuild the benchmarks with
./docker-run.sh ./make-firesim.sh image. and execute
./tests.ke in simulation. This runs IOZone with ELASTICLAVE.
To run it with the baseline spatial ShMem model or a native Linux
setting, set NATIVE_TESTS or BASELINE_TESTS to iozone instead.

Thread synchronization. Set EXTRA_TESTS to lock (spin-
lock with ELASTICLAVE), lock-futex (futex with ELASTI-
CLAVE, lock-spatial (spinlock with the spatial ShMem model),
lock-native (futex without TEE) and rebuild the benchmarks.
Then execute ./tests.ke <thread-count> <work-amount> in
simulation. To get the numbers reported in the paper, supply 2 as
thread-count and vary work-amount from 12800 to 3276800.

Data sharing patterns. The names of the corresponding syn-
thetic benchmarks start with icall-, followed by the names of the
patterns (consumer, server, and proxy-3). Name endings indicate
whether the benchmarks are run with the spatial ShMem baseline
(spatial), ELASTICLAVE without exclusivity support (ne), or full
ELASTICLAVE (otherwise). To run the benchmarks, open the file
tests/tests/mkconfig.mk, add the benchmark names in the line
that starts with EXTRA_PACKS, and rebuild the benchmarks. The avail-
able benchmark names can be viewed in tests/tests.

1.6.2 TCB Increase.

To measure the TCB increase over Keystone, download the revision
of the original security monitor and enclave runtime from Keystone2.
Use diff -x ’.*’ -Nwr <old-dir> <new-dir> | diffstat
to compare the directories riscv-pk and sdk/rts/eyrie with
them and pipe the results to. The sums of insertion and modification
numbers are below the numbers reported in Table 4.

1.7 Experiment customization
You can adjust the benchmarks to be included in each run of the
artifact. To achieve this, edit the file tests/tests/mkconfig.mk,
and add the names of the benchmarks you want to run.

2https://github.com/keystone-enclave/riscv-pk/
tree/5b3d71 and https://github.com/keystone-enclave/
keystone-runtime/tree/87351c

270 31st USENIX Security Symposium USENIX Association

https://github.com/keystone-enclave/riscv-pk/tree/5b3d71
https://github.com/keystone-enclave/riscv-pk/tree/5b3d71
https://github.com/keystone-enclave/keystone-runtime/tree/87351c
https://github.com/keystone-enclave/keystone-runtime/tree/87351c

A Artifact Appendix

A.1 Abstract

Minefield is a probabilistic undervolting protection for SGX
enclaves implemented via a compiler extension. The general
idea is to place instructions highly susceptible to undervolting
faults between regular instructions. In the artifact evaluation,
we include all the tools needed to reproduce each result of
the paper to follow the conclusion of our mitigation. First, we
provide the instruction finding framework that automatically
scans the x86 instruction set for instructions susceptible to
undervolting faults. Second, we show a benchmark for the
minimal time between voltage transitions. Third, we include
the compiler infrastructure to automatically generate hardened
enclaves and the required modifications to the SGX-SDK. Fi-
nally, we provide the tools to reproduce the performance, size,
compile-time, and detection rate benchmarks of Minefield.
Due to the nature of the paper, we require Intel hardware that
supports SGX and a runtime environment where possible data
corruption is acceptable. We recommend a clean installation
of Ubuntu 20.04, with Intel CPUs between the 6th and 10th

generation. Furthermore, if applicable, undervolting faults
will lead to repeated system freezes during the profiling phase.
Therefore, an automatic way to restart the system would be
beneficial.

A.2 Artifact check-list (meta-information)

• Program: The used programs are provided, or how to
install them is described.

• Compilation: We require a modified Clang 11 compiler.
Download and build scripts are provided.

• Transformations: We provide the patches used to allow
compilation of the SGX-SDK with Clang.

• Data set: We provide the framework to use the https:
//uops.info x86 instruction-set list.

• Run-time environment: Requires a native Linux instal-
lation that supports SGX, and we strongly recommend
Ubuntu 20.04. The provided installation scripts require
internet access.

• Hardware: Intel CPUs with SGX support between
the 6th and 10th generation and MSR 0x150 available.
Undervolting-based faults are highly dependent on the
actual hardware and even differ between cores on the
same CPU. We recommend one of the CPUs of the paper.

• Execution: For executing the benchmarks, we require
a stable frequency, isolated cores, a modified grub com-
mand line, and software-based undervolting.

• Security, privacy, and ethical concerns: Due to the
undervolting data-corruption can occur on the used
system.

• Metrics: The benchmarks report performance in itera-
tions per second, faulting points in mV, execution time
in seconds, code size in bytes, and detection rate factors.

• Output: The resulting outputs are CSV files. We pro-
vide visualization scripts where possible.

• Experiments: We include installation scripts and
readmes describing the process and how to execute the
benchmarks.

• How much disk space required (approximately)?: 4-
5 GB

• How much time is needed to prepare workflow (ap-
proximately)?: 3-4 hours

• How much time is needed to complete experiments
(approximately)?: 1-5 days depending on the depth of
the analysis.

• Publicly available (explicitly provide evolving
version reference)?: https://github.com/iaik/
minefield

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/iaik/minefield/
tree/ae

A.3 Description

A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/minefield and follow the provided readmes.

A.3.2 Hardware dependencies

We require Intel CPUs which support SGX and have an avail-
able software undervolting interface (MSR 0x150) available.
We recommend CPUs between the 6th and 10th generation
and recommend a desktop CPU shown in the paper. Our ex-
perience showed that the susceptibility to undervolting faults
is highly dependent on the used hardware and even differs
across cores from the same CPU. We recommend a system
with physical access as undervolting faults will repeatedly
crash the system and lead to system freezes.

USENIX Association 31st USENIX Security Symposium 271

https://uops.info
https://uops.info
https://github.com/iaik/minefield
https://github.com/iaik/minefield
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield
https://github.com/iaik/minefield

A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as it has official sup-
port for SGX, and we tested all the provided tools there.
The components of the paper have to be built from source,
hence the systems requires tools for compiling software
(build-essentials on Ubuntu). Access to MSRs via the
msr-tools interface is also necessary. Finally, we require a
setup that allows frequency pinning via cpupower to fix the
frequency at a given operating point during the undervolt.

A.3.4 Data sets

To speed up the finding of the susceptible instructions, we
provide our found faultable instruction data set in the reposi-
tory. Furthermore, we rely on the complete x86 instruction set
list from https://uops.info, which is automatically used
in the framework.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with undervolting, we observed data
corruption in recently used files. Therefore, we highly rec-
ommend a fresh installation with an operating system image
not used for personal or important data. We never observed
persistent damage on the hardware used for undervolting.
However, we cannot ensure that this is generally the case, but
we find it highly unlikely to damage the used hardware.

A.4 Installation

Follow the readmes in the top-level directory, which will guide
you through installing all the necessary tools and components
of the paper. The installation scripts are written in bash and
should automate most of the process. However, we cannot
rule out that some parts might need manual adjusting, and
therefore, knowledge of C, C++, python3, bash, and Makefiles
is beneficial. Furthermore, due to the enormous complexity
of SGX, some packages might need manual installation if not
found correctly.

A.5 Experiment workflow

After building the components for the benchmarks, they can
be executed via scripts for a given placement density. These
scripts should be executed with a fixed frequency to allow
a fair comparison between the runs. The benchmark results
are exported in the CSV format, and we provide additional
scripts to convert the measurements into relative overhead
percentages with respect to the baseline.

A.6 Evaluation and expected results
The reproduced results from Table 1 and Table 2 should show
that imul is, across multiple CPUs, the instruction most sus-
ceptible to faults. Some concrete instances might require
extended instructions to detect the fault at the highest under-
volting point correctly. With this assumption, the compiler
extension can rely on imul as trap instruction.

For the performance results, we should see a nearly lin-
ear performance decrease (Figure 8) and a rising code size
(Figure 10) when increasing the placement density. Some
benchmarks are more affected by the placement density than
others. For the mbedTLS (Figure 9) benchmark, some config-
urations with different key lengths and disabled redundancy
checks in the library itself show better performance as the
baseline depending on the number of leading zeros in the key.
The compile-time (Figure 11) should also rise with increas-
ing placement density. However, the absolute time increase
should be minimal.

Finally, we provide test enclaves to test the detection rate
of the mitigation (Figure 6) in the worst-case scenario and a
more realistic scenario when protecting mbedTLS (Figure 7).

A.7 Experiment customization
Since the undervolting offset is highly dependent on the hard-
ware and even the core executing the code, some benchmarks
might need manual adjustment. The instruction finding frame-
work automatically detects system freezes when using our
remote system with a remote power switch. The overall run-
time of the performance benchmark can be adapted via the
number of runs.

A.8 Notes
Undervolting faults are highly dependent on the used systems.
Even our two identical systems from Table 2 show different
faulting behavior. Furthermore, we observed different under-
volting offsets on cores of the same CPU. Therefore it is likely
that the undervolting-related results from the artifacts differ.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

272 31st USENIX Security Symposium USENIX Association

https://uops.info

H Artifact Appendix
H.1 Abstract
In this artifact, we provide datasets and software tools related
to our paper “Anycast Agility: Network Playbooks to Fight
DDoS” [9]. Our artifact contains several datasets generated
from our anycast experiments and analysis. Our datasets pro-
vide a snapshot of the results that we generated during our
experiments. Some of our experimental results are dependent
on the current state of the network interconnections and poli-
cies. However, due to the anycast stability, we expect to get
similar results if we redo the experiments now. Our published
datasets support our key results and are publicly available.
We also provide tools and scripts that can be useful for other
researchers.

H.2 Artifact check-list (meta-information)
• Algorithm: We provide an algorithm to select the best routing

option from a BGP playbook containing multiple routing op-
tions and their impacts over traffic distribution (Section 3.4.2
of the paper [9]). We provide a working Python script for this
selection algorithm. We include instructions about this tool in
our anygility tool page [10].

• Compilation: We use shell/python script and java program
for our tools. One needs to install Python and Java to run our
tools. We depend on Verfploeter software, and we mention a
series of other dependencies in the software READMEs [10].

• Binary: Some of our tools require extra binary files. We in-
clude those binary files with our software package, and provide
instructions.

• Data set: We provide several datasets generated from our
experiments and analysis [11]. Some software tools require
extra datasets to run (e.g. IP hitlist). We include a sample
dataset file with the software tool.
However, we do not include large data files with our software
tools. But these datasets can be downloaded separately (we
provide the instruction in §H.3.1).

• Run-time environment: We tested our tools in Linux oper-
ating system. Peering toolbox on Fedora 34, and Tangled on
Ubuntu 18.04 LTS and macOS 12. In some cases, our tools
require root access. Our tools notify the users when it needs
root access.

• Run-time state: Our key idea related to network playbook
(Section 3.1 and 6.4 of the paper [9]) is dependent on the
network interconnections and policies. We include the dates of
experiments in our datasets. Since anycast is stable, we expect
a similar outcome if we rerun the experiment.

• Execution: Some of our tools might need a long time to
run. For example, our automated playbook builder announces
different routing configurations, runs Verfploeter, and captures
traces after a fixed interval. If we consider the whole process
from measurement to playbook for 7 sites, it takes around 27-
35 hours. For 3 sites it was around 17-24 hours. If we have
more sites, or more routing policies, it would take even more
time.

• Security, privacy, and ethical concerns: In the required cases,
we anonymize IP addresses to prevent IP disclosure. As an ex-
ample, we anonymize IP addresses in the DDoS attack datasets.
For privacy reasons, we restrain ourselves from sharing certain
attack data from Dutch national scrubbing center, and from an
enterprise.

• Metrics: We provide datasets related to anycast catchments
and DDoS attacks. Each dataset reports different metrics. We
provide the details of these metrics in our README files. Our
README files are included with the dataset packages.

• Output: We provide experimental outputs from Tangled and
Peering testbeds. Tangled provides the measurement output in
csv format while Peering provides raw captured traces in pcap
format. These data files are parsed to generate output files in
human-readable formats or graphs. The graphs are built using
jupyter notebook and gnuplot scripts. We provide these scripts
in our dataset webpage [11].

• Experiments: We provide scripts to automatically announce
different routing configurations in both Peering and Tangled
testbeds. We provide our generated datasets from these experi-
ments. We provide some sample data to test our route selection
process independent from running the whole measurement
process.

• How much disk space required (approximately)?: Software
tarballs are about 500KB. Our datasets related to the anycast
experiments require around 100 GB disk space. Our attack
datasets are large since we provide the whole day traffic cap-
tures (around 500 GB each). As our datasets are large, a user
can download a portion of the datasets.

• How much time is needed to complete experiments (approx-
imately)?: Some of the experiments may take a whole day
(building a playbook with all routing options). Measurement
process can take days depending the chosen measurement. Our
decision maker can take decision within seconds. Parsing tools
may need different times depending on the data size.

• Publicly available (explicitly provide evolving version
reference)?: Our evolving datasets and software tools
are publicly available at https://ant.isi.edu/datasets/
anycast/anycast_against_ddos/index.html.

• Code licenses (if publicly available)?: Our tools are free; so
anyone can redistribute it and/or modify it under the terms of
the GNU General Public License, version 2, as published by
the Free Software Foundation. We include this license notice
with every tools that we make publicly available.

• Data licenses (if publicly available)?: We follow the data
sharing policy through the participation of the LACREND
project in the DHS IMPACT program [5].

• Archived (explicitly provide DOI or stable reference)?: Our
stable reference for this artifact is here: https://zenodo.
org/record/6473023 with DOI 10.5281/zenodo.6473023.

H.3 Description
We provide datasets and tools for measuring anycast agility against
DDoS. Our datasets are available upon request [5]. We provide
datasets about the traffic distribution after BGP changes in testbeds,
attack data from a DNS root server and from a national scrubbing

USENIX Association 31st USENIX Security Symposium 273

https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://zenodo.org/record/6473023
https://zenodo.org/record/6473023

Software
tools

Software
dependencies

Software
source

Dataset
dependencies

Dataset
source

Traffic
Estimator

Java openjdk-11.0.13 pcap traces With dataset
tshark Wireshark RIPE IPs Included

playbook
builder

Access to
Peering

Required
Testbed
access

Hitlitst With dataset

Pinger
Provided +
open source

playbook
tuner Python Python 3.10.2

Playbook Included
Load Included

load_parser+
ParsingLoad

shell+Java openjdk-11.0.13
Dataset dir.
with pcaps

With dataset

pingextract
Provided +
open source

Load file With dataset

BGPTuner Python
bgptuner-requirements.txt

Python 3.8 Playbook with specific site list Included

measurement scripts
+ tangler-cli

Bash
Python

Verfploter
ExaBGP

Access to Tangled

Bash 4.4
Python 3.8

Verfploter 0.1.42
ExaBGP 4.1.2

— —

vp-cli Python Python 3.8 Verfploter 0.1.42 files Included
make-playbook Python Python 3.8 stats files Included

run-playbook
Python

ExaBGP
Access to Tangled

Python 3.8
ExaBGP 4.1.2

Routing Playbook Included

Table 1: Software tools dependencies.

274 31st USENIX Security Symposium USENIX Association

center, other data related to anycast catchment stability, and other
supporting data for our software tools. We provide codes for traffic
estimation, for reproducing experiments, and for parsing the col-
lected data.

H.3.1 How to access
Our datasets are available from the institutional storage system [6].
We provide the datasets based on requests [5]. After getting a request,
we provide the download instructions. Our software tools will be
available to download from its own webpage [10].

H.3.2 Hardware dependencies
Our whole uncompressed datasets size is over 1 TB. However, a user
can download the partial datasets [6]. An interested user may want
to look over the meta data of each dataset (using the README files),
and keep the required amount of free storage.

H.3.3 Software dependencies
We provide several tools for different purposes [10]. We tested our
software tools in Linux operating system. Some of our tools are
dependent on external data sources and binaries. In most cases,
we provide a sample data source with the package, and for other
cases one can download the datasets with our released dataset. We
provide the required binaries with our tools. One might need to
install dependencies like Python or Java. We detail dependencies on
(Table 1).

H.3.4 Data sets
We provide a full list of datasets in our web page [11].

We release datasets related to catchment distribution after routing
configuration changes. We announce different BGP options, run Verf-
ploeter to ping millions of responsive targets, and then capture the
responses at every site. Our dataset includes raw pcap files captured
from these measurements, and parsed data files in human-readable
format.

We also provide DDoS attack data collected from B-root and
Dutch national scrubbing center from 2015 to 2021.

Within other datasets, we provide datasets for anycast stability,
and other supporting datasets to run our software tools.

The READMEs for these datasets are available with the dataset
package.

H.3.5 Models
N/A

H.3.6 Security, privacy, and ethical concerns
We see no privacy concerns with our shared datasets. In cases like
the DDoS attack data, we only share the /24 prefixes to hide the
exact IP.

H.4 Installation
Instructions for running the tools are available in the webpages [10].

H.5 Evaluation and expected results
We provide the key results of the paper by mentioning the figures and
tables, and list the corresponding datasets and tools in Table 2. Next,
we list the key results, then we describe how can one get these results,
and possible variations in the results. Please check the detailed steps
to regenerate the graphs from the provided datasets.

H.5.1 Results with traffic estimation:
We propose a new technique to estimate the true offered load when
we have loss in the upstreams (Section 3.3 and 4 [9]). We show our
traffic estimation technique works well with the real world-attack
events. For traffic estimation, we provide a tool named TrafficEsti-
mator [14]. Using our traffic estimation tool, we show that we can
correctly estimate the true offered load for real-world DDoS events.

To reproduce the same result, one needs to feed the attack traces
to our program (provided as attack data in peering dataset [12]). One
needs to have the pcap traces that we used, and needs to install tshark
(with Wireshark) to feed the traffic content to our program. We used
tracefiles for 2015-11-30 and 2016-06-25 events. A user needs to
know the attack start time to use the right pcap files to observe the
estimation outputs. The provided README tells the attack start
time. We also need to provide a list of RIPE IPs that our program
will use (already provided with the tool). We provide the instructions
for running this tool in our webpage [14].

If running correctly, one can regenerate the same results that we
showed in the paper. Depending on the start and end time of the
attack trace, we might get a slightly different estimation. But on
average we expect to get the same results.

Detailed steps:
We show the results generated for 2015 and 2016 events. This cov-

ers Figure 4, Figure 12, and Table 1. We use the following datasets:

1. Non-attack traffic 2015: B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz,

2. Non-attack traffic 2016: B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz,

3. Attack traffic 2015: B_Root_Anomaly-20151130/30/2015113
0-065209-00177422.pcap.xz,

4. Attack traffic 2016: B_Root_Anomaly-20160625/25/2016062
5-221823-00357641.pcap.xz,

5. RIPE IPs 2015: ripe-ips-2015-11-30.txt (provided with the
tool),

6. RIPE IPs 2016: ripe-ips-2016-06-25.txt (provided with the
tool).

The first step is to calculate the RIPE traffic rate during normal
period (known-good traffic - normal column of Table 1). To get this
value, we feed non-attack traffic to our estimator to get the RIPE
traffic rate during normal period. We use the following command to
get this:

For 2015 event: xzcat B_Root_Anomaly-20151130/29/2015
1129-065024-00175689.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0

For 2016 event: xzcat B_Root_Anomaly-20160625/24/2016
0624-200008-00356777.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590

Please wait for some time to see the generated output in
the command prompt. The given addresses (192.228.79.* and
2001:500:84::*) are the B root server addresses (different because
of the different anonymization keys). This command will generate
an output like:

2015: “Time diff: 5.01 Counter-packets: 193 Rate: 38.47” 2016:
“Time diff: 5.06 Counter-packets: 195 Rate: 38.52”

USENIX Association 31st USENIX Security Symposium 275

Key results [9, 11] Shared datasets Related tools

Figure 3
sample dataset

provided with the tool
tangled tools [15]

bgp-tuner

Figure 4, Table 1, Figure 12
peering and root DNS dataset [12]

B_Root_Anomaly-20151130
B_Root_Anomaly-20160625

TrafficEstimator and selection tools [14]
TrafficEstimator

Figure 5
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
prepending (3 sites) 2020-02-24

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 6
tangled dataset [13]

Usenix_anygility_5_sites_2022-03-24_NEW

tangled tools [15]
measurement scripts

tangler-cli, vp-cli
Anygility-Tangled-Catchment-load-distribution.ipynb

Figure 7
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224,
community (3 sites) 2020-02-25

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 8
tangled dataset [13]

community dataset (3 sites)

tangled tools [15]
measurement scripts

tangler-cli, vp-cli

Table 5, Table 6

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

prepending (3 sites) 2020-02-24,
community strings (3 sites) 2020-02-25,

poisoning (3 sites) 2021-04-09

peering tools [15]
load_parser
ParsingLoad

Figure 9
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
prepending (3 sites) 2020-02-28

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Figure 10

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

prepending (3,5,7 sites) 2020-02-24,
2020-04-07, 2020-04-08

Community (3, 5, 7 sites) 2020-02-25 and 2020-04-19

peering tools [15]
playbook_builder

load_parser
ParsingLoad

Table 7

peering and root DNS dataset [12]
anycast_catchment_distribution-20200224:

baseline (3 sites) 2020-02,
2020-04, and 2020-06

peering tools [15]
load_parser
ParsingLoad

Figure 11
peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20170306

peering tools [15]
ParsingLoad

TimeBasedPrefixLoad
AnycastSiteLoad

Figure 13
peering and root DNS dataset [12]

anycast_catchment_distribution-20200224:
poisoning (3 sites) 2021-04-09

peering tools [15]
load_parser
ParsingLoad

Figure 14
tangled dataset [13]

poisoning dataset (3 sites)

peering tools [16]
measurement scripts

tangler-cli, vp-cli

Figure 15
peering and root DNS dataset [12]

anycast_catchment_stability-20210701
-

Figure 16
peering and root DNS dataset [12]

B_Root_Anomaly_message_question-20200214
B_Root_Anomaly_message_question-20210528

peering tools [15]
ParsingLoad

TimeBasedPrefixLoad
AnycastSiteLoad

Table 2: Paper key results with datasets and tools. We provide the scripts to generate the graphs for our key results in our
webpage [11].

276 31st USENIX Security Symposium USENIX Association

We waited until 5 s to fix the final rate of the RIPE IPs. This rate
is the cumulative rate measured from the start time. known-good
traffic - normal column from Table 1 has a similar value.

The second step is to run the same TrafficEstimation java utility
to find the estimated rate. We run the following commands for this:

2015 event: xzcat B_Root_Anomaly-20151130/30/201511
30-065209-00177422.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2015-11-30.txt 192.228.79.131,2001:500:84::9077:f4f0 38.47

2016 event: xzcat B_Root_Anomaly-20160625/25/201606
25-221823-00357641.pcap.xz | sudo tshark -r - -T fields -e
frame.time_epoch -e ip.src | java -jar TrafficEstimator.jar ripe-ip
s-2016-06-25.txt 192.228.79.62,2001:500:84::ad9b:d590 38.52.

Please note that this command has an extra parameter (38.47
and 38.52) which we got from the previous command outputs. This
command will generate two types of output lines. For 2015 event,
we are showing a snapshot after 20 s, and for 2016 event we are
showing a snapshot after 42 s.

2015 event output:
Time diff: 19.99 Counter-packets: 37 Rate: 1.85 1448866349.106

Count-packets: 1604914 Observed rate: 320982.8 Estimated:
6674713.88

2016 event outptut:
Time diff: 41.98 Counter-packets: 14 Rate: 0.33
1466893148.1316 Count-packets: 451957 Observed rate:

90370.72 Estimated: 11186300
Our program shows the RIPE rate when it finds new RIPE IPs

in DNS traffic (starting after 1 minute). The observed rate line is
printed at every 5 s. So, the users normally observe more number of
first line.

The first line for 2015 event indicates that after 20 s during the
attack period, our program receives 37 RIPE packets at a rate of
1.85 RIPE packets/s. This value corresponds to the known good
traffic - observed column value from Table 1. Dividing by the prior
normal rate of 38.47, we get the access fraction value, α. The first
line for 2016 event indicates that the program gets 14 RIPE packets
within 41.98 s with a rate of 0.33 RIPE packets/s. This value indi-
cates the known good traffic - observed column value from Table
1. Dividing by the prior rate of 38.52 RIPE packets/s, we get the
value of access fraction, α in Table 1. Please note that, because of a
different RIPE IP list and measurement start time (using different
pcap files), we are getting a slightly different value than what we
have in the table.

Our program generates the second line at every 5 s. This line
indicates the timestamp at every 5 s, packet count within that 5 s, the
observed rate (packet count / 5.0), and the estimated traffic rate (ob-
served rate / α). This observed rate corresponds to the offered load
during attack - observed rate column of Table 1. For 2015 event, the
sample output value is close to 0.32M packets/s, and for 2016 event
this value is 0.09M packets/s. These two values are similar to what
we have in Table 1 (0.37 and 0.10). A user will observe variable rates
at different times. This observed rate is then divided by the calculated
access fraction (α) to get the estimated offered load—offered load
during attack - estimated column (∼6.6M queries/second for 2015
event and ∼11M queries/second for 2016 event), which is close the
reported rate of 5M queries/second and 10M queries/second, respec-
tively [7, 8]. We use the estimated values from our TrafficEstimation
program to generate the graphs—Figure 4 and Figure 12. Depending
on the attack start time and RIPE IPs, the estimated values may vary

slightly but we expect to get a similar trend. The offered load during
attack - normal column indicates the normal traffic rate at a given
time which we can measure from B root traffic (TrafficEstimator
tool can measure this; we just need to feed the normal traffic with the
known RIPE rate parameter) but we are skipping this detail since it is
not directly related to the key outcomes. α̂ is calculated by dividing
observed rate by the reported rate.

Our outcomes for known-traffic measurement, and estimated rate
measurement may vary depending on the RIPE IPs we used and the
traffic data we are using. We tried 5 s of traffic to find out the known
traffic rate. This choice is arbitrary, a user can wait for some more
time. Given the RIPE IPs that we provided, a user may expect to see
25-50 RIPE queries per second. Please note that, we used a subset
of RIPE IPs. A larger RIPE IP set along with their consistent signal
would ensure more stable RIPE query rate. We also provided some
snapshots for the estimated rate measurement. Please note that, they
are just snapshots. Estimated rates are dependent on the observed
traffic rates (always varying), and the access fraction.

H.5.2 Building BGP playbook:
We propose a BGP playbook to fight against DDoS attacks. We build
the BGP playbook with different routing options and their impacts
over traffic distribution (Section 6 and 7 [9]). We show that BGP
playbook can help the operators to select the right routing option
during an attack event, and a playbook can provide a granular control
over traffic distribution.

To reproduce the result, a user needs to announce different BGP
configurations, and then run Verfploeter/pinger [3] to learn the pre-
fixes to anycast site catchment. We provide scripts (playbook_builder
in Peering and tangler-cli in Tangled) for our testbeds to makes these
announcements automatically [15, 16]. One needs to have access
to the testbeds to run this experiment. We used Peering [17] and
Tangled [2] testbeds. These testbeds authorize an anycast prefix
for a specific time period. One needs to ask for permission with a
proposal to use these testbeds [1,18]. Our script is dependent on verf-
ploeter/pinger tool which is available online [3], and we provide a
binary. This tool needs a target hitlist of IPs which we provided with
our dataset (search for internet_address_history_it88w20191127 [6]).
We provide a tool named getting_hitlist_ips to parse this raw hitlist
file to get the list of responsive IPs. The instruction to run these tools
is available in our webpage [15, 16].

To validate our results, we also provide the datasets that we got
from our experiments. We include captured pcap files, and data
in human-readable format for Peering [12], and in csv format for
Tangled [13]. To reproduce results from the collected data, we also
provide tools called load_parser and ParsingLoad in Peering [15],
and measurement scripts in Tangled [16].

Our result is dependent on the stability of the network state. Since
anycast catchment is fairly stable, we expect to get a slight variation
but similar results if we rerun the experiment.

Detailed steps: We provide an example here to reproduce Fig-
ure 5 from our paper. Other similar graphs and tables like Figure
5—Figue 7, Figure 8, Table 5, Table 6, Figure 9, Figure 10, Table
7, Figure 13, Figure 14 can be generated using the similar process.
Please note that figures for community strings and path poisoning
(Figure 7, Figure 10, and Figure 13) for Peering utilizes only Pars-
ingLoad utility alone (we provide the details later in this subsection).

At first, one needs to run playbook_builder tool to make BGP
announcements for every prepending option. This step is dependent

USENIX Association 31st USENIX Security Symposium 277

on getting access from the Peering testbed. Also, Internet routing
changes, and we will not get the same outputs that we received while
doing the experiment. As a result, we provide the collected data in
pcap form to skip this step. Please find this dataset in peering and root
DNS dataset—prepending (3 sites) 2020-02-24. The other datasets
for other figures mentioned in prior paragraph are also provided.

To recreate Figure 5, we provide the following datasets:

1. The pcap files in peering and root DNS dataset: anycast_catch
ment_distribution-20200224/Path_Prepending_AMS,BOS,C
NF-20200224,

2. The IP hitlist internet_address_hitlist_it88w-20191127/interne
t_address_hitlist_it88w-20191127.fsdb.bz2,

3. Some "load" data, provided with the software tool (we consider
catchment in this figure so a full load data is not important).

After having these data, one needs to run anygility-
peering/src/getting_histlist_ips/getting_hitlist_ips on the hitlist:

bzcat /data/internet_address_hitlist_it88w-20191127/internet_a
ddress_hitlist_it88w-20191127.fsdb.bz2 | python3 ./getting_hitlist_i
ps/data/ip_list_20191127.txt.

This will create a text file, ip_list_20191127.txt, containing one
responsive IP address per line.

Then one needs to run anygility-peering/src/load_parser/load_par
ser.sh on the pcaps with the generated IP hitlist and sample load-file,
and its corresponding load-date (e.g. –load=. –ldate=2022-02-01 to
use the one provided with the tool):

bash load_parser.sh --numbers=3 --sites=AMS,BOS,CNF --date
=2020-02-24 --dir=/data/anycast_catchment_distribution-2020022
4/Path_Prepending_AMS,BOS,CNF-20200224/ --load=.--ldate=2
022-02-01 --hitlist=/data/ip_list_20191127.txt Please note that the
trailing / in the –dir argument is necessary.

This will run the ParsingLoad java utility for each announcement
configuration, which will

• generate .dat files with ping responses from the .pcap files
using pingextract utility.

• compute catchment data, both in terms of /24-blocks and “load”
and store these as .txt files inside the data directory. For each
announcement configuration, two files <DATE>-catchment-
percentage.txt and <DATE>-load-percentage.txt are created.
In addition, a combined all-<DATE>-load-<LOAD-DATE>.txt
file is created in the data root directory.

The content of all-<DATE>-load-<LOAD-DATE>.txt consists of
multiple blocks of this form:

<routing-configuration-path>
- <missing /24 count> <missing /24 relative>
site_1 <site_1 /24 count> <site_1 /24 relative> <site_1 /24 relative

received>
[...]
site_n <site_n /24 count> <site_n /24 relative> <site_n /24 relative

received>
multiple <multiple /24 count> <multiple /24 relative> <multiple

/24 relative received>
- <missing load count> <missing load relative>
site_1 <site_1 load count> <site_1 load relative> <site_1 load

relative received>
[...]

site_n <site_n load count> <site_n load relative> <site_n load
relative received>

multiple <multiple load count> <multiple load relative> <multiple
load relative received>

Figure 5 then shows bar-graphs created from the <site_x /24
relative received> values.

Using ParsingLoad alone: The script load_parser utilizes Pars-
ingLoad for each of the path prepending configurations. When we
are not parsing path prepending configurations, we can just utilize
ParsingLoad utility alone. We utilize ParsingLoad alone for commu-
nity strings and path poisoning (Figure 7 and Figure 13). We run
ParsingLoad for each of these routing configuration separately.

java -jar ParsingLoad.jar 3 AMS,BOS,CNF anycast_catchment_
distribution-20200224/Community_Strings_AMS,BOS,CNF-2020
0225/2020-02-25-AMS,BOS,CNF-AMS-ALL-PEERS/ /nfs/lander
/traces/verfploeter/broot_verfploeter/Peering/Peering_Mapping/20
20/community_strings/2020-02-25-AMS,BOS,CNF-AMS-ONLY-
PEERS/ 2020-02-25 loads/ 2020-02-22

The output has the same format like all-<DATE>-load-<LOA
D-DATE>.txt as we mentioned above. We combine these gener-
ated files to build Figure 7 and Figure 13. We use ParsingLoad
separately for each routing configuration with community strings
and path poisoning. But a script for all the community string and
path poisoning options is also possible. For path poisoning, we used
poisoning datasets (inside anycast_catchment_distribution-2020022
4) for AS174 (Tier-1), AS8283 (Transit-2), and AS12859 (Transit-1).

H.5.3 Selection from the playbook:
We provide a tool [14] to select the right routing configuration from
the BGP playbook (Section 3.4.2 [9]). Using this tool, we show
that an automated approach can be useful to select the right routing
approach.

Our selection tool provides output based on the current playbook,
and offered load. To show how the selection tool works, we provide
a sample playbook (based on Table 5 [9]), and a load file. When the
users run the tool with the given inputs, they can see the selection
output. We also include a tool named bgp-tuner for showing the
graphical interface [16].

Depending on the playbook and offered load, one can observe a
different output, which can be a complete different policy selection.

Detailed steps: We provided a sample playbook and offered load
file with the playbook_tuner tool. Please run the following command
to see the outputs from this program:

cat load.txt | ./playbook_tuner –setup "playbook.txt"
This will result the following output:
Overloaded site: AMS
Suggested config: 1AMS, Estimated load distribution: 41292.64

29494.75 41292.64
Other configs: Poison-Tier-1, Estimated load distribution:

41292.64 29494.75 41292.64
Other configs: Poison-Tier-2, Estimated load distribution:

41292.64 29494.75 41292.64
This tells that prepending AMS by 1 would provide the best

possible load distribution. Some other options are also possible.

H.5.4 Attack mitigation:
We show that BGP playbook is helpful to mitigate the real-world
DDoS events.

To reproduce the same result, we provide the B-root attack traces
in pcap and in message question formats [12]. Due to privacy reason,

278 31st USENIX Security Symposium USENIX Association

we cannot share the attack data from the Enterprise and Dutch Na-
tional Scrubbing Center. We also provide the catchment distribution
for different BGP changes [12,13]. Matching the attack prefixes and
attack loads to the prefix-wise catchment gives us the traffic distri-
bution at different sites. If one wants to test the B-root event, they
need to run TimeBasedPrefixLoad tool to get the per prefix attack
load [15]. Then one needs to run AnycastSiteLoad program to get
the per anycast site load [15].

Since the attack and catchment mapping are fixed, we expect to
get the same results that we showed in the paper.

Detailed steps: We show the detailed steps to generate Figure
11(a) here. All other subfigures of Figure 11 and Figure 16 can be
generated using the similar process.

To generate Figure 11(a), we need the following datasets:

1. peering and root DNS dataset: B_Root_Anomaly_message_q
uestion-20170306/: Figure 11(a) shows 10000 s of traffic. To
make the data processing faster, we recommend to use a subset
of this whole timeframe. We recommend the user to download
the datasets from 06:40:00 AM to 06:50:00 AM to reproduce
a fraction of the whole timeframe combining both attack and
non-attack period. The file names represent the dates and times
(format: YYYYMMDD-HHMMSS-*).

2. peering and root DNS dataset: anycast_catchment_distribution
-20200224/Path_Prepending_AMS,BOS,CNF-20200224/202
0-02-24-AMS,BOS,CNF/

3. peering and root DNS dataset: /anycast_catchment_distrib
ution-20200224/Community_Strings_AMS,BOS,CNF-202
00225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2
/(update: this Trial-2 dataset is newly added. We also provided
Trial-1 dataset for 2020-02-25-AMS,BOS,CNF-AMS-Transit-
1 which will give a similar output, but we did not use that in
the paper).

At first, run the TimeBasedPrefixLoad java utility on the down-
loaded message_question format data. We only need time, source
IP and message length for our measurement. message_question for-
matted files have several attributes/columns. We used fsdb tool to
retrieve the times, source IPs, and message length [4]. Please follow
the instruction to install FSDB from here: https://www.isi.edu/
~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html. Next,
use the following command to run TimeBasedPrefixLoad jar to
generate the prefix-wise load for each 5 s:

xzcat B _ R o o t _ A n o m a l y _ m e s s a g e _ q u e s t i o n - 2 0 1 7
0306/06/20170306-044* | dbcol time srcip msglen |
java -jar TimeBasedPrefixLoad.java o u t p u t - 2 0 1 7 0 3 0 6 /
192.228.79.64,2001:500:84::bb26:87a2.

Here, dbcol is a utility from FSDB to select the right column
from the message_question format dataset. output-20170306 will
have multiple txt files named with a number indicating the time
segment. This command will generate prefix-wise load at every 5 s
in output-20170306 directory: <network_prefix> <number_load>
<bytes>.

Then we run AnycastSiteLoad java utility to find out the per site
load at every 5 s. We run this utility for two routing configurations—
one without any routing change and one with announcing only to
Transit-1.

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catchm
ent_distribution-20200224/Path_Prepending_AMS,BOS,CNF-202

00224/2020-02-24-AMS,BOS,CNF/ 2020-02-24 output-20170306/
2017-03-06,

java -jar AnycastSiteLoad.jar 3 AMS,BOS,CNF anycast_catch
ment_distribution-20200224/Community_Strings_AMS,BOS,CN
F-20200225/2020-02-25-AMS,BOS,CNF-AMS-Transit-1-Trial-2/
2020-02-25 output-20170306/ 2017-03-06.

Please note that these two commands utilize output-20170306
that we generated in our previous step. These two commands gen-
erate two files in the corresponding catchment directory named
as <CATCHMENT-DATE>-load-<ATTCK-DATE>-ingress.txt. The
output format inside the file: <time> <site-1> <count-site-1> <bit-
site-1> <...> <site-n> <count-site-n> <bit-site-n>. The first file con-
tains load without any routing change, the second file contains load
after announcing only to Transit-1. We combine these two files to
show non-attack period (no policy deployed), and period when the
route propagation is done (when we deployed Transit-1).

To match the results with the Figure 11(a), the first output file will
contain (<count-site-n> column) traffic load during normal period
(before 0 s from the graph with around 20k packets/s). The first out-
put file also contains the attack traffic (AMS load over 60k packets/s
after 160 s of the first file). This is similar to the traffic from 0 s to
300 s of Figure 11(a). After that we announce only to Transit-1 (after
300 s of Figure 11(a)). The second output file contains this data (after
160 s from the file).

H.6 Notes
Considering the real datasets are big, and time expensive to run, we
include smaller datasets collected using a small hitlist fraction (0.1%
of original size) in experiments with Tangled. While the produced
playbook will differ from paper results, we believe it can help for
testing purpose. For Peering tools, we sometimes include smaller
sample supporting data files.

If desired, we can provide access to the Tangled testbed. Access to
Peering testbed is dependent on the approval from Peering admins.

H.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References
[1] Tangled admins. Tangled anycast testbed. https://

anycast-testbed.nl/, 2019. [Online; accessed 15-Feb-
2022].

[2] Leandro M Bertholdo, Joao M Ceron, Wouter B de Vries, Ri-
cardo de Oliveira Schmidt, Lisandro Zambenedetti Granville,
Roland van Rijswijk-Deij, and Aiko Pras. Tangled: A co-
operative anycast testbed. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages
766–771. IEEE, 2021.

[3] Wouter De Vries. Verfploeter/pinger: Active measurement
of anycast catchements. https://ant.isi.edu/software/
verfploeter/pinger/index.html, 2019. [Online; accessed
15-Feb-2022].

[4] John Heidemann. John heidemann / software / fsdb. https:
//www.isi.edu/~johnh/SOFTWARE/FSDB//, 1991. [Online;
accessed 19-Mar-2022].

[5] Analysis of Network Traffic (ANT) group. Ant dataset re-
quests. https://ant.isi.edu/datasets/requests.html,
2022. [Online; accessed 15-Feb-2022].

USENIX Association 31st USENIX Security Symposium 279

https://www.isi.edu/~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html
https://www.isi.edu/~johnh/SOFTWARE/FSDB/perl-Fsdb-2.74_README.html
https://anycast-testbed.nl/
https://anycast-testbed.nl/
https://ant.isi.edu/software/verfploeter/pinger/index.html
https://ant.isi.edu/software/verfploeter/pinger/index.html
https://www.isi.edu/~johnh/SOFTWARE/FSDB//
https://www.isi.edu/~johnh/SOFTWARE/FSDB//
https://ant.isi.edu/datasets/requests.html

[6] Analysis of Network Traffic (ANT) group. Ant datasets.
https://ant.isi.edu/datasets/index.html, 2022. [On-
line; accessed 15-Feb-2022].

[7] Root Server Operators. Events of 2015-11-
30. https://root-servers.org/media/news/
events-of-20151130.txt, 2015. [Online; accessed
12-Oct-2021].

[8] Root Server Operators. Events of 2016-06-
25. https://root-servers.org/media/news/
events-of-20160625.txt, 2016. [Online; accessed
12-Oct-2021].

[9] A S M Rizvi, Leandro Bertholdo, João Ceron, and John Heide-
mann. Anycast agility: Network playbooks to fight DDoS. In
Proceedings of the 31st USENIX Security Symposium, page to
appear. USENIX, August 2022.

[10] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. anygility - anycast agility tools: playbook builder
and decision maker. https://ant.isi.edu/software/
anygility/index.html, 2022. [Online; accessed 2-Mar-
2022].

[11] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John
Heidemann. Artifacts about anycast agility against ddos.
https://ant.isi.edu/datasets/anycast/anycast_
against_ddos/index.html, 2022. [Online; accessed
2-Mar-2022].

[12] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Datasets about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/peering/index.html, 2022. [On-
line; accessed 2-Mar-2022].

[13] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Datasets about anycast agility against ddos in tan-
gled testbed. https://ant.isi.edu/datasets/anycast/
anycast_against_ddos/tangled/index.html, 2022. [On-
line; accessed 15-Feb-2022].

[14] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and
John Heidemann. Tools about anycast agility against
ddos. https://ant.isi.edu/software/anygility/
system/index.html, 2022. [Online; accessed 2-Mar-2022].

[15] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Hei-
demann. Tools about anycast agility against ddos in peer-
ing testbed. https://ant.isi.edu/software/anygility/
peering/index.html, 2022. [Online; accessed 2-Mar-2022].

[16] A S M Rizvi, Leandro Bertholdo, Joao Ceron, and John Heide-
mann. Tools about anycast agility against ddos in tangled
testbed. https://ant.isi.edu/software/anygility/
tangled/index.html, 2022. [Online; accessed 2-Mar-2022].

[17] Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-
Bassett. PEERING: Virtualizing BGP at the Edge for Research.
In Proc. ACM CoNEXT, Orlando, FL, December 2019.

[18] Peering The BGP Testbed. Peering the bgp testbed. https:
//peering.ee.columbia.edu/, 2019. [Online; accessed 15-
Feb-2022].

280 31st USENIX Security Symposium USENIX Association

https://ant.isi.edu/datasets/index.html
https://root-servers.org/media/news/events-of-20151130.txt
https://root-servers.org/media/news/events-of-20151130.txt
https://root-servers.org/media/news/events-of-20160625.txt
https://root-servers.org/media/news/events-of-20160625.txt
https://ant.isi.edu/software/anygility/index.html
https://ant.isi.edu/software/anygility/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/peering/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/peering/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/tangled/index.html
https://ant.isi.edu/datasets/anycast/anycast_against_ddos/tangled/index.html
https://ant.isi.edu/software/anygility/system/index.html
https://ant.isi.edu/software/anygility/system/index.html
https://ant.isi.edu/software/anygility/peering/index.html
https://ant.isi.edu/software/anygility/peering/index.html
https://ant.isi.edu/software/anygility/tangled/index.html
https://ant.isi.edu/software/anygility/tangled/index.html
https://peering.ee.columbia.edu/
https://peering.ee.columbia.edu/

A Artifact Appendix

A.1 Abstract
Our artifact includes the regexps processed in this paper, a
record of the NPM packages analyzed, the REGULATOR work-
flow and source code, the results produced by both our tool
and those used for comparison, and software for computing
values and figures found in this paper.

We provide a x86-64 docker container with all prerequisites
necessary to compile REGULATOR. A pre-compiled version
is also included.

Our results can be validated by re-running the tool to detect
and verify ReDoS-vulnerable regexps.

A.2 Artifact check-list (meta-information)
• Data set: We use two different datasets in our paper. The

first (called Base Dataset in our paper) was sourced from three
different collections used in previous ReDoS research (known
as Corpus, RegexLib and Snort). The second (called NPM
dataset) was instead created during our research, by scraping
and extracting the regular expression used in the 10,000 most
popular NPM packages. Both datasets are included in the docker
container under /artifacts/data/regex.csv.

• Run-time environment: The software is evaluated using
Python 3.8, NodeJS 10.19.0, Postgresql 12, and gcc 9.3.0, run-
ning on Ubuntu 20.04 in Docker 20.10.7.

• Run-time state: Regulator is based on fuzzing, so results
might slightly differ between each run.

• Execution: Since Regulator fuzzes each regular expression
for a given amount of time, we recommend to run the tool on a
machine with no significant background tasks.

• Metrics: Each tool evaluated in our paper reports whether a
regular expression is vulnerable to ReDoS. Our artifact reports
the following metrics: true positives, false positive and false
negatives of each tools (Table 3 and Table 4 of our paper).

• Output: For each regular expression, a record is produced
of the fuzz witness, the classified growth-function (if super-
linear), whether it was verified to cause significant slow-down,
and the minimum string-length length required to achieve that
slow-down.

• Experiments: Included are setups for these experiments: run-
ning REGULATOR against regular expressions, and running
the comparison tools REGULATOR-PerfFuzz, ReScue, NFAA,
Revealer, RXXR2, and Rexploiter against regular expressions.

• How much disk space required (approximately)?: Approx-
imately 10 GB of disk space is required.

• How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes is required to laod the docker
container, start services, and queue regexps in the workflow.

• How much time is needed to complete experiments (ap-
proximately)?: The experiments require approximately
10,000 CPU-hours. The workflow can be configured to make
use of multiple CPU cores at once, to reduce the wall-clock
time required.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: 10.5281/zenodo.5669243

A.3 Description
A.3.1 How to access

The docker container where all artifacts are
stored can be downloaded at the following url:
https://doi.org/10.5281/zenodo.5669243

A.3.2 Hardware dependencies

Regulator does not have any particular hardware dependency
(the docker container was tested on a x86-64 Linux system),
but we recommend to using a server with a substantial number
of CPU cores.

A.3.3 Software dependencies

The only software dependency is docker (tested on version
20.10.7), plus a gzip decompression utility.

A.4 Installation
The artifact contains a docker container. After downloading
the compressed image regulator_artifacts.tar.gz, de-
compress it using a decompression tool. For example, on most
Linux systems: gzip -d regulator_artifacts.tar.gz
to produce the file regulator_artifacts.tar. It can
be loaded into docker with the following command
docker load < regulator_artifacts.tar. Then,
the container can be started with docker run -it
regulator_artifacts /bin/bash.

A.5 Experiment workflow
The core results from our paper can be reproduced by run-
ning REGULATOR and previous research tools against the
Base and NPM dataset. The previous tools tested in this paper
are: RXXR2, Rexploiter, NFAA, ReScue, PerfFuzz, Revealer.
The first four tools were packaged by Davis Jamie in the
vuln-regex-detector project 1. In the following sections
we therefore present 4 different workflows to run REGULA-
TOR, PerfFuzz, Revealer, and vuln-regex-detector.

REGULATOR. The experiment workflow
to run REGULATOR is documented in
/artifacts/detectors/regulator/README.md. Be-
fore running our tool, the regular expressions must be loaded
inside a postgres database using the add_to_queue.py
script.

REGULATOR has then three phases:
1https://github.com/davisjam/vuln-regex-detector

USENIX Association 31st USENIX Security Symposium 281

https://doi.org/10.5281/zenodo.5669243
https://github.com/davisjam/vuln-regex-detector

1. Fuzzing Stage: the target regular expression is fuzzed.
The output of this step is a witness string, i.e. the
string that has the highest number of executed byte-
code instructions. This step is implemented in the
fuzz_from_queue.py script.

2. Pumping Stage: the witness string is translated in a pump
formula. This step is implemented in the pump_all.py
script.

3. Dynamic Validation: the pump formula is tested against
the irregexp engine. If the formula causes a slowdown
of more than 10 seconds then the target regular expres-
sion is marked as vulnerable to ReDoS. This step is
implemented in the binsearch_pump.py script.

PerfFuzz. The workflow to run PerfFuzz is quite similar to
REGULATOR’s, and more instructions can be found under
/artifacts/detectors/regulator/README.md.

Revealer. The workflow to run Revealer is documented in
/artifacts/detectors/revealer/README.regulator.md.
To run this tool, invoke the script run_with_timeout.py.

vuln-regex-detector. The workflow to run ReScue,
RXXR2, NFAA, and Rexploiter. This is documented in
/artifacts/detectors/davis-detectors/README.md.

A.6 Evaluation and expected results
In this paper we show that REGULATOR outperforms previous
ReDoS detectors. This is the core result of this research, and is
shown in Table 3 and Table 4 of the paper. Rerunning the tool
should show more true positive detections than prior work.

There are two ways to reproduce these results. The first
is to re-use the output of our experiments (stored under
artifacts/data/, the second is to run the workflows dis-
cussed in the previous section and copy these newly gener-
ated results into /artifacts/data. See the README for each
workflow for more details.

In both cases, the script
/artifacts/scripts/analyze_results.py will summa-
rize the results and produce the numbers contained in Table 3
and Table 4.

If running the entire workflow requires too many resources,
REGULATOR can be more quickly evaluated by running the
workflow for a random subset of regexps which were reported
as vulnerable in this work. We expect a high percentage (at
least 80%) to be reproducible.

282 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
The artifact is an implementation and empirical evaluation of
Aardvark, an authenticated dictionary.

The artifact contains two sets of benchmarks for evaluation
in the paper. First, it contains microbenchmarks of vector
commitment operations which compare those used in the
paper with those in EDRAX (a related system), and with a
basic Merkle Tree. Second, it contains a benchmark of the
dictionary operations themselves from the perspective of both
a validator and an archive, with the dictionary integrated into
the backend of the Algorand cryptocurrency. The objective
of these benchmarks is to substantiate the paper’s claims
of computational efficiency, which is difficult to analytically
evaluate. In particular, these benchmarks measure the latency
of key vector commitment and dictionary operations.

The artifact may be validated by downloading it from the
public GitHub repository URL provided and running the eval-
uation scripts, which are part of the repository. The expected
result of artifact evaluation is that the latency measurements
match those in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Authenticated dictionary

• Program: Custom benchmarks, included

• Compilation: g++ 9.3.0, rustc 1.54.0-nightly (126561cb3
2021-05-24), go 1.16.4

• Metrics: Latency

• Output: File, measured characteristics, expected result in-
cluded

• Experiments: OS Scripts

• How much disk space required (approximately)?: 1GB

• How much time is needed to prepare workflow (approxi-
mately)?: 6hrs

• How much time is needed to complete experiments (approx-
imately)?: 13hrs

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT, GPLv3

• Archived (provide DOI)?: Yes,
https://github.com/derbear/aardvark-
prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2

A.3 Description
A.3.1 How to access

Clone the repository and its submodules from
GitHub at the following URL: https://
github.com/derbear/aardvark-prototype/tree/
dd8f6aaf5f76173118f3f3decbe099bda5972ce2. For instance,
run

git clone --recurse-submodules \
https://github.com/derbear/aardvark-prototype.git
git checkout dd8f6aaf5f76173118f3f3decbe099bda5972ce2

EDRAX and its dependencies are under the edrax subdirectory,
the implementations of vector commitments and Merkle trees
are under the veccom-rust subdirectory (which depends on the
pairing-fork subdirectory), and the Algorand implementation re-
sides in the go-algorand subdirectory with the Aardvark imple-
mentation in go-algorand/ledger.

The --recurse-submodules option initializes the reposito-
ries to their correct versions. The commits corresponding to
this document’s version of the artifact for the top-level repos-
itory, veccom-rust, and edrax are all additionally labelled
usenix22-artifact through git tag. To confirm that the ver-
sions of all submodules are correct, run git submodule status
--recursive from aardvark-prototype, which should produce
the following hashes.

1f1a3748d1530da1e75fadbce987ee6e6fa3fd1d edrax
530223d7502e95f6141be19addf1e24d27a14d50
edrax/ate-pairing

a34850b2df66a186c8d947b4d72acc839926321f edrax/xbyak
cff079d3f78daa48d25183292960c21da9cdf152 pairing-fork
d72ed3c8b0e4624053360591fcc8d03ce720ae90 veccom-rust

If you did not supply the --recurse-submodules option above,
you can alternatively initialize these submodules by running the
following command from aardvark-prototype.

git submodule update --init --recursive

A.3.2 Hardware dependencies

To reproduce results regarding the authenticated dictionary’s scala-
bility, 32 cores are required. The provided benchmarking script in
the repository assumes the presence of at least 64 cores.

Around 110MB of disk space is required to clone the entire git
repository. Around 1GB of disk space is required to run the experi-
ments.

A.3.3 Software dependencies

Building the software depends on the compilers g++ 9.3.0, rustc
nightly-2021-05-25, and go 1.16.4; on the libgmp3 library;
and on the build tools cmake, make, autoconf, automake, and
libtool. Running benchmarks depends on numactl.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, Privacy, and Ethical Concerns

N/A

USENIX Association 31st USENIX Security Symposium 283

https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2
https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2
https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2

A.4 Installation
The following instructions assume that your working directory is
$TOP and that you are running Ubuntu 18.04 or 20.04. (Older ver-
sions of Ubuntu may require modifying these steps.)

A.4.1 Obtaining the source code

git clone --recurse-submodules \
https://github.com/derbear/aardvark-prototype.git
git checkout dd8f6aaf5f76173118f3f3decbe099bda5972ce2
git submodule update --init --recursive

A.4.2 Installing dependencies for EDRAX

sudo apt update
sudo apt install cmake g++ libgmp3-dev

ignore errors while building dependencies here
cd $TOP/aardvark-prototype/edrax/ate-pairing ; make
cd $TOP/aardvark-prototype/edrax/xbyak ; make

cd $TOP/aardvark-prototype/edrax ; cmake . && make

A.4.3 Installing dependencies for vector commitments

install rustup
curl --proto ’=https’ --tlsv1.2 \
-sSf https://sh.rustup.rs | sh
input 1 for standard installation

add to shell profile for this to be persistent
source $HOME/.cargo/env

rustup install nightly-2021-05-25
rustup default \
nightly-2021-05-25-x86_64-unknown-linux-gnu

cd $TOP/aardvark-prototype/veccom-rust ;
cargo build --release

A.4.4 Installing dependencies for Aardvark, integrated
into Algorand

sudo apt update
sudo apt install autoconf automake libtool numactl

wget https://golang.org/dl/go1.16.4.linux-amd64.tar.gz
tar -C $TOP -xzf go1.16.4.linux-amd64.tar.gz

add to shell profile for this to be persistent
export PATH=$PATH:$TOP/go/bin
export GOPATH=$TOP/go

cd $TOP/aardvark-prototype/veccom-rust ;
cargo build --release
cd $TOP/aardvark-prototype/go-algorand ; make
input N when prompted, and ignore Makefile error

A.5 Experiment workflow
The following instructions assume that your working directory is
$TOP.

A.5.1 EDRAX microbenchmark

The EDRAX binary resulting from compiling calls into the EDRAX
implementation. It executes 100 iterations to warm up the ma-
chine state and then performs 1000 measurements of the imple-
mented Verify, CommitUpdate, and ProofUpdate operations. The
script edrax/bench.sh invokes the binary with the argument 10,
which corresponds to vectors with size 1024, and writes the results
as a CSV file to the file bench.csv to the current directory.

A.5.2 Aardvark vector commitment microbenchmark

The binary resulting from compiling
veccom-rust/src/bin/run_aardvark_bench.rs calls into
the implementation of vector commitments for Aardvark, as
well as an implementation of a Merkle Tree. It executes 100
iterations to warm up the machine state and then performs the
passed-in number of measurements of the operations described in
§4.1. The script veccom-rust/bench.sh invokes the binary with
the argument corresponding to vectors with size 1024 and with
1000 iterations, and it writes the results as a CSV file to the file
bench-results.txt to the current directory.

A.5.3 Aardvark dictionary benchmark

Aardvark is implemented as a modification of the database of the
Algorand cryptocurrency and is contained inside the repository
under the subdirectory go-algorand/ledger. The benchmark it-
self is written as a Go test within the file perf_test.go, and it
consists of a workload generation program (written as a Go test
TestWorkloadGen for convenience), as well as timed benchmarks
(written as a Go test TestTimeWorkload).

To generate the workload (which takes roughly 5 hours on the
paper hardware), run the following:

cd $TOP/aardvark-prototype/go-algorand/ledger ;
./bench.sh

This will create in the ledger subdirectory the files
workload-{init-}{c,d,m}, which correspond to the ini-
tialization data and sample load transactions for creation, deletion,
and modification benchmarks, respectively. Once the workloads are
created, the benchmarks may be run against them.

Note that if you are executing these commands over an SSH con-
nection, a dropped connection will terminate the generation process,
and you will need to reissue the command from the beginning. We
suggest using commands such as nohup, screen, or tmux to prevent
a dropped connection from interrupting the command.

A.6 Evaluation and expected results
The paper claims that Aardvark is a secure authenticated dictionary
with substantial storage savings and short proofs, and it can process
more than a thousand operations per second.

The security of Aardvark is justified through a paper proof. The
evaluation contains an analysis of the storage savings and proof sizes,

284 31st USENIX Security Symposium USENIX Association

which are straightforward to compute. The rest of the evaluation per-
forms an empirical analysis to obtain the throughput of a prototype
implementation of Aardvark, which is shown in the artifact.

The paper obtains the following empirical results in the evalua-
tion.

1. While Aardvark’s vector commitments are more computation-
ally intensive than Merkle trees, their costs are similar to those
in EDRAX without use of a SNARK.

2. A 32-core Aardvark validator can process 1–3 thousand opera-
tions per second. Validator costs benefit from parallelization.

3. Costs for archives are reasonable: each core can process about
10 deletion operations per second or 20 modification/insertion
operations per second.

The concrete numerical results are displayed on Tables 1
and 4 as well as Figures 3 and 4 in §8. Raw expected
results for vector commitment microbenchmarks are in
edrax/results and veccom-rust/bench-results, while
raw expected results for validator and archive opera-
tions are in go-algorand/ledger/validators.csv and
go-algorand/ledger/archives.csv respectively.

The following instructions assume that your working directory is
$TOP.

A.6.1 Microbenchmarks

The paper claims in §8.1, Table 1 concrete latency numbers for key
vector commitment operations for EDRAX, our implementation of
Aardvark, and our implementation of a basic Merkle Tree. Reproduce
them as follows.

benchmark EDRAX latency
cd $TOP/aardvark-prototype/edrax ; ./bench.sh
time ./bench.sh takes <1min on paper’s hardware

benchmark vector commitments latency
cd $TOP/aardvark-prototype/veccom-rust ; ./bench.sh
time ./bench.sh takes <3mins on paper’s hardware

The output results for EDRAX are in edrax/bench.csv, while
the expected raw results in the paper are in edrax/results.
The output results for the vector commitments are in
veccom-rust/bench-results.txt, while the expected raw
results in the paper are in veccom-rust/bench-results.

A.6.2 Validator and Archive throughput

The paper claims in concrete latency measurements for insertion,
modification, and deletion operations for our implementation of
Aardvark for validators (§8.3, Table 4 and Figure 3) and for archives
(§8.4, Figure 4). Reproduce them as follows.

first, generate the workload as described in the
previous section

runs 3 scaling tests on validators
cd $TOP/aardvark-prototype/go-algorand/ledger ;
./cores.sh
time ./cores.sh takes <4hrs on paper’s hardware

runs 3 tests on archives
cd $TOP/aardvark-prototype/go-algorand/ledger ;
./acores.sh
time ./acores.sh takes <4hrs on paper’s hardware

The results for validators are in files n amed outN.txt, where
N is the number of cores and is either 1, 2, 4, 8, 16, or 32,
while the results for archives are in a file n amed aout1.txt.
By default, both of these tests run 3 trials each. Expected
raw values for these results for 10 total trials each, manu-
ally merged, are in go-algorand/ledger/validators.csv and
go-algorand/ledger/archives.csv respectively.

Note that if you are executing these commands over an SSH con-
nection, a dropped connection will terminate the experiment process,
and you will need to reissue the command from the beginning. We
suggest using commands such as nohup, screen, or tmux to prevent
a dropped connection from interrupting the command.

A.7 Experiment customization
Different vector sizes may be passed to the vector commitments
libraries by modifying the command-line arguments which the
bench.sh files pass to the binaries.

Modifying go-algorand/ledger/perf_test.go will allow
modifying the number of initial accounts, the number of load transac-
tions, the number of blocks, and other parameters input to Aardvark.
(Modifying any variables here will require regeneration of the work-
load.)

USENIX Association 31st USENIX Security Symposium 285

https://www.acm.org/publications/policies/artifact-review-badging

A Artifact Appendix

A.1 Abstract
The purpose of this artifact is to allow reproduction of the
performance results in Section 8, specifically the channel
opening microbenchmark table (Figure 6) and the full proof
generation benchmark for the case studies (Figure 7). All
runtime estimates in this abstract are for a Linux system with
an 8-core 2.2 GHz AMD EPYC 7571 CPU and 32 GB of
RAM. All of our code is available on GitHub.

After installing dependencies, which should take roughly
ten minutes, reproducing these results has two steps: (1) cir-
cuit generation and (2) proof generation. Circuit generation
takes as input a (roughly) human-readable programmatic de-
scription of our circuits written in an extension of Java, and
outputs a gate-level description of the corresponding arith-
metic circuit. This programmatic circuit description is an
intermediate representation obtained by partially compiling
the original handwritten xJsnark source code. We do not re-
quire the original xJsnark source for the artifact evaluation—
reading it requires installing a specific version of a large and
unwieldy IDE called MPS—but our GitHub repository in-
cludes instructions on viewing the xJsnark source.

Circuit generation involves heavily optimizing the circuit
description, and so is computationally quite expensive, and
will take up to twenty minutes (to generate the nine example
circuits in this artifact). The purpose of re-running the circuit
generation as part of the artifact is to allow users to reproduce
the claimed gate counts for our circuits. We provide a single
script to automatically perform all of circuit generation.

After the circuits’ descriptions have been generated, the
last step is proof generation. Proof generation takes as input
the circuit descriptions as well as sample circuit inputs (e.g.,
TLS handshake transcripts and ciphertexts), generates public
parameters, produces proofs, and verifies them. The provided
proof generation script outputs information about the time
taken to generate and verify proofs, as well as the sizes of the
public parameters. We estimate this will take in total up to
twenty minutes (to complete all nine circuits in the artifact).

A.2 Artifact check-list (meta-information)
• Algorithm: zkSNARKs, Groth16

• Program: xJsnark, libsnark

• Compilation: Java, cmake

• Data set: Manually generated test data. Included.

• Run-time environment: Ubuntu 20.04, OpenJDK 11.0.13

• Hardware: 32 GB RAM, 8 cores

• Metrics: Circuit size, proving time, verification time, parame-
ter size

• Experiments: Bash scripts

• How much disk space required (approximately)?: 3 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 10 min

• How much time is needed to complete experiments (approx-
imately)?: 40 min

• Publicly available: GitHub: https://github.com/
pag-crypto/zkmbs/

• Archived (stable URL): https://
github.com/pag-crypto/zkmbs/tree/
096ed18772d8e63f4a03e7f4d16e118aa3923135

A.3 Description
A.3.1 How to access

Our artifact’s code is publicly available on GitHub here:
https://github.com/pag-crypto/zkmbs
This appendix contains all the instructions specific to in-

stallation and reproducing the paper’s benchmarks.

A.3.2 Hardware dependencies

We recommend using a machine with 8 cores and at least 32
GB RAM.

A.3.3 Software dependencies

The only major dependency is Java. We recommend using
a GNU/Linux system and have provided installation scripts
compatible with the Ubuntu 20.04 Linux distribution.

A.4 Installation
1. Clone the git repository and change to the root directory

(time required: < 1 minute):

$ git clone https://github.com/pag-crypto/zkmbs.git

$ cd zkmbs/

2. Install jsnark (a library used by xJsnark) and its depen-
dencies by running this script inside zkmbs/ (time re-
quired: 5–10 minutes): $./install_deps_jsnark

• If you can’t use the script, follow the “jsnark instal-
lation instructions” here: https://github.com/
akosba/jsnark#prerequisites

• On some systems, this step may fail when
trying to install the dependencies of lib-
snark as specified in this file: https:
//github.com/akosba/libsnark/blob/
213547311d16644bde7ef806b77dfae25c7f734c/
.gitmodules. Please edit all URLs
in your local version of the file at
zkmbs/jsnark/libsnark/.gitmodules
(which should be cloned by this point) to use
https (and not git) and try again.

USENIX Association 31st USENIX Security Symposium 287

https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules

3. Enter gen/ and compile xJsnark: $ cd gen/ and

$./compile_circuits . The exact output will de-
pend on the system but it should finish without any errors.
On Ubuntu, our output looks like this:

Note: Some input files use ...
Note: Recompile with -Xlint:unchecked ...
compilation SUCCESS

A.5 Experiment workflow
After installation, the structure of the main directories should
look like this:

zkmbs
+-- gen
| +-- circuits
| +-- logs
| +-- src
+-- jsnark

The experiment scripts will be run inside gen/. The Java
source code describing the circuits is located in gen/src/.

Experiment 1 will generate full circuits from these descrip-
tions and store them in gen/circuits/. Experiment 2 will
use these circuit descriptions to generate public parameters
and measure proving and verification times using sample
input files located in gen/.

A.6 Evaluation and expected results
The main performance claims in our paper are stated in Fig-
ures 6 and 7. There are nine circuits involved in our experi-
ments (the five entries of Figure 6 and the four entries of Fig-
ure 7). The first experiment reproduces the “Total” columns of
the two tables. The second experiment reproduces the “Time”
and “SRS” columns while ensuring that verification time is
under 5 ms. We recommend using a system with at least 32
GB RAM as generating proofs for the largest of our circuits
(ChannelBaseline) requires a lot of heap space, and in fact
causes errors on systems with just 16 GB memory.

Note that both Figures 6 and 7 list per-subcircuit gate counts
that sum to the “Total” count. Our code only allows verify-
ing the gate counts of the entire circuit, as the per-subcircuit
counts were approximated by manually inspecting the func-
tions used to build each circuit.

Experiment 1: Reproduce Gate Counts: The aim is to
generate circuits from our descriptions and reproduce the
total gate counts of each circuit (the Total columns of the
two tables). This experiment can be repeated by running
the script ./reproduce_total_counts (time required: 20
minutes) in the gen/ directory. The script outputs into file
column_total.txt, which should look like this after the
script finishes:

ChannelBaseline 747.9 # BCO
ChannelShortcut 111.1 # SCO
Channel0RTT 60.7 # ECO
ChannelAmortized 19.1 # ACO^AES
ChannelAmortized_ChaCha 8.7 # ACO^Cha
Firewall_HS 150.1 # Firewall
DNS_Amortized_ChaCha 17.6 # DoT
DNS_Amortized_doh_get 48.1 # DoH GET
ODOH_Amortized 48.1 # ODoH

Note that the “# ...” are added here to map to the abbrevia-
tions used in Figures 6 and 7. The numbers obtained should
be very close to the ones above with perhaps slight variation
coming from the performance of xJsnark’s optimizer on dif-
ferent systems. Some of the values shown here are different
than that of the “Total” columns in Figures 6 and 7 as those
were rounded for presentation.

Experiment 2: Reproduce Times and SRS: The aim is to
reproduce the structured reference string sizes (SRS columns),
proving (Time columns) and verification time (always under
5 ms) for each circuit. This experiment can be repeated by run-
ning the script ./reproduce_times_srs (time required:
20 minutes) inside the gen/ directory.

The script outputs into file
columns_ptime_srs_vtime.txt, the contents of which
after a sample execution are as follows:

ChannelBaseline 92.7 s 1179 MB 2.6 ms
ChannelShortcut 15.6 s 148 MB 1.6 ms
Channel0RTT 8.4 s 79 MB 1.6 ms
ChannelAmortized 2.9 s 26 MB 1.7 ms
ChannelAmortized_ChaCha 1.4 s 13 MB 1.6 ms
Firewall_HS 21.2 s 206 MB 1.6 ms
DNS_Amortized_ChaCha 3.1 s 29 MB 2.1 ms
DNS_Amortized_doh_get 6.8 s 72 MB 2.6 ms
ODOH_Amortized 7.9 s 76 MB 2.6 ms

Proof generation is a randomized algorithm; the results
reported in the paper are the median of five runs. We have
observed variations of up to 15% for proving time and 2 ms
for verifier time, in either direction. The script above performs
just one run per circuit.

A.7 Experiment customization

We provide two additional scripts to reproduce
the above benchmarks for an individual circuit:
./generate_circuit DNS_Amortized_ChaCha and

./prove_and_verify DNS_Amortized_ChaCha , where
“DNS_Amortized_ChaCha” can be replaced with any of the
nine circuits.

288 31st USENIX Security Symposium USENIX Association

A.8 Notes

Custom Inputs. As the circuit metrics we evaluate (gate
counts, parameters sizes and running times) are indepen-
dent of the actual input used to generate the proofs, input
customization isn’t required to reproduce our results. The
experiments generate valid proofs using fixed input files
(test.txt, test_doh.txt, test_wildcard.txt) pro-
vided in the gen/ directory. These files contain sample data
extracted from a real TLS 1.3 connection and a Merkle tree
blocklist of two million entries. We provide instructions in
our GitHub repository on generating sample data from new
DNS requests and custom Merkle trees.

Editing Circuit Descriptions. Our experiments generate
circuits using the Java files in the gen/src/ directory.
These are in turn generated from xJsnark’s custom lan-
guage files that are editable only with an IDE called MPS.
To inspect and edit our circuits, we recommend installing
the MPS IDE by following the instructions here in our
GitHub repository: https://github.com/pag-crypto/
zkmbs#installation-instructions-mps.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association 31st USENIX Security Symposium 289

https://github.com/pag-crypto/zkmbs#installation-instructions-mps
https://github.com/pag-crypto/zkmbs#installation-instructions-mps

A Artifact Appendix

A.1 Abstract
We present our Otti USENIX ’22 artifact. It is a docker con-
tainer that orchestrates the components of Otti to a single
interface. To build the docker container and execute the script
that reproduces our results, see README.md in our repos-
itory eniac/otti. The docker container is composed of 1. the
Otti compiler from eniac/otti (Note: Otti was built on top of
the Haskell CirC compiler, and later ported to the Rust CirC
compiler. Both are included.) 2. The Spartan zkSNARK back-
end from microsoft/Spartan 3. The compatibility interface
between compiler and Spartan in elefthei/spartan-zkinterface.
We also fetch their dependencies, which are broadly Haskell,
Python, and Rust’s build tools, the lpsolve CLI, csdp, scikit-
learn, the flatbuffer library, the Z3 model checker and more
small, standard libraries in Haskell and Rust.

We also include in our repository representative datasets
of linear programming (LP) [1], semi-definite programming
(SDP) [3], and the datasets for stochastic-gradient descent
(SGD), accessible by installing the PMLB [4] Python library.
Our docker container includes scripts to run Otti end-to-end
– generate C files from datasets, execute and compile C files
to R1CS, and finally prove and verify their correct execution
with Spartan.

A.2 Artifact check-list (meta-information)
• Algorithm: Otti uses optimization certificates to produce

nondetermanistic checkers for zkSNARKS, as detailed in the
paper.

• Compilation: Otti has a compiler which is included in the
container.

• Transformations: Otti has transformations from model files
for LP, SDP, SGD to C files which are also included as Python
scripts.

• Binary: Binaries for LP solve [2] for x86_64 UNIX machines
are included in the container. As we are not certain regarding
compatibility with Apple M1, we would recommend running
the container on a x86_64 architecture.

• Data set: We use the NETLIB [1], SDPLIB 1.2 [3], and
PMLB [4] datasets which are publicly available and relatively
small – in the order of a few MB. Representative examples
from these datasets are included in the repository and you can
refer to our results in the paper for the complete list.

• Run-time environment: Docker community edition is re-
quired, platform independent.

• Hardware: For running large datasets, a computer with >
256GB RAM is required. Small datasets can be run on personal
computers.

• Run-time state: No

• Execution: Execution time varies from small to large datasets
and the available memory in the machine. Small ones are really
fast and finish in a few minutes but larger ones can take hours.

• Security, privacy, and ethical concerns: No

• Metrics: Execution time, prover time, verifier time, proof size,
number of constraints.

• Output: Our result is a total runtime measurement and a
“Verification Successful” message that confirms end-to-end
execution was proven to the verifier

• Experiments: Docker container takes care of setup. Variation
should be small (5-10%) in runtimes depending on the machine.
Variation in constraint and proof sizes should be 0.

• How much disk space required (approximately)?: The
docker container requires a substantial amount of disk space,
between 20GB-30GB.

• How much time is needed to prepare workflow (approxi-
mately)?: The docker container builds in about an hour.

• How much time is needed to complete experiments (approx-
imately)?: Smaller examples can be run immediately and take
a couple of minutes, larger examples must be downloaded, but
should not take more than an hour or so.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/eniac/otti

• Code licenses (if publicly available)?: MIT license

• Data licenses (if publicly available)?: [1, 3] are very old and
no licensing information was found, [4] is under MIT license.

• Workflow frameworks used?: No

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/eniac/otti/releases/tag/v1.0

A.3 Description
How to access Clone repository from GitHub: https://
github.com/eniac/otti/releases/tag/v1.0

Hardware dependencies X86_64 machine with a sufficient
amount of RAM memory (> 200GB) if evaluating large datasets.

Software dependencies Docker community, latest version.

Data sets See [1, 3, 4].

Models N/A

Security, privacy, and ethical concerns N/A

A.4 Installation
Cloning To clone the repository and its submodules run git
clone -recursive https://github.com/eniac/otti.git

Building First, make sure you have installed Docker CE: https:
//docs.docker.com/get-docker/ Then build the Otti container:
docker build -t otti . Then run the container with 200GB of
memory and get terminal access: docker run -m 200g -it otti

USENIX Association 31st USENIX Security Symposium 291

https://github.com/eniac/otti
https://github.com/eniac/otti/releases/tag/v1.0
https://github.com/eniac/otti/releases/tag/v1.0
https://github.com/eniac/otti/releases/tag/v1.0
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

Reproducing experimental results After connecting to
the Docker container, run the following script to reproduce
the experimental results from Otti: ./run.py [-lp | -sdp
| -sgd] [-small | -full | -custom datasets/<path to
dataset>]

One of the -lp | -sdp | -sgd options is required. Then either
execute with the -small or -full flag, or the -custom flag with an
explicit path to a dataset file.

Running the small suite A subset of each dataset that can be
reproduced on a personal computer with x86_64 architecture and >=
12GB of RAM. These datasets are expected to take less than 1 hour.

Running the full suite A subset of each MPS dataset that can
be reproduced on a large machine with x86_64 architecture and >
200GB RAM. These datasets can take several hours, on the order
of 2-3 days to terminate. If your computer does not have sufficient
RAM memory or more applications have reserved memory, this
might be killed by the OS. This is a well-known limitation of the
compiler that consumes large amounts of memory.

Running individual files in datasets/* Our script will
generate a C file from the dataset file including non-deterministic
checks. We compile it with the Otti compiler, prove and verify it
and print Verification successful and the total runtime. of each stage.
Note that running indiviudal SGD datasets not from PLMB is not
supported at this time.

A.5 Experiment workflow
Our experiment runs a script around the components of Otti to com-
pile publicly available datasets to zkSNARKS and then verifies them,
printing “Verification successful” upon completion. We also output
profiling information such as runtime and zkSNARK proof size.

A.6 Evaluation and expected results
In Otti we evaluate the practicality of compiling numerical opti-
mization problems to zkSNARKs. We evaluate Otti in linear pro-
gramming, semi-definite programming, and stochastic optimization
problems. We apply this technique to publicly available datasets
[1, 3, 4], and show the following results.

A.6.1 Semidefinite programming results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

truss1 5140 768 79.20 197 3,007,933
hinf1 7166 1209 79.88 215 4,703,942
hinf2 10607 1187 79.88 313 6,536,398
hinf3 7795 1038 79.88 362 6,536,398
hinf4 9008 1211 79.88 193 6,536,398
hinf5 7748 1248 79.88 238 6,536,398
hinf6 7051 912 79.88 294 6,536,398
hinf7 7432 1058 79.88 343 6,536,398
hinf8 7241 1105 79.88 321 6,536,398
hinf9 7546 1153 79.88 301 6,536,398
control1 7398 1069 79.88 181 6,968,254

A.6.2 Linear programming evaluation results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

afiro 318 73 19.82 41 36,811
sc50a 320 78 19.82 42 54,066
sc50b 336 77 19.82 40 55,085
adlittle 609 117 29.33 45 180,747
sc105 473 104 20.51 45 113,282
scagr7 595 111 29.33 47 229,061
israel 1072 128 47.02 56 511,156
agg 2486 511 47.71 56 1,069,523
sc205 665 121 29.33 52 220,520
brandy 1631 227 47.02 61 815,356
beaconfd 2499 337 47.71 56 1,149,169
agg2 2237 313 47.71 79 1,887,762
agg3 2401 383 47.71 71 1,891,690
lotfi 1014 183 30.01 56 326,102
scorpion 1645 208 47.02 62 731,137
sctap1 1007 180 47.71 61 414,101
scfxm1 1831 254 47.02 105 965,504
bandm 2499 467 47.02 103 1,093,340
scagr25 1637 268 47.71 111 823,136
degen2 1534 223 47.71 308 626,407
scsd1 1636 216 47.02 54 1,034,359
fffff800 2431 330 47.71 197 1,479,725
scfxm2 2426 354 47.02 304 1,932,500
scrs8 2512 363 47.71 117 1,601,971
bnl1 4077 558 81.10 236 2,324,544
scsd6 2372 422 47.71 100 1,845,814
modszk1 2449 369 47.71 185 1,805,821
scsd8 4767 567 81.10 477 3,607,188

A.6.3 Stochastic gradient descent results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

confidence 0.117 0.038 14.08 2.35 13,027
haberman 0.215 0.052 19.36 7.84 60,237
iris 0.293 0.076 11.47 4.13 4,730
new_thyroid 0.296 0.058 14.75 2.96 25,810
krkopt 0.997 0.125 29.31 39.70 399,555
diabetes 0.484 0.071 28.64 32.14 212,501
glass 0.104 0.027 11.47 3.14 7,571
labor 0.186 0.047 14.75 3.19 22,763
letter 1.01 0.164 29.31 27.97 374,655
lymphography 0.284 0.055 14.75 4.37 31,823
collins 0.323 0.08 14.75 4.23 31,733
allbp 0.301 0.055 20.03 11.35 103,451
dermatology 0.517 0.106 19.36 6.90 55,877
kddcup 0.904 0.147 28.64 67.80 198,840
molecular_biology_promoters 0.707 0.263 19.36 7.19 41,343
mfeat_karhunen 0.488 0.073 28.64 13.80 162,352
analcatdata_authorship 0.586 0.095 28.64 8.70 231,455
clean1 6.423 0.535 79.20 14.47 3,473,740
clean1 (50%) 4.675 0.607 79.20 14.47 2,262,837
clean2 (50%) 18.234 1.337 79.88 477.17 6,773,944
GE1000 (50%) 4.842 0.356 45.92 310.64 571,558

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

292 31st USENIX Security Symposium USENIX Association

References

[1] LP/data index. https://ampl.com/netlib/lp/data/, 2013.

[2] lpsolve: Mixed integer linear programming (MILP) solver.
http://lpsolve.sourceforge.net/5.5, 2021.

[3] B. Borchers. SDPLIB 1.2, a library of semidefinite
programming test problems. Optimization Methods and
Software, 11(1-4), 1999.

[4] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J.
Goldberg, P. Chakraborty, N. L. Ray, D. Himmelstein, W. Fu,
and J. H. Moore. PMLB v1.0: an open-source dataset
collection for benchmarking machine learning methods.
Bioinformatics, 38(3):878–880, 10 2021.

USENIX Association 31st USENIX Security Symposium 293

https://ampl.com/netlib/lp/data/
http://lpsolve.sourceforge.net/5.5

A Artifact Appendix

A.1 Abstract
This artifact reproduces distributed systems experiments that
benchmark the collaborative zkSNARKs that we evaluate in
our paper.

Some experiments run on Google Cloud Platform, so we
will give the evaluators SSH access to one of our machines
which has appropriate credentials to launch the experiments.

The artifact includes scripts to re-run a limited version of
our experiments, and to re-render our plots.

A.2 Artifact check-list (meta-information)
• Algorithm: GSZ20 and SPDZ MCP protocols. Groth16, Mar-

lin, and PLONK zkSNARKs.

• Compilation: Rust compiler, nightly.

• Run-time environment: Linux, some experiments on GCP

• Execution: A distributed protocol

• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

• How much time is needed to complete experiments (approx-
imately)?: 30 minutes

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes, at https://github.com/alex-ozdemir/
multiprover-snark.

• Archived (explicitly provide DOI or sta-
ble reference)?: https://github.com/
alex-ozdemir/multiprover-snark/tree/
98cc63c7b885ade04989a5505050504ae7f2aac0

A.3 Description
A.3.1 How to access

The source is available at https://github.
com/alex-ozdemir/multiprover-snark/tree/
98cc63c7b885ade04989a5505050504ae7f2aac0.

We will provide access to a machine that can run the experiments.

A.3.2 Hardware dependencies

At least 8GB of RAM.

A.3.3 Software dependencies

Ubuntu packages: zsh libgmp-dev neovim autoconf pkg-config
libtool apache2-dev apache2 dnsmasq-base protobuf-compiler
libprotobuf-dev libssl-dev libxcb-present-dev libcairo2-dev
libpango1.0-dev tmux units r-base

Rust compiler: nightly after 2022-01-31.
Ripgrep
Mahimahi network emulator, patched as described in the source

distribution at /mpc-snarks/artifact_eval.md
R libraries: ggplot2, dplyr, readr, scales

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
(You can skip this. We’ll give you access to a machine with the
software set up, and alternatively to a VM that is already set up.)

1. New machine, at least 8GB RAM, 10GB disk

• Ubuntu 20.04 server

2. Do Ubuntu installation

• username: user password: user
• updating took a while

3. apt install zsh libgmp-dev neovim autoconf
pkg-config libtool apache2-dev apache2
dnsmasq-base protobuf-compiler libprotobuf-dev
libssl-dev libxcb-present-dev libcairo2-dev
libpango1.0-dev tmux units r-base
virutalbox-guest-utils

4. curl --proto '=https' --tlsv1.2 -sSf
https://sh.rustup.rs | sh

• nightly

5. cargo install ripgrep
6. Install the mahimahi shell network emulator

• clone it
• apply patches

– empty PICKY_CXXFLAGS in configure.ac (compiler
is pickier now)

– add mm-rate-to-events to install list in
scripts/Makefile.am (need this)

• ./autogen.sh && ./configure && make -j 8
• sudo sysctl -w net.ipv4.ip_forward=1

7. Install R libraries: ggplot2, dplyr, readr, scales
8. Set up folder sharing sudo adduser user vboxsf && sudo

systemctl enable virutalbox-guest-utils.service

A.5 Experiment workflow
1. Give us your public key using HotCRP.
2. Wait for us to confirm that we have granted that key access.
3. ssh aeval@128.12.176.8
4. cd ~/multiprover-snark/mpc-snarks
5. Run git clean -fd to clear any existing data.
6. Check that git rev-parse HEAD outputs

98cc63c7b885ade04989a5505050504ae7f2aac0.
7. cargo build --release

USENIX Association 31st USENIX Security Symposium 295

https://github.com/alex-ozdemir/multiprover-snark
https://github.com/alex-ozdemir/multiprover-snark
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0

• You can cargo clean first to force a clean build.

5. Optional: run the test suite ./test.zsh

• If it exits with a zero return code, it was successful.

Now, run the experiments (next section)

A.6 Evaluation and expected results
1. Run all experiments with time

./analysis/collect/artifact_eval.zsh

• This should take approximately 24 minutes.
• Alternatively: you can run the experiments one-by-one:

1. time ./analysis/collect/bad_net.zsh | tee
./analysis/data/bad_net.csv

– This runs locally and should take approximately 6 min-
utes

2. time ./analysis/collect/weak_machines.zsh

– This runs on GCP and should take approximately 10
minutes

3. time ./analysis/collect/Npc.zsh

– This runs on GCP should take approximately 8 minutes

2. Generate all plots: ./analysis/plotting/artifact_eval.zsh
3. Copy plots to your machine: scp

'aeval@128.12.176.8:multiprover-snark/mpc-snarks/analysis/plots/*.pdf'
.

4. Analyze:

1. Varying constraint counts: mpc.pdf should be compara-
ble to Figure 8

• At large constraint counts, 3PC GSZ should have
runtime similar to “Single Prover”. The SPDZ
MPCs should have approximately twice the run-
time.

2. Varying prover count: Npc.pdf should be comparable to
Figure 9

• Both SPDZ and GSZ should be parabolas. Slow-
down should be ~2x and ~1x respectively for 2
parties.

3. Varying link capacity: bad_net.pdf should be comparable
to Figure 10

• Slowdown should be going to ~2x as bandwidth
increases. Plonk should be slower than the others.

A.7 Experiment customization
If you want to reproduce the single-machine experiments (those
that vary link capacity using a network emulator) on your machine,
follow the directions below.

This is optional. You have already produced this graph on our
machine.

A.7.1 Build the collaborative proofs

Download the VM here: https://doi.org/10.5281/zenodo.
5889564. User: user. Password: user.

1. cd ~
2. git clone -b artiface-eval

https://github.com/alex-ozdemir/multiprover-snark
3. cd multiprover-snark/mpc-snarks
4. cargo build --release
5. Optional: run the test suite ./test.zsh

• If it exits with a zero return code, it was successful.

A.7.2 Collect the data

1. time ./analysis/collect/bad_net.zsh | tee
./analysis/data/bad_net.csv

• This should take approximately 6 minutes

A.7.3 Make & inspect the plots

1. Varying numbers of provers

• Run: Rscript ./analysis/plotting/bad_net.R
• Output plot: ./analysis/plots/bad_net.pdf
• It should be comparable to Figure 10

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

296 31st USENIX Security Symposium USENIX Association

https://doi.org/10.5281/zenodo.5889564
https://doi.org/10.5281/zenodo.5889564

A Artifact Appendix

A.1 Abstract
This artifact is to help users reproduce the results we reported
in our USENIX Security 2022 paper submission. We recom-
mend to run the artifact on a x86-64 computer with ≥ 20
CPU cores, ≥ 600GB of memory and ≥ 1.5T B hard drive
storage, and with an Ubuntu 20.04 LTS operating system.
The artifact should reproduce all the Figures and Tables we
reported in the paper, and thus can validate the main claims
of the paper. Detailed execution steps are elaborated in the
artifact README.md file.

A.2 Artifact check-list (meta-information)
• Algorithm: Coverage-based fuzzing, validity-oriented query

mutation and DBMS oracle.

• Program: SQLRight. The program source code is included in
the artifact.

• Compilation: afl-clang-fast and gcc-9/g++-9.

• Binary: Binaries not included. The programs are built from
source.

• Run-time environment: OS: Ubuntu 20.04 LTS. Dependen-
cies: python3 runtime and Docker. Requires Root access.

• Hardware: A x86-64 computer with ≥ 20 CPU cores, ≥
600GB of memory and ≥ 1.5T B hard drive storage. Hardware
specs are publicly available.

• Metrics: The reported metrics are: Number of Bugs Detected,
Fuzzing Coverage Feedback, Generated Query Validity and
Number of Valid Statements per Hour.

• Output: All the Figures and Tables in the paper.

• How much disk space required (approximately)?: Around
1.0T B (1012 bytes).

• How much time is needed to complete experiments (approx-
imately)?: Around 8834 CPU hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: Publicly available on Github.

• Code licenses (if publicly available)?: MIT License

• Archived (explicitly provide DOI or stable refer-
ence)?: Yes. Stable reference: https://github.com/
psu-security-universe/sqlright-artifact/tree/
57978e5ce697e13414a2bca871d2ef874e77158d

A.3 Description

A.3.1 How to access

The artifact can be retrieved from Github.
The Github link to the artifact is: https://github.com/

psu-security-universe/sqlright-artifact/tree/
57978e5ce697e13414a2bca871d2ef874e77158d.

A.3.2 Hardware dependencies

The artifact evaluations are run on a x86-64 computer, rec-
ommended with ≥ 20 CPU cores, ≥ 600GB of memory and
≥ 1.5T B hard drive storage.

A.3.3 Software dependencies

The artifact is evaluated on an Ubuntu 20.04 LTS operating
system.

A.3.4 Data sets

N/A.

A.3.5 Models

N/A.

A.3.6 Security, privacy, and ethical concerns

N/A.

A.4 Installation
To run the artifact code, user should download the artifact
files from the Github website (link provided from above). The
README.md file contains the detailed instructions to install
the Docker environment, and further build the Docker Images
required for the fuzzing tests.

A.5 Experiment workflow
The experiments are being hosted inside the Docker virtu-
alized environment. User only needs to call a few scripts
guided by the README.md file, and the scripts will run the
fuzzing evaluations in the background and later generate all
the Figures and the Tables we presented in the paper.

A.6 Evaluation and expected results
Here is the main claims of the paper:

• The proposed tool SQLRight can find more bugs than State-of-
the-arts SQLancer and Squirrel+oracle. SQLRight also outper-
forms existing tools in triggering more program code. This
claim can be validated by Figure 5 and Figure 8.

• The Coverage-based guidance helps SQLRight generate more
diverse queries and accumulate useful mutations, which helps
discover more bugs than the no-feedback baselines. This claim
can be validated by Figure 6 and Table 3.

• The validity-oriented optimizations in SQLRight can help gen-
erate higher validity queries, reduce false positives, and ulti-
mately help discover more bugs. This claim can be validated
by Figure 7, Figure 9 and Table 4.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 297

https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d

Following the instructions provided by the README.md
files in the artifact, one should be able to independently re-
produce all the results (Figures, Tables) shown in our paper.
Specifically:

• Session 3 in the README.md contains the instructions to
evaluate Comparison with Existing Tools (Section 5.2 in the
paper). It includes the steps to generate the figures from Figure
5 and Figure 8 in the paper. It consumes about 6152 CPU
hours.

• Session 4 in the README.md contains the instructions to
evaluate Contribution of Coverage Feedback (Section 5.3 in
the paper). It includes the steps to generate Figure 6 and Table
3 in the paper. It consumes about 726 CPU hours.

• Session 5 in the README.md contains the instructions to
evaluate Contribution of Validity (Section 5.4 in the paper). It
includes the steps to generate Figure 7, Figure 9 and Table 4
in the paper. It consumes about 1956 CPU hours.

The detailed command instructions are elaborated in the
README.md file. Here we show the expectations for each
artifact generated figures/tables:

• Figure 5a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 3 bugs
being detected by SQLRight in 72 hours.

• Figure 5b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over-estimate (or under-estimate)
the number of unique bugs for MySQL. Some manual efforts
might be needed to scan through the bug reports and dedupli-
cate the bugs to get the most accurate unique bug number. But
in general, SQLRight should report the most bugs after bisecting
(≥ 2 bugs in 72 hours).

• Figure 5c-e SQLite, MySQL and PostgreSQL code coverage:
SQLRight should have the highest code coverage among the
other baselines.

• Figure 5f SQLite query validity: SQLancer has the high-
est query validity, while SQLRight performs better than
Squirrel+oracle.

• Figure 5g MySQL query validity: sys has higher validity than
Squirrel+oracle.

• Figure 5h PostgreSQL query validity: SQLancer has the
highest query validity, while SQLRight performs better than
Squirrel+oracle.

• Figure 5i SQLRight valid statements per hour: SQLancer has the
highest number of valid statements per hour, while SQLRight

performs better than Squirrel+oracle.

• Figure 5j MySQL valid statements per hour: SQLRight has more
valid statements per hour than Squirrel+oracle.

• Figure 5k MySQL valid statements per hour: SQLancer have the
highest valid statements per hour, while SQLRight performs
better than Squirrel+oracle.

• Figure 6a-b bugs of SQLite (NoREC and TLP): SQLRight should
detect the most bugs. On different evaluation around, we expect
≥ 2 bugs being detected by SQLRight in 24 hours.

• Figure 6c-d coverage of SQLite (NoREC and TLP): SQLRight

should have the highest code coverage among the other base-
lines.

• Figure 7a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 2 bugs
being detected by SQLRight in 24 hours. Additionally, we have
muted the SQLRight-deter config in the Artifact logical bugs
figure. Because sometimes SQLRight-deter could produce tens
of False Positives, which would destroy the plot region and
render the script outputs an unreadable plots.

• Figure 7b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over or under-estimate the num-
ber of unique bugs for MySQL. Some manual efforts might
be needed to scan through the bug reports and deduplicate the
bugs to get the most accurate unique bug number. In general,
SQLRight should report the most bugs after bisecting. On dif-
ferent evaluation around, we expect ≥ 1 bugs from SQLRight

in 24 hours. Additionally, we have muted the SQLRight-deter
config in the Artifact logical bugs figure. Because sometimes
SQLRight-deter could produce tens of False Positives, which
would destroy the plot region and render the script outputs an
unreadable plots.

• Figure 7c-e SQLite code coverage: SQLRight and
SQLRight-deter should have the highest code coverage
among the other baselines. SQLRight-ctx-valid could have a
coverage very close to the SQLRight config, but in general,
SQLRight-ctx-valid is slightly worse in coverage compared to
SQLRight.

• Figure 7f-h SQLRight and SQLRight-deter should have the high-
est query validity.

• Figure 7i-k SQLRight and SQLRight-deter should have the high-
est number of valid statements per hour.

• Figure 8a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 1 bugs
being detected by SQLRight in 72 hours.

• Figure 8b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over-estimate (or under-estimate)
the number of unique bugs for MySQL. Some manual efforts
might be needed to scan through the bug reports and dedu-
plicate the bugs to get the most accurate unique bug number.
But in general, SQLRight should reported the most bugs after
bisecting (≥ 1 bugs in 72 hours).

• Figure 8c-8e SQLite, MySQL and PostgreSQL code coverage:
SQLRight should have the highest code coverage among the
other baselines.

• Figure 8f-h SQLite, MySQL and PostgreSQL query validity:
SQLancer has the highest query validity, while SQLRight per-
forms better than Squirrel+oracle.

• Figure 8i-k SQLite, MySQL and PostgreSQL valid statements per
hour: SQLancer has the highest number of valid statements per
hour, while SQLRight performs better than Squirrel+oracle.

• Figure 9a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 2 bugs
being detected by SQLRight in 24 hours. Additionally, we have
muted the SQLRight-deter config in the Artifact logical bugs

298 Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium USENIX Association

figure. Because sometimes SQLRight-deter could produce tens
of False Positives, which would destroy the plot region and
render the script outputs an unreadable plots.

• Figure 9b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over or under-estimate the num-
ber of unique bugs for MySQL. Some manual efforts might
be needed to scan through the bug reports and deduplicate the
bugs to get the most accurate unique bug number. In general,
SQLRight should detect the most bugs after bisecting. On dif-
ferent evaluation around, we expect ≥ 1 bugs being reported
by SQLRight in 24 hours. Additionally, we have muted the
SQLRight-deter config in the Artifact logical bugs figure. Be-
cause sometimes SQLRight-deter could produce tens of False
Positives, which would destroy the plot region and render the
script outputs an unreadable plots.

• Figure 9c-e SQLite, MySQL and PostgreSQL code coverage:
SQLRight and SQLRight-deter should have the highest code
coverage among the other baselines. SQLRight-ctx-valid could
have a coverage very close to SQLRight, but in general,
SQLRight-ctx-valid is slightly worse in coverage compared to
SQLRight.

• Figure 9f-h SQLite, MySQL and PostgreSQL query validity:
SQLRight and SQLRight-deter should have the highest query
validity.

• Figure 9i-h SQLite, MySQL and PostgreSQL valid statements
per hour: SQLRight and SQLRight-deter should have the highest
number of valid statements per hour.

• Table 3 Code coverage triggered by queries with different
depths: The mutation depth number could be slightly different

between each run. However, the Max Depth from SQLRight

NoREC and TLP should be larger than other baselines. And
SQLRight NoREC and TLP should have more queue seeds located
in a deeper depth, compared to other baselines.

• Table 4 False Positives from Non-Deter: We have introduced
some extra filters that can filter out some obvious False Posi-
tives. We includes these filters in the Artifact implementation,
in order to reduce the manual efforts for excluding FPs, and to
produce a more accurate bug numbers by default. Therefore,
the bug number reported by the current Artifact script could
be slightly different from the ones we reported in the paper
(Table 4). For all configurations, the WITHOUT non-deter
settings should always have less bugs reported compared to
the WITH non-deter settings, due to the extra False Positives
produced by the non-deterministic queries.

A.7 Experiment customization
N/A

A.8 Notes
N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association Artifact Appendices to the Proceedings of the 31st USENIX Security Symposium 299

A Artifact Appendix

A.1 Abstract
This artifact provides the source code of ASan--, a tool as-
sembling a group of optimizations to reduce (or “debloat”)
sanitizer checks and improve ASan’s efficiency. It also pro-
vides a set of test cases and necessary dependencies. In prin-
ciple, ASan-- has no special requirment of the hardware or
operating system. For reproductive experiments, we recom-
mend reviewers to build ASan-- on Ubuntu 18.04 LTS 64bit
(a virtual machine is fine) and we suggest reviewers to install
the desktop version of Ubuntu for Chromium evaluation. For
software requirements, we separate into two parts. For run-
time evaluation, we used SPEC CPU2006 and Chromium to
test the performance of our tool. For bug detection capabil-
ity evaluation, we utilized Juliet Test Suite and Linux Flaw
Project to detect the vulnerabilities in software, and ASan--
should achieve identical results with ASan.

A.2 Artifact check-list (meta-information)
• Algorithm:

Yes, we present six new algorithms. Details can be found in
our paper.

• Program:
SPEC CPU2006: is private, and it should be downloaded. The
approximate size is 20GB.
Chromium: is public, and version 58.0.3003.0 should be down-
loaded. The approximate size is 50GB.
Juliet Test Suite: is public, and it is included in our artifact. The
approximate size is 500MB.
Linux Flaw Project: is public, and it is included in our artifact.
The approximate size is 1.5GB.

• Compilation:
The compiler we used is LLVM-4.0.0, which is public, and it
is included in our artifact.

• Run-time environment:
We recommend Ubuntu 18.04 LTS 64bit for testing, and you
will need root access.

• Execution:
The experiments will approximately run 5 hours.

• Metrics:
Execution time and Vulnerabilities reproduction.

• Output:
The outputs will be numerical results and error logs.

• Experiments:
We provided both bash scripts and manual steps for users to
reproduce results.

• How much disk space required (approximately):
Approximately 100GB.

• How much time is needed to prepare workflow (approxi-
mately):
The estimate time to prepare workflow will be 8 hours.

• How much time is needed to complete experiments (ap-
proximately):
The estimate time to complete experiments will be 15 hours.

• Publicly available:
Yes, our artifact is publicly available.

• Archived (provide DOI or stable reference):
Yes, our artifact is publicly available on GitHub.

A.3 Description

A.3.1 How to access

Clone below repository from GitHub
https://github.com/junxzm1990/ASAN--/tree/
f497310328fafddc7fe7993edb8befd4ab4d6393

A.3.2 Hardware dependencies

The approximate disk space required after unpacking our
artifact is 100GB.

A.3.3 Software dependencies

For the OS, we recommend Ubuntu 18.04 LTS 64bit and we
suggest reviewers to install the desktop version of Ubuntu.
For software dependencies, we separate into two parts. For
run-time evaluation, we used SPEC CPU2006 and Chromium.
For bug detection capability evaluation, we utilized Juliet Test
Suite and Linux Flaw Project.

A.4 Installation

You can get the artifacts from GitHub using the following
command:
git clone https://github.com/junxzm1990/ASan--.git

A.5 Experiment workflow
The overall workflow consists of the following steps:

1. Install the dependencies;
2. Build tool ASan--;
3. Build and run the SPEC CPU2006 benchmarks;
4. Build and run the Chromium benchmarks;
5. Build and run the Juliet Test Suite benchmarks;
6. Build and run the Linux Flaw Project benchmarks.

We have provided scripts for each of the steps above.

A.6 Evaluation and expected results
We will go through the entire experiment workflow by describing all
the commands in each step.

USENIX Association 31st USENIX Security Symposium 301

https://github.com/junxzm1990/ASAN--/tree/f497310328fafddc7fe7993edb8befd4ab4d6393
https://github.com/junxzm1990/ASAN--/tree/f497310328fafddc7fe7993edb8befd4ab4d6393

A.6.1 Install the dependencies

Run the following commands:
sudo apt-get install cmake
sudo apt-get install git
sudo apt-get install wget
sudo apt-get install tar

A.6.2 Build tool ASan--

Run the following commands:
git clone https://github.com/junxzm1990/ASan--.git
cd ASan--
cd llvm-4.0.0-project
mkdir ASan--Build && cd ASan--Build
cmake -DLLVM_ENABLE_PROJECTS="clang;compiler-rt" -G
"Unix Makefiles" ../llvm
make -j

A.6.3 Build fuzzing version ASan--

Run the following commands:
patch -p1 < patch_ASanASan--
cd llvm-4.0.0-project
mkdir ASanASan--Build && cd ASanASan--Build
cmake -DLLVM_ENABLE_PROJECTS="clang;compiler-rt" -G
"Unix Makefiles" ../llvm
make -j

A.6.4 Build and run the AFL Fuzzing

Run the following commands:
cd /fuzzing
bash set_ASan--.sh
cd binutils-2.32
bash auto_build_ASan--.sh
./afl-2.52b/afl-fuzz -S nm_afl -i
./afl-2.52b/testcases/others/elf/ -o ./eval/nm -m
none - ./binutils-2.32/ASan_Srk/binutils/nm-new @@
The result will be printed on the console.

A.6.5 Build and run the SPEC CPU2006

Run the following commands:
cd /spec
cp run_asan--.sh /cpu2006
cd cpu2006
CC=PATH/llvm-4.0.0-project/ASan--Build/bin/clang
CXX=PATH/llvm-4.0.0-project/ASan--Build/bin/clang++
./run_asan--.sh asan-- <test|train|ref> <int|fp>
The result will be printed on the console.

A.6.6 Build and run the Chromium

Run the following commands:
cd /chromium
git clone https://chromium.googlesource.com
/chromium/tools/depot_tools.git

Add depot_tools to the end of your PATH :
export PATH="$PATH:/path/to/depot_tools"

Create a chromium directory for the checkout and change to it
mkdir /chromium && cd /chromium

Run the fetch tool from depot_tools to check out the code and its
dependencies.
fetch -nohooks chromium
git checkout tags/58.0.3003.0 -b 58

Check out a version of depot_tools from around the same time as
the target revision.
Get date of current revision:
/chromium/src $ COMMIT_DATE=$(git log -n 1
-pretty=format:%ci)
Check out depot_tools revision from the same time:
/depot_tools $ git checkout $(git rev-list -n 1
-before="$COMMIT_DATE" <main | master>
/depot_tools $ export DEPOT_TOOLS_UPDATE=0

Checkout all the submodules at their branch DEPS revisions.
gclient sync -D -force -reset -with_branch_heads

To create a build directory, run:
gn args out/ASan--

Set build arguments.
is_clang = true
clang_base_path = "llvm-4.0.0-project/ASan--Build"
is_asan = true
is_debug = ture
symbol_level = 1
is_component_build = true
pdf_use_skia = true

Build Chromium (the “chrome” target) with Ninja:
ninja -C out/ASan-- chrome

Run benchmarks and Reproduce bugs:
Sunspider:
./chrome https://webkit.org/perf/sunspider-0.9.1/
sunspider-0.9.1/driver.html
Kraken:
./chrome https://mozilla.github.io/krakenbenchmark.
mozilla.org/index.html
Lite Brite:
./chrome https://testdrive-archive.azurewebsites.net/
Performance/LiteBrite/
Octane:
./chrome https://chromium.github.io/octane/
Basemark:
./chrome https://web.basemark.com/
WebXPRT:
./chrome https://www.principledtechnologies.com/
benchmarkxprt/webxprt/run-webxprt-mobile

#Issue 848914:
./chrome -disable-gpu /Issue_848914_PoC/gpu_freeids.html

302 31st USENIX Security Symposium USENIX Association

#Issue 1116869:
./chrome /Issue_1116869_PoC/poc_heap_buffer_overflow
#Issue 1099446:
./chrome /Issue_1099446_PoC/poc_heap_buffer_overflow
The result will be printed on the console.

A.6.7 Build and run the Juliet Test Suite

Juliet contains different benchmarks, here we take CWE121 as an
example. Run the following commands:
cd /juliet_test_suite
cd testcases
cd CWE121_Stack_Based_Buffer_Overflow
cd s01
make -j
export ASAN_OPTIONS=halt_on_error=0
./CWE121_s01
The result will be printed on the console.

A.6.8 Build and run the Linux Flaw Project

Linux Flaw contains different benchmarks, here we take CVE-2006-
0539 as an example. Run the following commands:
cd /linux_flaw_project

Install the dependencies.
sudo apt-get install sendmail
sudo apt-get install vim
sudo apt-get install pkg-config
sudo apt-get install fontconfig
sudo apt-get install libfontconfig1-dev
export CC=$(readlink -f ../../llvm-4.0.0-project
/ASan--Build/bin/clang)
CXX=$(readlink -f ../../llvm-4.0.0-project
/ASan--Build/bin/clang++)

Build and run.
wget https://github.com/mudongliang/source-packages/
raw/master/CVE-2006-0539/fcron-3.0.0.src.tar.gz
tar -xvf fcron-3.0.0.src.tar.gz
cp configure ./fcron-3.0.0
cd fcron-3.0.0
sudo mkdir /var/spool/fcron
CC=$CC CXX=$CXX CFLAGS="-fsanitize=address -g"
CXXFLAGS="-fsanitize=address -g" ./configure
make -j
./convert-fcrontab ‘perl -e ’print "pi3"x600’‘
The result will be printed on the console.

USENIX Association 31st USENIX Security Symposium 303

A Artifact Appendix

A.1 Abstract
We provide code, data, and outputs of our experiments.
Our artifact is publicly available at https://github.com/
Yuanyuan-Yuan/Manifold-SCA with detailed documents.
Using our tool, users can perform side channel attacks on
media software and localize side channel vulnerabilities of
the target software. We also provide a mitigation scheme to-
wards our attack and investigate the noise resilience of our
attacking technique.

A.2 Artifact check-list (meta-information)
• Data set. See README in our artifact.

• Run-time environment. Our experiments are launched on 64-
bit Ubuntu 18.04, we recommend users to set up on the same
OS. We also provide a docker container with everything set up.
Performing Prime+Probe attack needs root access.

• Hardware. We perform Prime+Probe attacks on Intel Xeon
and AMD Ryzen CPUs. Nevertheless, our approach is not
hardware-specific. Users can use our tools on other CPUs. To
approximate manifold from known data (i.e., the training split),
users are recommended to run scripts on GPUs. Note that our
tool requires a relatively large RAM.

• Execution. Our experiments are launched on one Nvidia
GeForce RTX 2080 GPU. The running time of approximating
manifold (i.e., training models) is less than 24 hours. Never-
theless, it will be very slow if the script is executed with only
CPUs. We have released our trained models. The data process-
ing and side channel logging are also time-consuming, which
may take several days. We also provide our processed data and
logged side channels.

• Security, privacy, and ethical concerns. Our tool is provided
as-is and is only for research purposes. Please use it only on
test systems with no sensitive data. Users are responsible for
protecting themselves, their data, and others from potential
risks caused by our tool.

• Output. Our outputs include 1) logged side channel records;
2) trained models which appropriate data manifold; 3) recon-
structed media data from unknown side channel; 4) localized
side channel vulnerabilities of media software.
We release 1) scripts for logging side channels and our logged
side channel records; 2) scripts for training models and our
trained models; 3) scripts for reconstructing media data from
unknown side channels (i.e., the test split) and our recon-
structed media data; 4) scripts for localizing side channel vul-
nerabilities and our localized vulnerabilities. Some vulnerabili-
ties have been explored by previous works, and the new-found
vulnerabilities have been confirmed by developers of FFmpeg
and libjpeg by the time of writing. See outputs for more
details.

• How much disk space required (approximately)? We pro-
vide 1K samples of processed data and side channel records for
each dataset and software. We also provide our trained models

and a docker container. To launch experiments using these data
samples, which are sufficient to verify our findings, users need
to prepare at least 20G space. Further, if users want to prepare
all data (we also provide the scripts), 2T space is desired.

• Experiments. We provide 1K samples of processed data and
side channel records for each dataset and software. These sam-
ples are sufficient to verify our statements and results, for in-
stance, reconstructing high-quality media data from side chan-
nel records and mitigating side channel attack using perception
blinding (e.g., perceptual properties of reconstructed images
are dominated by the mask).
Since experiments are performed on a limited number of data,
some numerical results may have relatively large variances.
Also, it’s worth noting that the 1K samples are not enough to
train the model (i.e., the trained model has a poor capability of
reconstructing media from unknown side channels), but users
can see that the reconstructed media data from known side
channels gradually have higher quality and get similar to the
reference media data. Users can use our provided scripts to
produce all data involved in our paper.

• How much time is needed to prepare workflow/complete
experiments (approximately)?
1) Set up the environment: less than 1 hour. We also provide a
docker container with everything set up.
2) Download public datasets and process: it requires less than
1 hour to process the data. We provide our processed data
samples.
3) Log side channels: around one week to log side channels
of all media and target software. We provide our logged side
channels.
4) Train models: training one model requires less than 24 hours
on one Nvidia GeForce RTX 2080 GPU. Our script also sup-
ports training on CPUs, but it could be time-consuming. We
also release our trained models.
5) Others: a few minutes.

• Publicly available? Our artifact is publicly available at https:
//github.com/Yuanyuan-Yuan/Manifold-SCA.

• Code licenses (if publicly available)? MIT license.

• Data licenses (if publicly available)? CC-BY-4.0 license.

• Workflow frameworks used? We use Pytorch as the building
block of our framework.

• Archived (provide DOI or stable reference)? Available at
https://zenodo.org/record/5816702#.YdQMHxNByjA.

A.3 Description
See all details in our README.

A.3.1 How to access

Access our artifact at https://github.com/Yuanyuan-Yuan/
Manifold-SCA.

A.4 Installation
See README. We also provide a docker container with everything
set up.

USENIX Association 31st USENIX Security Symposium 305

https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/main/README.md
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://zenodo.org/record/5816702#.YdQMHxNByjA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/main/README.md
https://github.com/Yuanyuan-Yuan/Manifold-SCA

A.5 Evaluation and expected results
We show that side channel analysis (SCA) towards media soft-
ware can be largely boosted by manifold learning, which recasts
SCA as mapping between side channels and media data via a low-
dimensional joint manifold. Enabled by the neural attention mecha-
nism, we can localize side channel vulnerabilities of media software
by investigating which records on a logged side channel trace con-
tribute most to the reconstruction of media data. Our findings have
been confirmed by the software developers. We further propose the
perception blinding that is highly effective for mitigating manifold
learning-based side channel attacks. We also show that our approach
is highly robust to noise in collected side channels.
Side Channel Attack. By using our released tools, users can log
side channel records of the target software when it is processing
private data. Based on the collected side channels and corresponding
media data, users can train a model to appropriate the manifold.
The trained model can reconstruct high-quality media data from un-
known side channels (i.e., the test split of each dataset). We provide
our trained models and 1K data samples (from test split). Using
our trained models, users can observe that the reconstructed media
data manifest consistent perceptual properties with the reference
media data. Note that some numerical results (e.g., the text inference
accuracy) may have large variances since they are calculated on
only a few samples. Also, the provided data samples are not enough
for training models, but users can still observe that the manifold
(despite its poor generalization capability) is gradually formed when
training models on these samples. To prepare all data records, which
require roughly 2T space, users can download the public datasets
and process them using our scripts. It’s worth noting that due to the
non-deterministic operations of Pytorch, training results and some
inference results may be slightly different each time, but findings
and conclusions derived from these results are consistent. Moreover,
the results always largely outperform the baseline.
Localizing Side Channel Vulnerabilities. Users can use our scripts
to localize side channel vulnerabilities once the manifold is formed.
For instance, to investigate records produced by which functions in
libjpeg contribute most to reconstructing images, users are ex-
pected to observe that idct and mcu related functions have the
highest frequency. We also provide our localized vulnerabilities.
Some vulnerabilities have been exported by previous works, and the
new-found ones have been confirmed by developers. Note that the
produced results on the 1K samples may be slightly different from
our provided results. That is reasonable since the frequency of each
localized function could have a relatively large variance on only a
few examples.
Perception Blinding. We provide scripts for users to perform per-
ception blinding on media data. We also provide blinded images and
corresponding side channel records. Users can observe that given
the side channels of blinded images, our framework can hardly re-
construct privacy—the perceptual properties are dominated by the
blinding masks. Users can also use our scripts to produce other
blinded data and use their customized blinding masks.
Noise Resilience. We show that our technique is robust towards
noise in collected side channels. By using our provided scripts, users
can introduce noise of various types and weights into side channels.
The reconstructed media data from noisy side channels are still
of high quality and manifest most of the perceptual properties of
reference media data.

A.6 Experiment customization
Our artifact supports customized settings. More specifically, users
can customize 1) the media datasets, 2) hardware platforms, 3) target
software, 4) model architectures, 5) training parameters when ap-
propriating manifold, 6) blinding masks, 7) noise insertion schemes.
We provide APIs for customized settings; see details in README.

306 31st USENIX Security Symposium USENIX Association

https://github.com/Yuanyuan-Yuan/Manifold-SCA

A Artifact Appendix

A.1 Abstract
Obligatory. Briefly describe your artifact including minimal
hardware and software requirements, how it supports your
paper, how it can be validated, and what is the expected result.
At submission time, it will also be used to select appropri-
ate reviewers. It will also help readers understand what was
evaluated and how.

This artifact includes the source code for the experiments
in the paper. The artifact is built upon Python and its libraries
(e.g., Pytorch) and requires the access to GPUs for acceler-
ating the model training. The required Python libraries are
listed in the source code. The artifact is tested on Linux with
NVIDIA V100 GPUs. The artifact will validate the attack
performance observed in the paper. By running the code, the
artifact will output original models, pruned models, and print
out the results (i.e., attack accuracy) of membership inference
attacks and defenses on the models.

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Algorithm: The proposed MIA attack and defense is proposed
and included in the source code.

• Model: The ResNet18, DenseNet121, VGG16, FC models are
included.

• Data set: The access to the CIFAR10, CIFAR100, CHMNIST,
SVHN, Location, Texas, Purchase datasets is included.

• Hardware: GPU is required to accelerate model training.

• Metrics: The prediction accuracy and attack accuracy are
reported.

• Output: The model prediction accuracy and attack accuracy
will be output.

• Experiments: The guide to reproduce the experiments is
provided in README file.

• How much disk space required (approximately)?: For each
dataset and neural network architecture, we need around 10GB-
100GB disk space to store original models, pruned models,
pruned models with defense, and the corresponding shadow
models. To run all the experiments, around 2TB disk space
is required to store all the models. To reduce the disk space
requirement, we can delete the models that have been evalu-
ated, since the models trained on different datasets and neural
network architectures are independent.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 1 hour is needed to install all the Python
libraries.

• How much time is needed to complete experiments (approx-
imately)?: It takes around 2-3 hours to evaluate the attacks
and defenses on a single experimental setting using an NVIDIA
V100 GPU. The entire experiment settings include 7 datasets,

4 neural network architectures, 4 pruning approaches, and 5
sparsity levels, in total 255 pruned models.

• Publicly available (explicitly provide evolving version
reference)?: The code is available at github.com/
Machine-Learning-Security-Lab/mia_prune.

• Code licenses (if publicly available)?: The code is under
MIT License.

• Data licenses (if publicly available)?: All datasets are pub-
licly available.

A.3 Description
Obligatory. For inapplicable subsections (e.g., the “How to
access” subsection when not applying for the “Artifacts Avail-
able” badge), please specify ’N/A’.

A.3.1 How to access

Clone repository from Github. Final stale URL:
github.com/Machine-Learning-Security-Lab/mia_
prune/tree/v1.0.0.

A.3.2 Hardware dependencies

GPU is required to accelerate the neural network training and
membership inference attacks.

A.3.3 Software dependencies

Python 3 is required. The code is tested using Python 3.8.
The required Python libraries (e.g., Pytorch) is provided in
the requirement.txt file.

A.3.4 Data sets

All the datasets are publicly available. The repository contains
all the link to the datasets.

A.3.5 Models

The code is provided to generate machine learning models.

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Obligatory. Describe the setup procedures for your artifact
targeting novice users (even if you use a VM image or access
to a remote machine).

First, install Python 3.8 with a virtual environment. Second,
install the required Python libraries in the requirement.txt file.
Third, create a folder to store the downloaded datasets. Fourth,
create a folder to store the trained and pruned models.

USENIX Association 31st USENIX Security Symposium 307

github.com/Machine-Learning-Security-Lab/mia_prune
github.com/Machine-Learning-Security-Lab/mia_prune
github.com/Machine-Learning-Security-Lab/mia_prune/tree/v1.0.0
github.com/Machine-Learning-Security-Lab/mia_prune/tree/v1.0.0

A.5 Experiment workflow

Describe the high-level view of your experimental workflow
and how it is implemented, invoked and customized (if needed),
i.e. some OS scripts, IPython/Jupyter notebook, portable CK
workflow, etc. This subsection is optional as long as the experi-
ment workflow can be easily embedded in the next subsection.

The workflow for MIA attacks is summarized as follow: 1)
Train an original neural network. 2) Prune the model and fine-
tune the model. 3) Conduct membership inference attacks on
the pruned model. 4) Conduct membership inference attacks
on the original model.

The workflow for MIA defenses is summarized as follow:
1) Train an original neural network. 2) Based on an original
model, prune the model and fine-tune the model with defense.
3) Evaluate the performance of defense by conduct member-
ship inference attacks on the pruned model with defense.

A.6 Evaluation and expected results

Obligatory. Start by listing the main claims in your paper.
Next, list your key results and detail how they each support
the main claims. Finally, detail all the steps to reproduce
each of the key results in your paper by running the artifacts.
Describe the expected results and the maximum variation
of empirical results (particularly important for performance
numbers).

The paper presents the following main claims. 1) Neural
network pruning increases the privacy risks of pruned models
in terms of membership inference attacks. 2) The proposed
SAMIA has advantages in identifying the pruned models’
prediction divergence by using finergrained prediction met-
rics. 3) The proposed PPB protects the fine-tuning process
of neural network pruning by reducing the prediction gaps
based on their KL-divergence distances.

The key results include: 1) membership inference attack ac-
curacy of the pruned models is usually higher than that of the
original models. 2) the proposed SAMIA attack achieves the
highest attack accuracy in most cases compared with baseline
attacks. 3) the proposed PPB defense is effective in protecting
all pruning approaches from attacks and can reduce the attack
accuracy.

The steps to reproduce the first key results include: 1) Train
an original neural network. 2) Prune the model and fine-tune
the model. 3) Conduct SAMIA attacks on the pruned model.
4) Conduct SAMIA attacks on the original model.

The steps to reproduce the second results include: 1) Derive
the pruned models in the first key result. 2) Conduct SAMIA
attacks and baseline attacks on the pruned models.

The steps to reproduce the third results include: 1) De-
rive the original models in the first key result. 2) Prune the
model and fine-tune the model with PPB defense. 3) Conduct
SAMIA attacks on the pruned models.

Detailed examples for running these experiments are pro-
vided in the README file.

A.7 Experiment customization
The dataset can be changed by modifying the dataset.py file.
The neural network architecture can be changed by modifying
the models.py file. The pruning method can be changed by
modifying the pruner.py file.

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

308 31st USENIX Security Symposium USENIX Association

A Artifact Appendix

A.1 Abstract
Our artifact primarily implements and evaluates our proposed
model inversion attack strategies– LOMIA and CSMIA. It
includes our codebase for the above two attack strategies,
datasets, and APIs to query target and attack models. While
our codebase is heavily Python-dependent, it can run without
any specific hardware requirements. In our requirements file,
we list packages used in our codebase, and in the installation
guideline, we describe details of the installation guideline and
also include a readme file, where we add details step by step
procedure to run and evaluate our artifact, i.e., each of the
claims we make. We provide the APIs of the target as well as
attack ML models, with instructions to perform each attack
leveraging these APIs and training datasets. We expect to
reproduce the results shown in the paper, although the attack
models trained on different accounts with their optimization
technique might cause slightly different results.

A.2 Artifact check-list (meta-information)
• Algorithm: N/A
• Program: N/A
• Compilation: N/A
• Transformations: N/A
• Binary: N/A
• Model: Decision Tree (DT), Deepnet (DNN)
• Data set: Adult, GSS, FiveThirtyEight
• Run-time environment: Python (3.7.11)
• Hardware: N/A
• Run-time state: N/A
• Execution: N/A
• Security, privacy, and ethical concerns: N/A
• Metrics: Precision, Recall, Accuracy, F1 score, G-mean,

MCC, FPR
• Output:
• Experiments: LOMIA, CSMIA (we report median of 5

runs, expected variation 2-3% for GSS, and 5-7% for
FiveThirtyEight datasets)

• How much disk space required (approximately)?: N/A
• How much time is needed to prepare workflow (approxi-

mately)?: N/A
• How much time is needed to complete experiments (approx-

imately)?: N/A
• Publicly available (explicitly provide evolving version ref-

erence)?: N/A
• Code licenses (if publicly available)?: N/A
• Data licenses (if publicly available)?: N/A
• Workflow frameworks used?: N/A
• Archived (explicitly provide DOI or stable reference)?: N/A

A.3 Description
A.3.1 How to access

This artifact codebase is shared via Github. The codebase can be
downloaded from there. Also, we share the target model training
datasets for our experiments, and associated attack datasets as well as
attack model APIs. Our target models (DT, DNN) and attack models
can be accessed via APIs provided on the Github.

A.3.2 Hardware dependencies

No specific hardware is required to run this code.

A.3.3 Software dependencies

Our codebase can be run in the python environment using any python
package manager. For ease of use, we have provided instructions on
how to set up the environment using Anaconda.

A.3.4 Data sets

We use three publicly available datasets: General Social Survey
(GSS), Adult, and Fivethirtyeight. We perform pre-processing on
each dataset and do train-test splits (datasets available on Github).
Details descriptions about each dataset can be found in Section 5.1 in
the main manuscript. We provide the training datasets in our shared
Github repository.

A.3.5 Models

We consider two different target models: decision tree (DT), and
deepnet (DNN). We use the ‘ensemble’ model as the attack model.
All models are trained on BigML with default features. Details about
model training can be found in Section 5.2 in the main manuscript.
All our ML models both target and attack, trained on each dataset,
can be accessed via our provided APIs.

A.3.6 Security, privacy, and ethical concerns

Our artifact does not have security, privacy, and ethical concerns.

A.4 Installation
This artifact is dependent on the python environment. Required
packages have to be installed before running the codebase. A list of
requirements packages are in the requirements file. In our Github
link, we provide step-by-step installation guidelines with Conda
environment creation and installation of the dependencies. Also,
procedures to run the codebase to produce outputs are all described in
the GitHub readme file: https://github.com/smehnaz/black-boxMIAI

A.5 Experiment workflow

A.6 Evaluation and expected results
The following are the main claims that are supported by the artifact
we submitted.

• We demonstrate two new proposed black-box model in- version
attacks: (1) confidence score-based attack (CSMIA) and (2)
label-only attack (LOMIA) outperforms existing FJRMIA

USENIX Association 31st USENIX Security Symposium 309

https://github.com/smehnaz/black-boxMIAI

• Our proposed attacks can achieve better performance while
estimating both binary (Table 12-13) and multi-valued (Table
10) and also multiple sensitive attributes (Table 15-16)

• We empirically show that model inversion attacks have dis-
parate vulnerability property (Figure: 4b, 9, 10)

• We also evaluate partial knowledge attack scenarios of a target
record and demonstrate that our attacks’ performance is not
impacted significantly in those scenarios (Figure: 5, 11-13)

• We also experiment on distributional privacy leakage and show
that these attacks can also breach the privacy of datasets outside
training but drawn from the same distribution. (Figure: 4a, 8)

In Sections 5.4.1, 5.4.2, and 5.4.3, we present our key com-
parisons of our proposed LOMIA and CSMIA attack per-
formances compared to existing FJRMIA. This shows on
different datasets, and target models our attacks outperform
existing attacks in different performance metrics. To repro-
duce the results on LOMIA or CSMIA strategy, one has to run
each attack particular strategy in our codebase described in
the Github and also added end of this section. Other existing
technique strategies are explained in the manuscript. In Tables
4-9, we provide target model confusion matrices and Fig. 2
in the manuscript shows the comparisons in GSS and Adult
datasets. Tables 12 and 13 show performance comparisons on
GSS, and Adult datasets.

For the second claim, we estimate both binary (‘alcohol’)
and multi-valued (‘age’) in the FiveThirtyEight dataset (de-
tails in Section 5.4.3). We also estimate multiple attributes
(inferring ‘age’ along with ‘alcohol’ (Table 16) and inferring
‘alcohol’ along with ‘age’ (Table 15)). To experiment with
disparate vulnerability in model inversion attack, we query
each attack model on specific subgroup instances of the train-
ing dataset, as presented in Section 5.7 of the manuscript.
In the partial attack experiment, we perform the attack for
estimating sensitive attributes with gradually missing more
non-sensitive attributes in the training data. We present the re-
sults in Section 5.8 of the paper. We present the distributional
privacy leakage experiment results in Fig. 8.

All steps for each experiment and reproduction steps are
added to the Github repository. We experiment with our pro-
posed CSMIA, LOMIA as well as baseline FJRMIA to com-
pare performances. The different kinds of attack experiments
that we perform using LOMIA, CSMIA, and FJRMIA are as
follows:

• Inferring a single binary sensitive attribute

• Inferring a single multi-valued sensitive attribute

• Inferring multiple sensitive attributes

• Inferring sensitive attributes when one or more non-
sensitive attributes are unknown

• Inferring sensitive attributes from data that was not orig-
inally on the training set (distributional privacy leakage)

• Analyzing disparate vulnerability of model inversion
attack on different subgroups

Now we list out how these experiments’ results can
be reproduced one by one. One way is to use the con-
figuration files we provided to reproduce results as a
figure or a table presented in the paper. If the config-
uration file name is "config_x .yaml", then one only
has to run the following command in the terminal
"python main.py −−param config_x.yaml". Another way is
to write down the configuration .yaml file and use it from the
terminal in the same way.

Inferring a single binary sensitive attribute: For the
Adult dataset we infer the marital attribute, and for the GSS
the xmovie attribute. We use all combinations of DT and
DNN models and both LOMIA and CSMIA attacks. One
can use the built-in configuration files from the table in the
GitHub readme file. For example: To infer marital from Adult
Dataset and DT model using LOMIA attack, one can use the
configuration file "configs/table_13/lomia_dt.yaml". Then
one can compare the results with Table 12 and Table 13 of
the paper.

Inferring a single multi-valued sensitive attribute:
For the 538 dataset, we infer the multi-valued age attribute.
We use the DT model and both LOMIA and CSMIA
attacks. One can use the built-in configuration files from
the table in the GitHub readme file. For example: To infer
age using the CSMIA, one can use the configuration file
"configs/table_10/csmia.yaml". Then one can compare the
results with Table 10 of the paper. Because 538 is a very
small dataset, in many case3 instances the target models
confidence values are the same and the CSMIA chooses the
sensitive attribute randomly which is the reason behind the
deviation from the paper result. For LOMIA, the training of
the ensemble attack model introduces the variation in the
experiment result. We discuss these at the end of this section.

Inferring multiple sensitive attributes: For the 538
dataset, we infer both alcohol and age attributes. We use
the DT model and both LOMIA and CSMIA attacks.
One can use the built-in configuration files from the
table in the GitHub readme file. For example: To infer
age using the CSMIA, one can use the configuration file
"configs/table_15_16/csmia.yaml". Then the results can
be compared with Tables 15 and 16 from the paper. The
same reason holds for the slight variation between the outputs.

Inferring sensitive attributes when one or more
non-sensitive attributes are unknown: For LOMIA, we
infer sensitive attributes when 1-9 non-sensitive attributes
are missing in order of their importance. The details of
this experiment can be found in section 5.8 of the paper.
We perform the attack on both the Adult and GSS datasets

310 31st USENIX Security Symposium USENIX Association

and both DT and DNN models. One can use the built-in
configuration files from the table in the GitHub readme
file. For example: To perform the partial knowledge attack
on Adult DT, the following configuration file may be used
"configs/figure_5/dt.yaml". The output can be compared with
Figures 5, 11, and 12 from the paper.
For CSMIA, we infer sensitive attributes when 1-2 non-
sensitive attributes are unknown. We only attack Adult DT for
this setting. One can use the built-in configuration files from
the directory mentioned in the GitHub readme file. For exam-
ple: To perform the partial knowledge attack when occupation
and capital-gain are unknown, the following configuration file
may be used "configs/figure_13/occupation_capgain.yaml".
The outputs can be compared with figure 13 from the paper.

Disparate Vulnerability Experiment: In this exper-
iment, we estimate the disparate vulnerability of sub-
groups using the APIs on specific subgroup instances.
We have to define the followings: dataset: Adult/GSS (
Depends on which dataset being attacked), attack_type:
LOMIA, target_model_type: DT/DNN (Depends on which
target model is being attacked sensitive_attributes: [’mar-
ital’]/[’xmovie’] (marital for Adult, xmovie for GSS),
missing_nonsensitive_attributes: [], attack_category: ’dis-
parate_vulnerability’, extra_field_for_attack_category: x
(The vulnerable subgroup (one of the fields on the dataset,
e.g., male/female)). We can also use specific built-in config-
uration files. For example, the following file can be used for
Adult DNN sex subgroups: “configs/figure_4b/sex.yaml" One
can compare the outputs with the ones presented in the paper
in figure 4b, 9, and 10.

Distributional Privacy Experiment: For this experiment,
a similar setup with the above code snippet can be used with at-
tack_category: ’distributional_privacy_leakage’ to get the re-
sult of dataset from the same distribution but not training data.
Also, as an alternative to this, different files can be used as
mentioned in the readme for this attack. For example in DNN
CSMIA this can be used to get results on distributional privacy
leakage: “configs/figure_8/adult_csmia_dnn_on_DSd.yaml".
The outputs can be compared with Figures 4a and 8 from the
paper.

LOMIA Attack Dataset Preparation: First, to build the
attack dataset, one needs to query the target model. Then
build the attack models with those datasets to perform the
attack. We provide the attack models. Therefore, by query-
ing the attack model, one can perform the attack. However,
the attack dataset can be generated with configuration file
names provided in the readme file. For example to generate
dataset on Adult DT model, while inferring marital sensi-
tive attribute, following configuration file can be used “con-
figs/table_3/adult_dt.yaml”.

We expect to have similar results in all experiments as
presented in the empirical results. However, since the attack
models are trained on a different BigML account, and BigML

applies its optimization techniques while generating the attack
models (ensembles), there might be a slight variation in results
produced by this artifact.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

USENIX Association 31st USENIX Security Symposium 311

	sec22_artifact_proceedings_front_matter
	sec22_artifact_proceedings_interior
	sec22_artifact_proceedings_wed
	usenixsecurity22-kondracki
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-zeng
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-yoo
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-bhattacharyya
	usenixsecurity22-li-song
	usenixsecurity22-park-sunnyeo
	usenixsecurity22-maehren
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Testing OpenSSL Server
	Testing OpenSSL Client
	Testing all Libraries

	Evaluation and Expected Results
	Uploading Test Results to the Report Analyzer
	Analyzing Test Results
	Key Results

	Experiment customization
	Notes
	Version

	usenixsecurity22-shakevsky
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Notes
	Version

	usenixsecurity22-slupska-vulnerability
	usenixsecurity22-alexopoulos
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-suciu
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Web Platform
	API Client

	How to access
	Installation
	Evaluation and expected results
	Experiment customization

	usenixsecurity22-vadayath
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-hiesgen
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results

	usenixsecurity22-harrity
	usenixsecurity22-dotan
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-xie
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-wang-yingchen
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-smith
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-huang-zhicong
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-watson
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-bernstein
	usenixsecurity22-kacsmar
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-schrammel
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access

	Installation
	Evaluation and expected results
	Methodology

	usenixsecurity22-barberis
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-tatar
	usenixsecurity22-garbelini
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data Sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment 1 - Evaluating Timing, Coverage and Fuzzing Components
	Experiment 2 - Evaluating State Machine Model
	Experiment 3 - State Mapping Generation
	Experiment 4 - Comparison between different fuzzing tools
	Experiment 5 - Attacks Exploiting BrakTooth
	Experiment 6 - Fuzzing Extensions

	Experiment Customization
	Experiment 1
	Experiment 2
	Experiment 4
	Experiment 5
	Experiment 6

	Notes
	Version

	usenixsecurity22-krupp
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Build docker base images

	Evaluation and expected results
	Prepare Evaluation Directory
	Fuzz
	Analyze results
	(optional) generate honeypot code

	Experiment customization
	Full pipeline customization
	Individual results

	Version

	usenixsecurity22-young
	usenixsecurity22-kumar
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Data sets

	Installation
	Evaluation and expected results

	usenixsecurity22-bulekov
	usenixsecurity22-scharnowski
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-shen-zekun
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Prerequisite
	Concolic Tracing
	Golden seed
	Fuzzing
	Coverage comparison

	Notes
	Version

	usenixsecurity22-leu
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Integrate the sniffer
	Configure the sniffer

	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-chandran

	sec22_artifact_proceedings_thur
	usenixsecurity22-tang
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-stadler
	usenixsecurity22-zaheri
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-mink
	Artifact Appendix
	Abstract
	Artifact Check-List (Meta-Information)
	Description
	How to Access
	Hardware Dependencies
	Software Dependencies
	Data Sets
	Models
	Security, Privacy, and Ethical Concerns

	Installation
	Quantitative Analysis
	Qualitative Analysis

	Evaluation and Expected Results
	Quantitative Analysis
	Qualitative Analysis

	Version

	usenixsecurity22-kulshrestha
	Artifact Appendix
	Abstract
	Checklist
	Description
	How to access
	Software dependencies

	Installation
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-mahdavi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-ma
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Notes
	Methodology

	usenixsecurity22-pal
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Figure 2
	Figure 8
	Figure 9
	Figure 12
	Figure 4,5,6

	Evaluation and expected results
	Notes
	Version

	usenixsecurity22-mayer
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-bosamiya
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-chinprutthiwong
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-roth
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-xiang
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-vaishnavi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-cuevas
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Notes
	Version

	usenixsecurity22-he-yi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results

	usenixsecurity22-du
	usenixsecurity22-tyagi
	usenixsecurity22-jain
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization

	usenixsecurity22-chen-long
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Claim on efficiency
	Claim on scalability

	Experiment customization
	Notes
	Version

	usenixsecurity22-hoang
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-fang
	usenixsecurity22-pang-chengbin
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-li-wen
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Evaluation on micro-benchmarks
	Evaluation on Cvxopt

	Version

	usenixsecurity22-chen-ju
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-solt
	Artifact
	Abstract
	Artifact checklist
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-ji
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-xing
	usenixsecurity22-birge-lee
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-yu-sheng
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization

	usenixsecurity22-aldaya
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Evaluation and expected results
	Methodology

	usenixsecurity22-mehta
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-townley
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Performance Results from the gem5 Simulator
	Area and Power Estimation from McPAT

	Evaluation and expected results
	Performance Results from the gem5 Simulator
	Area and Power Estimation from McPAT

	Experiment customization
	Notes
	Version

	usenixsecurity22-dai
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	NoC Reverse-Engineering
	Covert Channel
	Side Channel
	Analytical Model

	Experiment customization
	Notes
	Version

	usenixsecurity22-siby
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

	usenixsecurity22-bollinger
	usenixsecurity22-iqbal
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data set dependencies

	Installation
	Experiment workflow
	Training & Testing ML model
	Analysis of Request Chains
	Browser Extension

	Evaluation and expected results
	Version

	usenixsecurity22-chen-yunang-practical
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-zhang-jiaheng
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Note

	usenixsecurity22-luo
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-srinivasan
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	sec22_artifact_proceedings_fri
	usenixsecurity22-schloegel
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-rohlmann
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	odf Signature Attacks
	docsv

	Experiment customization
	Notes
	Version

	usenixsecurity22-zuo
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-giner
	usenixsecurity22-gu-jinyu
	usenixsecurity22-cloosters
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Enclave Dumping
	Fuzzing
	Result Aggregation

	Evaluation and expected results & Experiment customization
	Version

	usenixsecurity22-taram
	usenixsecurity22-zou
	usenixsecurity22-ba
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Key Claims
	Key Results
	Prerequistities to reproduce
	Steps to reproduce

	Version

	usenixsecurity22-albertini
	usenixsecurity22-albab
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-gkountouna
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

	usenixsecurity22-balash
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-petzi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-fu-qi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-purnal
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Figure 4
	Cache Timing Histogram
	Eviction Candiate
	DDIO Replacement Policy
	Reduced Eviction
	Eviction Set Construction
	Reverse Engineering the DDIO and DDIO+ regions

	Experiment customization
	Version

	usenixsecurity22-zhang-zenong
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-wang-lun
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Software dependencies

	Installation
	Evaluation and expected results

	usenixsecurity22-trimananda
	usenixsecurity22-kogler-half-double
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-wikner
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-grisafi
	Artefact Appendix
	Abstract
	artefact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-cheval
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-pang-ren
	usenixsecurity22-kaur
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

	usenixsecurity22-chen-guoxing
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Methodology

	usenixsecurity22-yu-jason
	usenixsecurity22-kogler-minefield
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-rizvi
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Results with traffic estimation:
	Building BGP playbook:
	Selection from the playbook:
	Attack mitigation:

	Notes
	Version

	usenixsecurity22-mclaughlin
	usenixsecurity22-leung
	usenixsecurity22-grubbs
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Version

	usenixsecurity22-angel
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Semidefinite programming results
	Linear programming evaluation results
	Stochastic gradient descent results

	Version

	usenixsecurity22-ozdemir
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Build the collaborative proofs
	Collect the data
	Make & inspect the plots

	Notes
	Version

	usenixsecurity22-liang
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-zhang-yuchen
	usenixsecurity22-yuan-yuanyuan
	usenixsecurity22-yuan-xiaoyong
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	usenixsecurity22-mehnaz
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

	Blank Page

